JP2011058047A - Method for producing aluminum alloy thick plate having excellent strength and ductility - Google Patents

Method for producing aluminum alloy thick plate having excellent strength and ductility Download PDF

Info

Publication number
JP2011058047A
JP2011058047A JP2009208938A JP2009208938A JP2011058047A JP 2011058047 A JP2011058047 A JP 2011058047A JP 2009208938 A JP2009208938 A JP 2009208938A JP 2009208938 A JP2009208938 A JP 2009208938A JP 2011058047 A JP2011058047 A JP 2011058047A
Authority
JP
Japan
Prior art keywords
treatment
temperature
ductility
thick plate
hot rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009208938A
Other languages
Japanese (ja)
Inventor
Minoru Hayashi
稔 林
Akira Hibino
旭 日比野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky Aluminum Corp
Original Assignee
Furukawa Sky Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky Aluminum Corp filed Critical Furukawa Sky Aluminum Corp
Priority to JP2009208938A priority Critical patent/JP2011058047A/en
Publication of JP2011058047A publication Critical patent/JP2011058047A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a thick plate of ≥50 mm by hot rolling for an Al-Zn-Mg-Cu-based heat treatment type alloy containing ≥1.0% Cu, wherein, by controlling production conditions, the reduction of coarse intermetallic compounds is achieved, thus the remarkable improvement of its ductility (toughness) is achieved while securing its high strength. <P>SOLUTION: Regarding an Al-Zn-Mg-Cu-based alloy containing 1.0 to 3.0% Cu, in a cooling stage after performing a homogenizing treatment at 450 to 520°C for ≥1 hr to an ingot, the average cooling rate at least to 400°C is regulated to ≥100°C/hr, thereafter, hot rolling is performed to a plate thickness of ≥50 mm at a temperature within the range of 300 to 440°C, and, subsequently, solution treatment, quenching and artificial aging treatment are performed so as to obtain a thick plate in which the total area ratio of intermetallic compounds having an equivalent circle diameter of >5 μm is controlled to ≤2%. Further, electric conductivity of the ingot when measured in a state of being cooled to room temperature after the homogenizing treatment is controlled to be ≤40 IACS%. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、航空機、鉄道車両、自動車部品などに用いられる50mm以上の板厚の高強度Al−Zn−Mg−Cu系熱処理型アルミニウム合金厚板を、熱間圧延を適用して製造する方法に関するものであり、より詳細には鋳塊の均質化処理後の冷却条件を最適化することにより、均質化処理後の金属間化合物の成長・粗大化を抑制して、低温あるいは短時間で効率よく溶体化処理を可能とし、溶体化処理、焼き入れおよび人工時効処理後の製品板として、高強度でかつ高延性(高靭性)を有するアルミニウム合金厚板を得る方法に関するものである。   The present invention relates to a method for manufacturing a high-strength Al—Zn—Mg—Cu heat-treatable aluminum alloy thick plate having a thickness of 50 mm or more used for aircraft, railway vehicles, automobile parts, etc. by applying hot rolling. More specifically, by optimizing the cooling conditions after homogenization treatment of the ingot, the growth and coarsening of intermetallic compounds after homogenization treatment is suppressed, and it is efficient at low temperature or in a short time. The present invention relates to a method for obtaining a thick aluminum alloy plate having high strength and high ductility (high toughness) as a product plate after solution treatment, solution treatment, quenching and artificial aging treatment.

周知のように7075合金や7050合金で代表されるAl−Zn−Mg−Cu系合金は、熱処理型合金として、析出強化により極めて高い強度を得ることができる。しかしながら、例えば航空機用材料として用いられる場合は、T6調質によるピーク強度では、破壊靱性が低下したり、また耐応力腐食割れ性(耐SCC性)が低下してしまうなどの問題がある。このため実用的には、2段時効による過時効調質(T7x)を行なって、T6調質のピーク強度よりも10〜15%程度強度を下げた状態のT7x調質材として用いることが多い。   As is well known, an Al—Zn—Mg—Cu alloy represented by 7075 alloy and 7050 alloy can obtain extremely high strength by precipitation strengthening as a heat treatment type alloy. However, when used as an aircraft material, for example, there is a problem that the peak toughness due to the T6 refining results in a decrease in fracture toughness and a decrease in stress corrosion cracking resistance (SCC resistance). Therefore, in practice, it is often used as a T7x tempered material in which the strength is lowered by about 10 to 15% from the peak strength of the T6 tempering by performing overaging tempering (T7x) by two-stage aging. .

このため航空機材料などとしては、さらなる軽量化のために、より高強度、高靱性の合金が強く求められている。しかしながら一般に強度と靱性、延性(伸び)との間には負の相関関係があり、高強度化すれば靱性、延性(伸び)が低下してしまうことが知られている。このため伸びや靱性向上の方法としては、破壊の起点となる金属間化合物を低減する方策が従来から適用されている。例えば7075合金では、7175合金あるいは7475合金などで不純物とされているSi、Feの含有量を従来よりも低減することにより、靱性の改良が行われてきている。またそのほか7050合金、7055合金、7085合金などにおいても、同様に不純物としてのSi、Feの含有量が低く設定されている。しかしながら不純物元素であるSi、Feの含有量を、現状よりもさらに低減するためには、高純度のAl地金を使用する必要があるため、コストが高くなってしまう問題点があり、さらにはリサイクル性にも劣るようになって、工業的に大量に生産するには問題が多くなる。   For this reason, as an aircraft material, an alloy having higher strength and higher toughness is strongly demanded for further weight reduction. However, in general, there is a negative correlation between strength, toughness, and ductility (elongation), and it is known that toughness and ductility (elongation) decrease when the strength is increased. For this reason, as a method for improving elongation and toughness, a measure for reducing the intermetallic compound that is the starting point of fracture has been conventionally applied. For example, in the 7075 alloy, the toughness has been improved by reducing the contents of Si and Fe, which are impurities in the 7175 alloy or the 7475 alloy, as compared with the prior art. In addition, the contents of Si and Fe as impurities are similarly set low in 7050 alloy, 7055 alloy, 7085 alloy and the like. However, in order to further reduce the content of the impurity elements Si and Fe from the current level, it is necessary to use a high purity Al ingot, so there is a problem that the cost becomes high. It becomes inferior in recyclability, and there are many problems in industrially mass production.

またそのほか、破壊靱性向上の方法としては、例えば特許文献1に示されるように、再結晶を抑制して繊維(ファイバー)状組織を維持し、焼入れ速度を確保することによって高強度かつ高靱性を得る方法が提案されている。しかしながら特許文献1においては、再結晶抑制のための方法や速い焼入れ速度を得るための方法に関して、さほど具体的な方法が述べられていない。さらに特許文献1では、均質化処理温度、熱間圧延開始温度、溶体化温度および焼き戻し(時効)温度・時間については規定されているものの、これらについての具体的な説明がなされていない。したがって特許文献1の提案の方法を実際に工業的に実施して、高強度、高靭性を有する合金を確実に得ることは困難と言わざるを得なかったのである。   In addition, as a method of improving fracture toughness, for example, as shown in Patent Document 1, high strength and high toughness can be obtained by maintaining a fiber (fiber) structure by suppressing recrystallization and ensuring a quenching speed. A method of obtaining has been proposed. However, in Patent Document 1, no specific method is described regarding a method for suppressing recrystallization and a method for obtaining a high quenching speed. Further, in Patent Document 1, although the homogenization temperature, the hot rolling start temperature, the solution temperature, and the tempering (aging) temperature / time are defined, there is no specific description thereof. Therefore, it has been difficult to say that it is difficult to reliably obtain an alloy having high strength and high toughness by actually industrially implementing the method proposed in Patent Document 1.

一方本発明者らは、繊維状組織を得るための条件、特に鋳塊の均質化処理条件について検討し、特許文献2に示すように、鋳塊に対する均質化処理時に微細なAlZrを析出させて、熱間加工および溶体化処理後も繊維状組織を得ることにより破壊靱性を向上する手段を提案しているが、破壊靱性に大きな影響を及ぼすと考えられるそのほかの金属間化合物の低減については、未だ充分な検討は行われておらず、そのため特許文献2の方法を実際に工業的に実施して、高強度、高靭性を有する合金を確実に得るには未だ不充分だったのである。 On the other hand, the present inventors examined conditions for obtaining a fibrous structure, in particular, ingot homogenization treatment conditions, and as shown in Patent Document 2, fine Al 3 Zr was precipitated during the ingot homogenization treatment. Has been proposed to improve the fracture toughness by obtaining a fibrous structure even after hot working and solution treatment, but the reduction of other intermetallic compounds that are thought to have a major impact on fracture toughness Has not yet been sufficiently studied, and therefore, it has not been sufficient to reliably obtain an alloy having high strength and high toughness by actually carrying out the method of Patent Document 2 on an industrial scale. .

またさらに特許文献3では、熱間圧延後のホットコイルに、加熱あるいは冷却によって制御された冷却サイクルを与えることが提案されているが、この特許文献3では、具体的な作用の説明が乏しく、かつ金属内部組織の変化については充分に調査されておらず、そのため特許文献3の方法を実際に適用しても、高強度かつ高靭性の材料が得られるかは疑問であった。   Furthermore, in Patent Document 3, it has been proposed to give a hot cycle after hot rolling to a cooling cycle controlled by heating or cooling, but in this Patent Document 3, there is little explanation of the specific action, In addition, the change in the internal structure of the metal has not been sufficiently investigated, and therefore it has been questioned whether a material having high strength and high toughness can be obtained even if the method of Patent Document 3 is actually applied.

一方、この発明で対象としているような、航空機用材料を主用途とし、熱間圧延を適用して50mm以上の板厚の厚板(圧延板)を得る方法とはまったく異なるが、主として建材や車両用材料、二輪車用材料を用途とし、比較的薄く(数mm程度以下)て複雑な形状に対応可能な押出材の製造方法として、特許文献4、特許文献5においては、その押出材の製造条件、特に鋳塊の均質化処理後の条件を規定している。そして特許文献4、特許文献5の方法においては、優れた押出性を確保し、また良好な溶接性を確保するとともに、耐食性の向上も図るため、合金中のCu量を0.4%以下に規制している。しかるにCu量が0.4%以下では、この発明で主用途としている航空機材料として要求される強度を充分に確保することは困難である。また一方、この発明で主用途とする航空機用材料の厚板では、溶接性はさほど要求されず、また熱間圧延によって厚板とするため、押出性も要求されない。したがって航空機用材料を主用途とする熱間圧延による厚板材では、高い強度を確保するため、Cu量を、特許文献4、特許文献5に示される如く少量(0.4%以下)に規制せず、1.0%程度以上に増量することが望ましいと考えられる。しかしながら、Cu量を増量すれば、金属間化合物の析出状況も特許文献4、特許文献5の方法による場合とは大幅に異なったものとなる。すなわち、Cu量を1.0%程度以上に増量すれば、金属間化合物として粗大なS相(AlCuMg化合物)やAlCuFeが発生しやすくなり、これらの粗大な金属間化合物は、靭性(延性)に大きな悪影響を及ぼすと考えられる。したがって、Cu量を1.0%程度以上に増量した合金を用いた場合に、その製造条件、特に均質化処理条件として、特許文献4、特許文献5に示される条件をそのままこの発明で主用途とする50mm以上の板厚の航空機材料の熱間圧延による製造に適用しても、期待されるような高強度と高靭性を兼ね備えた材料を得ることは保証され得ないのである。 On the other hand, although it is completely different from the method of obtaining a thick plate (rolled plate) having a plate thickness of 50 mm or more by applying hot rolling as a main application, which is the object of the present invention, Patent Document 4 and Patent Document 5 describe a method for manufacturing an extruded material that can be used for a vehicle material and a motorcycle material and is relatively thin (less than several millimeters) and capable of dealing with a complicated shape. The conditions, especially the conditions after homogenization of the ingot are specified. And in the method of patent document 4 and patent document 5, while ensuring the outstanding extrudability and ensuring favorable weldability, and also aiming at an improvement in corrosion resistance, the amount of Cu in an alloy shall be 0.4% or less. It is regulated. However, if the amount of Cu is 0.4% or less, it is difficult to sufficiently secure the strength required for the aircraft material used as the main application in the present invention. On the other hand, the thick plate of the aircraft material that is mainly used in the present invention does not require much weldability, and it does not require extrudability because the plate is formed by hot rolling. Therefore, in the thick plate material by hot rolling mainly used for aircraft materials, the Cu amount is restricted to a small amount (0.4% or less) as shown in Patent Document 4 and Patent Document 5 in order to ensure high strength. Therefore, it is considered desirable to increase the amount to about 1.0% or more. However, if the amount of Cu is increased, the precipitation state of the intermetallic compound also becomes significantly different from the case of the methods of Patent Document 4 and Patent Document 5. That is, if the amount of Cu is increased to about 1.0% or more, coarse S phases (AlCu 2 Mg compounds) and Al 7 Cu 2 Fe are likely to be generated as intermetallic compounds, and these coarse intermetallic compounds are It is considered to have a great adverse effect on toughness (ductility). Therefore, when an alloy whose amount of Cu is increased to about 1.0% or more is used, the conditions shown in Patent Document 4 and Patent Document 5 are used in this invention as they are as the production conditions, particularly the homogenization treatment conditions. Even if it is applied to the production of aircraft material having a thickness of 50 mm or more by hot rolling, it cannot be guaranteed that a material having high strength and high toughness as expected can be obtained.

特表2000−504068号公報Special Table 2000-504068 特開2006−257522号公報JP 2006-257522 A 特表2007−510061号公報Special table 2007-510061 gazette 特開平9−310141号公報JP-A-9-310141 特開2005−307322号公報JP 2005-307322 A

既に述べたように7075合金や7050合金で代表される熱処理型のAl−Zn−Mg−Cu系合金は、航空機用部材などの大型構造部材として50mm以上の板厚の厚板で用いられることが多く、軽量化、燃費向上などの観点からさらなる高強度化が要求されている。またこのような材料においては、損傷許容設計の観点から、構造部材の設計時に亀裂の進展に対する抵抗を示す破壊靱性が重要視されることが多く、強度と同時に靱性、延性の向上も望まれている。しかしながら、一般に強度と靱性、延性との間には負の相関関係があるため、強度と延性、靱性を同時に向上させるために、従来は不純物元素であるSi、Feの抑制による金属間化合物の低減策が実施されているが、それだけでは強度と延性、靭性とを同時に充分に向上させることは困難であった。また一方、航空機用材料等として充分な強度を得るためにCu量を1.0%程度以上としたAl−Zn−Mg−Cu系合金においては、金属間化合物として、粗大なS相(Al−CuMg化合物)やAlCuFe化合物が生じやすく、したがってこのような1.0%程度以上のCuを含有するAl−Zn−Mg−Cu系合金の厚板として、さらなる延性、靱性向上を図るためには製造プロセス条件の制御による金属間化合物の低減が必要である。そこでこの発明では、Cuを多量に含有するAl−Zn−Mg−Cu系(7000系)高強度合金の熱間圧延による厚板材の製造方法として、その製造条件の制御により、主としてCu系金属間化合物からなる粗大な金属間化合物の充分な低減を図り、これによって、高強度を確保すると同時に、延性、靭性の大幅な改善を図ることを課題としている。 As already described, heat-treatable Al—Zn—Mg—Cu-based alloys represented by 7075 alloy and 7050 alloy may be used as thick plates having a thickness of 50 mm or more as large structural members such as aircraft members. In many cases, higher strength is required from the viewpoint of weight reduction and fuel efficiency improvement. In such materials, from the viewpoint of damage tolerance design, fracture toughness that shows resistance to crack growth is often emphasized when designing structural members, and improvement in toughness and ductility as well as strength is desired. Yes. However, since there is generally a negative correlation between strength, toughness, and ductility, in order to improve strength, ductility, and toughness at the same time, the reduction of intermetallic compounds by previously suppressing Si and Fe, which are impurity elements, has been achieved. Although measures have been implemented, it has been difficult to sufficiently improve strength, ductility and toughness at the same time. On the other hand, in an Al—Zn—Mg—Cu based alloy in which the Cu content is about 1.0% or more in order to obtain sufficient strength as an aircraft material or the like, a coarse S phase (Al— Cu 2 Mg compound) and Al 7 Cu 2 Fe compound are likely to be generated. Therefore, as a thick plate of such an Al—Zn—Mg—Cu alloy containing about 1.0% or more of Cu, further improvement in ductility and toughness is achieved. In order to achieve this, it is necessary to reduce intermetallic compounds by controlling the manufacturing process conditions. Therefore, in the present invention, as a method for producing a thick plate material by hot rolling of an Al—Zn—Mg—Cu-based (7000) high-strength alloy containing a large amount of Cu, mainly by controlling the production conditions, It is an object to sufficiently reduce the coarse intermetallic compound composed of a compound, thereby ensuring high strength and at the same time greatly improving ductility and toughness.

本発明者等は、主として航空機用材料として使用される板厚50mm以上のAl−Zn−Mg−Cu系熱処理型合金厚板、特に1.0%以上のCuを含有するAl−Zn−Mg−Cu系合金の厚板の圧延による製造方法として、高延性(高靭性)を有すると同時に高強度を有する厚板を製造する方法を見出すべく、種々実験・検討を重ねた結果、鋳塊に対する均質化処理の後の冷却速度を適切に制御し、併せて熱間圧延の温度を適切に制御することによって、主としてCu系からなる金属間化合物の粗大化を抑制し、その後の溶体化処理時に金属間化合物を効率よく再固溶させることが可能となり、続く人工時効処理により、高強度、高延性(高靭性)を兼ね備えた厚板が得られることを見出し、この発明をなすに至ったのである。   The present inventors mainly used an Al—Zn—Mg—Cu heat-treatable alloy thick plate having a thickness of 50 mm or more, particularly an Al—Zn—Mg— containing 1.0% or more of Cu, which is mainly used as an aircraft material. As a manufacturing method by rolling a thick plate of Cu-based alloy, various experiments and examinations were conducted to find a method of manufacturing a thick plate having high ductility (high toughness) and high strength. By appropriately controlling the cooling rate after the heat treatment, and also appropriately controlling the temperature of the hot rolling, the coarsening of the intermetallic compound mainly composed of Cu is suppressed, and the metal during the subsequent solution treatment It became possible to efficiently re-solidify the intermetallic compound, and it was found that a thick plate having high strength and high ductility (high toughness) can be obtained by the subsequent artificial aging treatment, which led to the present invention. .

具体的には、請求項1の発明のアルミニウム合金厚板の製造方法は、Zn5.0〜7.0%(mass%、以下同じ)、Mg1.0〜3.0%、Cu1.0〜3.0%を含有し、かつCr0.05〜0.3%、Zr0.05〜0.25%、Mn0.05〜0.40%、Sc0.05〜0.35%のうちから選ばれた1種もしくは2種以上を、合計量が0.05〜0.5%の範囲内で含有し、さらに不純物としてSiを0.25%以下、Feを0.25%以下に規制し、残部がAlおよびその他の不可避的不純物としたAl−Zn−Mg−Cu系アルミニウム合金を用い、その鋳塊に、450〜520℃の範囲内の温度で1時間以上保持する均質化処理を行なった後、鋳塊を冷却する過程において、少なくとも400℃までの平均冷却速度を100℃/hr以上に規制し、その後300〜440℃の範囲内の温度で50mm以上の板厚まで熱間圧延を行なった後、溶体化処理・焼入れおよび人工時効処理を施し、円相当径で5μmを越える金属間化合物の総面積率を2%以下とした厚板を得ることを特徴とするものである。   Specifically, the manufacturing method of the aluminum alloy thick plate of the invention of claim 1 is Zn 5.0-7.0% (mass%, the same applies hereinafter), Mg 1.0-3.0%, Cu 1.0-3 1.0% and 1 selected from Cr 0.05 to 0.3%, Zr 0.05 to 0.25%, Mn 0.05 to 0.40%, Sc 0.05 to 0.35% Contain two or more seeds in a total amount of 0.05 to 0.5%, further restrict impurities as Si to 0.25% or less and Fe to 0.25% or less, the balance being Al And ingots and other inevitable impurities, the ingot was subjected to homogenization treatment for 1 hour or more at a temperature in the range of 450 to 520 ° C. In the process of cooling the mass, the average cooling rate up to at least 400 ° C. is 1 Restricted to 0 ° C / hr or higher, and then hot-rolled to a thickness of 50 mm or higher at a temperature in the range of 300 to 440 ° C, then subjected to solution treatment, quenching, and artificial aging treatment. It is characterized in that a thick plate having a total area ratio of intermetallic compounds exceeding 5 μm of 2% or less is obtained.

また請求項2の発明は、請求項1に記載のアルミニウム合金厚板の製造方法において、前記均質化処理後、室温まで冷却した状態で測定した鋳塊の導電率が40IACS%以下となるように制御することを特徴とするものである。   According to a second aspect of the present invention, in the method for producing an aluminum alloy thick plate according to the first aspect, the ingot conductivity measured in the state of cooling to room temperature after the homogenization treatment is 40 IACS% or less. It is characterized by controlling.

そしてまた請求項3の発明は、請求項1に記載のアルミニウム合金厚板の製造方法において、前記溶体化処理を、460〜520℃の範囲内の温度で1〜10時間行なうことを特徴とするものである。   The invention of claim 3 is the method for producing an aluminum alloy thick plate according to claim 1, wherein the solution treatment is performed at a temperature in the range of 460 to 520 ° C. for 1 to 10 hours. Is.

この発明によれば、板厚50mm以上でかつ1.0%以上のCuを含有するAl−Zn−Mg−Cu系熱処理型アルミニウム合金厚板の、熱間圧延による製造方法として、鋳塊に対する均質化処理の後の冷却条件を最適化するとともに、その後の熱間圧延の温度を適切に制御することにより、主としてCu系からなる金属間化合物の粗大化を抑制して、その後の溶体化処理により容易かつ確実に金属間化合物を再固溶させ、引続き人工時効処理を施すことにより、高強度を有すると同時に高延性(高靭性)を有する厚板を確実かつ容易に得ることができ、そのため、特に高強度と高延性(高靭性)が同時に要求される航空機用材料などの厚板構造材の製造方法として最適である。   According to this invention, as a manufacturing method by hot rolling of an Al—Zn—Mg—Cu heat-treatable aluminum alloy thick plate having a thickness of 50 mm or more and containing 1.0% or more of Cu, it is homogeneous for an ingot. By optimizing the cooling conditions after the heat treatment, and appropriately controlling the temperature of the subsequent hot rolling, the coarsening of the intermetallic compound mainly composed of Cu is suppressed, and the subsequent solution treatment. By re-dissolving the intermetallic compound easily and reliably, and subsequently subjecting to artificial aging treatment, a thick plate having high strength and high ductility (high toughness) can be obtained reliably and easily. In particular, it is optimal as a method for producing thick plate structural materials such as aircraft materials that require high strength and high ductility (high toughness) at the same time.

以下にこの発明の製造方法についてさらに詳細に説明する。   The production method of the present invention will be described in detail below.

先ずこの発明の製造方法において対象となるアルミニウム合金の成分組成の限定理由について説明する。   First, the reasons for limiting the component composition of the aluminum alloy that is the subject of the manufacturing method of the present invention will be described.

Zn:
Znは、この発明で対象とする系の合金において、人工時効処理時にη’相(MgZn)として0.01〜1μmのサイズでマトリックス中に析出し、析出硬化により強度を高める元素である。Znの添加量が5.0%未満では充分な強度が得られず、一方7.0%を越えればその効果が飽和すると同時に、耐SCC性が低下するから、Zn量は5.0〜7.0%の範囲内とした。
Zn:
Zn is an element that precipitates in the matrix as a η ′ phase (MgZn 2 ) in a size of 0.01 to 1 μm during the artificial aging treatment and increases the strength by precipitation hardening. If the added amount of Zn is less than 5.0%, sufficient strength cannot be obtained. On the other hand, if it exceeds 7.0%, the effect is saturated and the SCC resistance is lowered. Within the range of 0.0%.

Mg:
Mgは、Znと同様にこの発明で対象とする系の合金において人工時効処理時にη’相(MgZn)として析出し、強度を高める作用を示す。Mgの添加量が1.0%未満では充分な強度向上効果が得られず、一方3.0%を越えればその効果が飽和するとともに、MgSiの金属間化合物が生成されやすくなって、靭性(延性)を低下させるおそれがあるから、Mg量は1.0〜3.0%の範囲内とした。
Mg:
Similar to Zn, Mg precipitates as an η ′ phase (MgZn 2 ) during artificial aging treatment in an alloy of the subject system in the present invention, and exhibits an effect of increasing strength. If the addition amount of Mg is less than 1.0%, a sufficient strength improvement effect cannot be obtained, while if it exceeds 3.0%, the effect is saturated and an intermetallic compound of Mg 2 Si is easily generated. Since there is a possibility that the toughness (ductility) may be lowered, the Mg amount is set in the range of 1.0 to 3.0%.

Cu:
Cuはマトリックス中に固溶して、固溶硬化により強度を高める作用を示す。ここで、Cu量が1.0%未満では、航空機材料などの高強度構造材として強度が不充分となり、一方Cu量が3.0%を越えれば、S相(AlCuMg化合物)やAlCuFeの体積率が増加し、破壊靭性値が低下し、また腐食性の高いAl−Cu−Mg系析出物が多くなり、耐SSC性や耐剥離腐食性を劣化させてしまう。そこでCu量は1.0〜3.0%の範囲内とした。
Cu:
Cu is dissolved in the matrix and exhibits an effect of increasing strength by solid solution hardening. Here, if the amount of Cu is less than 1.0%, the strength is insufficient as a high-strength structural material such as aircraft material, while if the amount of Cu exceeds 3.0%, S phase (AlCu 2 Mg compound) or Al The volume ratio of 7 Cu 2 Fe increases, the fracture toughness value decreases, and Al—Cu—Mg-based precipitates with high corrosiveness increase, which degrades SSC resistance and exfoliation corrosion resistance. Therefore, the amount of Cu is set in the range of 1.0 to 3.0%.

Cr、Zr、Mn、Sc:
Cr、Zr、Mn、Scは、いずれも熱間圧延工程あるいは溶体化処理時において再結晶抑制および粒成長抑制元素として機能する。それらの添加量を、Cr0.05〜0.3%、Zr0.05〜0.25%、Mn0.05〜0.40%、Sc0.05〜0.35%と限定したのは、それぞれ単独で添加した場合に下限値未満では、上記の添加効果が不充分となり、一方上限値を越えれば、その効果が飽和するとともに、粗大な金属間化合物を形成しやすくなるからである。なおこれらの元素は単独での添加でも充分な効果が得られるが、複数種を同時に添加してもその効果が得られることはもちろんである。但し、これらの元素の合計添加量が0.05%未満では充分な添加効果が得られず、一方0.5%を越えればその効果が飽和するとともに粗大な金属間化合物が生成されやすくなるから、これらの元素の合計含有量は0.05〜0.5%の範囲内とした。
Cr, Zr, Mn, Sc:
Cr, Zr, Mn, and Sc all function as recrystallization suppression and grain growth suppression elements during the hot rolling step or solution treatment. The addition amounts thereof were limited to Cr 0.05 to 0.3%, Zr 0.05 to 0.25%, Mn 0.05 to 0.40%, and Sc 0.05 to 0.35%, respectively. When added, if the amount is less than the lower limit, the above-described effect of addition becomes insufficient. On the other hand, if the amount exceeds the upper limit, the effect is saturated and a coarse intermetallic compound is easily formed. In addition, although sufficient effect is acquired even if these elements are added alone, it is a matter of course that the effect can be obtained even when plural kinds are added simultaneously. However, if the total addition amount of these elements is less than 0.05%, a sufficient addition effect cannot be obtained, while if it exceeds 0.5%, the effect is saturated and a coarse intermetallic compound is easily generated. The total content of these elements was in the range of 0.05 to 0.5%.

Fe:
Feは、通常のアルミニウム合金においても不可避的に含有される元素であり、この発明のアルミニウム合金厚板の場合、FeはAlCuFeとして不溶性の金属間化合物を形成し、伸びや靭性を低下させるから、この発明でもFeは不純物として扱い、その含有量は可及的に少ないことが望ましいが、工業的にはコスト面を考慮して0.25%以下であれば良く、好ましくは0.15%以下が良い。
Fe:
Fe is an element that is unavoidably contained even in a normal aluminum alloy. In the case of the aluminum alloy thick plate of the present invention, Fe forms an insoluble intermetallic compound as Al 7 Cu 2 Fe, and has elongation and toughness. In the present invention, Fe is treated as an impurity and its content is preferably as low as possible in this invention. However, in view of cost, it may be 0.25% or less, preferably 0. .15% or less is good.

Si:
SiもFeと同様に通常のアルミニウム合金においても不可避的に含有される元素であり、この発明の系の合金においてはMgSiの金属間化合物を形成し伸びや靭性を低下させるから、この発明でもSiは不純物扱いとして、その含有量は可及的に少ないことが望ましいが、工業的にはコスト面を考慮して0.25%以下であれば良く、好ましくは0.15%以下が良い。
Si:
Si is an element that is unavoidably contained in ordinary aluminum alloys as well as Fe, and in the alloys of the present invention, Mg 2 Si intermetallic compounds are formed to reduce elongation and toughness. However, it is desirable that Si is treated as an impurity, and its content is desirably as low as possible, but industrially, it may be 0.25% or less, preferably 0.15% or less in consideration of cost. .

以上の各元素の残部は、基本的にはAlと、上記のFe、Si以外の不可避的不純物とすれば良い。なお特に限定するものではないが、通常のアルミニウム合金においては、鋳造時の結晶粒微細化の目的でTiBあるいはTiCを含んだ微細化剤を少量添加することがあり、この発明の場合もこれらの微細化剤を、Ti量で0.05%程度添加することは許容される。 The balance of the above elements may be basically inevitable impurities other than Al and the above-described Fe and Si. Although not particularly limited, in a normal aluminum alloy, a small amount of a refiner containing TiB 2 or TiC may be added for the purpose of crystal grain refinement at the time of casting. It is permissible to add about 0.05% of the micronizing agent.

さらにこの発明の方法により得られる最終板においては、金属間化合物の分布密度条件として、円相当径で5μmを越える金属間化合物の総面積率を2%以下に規制する。その金属間化合物総面積率条件の限定理由について次に説明する。   Further, in the final plate obtained by the method of the present invention, the total area ratio of the intermetallic compound having an equivalent circle diameter exceeding 5 μm is restricted to 2% or less as the distribution density condition of the intermetallic compound. The reason for limiting the intermetallic compound total area ratio condition will be described below.

この発明で対象とする系の合金においては、最終板においても、MgSi、AlCuFe、あるいはS相(AlCuMg)、η’相(MgZn)などの金属間化合物が存在する。これらのうち5μmを越える粗大な金属間化合物は、ボイドの発生起点あるいは亀裂の伝播経路となるため、延性や靭性を低下させてしまう。したがって延性や靭性を向上させるためには、これらの金属間化合物のサイズあるいは数(密度)を減少させることが有効である。そこで本発明者等が、金属間化合物のサイズおよび総面積率と延性(靭性)との関係について詳細に調査した結果、MgSi、AlCuFe、あるいはS相(AlCuMg)などの、円相当径で5μmを越える金属間化合物の総面積率が2%以下であれば、優れた延性が得られることが判明し、その条件を最終板において規定した。なおこの発明で用いる合金では、上述のようにη’相も析出するが、このη’相は、円相当径で5μmを越えるような粗大なものとなることは少ない。いずれにしても、要は金属間化合物の種類を問わず、円相当径5μmを越える粗大な金属間化合物が、総面積率で2%以下であれば、良好な延性、靭性を確保することができる。なおまた、ここで5μmを越える金属間化合物の総面積率とは、最終板である厚板における板面と平行な断面、すなわち圧延方向−圧延直角方向よりなる面(L−LT面)の断面で金属間化合物を観察した総面積率とする。 In the alloy of the system targeted by the present invention, there are intermetallic compounds such as Mg 2 Si, Al 7 Cu 2 Fe, S phase (Al 2 CuMg), and η ′ phase (MgZn 2 ) even in the final plate. To do. Of these, a coarse intermetallic compound exceeding 5 μm serves as a void generation starting point or a crack propagation path, thus reducing ductility and toughness. Therefore, in order to improve ductility and toughness, it is effective to reduce the size or number (density) of these intermetallic compounds. Accordingly, as a result of detailed investigations by the inventors on the relationship between the size and total area ratio of the intermetallic compound and ductility (toughness), Mg 2 Si, Al 7 Cu 2 Fe, S phase (Al 2 CuMg), etc. It was found that excellent ductility could be obtained if the total area ratio of the intermetallic compound having an equivalent circle diameter exceeding 5 μm was 2% or less, and the conditions were defined in the final plate. In the alloy used in the present invention, the η ′ phase is also precipitated as described above. However, the η ′ phase is rarely coarse as an equivalent circle diameter exceeding 5 μm. In any case, regardless of the type of intermetallic compound, it is possible to ensure good ductility and toughness if the coarse intermetallic compound exceeding the equivalent circle diameter of 5 μm is 2% or less in terms of the total area ratio. it can. Here, the total area ratio of the intermetallic compound exceeding 5 μm is a cross section parallel to the plate surface of the thick plate which is the final plate, that is, a cross section of a plane (L-LT plane) composed of the rolling direction and the direction perpendicular to the rolling. The total area ratio of the intermetallic compound observed is

さらにこの発明では、最終的に得るべき厚板の厚みを50mm以上に限定しているが、その理由は次の通りである。   Further, in the present invention, the thickness of the thick plate to be finally obtained is limited to 50 mm or more, for the following reason.

すなわち、既に述べたように、航空機材料などの大型構造部材に用いられる場合、強度とともに靭性、延性が要求される。一般に強度と靭性(延性)は相反する特性であり、強度が高くなれば靭性(延性)が低下する傾向を示す。板厚が薄い場合には、溶体化処理後の焼入れ時に充分な高い冷却速度が得られるが、肉厚が厚くなれば、冷却速度が低下するため、特性が低下してしまいやすい。この発明では、主として航空機に用いられる2インチ(50.8mm)程度以上の厚肉材においても充分な特性が得られることを目的として開発された製造方法であり、そこでこの発明の対象は50mm以上の厚板とした。   That is, as already described, when used for large structural members such as aircraft materials, toughness and ductility are required as well as strength. In general, strength and toughness (ductility) are contradictory properties, and as strength increases, toughness (ductility) tends to decrease. When the plate thickness is thin, a sufficiently high cooling rate can be obtained at the time of quenching after the solution treatment, but when the thickness is increased, the cooling rate is lowered, and the characteristics are likely to be lowered. The present invention is a manufacturing method developed for the purpose of obtaining sufficient characteristics even in a thick material of about 2 inches (50.8 mm) or more mainly used for aircraft, and the object of the present invention is 50 mm or more. A thick plate was used.

次にこの発明の方法で規定する製造条件について説明する。   Next, manufacturing conditions defined by the method of the present invention will be described.

この発明の方法においては、基本的には一般的なAl−Zn−Mg−Cu系合金(7000番系合金)と同様に、鋳造後、鋳塊に対して均質化処理を施し、急速に冷却してから、熱間圧延を行なって所要の板厚(50mm以上)とし、その後、溶体化処理、焼入れ後、人工時効処理を施す。そこでこれらの各工程について、さらに詳細に説明する。   In the method of the present invention, basically, as with a general Al—Zn—Mg—Cu alloy (No. 7000 alloy), after the casting, the ingot is homogenized and rapidly cooled. Then, hot rolling is performed to obtain a required plate thickness (50 mm or more), and then an artificial aging treatment is performed after solution treatment and quenching. Accordingly, each of these steps will be described in more detail.

先ず均質化処理は、Al−Zn−Mn−Cu系合金の鋳造時の成分偏析の低減や鋳造時に生じた粗大な金属間化合物の固溶および分断、球状化などを主目的に実施される。均質化処理温度が450℃未満では、均質化の効果が不充分で、粗大な金属間化合物を分断、球状化することができないため、450℃以上で行なうことが必要である。また均質化処理温度が520℃を越えれば、マトリックスの溶融が生じるおそれがあるため、520℃以下とする。また均質化処理の保持時間が1時間未満では、充分な均質化の効果が得られないから、保持時間は1時間以上(望ましくは4時間以上)とする。なお均質化処理の保持時間の上限に関しては特に限定するものではないが、あまり長時間ではエネルギーが無駄になり、コスト面で不利となるから、通常は8時間以下が好ましい。   First, the homogenization treatment is performed mainly for the purpose of reducing component segregation during casting of an Al—Zn—Mn—Cu alloy, solid solution and fragmentation of coarse intermetallic compounds generated during casting, spheroidization, and the like. If the homogenization treatment temperature is less than 450 ° C., the effect of homogenization is insufficient, and coarse intermetallic compounds cannot be divided and spheroidized. If the homogenization temperature exceeds 520 ° C, the matrix may be melted. Further, if the holding time of the homogenization treatment is less than 1 hour, a sufficient homogenizing effect cannot be obtained, so the holding time is set to 1 hour or longer (preferably 4 hours or longer). The upper limit of the homogenization treatment holding time is not particularly limited. However, if the time is too long, energy is wasted and disadvantageous in terms of cost, and therefore it is usually preferably 8 hours or less.

次に均質化処理後の冷却過程における冷却速度の限定について説明する。   Next, the limitation of the cooling rate in the cooling process after the homogenization process will be described.

この発明で対象とする系の合金のように、溶体化処理・焼入れ、人工時効処理が施される、いわゆる熱処理型アルミニウム合金では、溶体化処理・焼入れ時の冷却速度に関して、既に多くの調査がなされている。しかしながら従来は、通常の溶体化処理により析出物の再固溶が充分に行なわれると考えられていたため、それよりも前の段階である鋳塊に対する均質化処理後の冷却時に生じる固溶・析出挙動に関しては、充分な注意が払われていなかったのが実情である。しかるに、本発明者等が詳細に調査したところ、この発明で対象とする系の合金のように、Cuを1%以上含有する合金では、溶体化処理前の段階で、特にS相(AlCuMg)で代表される粗大な金属間化合物が数多く存在して、これらの粗大な金属間化合物は、溶体化処理時においても完全には再固溶させることが困難であって、最終板中にも数多く存在してしまい、そのため延性、靭性を低下させていることが判明した。このS相についてさらに詳細に調査した結果、鋳造時に晶出して、鋳塊に対する均質化処理によって一部は固溶もしくは球状化するが、均質化処理後の冷却過程において析出して粗大化することが判明した。さらにこの析出温度は約420℃にピークを持つため、均質化処理後にこの析出温度域を速やかに冷却させることが重要となることが判明した。そしてこれらの知見に基いて、均質化処理後の冷却速度の効果について検討した結果、均質化処理温度から400℃までの温度域を、平均冷却速度100℃/hr以上で冷却させることにより、延性、靭性に有害な金属間化合物の析出、粗大化を抑制し得ることが判明した。そこでこの発明の方法では、均質化処理後の冷却について、少なくとも400℃までは平均冷却速度100℃/hr以上で冷却することを規定した。 In the so-called heat-treatable aluminum alloy, which is subjected to solution treatment / quenching and artificial aging treatment as in the alloy of the subject system in the present invention, many investigations have already been made regarding the cooling rate during solution treatment / quenching. Has been made. However, in the past, it was thought that the precipitate was sufficiently re-dissolved by the usual solution treatment, so the solid solution / precipitation that occurred during the cooling after the homogenization treatment for the ingot, which was the previous stage The actual situation is that sufficient attention was not paid to the behavior. However, as a result of detailed investigations by the present inventors, an alloy containing 1% or more of Cu, such as an alloy of the subject system in the present invention, particularly in the S phase (Al 2 There are many coarse intermetallic compounds typified by CuMg), and these coarse intermetallic compounds are difficult to completely re-dissolve even during the solution treatment. As a result, it was found that the ductility and toughness were lowered. As a result of investigating this S phase in more detail, it crystallizes during casting and partly dissolves or spheroidizes due to the homogenization of the ingot, but precipitates and coarsens during the cooling process after the homogenization. There was found. Furthermore, since this precipitation temperature has a peak at about 420 ° C., it has been found that it is important to quickly cool this precipitation temperature region after the homogenization treatment. And based on these findings, as a result of examining the effect of the cooling rate after the homogenization treatment, the temperature range from the homogenization treatment temperature to 400 ° C. is cooled at an average cooling rate of 100 ° C./hr or more, whereby ductility is achieved. It was found that precipitation and coarsening of intermetallic compounds harmful to toughness can be suppressed. Therefore, in the method of the present invention, the cooling after the homogenization treatment is defined as cooling at an average cooling rate of 100 ° C./hr or more up to at least 400 ° C.

ここで、均質化処理後の冷却過程における400℃より低い温度域での冷却速度に関しては特に限定しないが、通常はこの温度域でも速やかに冷却することが望ましく、工業的には20℃/hr以上で冷却することが好ましい。   Here, the cooling rate in the temperature range lower than 400 ° C. in the cooling process after the homogenization treatment is not particularly limited, but usually it is desirable to cool quickly even in this temperature range, and industrially 20 ° C./hr. It is preferable to cool by the above.

なおまた均質化処理後の冷却到達温度に関しても、特に規定するものではない。一般的には熱間圧延設備の稼働状況の関係から、均質化処理後は室温まで冷却を行うことが多いが、前述のように400℃までの温度域を、平均冷却速度100℃/hr以上で冷却すれば有害な金属間化合物の成長が抑制されるため、さらに冷却することなくそのまま熱間圧延を開始しても良い。もちろん均質化処理後に熱間圧延温度300〜440℃よりも低い温度まで冷却した場合には、続いて熱間圧延温度まで鋳塊を加熱するための再加熱を行えば良い。なおエネルギーコストの点からは、均質化処理後は、熱間圧延温度域まで冷却して、そのまま熱間圧延することが好ましい。   In addition, there is no particular restriction on the ultimate temperature after cooling. In general, due to the operational status of the hot rolling equipment, cooling to room temperature is often performed after homogenization, but as described above, the temperature range up to 400 ° C. is an average cooling rate of 100 ° C./hr or more. Since the growth of harmful intermetallic compounds is suppressed by cooling at, hot rolling may be started as it is without further cooling. Of course, after cooling to a temperature lower than the hot rolling temperature of 300 to 440 ° C. after the homogenization treatment, reheating for heating the ingot to the hot rolling temperature may be performed. From the viewpoint of energy cost, after the homogenization treatment, it is preferable to cool to a hot rolling temperature range and perform hot rolling as it is.

また、均質化処理後の鋳塊冷却の具体的方法に関しては特に限定するものではないが、冷風により強制的にファン冷却を行なう方法や、スプレーなどを用いて水冷する方法などを適用すれば良い。   In addition, the specific method of cooling the ingot after the homogenization is not particularly limited, but a method of forcibly cooling the fan with cold air or a method of cooling with water using a spray or the like may be applied. .

またここで、均質化処理・冷却後は、室温で測定した場合の導電率がIACS%で40%以下であることが望ましい。すなわち、均質化処理・冷却後の室温における導電率は、均質化処理およびその後の冷却による固溶/析出量、言い換えれば金属間化合物の量に対応し、導電率が低いほど金属間化合物の粗大化が生じていないことを意味する。均質化処理・冷却後の導電率が40IACS%以下であれば、充分な元素が固溶された状態を維持しており、一方40IACS%を越えていれば、金属間化合物の析出、粗大化が生じていて、最終の溶体化処理によっても金属間化合物を微細にすることが困難となって延性、靭性の低下を引起す。   Here, after the homogenization treatment and cooling, it is desirable that the conductivity measured at room temperature is 40% or less in terms of IACS%. That is, the electrical conductivity at room temperature after the homogenization treatment / cooling corresponds to the amount of solid solution / precipitation by the homogenization treatment and the subsequent cooling, in other words, the amount of intermetallic compound, and the lower the electrical conductivity, the coarser the intermetallic compound. This means that no crystallization has occurred. If the electrical conductivity after homogenization / cooling is 40 IACS% or less, sufficient elements are maintained in a solid solution state. On the other hand, if the conductivity exceeds 40 IACS%, precipitation and coarsening of intermetallic compounds occur. It has occurred, and it becomes difficult to make the intermetallic compound fine even by the final solution treatment, which causes a decrease in ductility and toughness.

前述のようにして均質化処理後、少なくとも400℃までの温度域を、平均冷却速度で100℃/hr以上で冷却し、そのまま、あるいはさらに室温もしくは室温近くの温度まで冷却した後、改めて熱間圧延開始温度まで再加熱し、50mm以上の板厚まで熱間圧延する。この熱間圧延の条件について次に説明する。   After the homogenization treatment as described above, the temperature range up to at least 400 ° C. is cooled at an average cooling rate of 100 ° C./hr or more, and is cooled as it is or further to room temperature or a temperature near room temperature. It is reheated to the rolling start temperature and hot rolled to a plate thickness of 50 mm or more. The hot rolling conditions will be described next.

熱間圧延工程では、所定の厚さや形状に加工するため、高温での加工が行なわれる。しかしながら、前述のように均質化処理後に急冷を行なって金属間化合物の粗大化を抑制しても、熱間圧延時に金属間化合物の析出温度域で長時間保持されれば、金属間化合物が再び粗大化してしまうおそれがある。そこで適切な熱間圧延温度について詳細に調査した結果、熱間圧延温度が300℃未満では、金属間化合物の粗大化は小さいものの変形抵抗が大きくなって、工業的な生産が困難となり、一方熱間圧延温度が440℃を越えれば、金属間化合物の粗大化が生じやすくなると同時に、熱間加工性が劣化して熱間圧延割れが発生しやすくなることが判明した。したがって、熱間圧延は、300〜440℃の範囲内の温度で行なうこととした。   In the hot rolling process, processing at a high temperature is performed in order to process into a predetermined thickness and shape. However, even if rapid cooling is performed after the homogenization treatment as described above to suppress the coarsening of the intermetallic compound, if the intermetallic compound is maintained for a long time in the precipitation temperature range of the intermetallic compound during hot rolling, the intermetallic compound is again formed. There is a risk of coarsening. Therefore, as a result of a detailed investigation on an appropriate hot rolling temperature, when the hot rolling temperature is less than 300 ° C., the coarsening of the intermetallic compound is small, but the deformation resistance becomes large and industrial production becomes difficult. It has been found that if the hot rolling temperature exceeds 440 ° C., the intermetallic compound is likely to be coarsened, and at the same time, hot workability is deteriorated and hot rolling cracks are likely to occur. Therefore, the hot rolling is performed at a temperature within the range of 300 to 440 ° C.

なおここで、熱間圧延のための加熱から熱間圧延終了までのトータル時間、すなわち300〜440℃の範囲内の温度に滞留する時間については特に限定するものではないが、金属間化合物の粗大化が生じる前にすみやかに熱間圧延を終了させることが望ましい。すなわち、拡散による金属間化合物の成長・粗大化を抑制する観点から、熱間圧延前の加熱における300〜440℃の範囲内の温度到達後、熱間圧延終了までの時間を8hr以内とすることが望ましく、さらに工業的には4hr以内に熱間圧延を終了させることが生産性の観点から好ましい。   In addition, although it does not specifically limit about the total time from the heating for hot rolling to the completion | finish of hot rolling, ie, the time which stays in the temperature within the range of 300-440 degreeC, The coarseness of an intermetallic compound It is desirable to end hot rolling promptly before conversion occurs. That is, from the viewpoint of suppressing the growth and coarsening of intermetallic compounds due to diffusion, the time from reaching the temperature in the range of 300 to 440 ° C. in the heating before hot rolling to the end of hot rolling should be within 8 hours. In view of productivity, it is preferable to end the hot rolling within 4 hours industrially.

なお熱間圧延前の加熱における室温から熱延開始温度までの加熱速度については特に限定するものではないが、工業的には30℃/hr以上とすることが好ましい。   In addition, although it does not specifically limit about the heating rate from room temperature in the heating before hot rolling to hot rolling start temperature, It is preferable to set it as 30 degrees C / hr or more industrially.

以上のようにして熱間圧延により50mm以上の板厚まで圧延した後には、溶体化処理を行なう。   After rolling to a thickness of 50 mm or more by hot rolling as described above, solution treatment is performed.

この溶体化処理は、例えばAMS(米国航空機材料規格) 2772に規定されている代表的な7000系合金と同様に、460℃以上、520℃以下の温度域で実施することが望ましい。溶体化処理温度が460℃未満では、溶体化の効果が充分に得られず、一方520℃を越えればマトリックスの溶融が生じるおそれがある。また溶体化処理時間(溶体化処理温度での保持時間)は、通常は1時間以上、10時間以下が好ましい。溶体化処理時間が1時間未満では元素が固溶するのに不充分となり、一方10時間を越えても溶体化の効果が飽和し、経済性を損なうだけである。   This solution treatment is desirably performed in a temperature range of 460 ° C. or more and 520 ° C. or less, like a typical 7000 series alloy specified in, for example, AMS (American Aircraft Material Standard) 2772. If the solution treatment temperature is less than 460 ° C., the effect of solution treatment cannot be sufficiently obtained, while if it exceeds 520 ° C., the matrix may be melted. Further, the solution treatment time (the retention time at the solution treatment temperature) is usually preferably 1 hour or more and 10 hours or less. If the solution treatment time is less than 1 hour, the element is insufficient for solid solution. On the other hand, if the solution treatment time exceeds 10 hours, the effect of solution treatment is saturated and the economic efficiency is only impaired.

溶体化処理後の冷却(焼き入れ)の条件も特に限定するものではないが、通常は、200℃/分以上の冷却速度で、50℃程度以下の温度まで、水焼き入れなどにより急冷すれば良い。   The conditions for cooling (quenching) after the solution treatment are not particularly limited, but usually, it is rapidly quenched by water quenching or the like to a temperature of about 50 ° C. or less at a cooling rate of 200 ° C./min or more. good.

溶体化処理・焼入れ後には、必要に応じて、残留応力の除去を目的として、引張りあるいは圧縮を行なってもよい。   After solution treatment and quenching, if necessary, tension or compression may be performed for the purpose of removing residual stress.

溶体化処理・焼入れ後、必要に応じて引張もしくは圧縮を行なった後には、最終的に必要な強度を得るために人工時効処理を施す。この人工時効処理における処理温度、時間(時効温度、時間)に関しては、特に限定するものではなく、従来から7000番系合金に適用されている条件で実施すればよく、例えばAMS 2772に準拠して、T6x調質の場合は120〜135℃×14〜48hrとし、T7x調質の場合は、1段目時効として107〜138℃×3〜24hr程度の熱処理後に、2段目時効として163〜177℃×4〜30hrで実施することが望ましい。   After the solution treatment and quenching, after performing tension or compression as necessary, an artificial aging treatment is performed to finally obtain the required strength. The treatment temperature and time (aging temperature, time) in this artificial aging treatment are not particularly limited, and may be carried out under the conditions conventionally applied to No. 7000 series alloys. For example, according to AMS 2772 In the case of T6x tempering, the temperature is set to 120 to 135 ° C. × 14 to 48 hr, and in the case of T7x tempering, the first stage aging is performed at 107 to 138 ° C. for about 3 to 24 hr, and the second stage aging is set to 163 to 177. It is desirable to carry out at a temperature of 4 to 30 hours.

表1に示すようなこの発明の成分組成範囲内にある合金A〜Iについて、DC鋳造法により厚み400mm、幅1200mm、長さ3500mmの鋳塊を作製し、面削・切断により厚み380mm、幅1200mm、長さ3000mmに切断した。続いてこれらの鋳塊に均質化処理を行なった。均質化処理温度から400℃までの冷却方法としては、冷媒に水を用いたミストスプレー冷却、強制ファン冷却および空冷のうちのいずれかを適用して、冷却速度を変化させた。冷却速度の測定は、鋳塊の端部に熱電対を埋め込んで冷却曲線から算出した。400℃以下の冷却条件に関しては、ミストスプレー,ファン冷却,炉内冷却を組み合わせて実施し、No.1〜No.8については、室温まで冷却した。No.9については、390℃まで冷却した後、熱間圧延のための再加熱を行った。ここで鋳塊の一部をスライスして切取り、そのまま室温まで冷却して導電率を測定した。均質化処理条件、冷却方法、均質化処理後400℃までの平均冷却速度および冷却後の鋳塊の導電率についてそれぞれ表2に示す。   For the alloys A to I in the composition range of the present invention as shown in Table 1, an ingot having a thickness of 400 mm, a width of 1200 mm, and a length of 3500 mm is produced by a DC casting method, and a thickness of 380 mm is obtained by chamfering and cutting. It was cut into 1200 mm and a length of 3000 mm. Subsequently, these ingots were homogenized. As a cooling method from the homogenization temperature to 400 ° C., any one of mist spray cooling using water as a refrigerant, forced fan cooling and air cooling was applied to change the cooling rate. The cooling rate was measured from a cooling curve with a thermocouple embedded in the end of the ingot. For cooling conditions of 400 ° C. or lower, mist spraying, fan cooling, and furnace cooling are performed in combination. 1-No. About 8, it cooled to room temperature. No. For No. 9, after cooling to 390 ° C., reheating for hot rolling was performed. Here, a part of the ingot was sliced and cut, cooled to room temperature as it was, and the conductivity was measured. Table 2 shows the homogenization treatment conditions, the cooling method, the average cooling rate up to 400 ° C. after the homogenization treatment, and the conductivity of the ingot after cooling.

上述のように均質化処理を行なった後、熱間圧延のために40℃/hrの加熱速度で再加熱を行い、420℃で2hr保持した後、熱間圧延を開始し、厚み60mmの圧延板を製造した。その後AMS2772にしたがい、475℃×2hrの溶体化処理、水焼入れを行った。焼入れ後、残留応力除去を目的としてストレッチャーにより2%の引張り歪みを付与し、さらに自然時効後、121℃×4hr+163℃×18hrの2段人工時効処理を施し、T7451調質材の最終製品板とした。   After performing the homogenization treatment as described above, reheating at a heating rate of 40 ° C./hr for hot rolling, holding at 420 ° C. for 2 hr, starting hot rolling, and rolling with a thickness of 60 mm A board was produced. Thereafter, in accordance with AMS2772, solution treatment at 475 ° C. × 2 hr and water quenching were performed. After quenching, 2% tensile strain was applied by a stretcher for the purpose of removing residual stress, and after natural aging, it was subjected to two-stage artificial aging treatment of 121 ° C x 4hr + 163 ° C x 18hr, and the final product plate of T7451 tempered material It was.

製品板(T7451調質材)について、金属間化合物の測定を行なった。この金属間化合物の測定としては、製品板の板厚中央部からサンプルを切り出し、圧延方向−圧延直角方向よりなる面(以後L−LT面)を機械研磨により鏡面仕上げした後、20%硫酸にてエッチングを施し、光学顕微鏡にて100倍で10視野観察を行い、画像解析により円相当径が5μm以上の金属間化合物の面積率を調査した。   About the product board (T7451 tempered material), the measurement of the intermetallic compound was performed. For the measurement of this intermetallic compound, a sample was cut out from the central part of the thickness of the product plate, and the surface (hereinafter referred to as L-LT surface) consisting of the rolling direction and the perpendicular direction of rolling was mirror finished by mechanical polishing, and then 20% sulfuric acid was used. Etching was performed, 10 field observations were performed at 100 times with an optical microscope, and the area ratio of intermetallic compounds having an equivalent circle diameter of 5 μm or more was examined by image analysis.

また強度および延性の評価のため、圧延直角方向(LT方向)の機械的特性を評価した。すなわち、引張り試験を、ASTM E8に規定されたφ6.35mmの丸棒試験片を用いて実施し、引張り強度、耐力、伸びについて測定を行った。機械的特性および円相当径5μmを越える金属間化合物の総面積率について調べた結果を表3に示す。   Further, mechanical properties in the direction perpendicular to the rolling direction (LT direction) were evaluated for evaluation of strength and ductility. That is, a tensile test was performed using a φ6.35 mm round bar test piece defined in ASTM E8, and the tensile strength, proof stress, and elongation were measured. Table 3 shows the results of examining the mechanical properties and the total area ratio of intermetallic compounds exceeding the equivalent circle diameter of 5 μm.

表3に示すように、No.1〜No.9の本発明例では、均質化処理後の400℃までの冷却速度を100℃/hr以上に制御することにより、均質化処理後も充分に高い固溶度が維持されていることが導電率の結果からわかる。さらに引張り試験の結果から、T7451調質処理を行った後の製品板として、本発明例ではいずれもが強度、伸びともに高い値を示していることが判明した。このような伸び(延性)の向上は、金属間化合物の面積率の減少によるものであることが理解できる。   As shown in Table 3, no. 1-No. In Example 9 of the present invention, by controlling the cooling rate to 400 ° C. after the homogenization treatment to 100 ° C./hr or more, it is confirmed that a sufficiently high solid solubility is maintained even after the homogenization treatment. From the result of. Furthermore, from the results of the tensile test, it was found that both the strength and elongation of the product plate after the T7451 tempering treatment showed high values in the examples of the present invention. It can be understood that such an increase in elongation (ductility) is due to a decrease in the area ratio of the intermetallic compound.

これに対して比較例のNo.10では、均質化処理時の温度が低いため、金属間化合物の分断・再固溶が不充分であり、そのため強度、伸びともに低下していることが認められた。また比較例のNo.11〜No.14では、均質化処理後400℃までの冷却速度が遅く、冷却中に金属間化合物の析出および粗大化が生じていることが導電率より伺える。このため溶体化・焼入れおよび時効処理を実施しても金属間化合物の面積率が高くなっており、製品板の機械的特性では、強度、伸びの低下が認められた。   In contrast, No. of the comparative example. In No. 10, since the temperature during the homogenization treatment was low, it was found that the intermetallic compound was not sufficiently divided and re-dissolved, and therefore both strength and elongation were reduced. The comparative example No. 11-No. In No. 14, the cooling rate to 400 ° C. after the homogenization treatment is slow, and it can be seen from the conductivity that precipitation and coarsening of intermetallic compounds occur during cooling. For this reason, even when solution treatment / quenching and aging treatment were performed, the area ratio of the intermetallic compound was high, and in the mechanical properties of the product plate, a decrease in strength and elongation was observed.

Figure 2011058047
Figure 2011058047

Figure 2011058047
Figure 2011058047

Figure 2011058047
Figure 2011058047

次に、この発明の成分組成範囲内の合金Aを用いて、熱間圧延時の温度の影響について確認を行った。鋳塊は実施例1と同様に厚み400mm、幅1200mm、長さ3500mmに作製し、面削・切断により厚み380mm、幅1200mm、長さ3000mmに切断した。これに475℃×12hrの均質化処理を行い、均質化処理後ファン冷却により急冷し室温まで冷却した。均質化処理後400℃までの平均冷却速度は152℃/hrで、室温における導電率は32.9IACS%であった。その後、熱間圧延のための再加熱を実施した。加熱時の昇温速度は40℃/hrで一定とし、熱間圧延を表4に示す条件で実施し、No.21〜No.28の厚み60mmの圧延板を製造した。さらに475℃×2hrの溶体化処理に続いて水焼入れを行った。焼入れ後、残留応力除去を目的としてストレッチャーにより2%の引張り歪みを付与し、さらに自然時効後、121℃×4hr+163℃×18hrの2段人工時効処理を施して、T7451調質材の製品板とした。   Next, the influence of the temperature at the time of hot rolling was confirmed using the alloy A within the component composition range of the present invention. The ingot was made to have a thickness of 400 mm, a width of 1200 mm, and a length of 3500 mm in the same manner as in Example 1, and was cut into a thickness of 380 mm, a width of 1200 mm, and a length of 3000 mm by chamfering and cutting. This was subjected to a homogenization treatment at 475 ° C. × 12 hr. After the homogenization treatment, it was rapidly cooled by cooling with a fan and cooled to room temperature. The average cooling rate to 400 ° C. after the homogenization treatment was 152 ° C./hr, and the electrical conductivity at room temperature was 32.9 IACS%. Thereafter, reheating for hot rolling was performed. The heating rate during heating was fixed at 40 ° C./hr, and hot rolling was performed under the conditions shown in Table 4. 21-No. 28 rolled plates having a thickness of 60 mm were produced. Furthermore, water quenching was performed following the solution treatment at 475 ° C. × 2 hr. After quenching, 2% tensile strain was applied by a stretcher for the purpose of removing residual stress, and after natural aging, it was subjected to two-stage artificial aging treatment of 121 ° C x 4hr + 163 ° C x 18hr. It was.

製品板について、金属間化合物の測定を実施例1と同様に行なって、円相当径が5μm以上の金属間化合物の総面積率を調査した。   The product plate was measured for intermetallic compounds in the same manner as in Example 1, and the total area ratio of intermetallic compounds having an equivalent circle diameter of 5 μm or more was investigated.

また機械的特性の評価についても、実施例1と同様にφ6.35mmの丸棒試験片を用いて、LT方向の機械的特性を評価した。これらの結果を表5に示す。   Further, regarding the evaluation of mechanical properties, the mechanical properties in the LT direction were evaluated using a round bar test piece having a diameter of 6.35 mm in the same manner as in Example 1. These results are shown in Table 5.

Figure 2011058047
Figure 2011058047

Figure 2011058047
Figure 2011058047

No.26〜No.28の比較例は、いずれも熱間圧延温度条件がこの発明の範囲を外れた例であるが、これらの場合は、表5に示すように最終板の特性として金属間化合物の面積率が高く、強度、耐力および伸びが低下していることが判明した。これに対して本発明例のNo.21〜No.25では、金属間化合物の面積率も2%以下で、強度・伸びともに良好な値を示していることがわかる。   No. 26-No. Each of the 28 comparative examples is an example in which the hot rolling temperature condition is out of the range of the present invention, but in these cases, as shown in Table 5, the area ratio of the intermetallic compound is high as the characteristics of the final plate. It was found that strength, proof stress and elongation were reduced. On the other hand, No. of the present invention example. 21-No. 25, the area ratio of the intermetallic compound was 2% or less, indicating that both strength and elongation were good.

Claims (3)

Zn5.0〜7.0%(mass%、以下同じ)、Mg1.0〜3.0%、Cu1.0〜3.0%を含有し、かつCr0.05〜0.3%、Zr0.05〜0.25%、Mn0.05〜0.40%、Sc0.05〜0.35%のうちから選ばれた1種もしくは2種以上を合計量が0.05〜0.5%の範囲内で含有し、さらに不純物としてSiを0.25%以下、Feを0.25%以下に規制し、残部がAlおよびその他の不可避的不純物としたAl−Zn−Mg−Cu系アルミニウム合金を用い、その鋳塊に、450〜520℃の範囲内の温度で1時間以上保持する均質化処理を行なった後、鋳塊を冷却する過程において、少なくとも400℃までの平均冷却速度を100℃/hr以上に規制し、その後300〜440℃の範囲内の温度で50mm以上の板厚まで熱間圧延を行なった後、溶体化処理・焼入れおよび人工時効処理を施し、円相当径で5μmを越える金属間化合物の総面積率を2%以下とした厚板を得ることを特徴とする、強度および延性に優れたアルミニウム合金厚板の製造方法。   Zn 5.0 to 7.0% (mass%, the same applies hereinafter), Mg 1.0 to 3.0%, Cu 1.0 to 3.0%, Cr 0.05 to 0.3%, Zr0.05 -0.25%, Mn 0.05-0.40%, Sc 0.05-0.35% selected from one or more kinds within the range of total amount 0.05-0.5% In addition, using an Al—Zn—Mg—Cu-based aluminum alloy, in which Si is controlled to 0.25% or less and Fe is 0.25% or less as impurities, and the balance is Al and other inevitable impurities, The ingot is subjected to homogenization treatment for 1 hour or more at a temperature in the range of 450 to 520 ° C., and then the average cooling rate up to at least 400 ° C. is 100 ° C./hr or more in the process of cooling the ingot. At a temperature in the range of 300-440 ° C. After hot rolling to a plate thickness of 0 mm or more, solution treatment / quenching and artificial aging treatment are performed to obtain a plate with a total area ratio of intermetallic compounds exceeding 5 μm in equivalent circle diameter of 2% or less. A method for producing an aluminum alloy thick plate having excellent strength and ductility. 請求項1に記載のアルミニウム合金厚板の製造方法において、
前記均質化処理後、室温まで冷却した状態で測定した鋳塊の導電率が40IACS%以下となるように制御することを特徴とする、強度および延性に優れたアルミニウム合金厚板の製造方法。
In the manufacturing method of the aluminum alloy thick plate of Claim 1,
A method for producing an aluminum alloy thick plate excellent in strength and ductility, wherein the ingot conductivity measured in the state of cooling to room temperature after the homogenization treatment is controlled to be 40 IACS% or less.
請求項1に記載のアルミニウム合金厚板の製造方法において、
前記溶体化処理を、460〜520℃の範囲内の温度で1〜10時間行なうことを特徴とする、強度および延性に優れたアルミニウム合金厚板の製造方法。
In the manufacturing method of the aluminum alloy thick plate of Claim 1,
The method for producing an aluminum alloy thick plate excellent in strength and ductility, wherein the solution treatment is performed at a temperature in the range of 460 to 520 ° C. for 1 to 10 hours.
JP2009208938A 2009-09-10 2009-09-10 Method for producing aluminum alloy thick plate having excellent strength and ductility Pending JP2011058047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009208938A JP2011058047A (en) 2009-09-10 2009-09-10 Method for producing aluminum alloy thick plate having excellent strength and ductility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009208938A JP2011058047A (en) 2009-09-10 2009-09-10 Method for producing aluminum alloy thick plate having excellent strength and ductility

Publications (1)

Publication Number Publication Date
JP2011058047A true JP2011058047A (en) 2011-03-24

Family

ID=43946000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009208938A Pending JP2011058047A (en) 2009-09-10 2009-09-10 Method for producing aluminum alloy thick plate having excellent strength and ductility

Country Status (1)

Country Link
JP (1) JP2011058047A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103233150A (en) * 2013-04-28 2013-08-07 中南大学 Extrusion type aluminium alloy
JP2015061945A (en) * 2011-06-30 2015-04-02 Jx日鉱日石金属株式会社 Co-Cr-Pt-B BASE ALLOY SPUTTERING TARGET, AND MANUFACTURING METHOD THEREOF
WO2015109893A1 (en) * 2014-01-22 2015-07-30 北京科技大学 Al-mg-si-cu-zn series alloy of fast ageing response type and preparation method therefor
CN108330419A (en) * 2018-03-16 2018-07-27 北京工业大学 A kind of thermal deformation of Al-Mg-Mn-Er-Zr sheet alloys and its stabilization process
JP2018535314A (en) * 2015-09-29 2018-11-29 オプシチェストボ エス オグラニチェンノイ オトヴェストヴェンノストユ “オベディネンナヤ カンパニア ルサール インゼネルノ−テクノロギケスキー チェントル”Obshchestvo S Ogranichennoy Otvetstvennost’Yu ‘Obedinennaya Kompaniya Rusal Inzhenerno−Tekhnologicheskiy Tsentr’ High strength aluminum alloy and method for producing articles therefrom
CN109457152A (en) * 2018-12-24 2019-03-12 中国航空制造技术研究院 A kind of heat treatment method of Al-Zn-Mg-Cu high strength alumin ium alloy
US20200115780A1 (en) * 2017-10-12 2020-04-16 Arconic Inc. Thick wrought 7xxx aluminum alloys, and methods for making the same
US20200232072A1 (en) * 2017-09-26 2020-07-23 Constellium Issoire Al-zn-cu-mg alloys with high strength and method of fabrication
JP2020525649A (en) * 2017-07-03 2020-08-27 コンステリウム イソワールConstellium Issoire Al-Zn-Cu-Mg alloy and methods for producing the same
CN111850363A (en) * 2020-06-18 2020-10-30 天津忠旺铝业有限公司 High-damage tolerance type aluminum alloy for aviation and preparation method thereof
CN113302327A (en) * 2019-01-18 2021-08-24 爱励轧制产品德国有限责任公司 7xxx series aluminum alloy products
JP2022512876A (en) * 2018-11-12 2022-02-07 アレリス、ロールド、プロダクツ、ジャーマニー、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング 7XXX series aluminum alloy products
JP2022532347A (en) * 2019-06-03 2022-07-14 ノベリス・インコーポレイテッド Ultra-high-strength aluminum alloy products and their manufacturing methods
CN114752804A (en) * 2022-04-20 2022-07-15 江苏理工学院 Method for improving high-temperature performance of aluminum alloy plate
CN115418540A (en) * 2022-10-08 2022-12-02 哈尔滨工程大学 Large-size high-strength high-toughness plate and preparation method thereof
JP2022554035A (en) * 2019-12-23 2022-12-27 ノベリス・コブレンツ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method for manufacturing aluminum alloy rolled product
CN115627396A (en) * 2022-12-08 2023-01-20 中国航发北京航空材料研究院 Ultra-long aluminum alloy plate with ultrahigh strength, toughness and corrosion resistance and preparation method thereof
EP3987072A4 (en) * 2019-06-24 2023-07-19 Arconic Technologies LLC Improved thick wrought 7xxx aluminum alloys, and methods for making the same

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015061945A (en) * 2011-06-30 2015-04-02 Jx日鉱日石金属株式会社 Co-Cr-Pt-B BASE ALLOY SPUTTERING TARGET, AND MANUFACTURING METHOD THEREOF
CN103233150A (en) * 2013-04-28 2013-08-07 中南大学 Extrusion type aluminium alloy
WO2015109893A1 (en) * 2014-01-22 2015-07-30 北京科技大学 Al-mg-si-cu-zn series alloy of fast ageing response type and preparation method therefor
JP7000313B2 (en) 2015-09-29 2022-02-04 オプシチェストボ エス オグラニチェンノイ オトヴェストヴェンノストユ “オベディネンナヤ カンパニア ルサール インゼネルノ-テクノロギケスキー チェントル” Aluminum-based alloys, sheets containing aluminum-based alloys, methods for manufacturing sheets containing aluminum-based alloys, and methods for manufacturing forged or cast products made from aluminum-based alloys.
JP2018535314A (en) * 2015-09-29 2018-11-29 オプシチェストボ エス オグラニチェンノイ オトヴェストヴェンノストユ “オベディネンナヤ カンパニア ルサール インゼネルノ−テクノロギケスキー チェントル”Obshchestvo S Ogranichennoy Otvetstvennost’Yu ‘Obedinennaya Kompaniya Rusal Inzhenerno−Tekhnologicheskiy Tsentr’ High strength aluminum alloy and method for producing articles therefrom
JP2020525649A (en) * 2017-07-03 2020-08-27 コンステリウム イソワールConstellium Issoire Al-Zn-Cu-Mg alloy and methods for producing the same
US20200232072A1 (en) * 2017-09-26 2020-07-23 Constellium Issoire Al-zn-cu-mg alloys with high strength and method of fabrication
US20200115780A1 (en) * 2017-10-12 2020-04-16 Arconic Inc. Thick wrought 7xxx aluminum alloys, and methods for making the same
CN108330419A (en) * 2018-03-16 2018-07-27 北京工业大学 A kind of thermal deformation of Al-Mg-Mn-Er-Zr sheet alloys and its stabilization process
JP2022512876A (en) * 2018-11-12 2022-02-07 アレリス、ロールド、プロダクツ、ジャーマニー、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング 7XXX series aluminum alloy products
US11879166B2 (en) 2018-11-12 2024-01-23 Novelis Koblenz Gmbh 7XXX-series aluminium alloy product
CN109457152A (en) * 2018-12-24 2019-03-12 中国航空制造技术研究院 A kind of heat treatment method of Al-Zn-Mg-Cu high strength alumin ium alloy
US11981986B2 (en) 2019-01-18 2024-05-14 Novelis Koblenz Gmbh 7XXX-series aluminium alloy product
JP2022513112A (en) * 2019-01-18 2022-02-07 アレリス、ロールド、プロダクツ、ジャーマニー、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング 7xxx series aluminum alloy products
JP7265629B2 (en) 2019-01-18 2023-04-26 ノベリス・コブレンツ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 7xxx series aluminum alloy products
CN113302327A (en) * 2019-01-18 2021-08-24 爱励轧制产品德国有限责任公司 7xxx series aluminum alloy products
JP2022532347A (en) * 2019-06-03 2022-07-14 ノベリス・インコーポレイテッド Ultra-high-strength aluminum alloy products and their manufacturing methods
US11746400B2 (en) 2019-06-03 2023-09-05 Novelis Inc. Ultra-high strength aluminum alloy products and methods of making the same
EP3987072A4 (en) * 2019-06-24 2023-07-19 Arconic Technologies LLC Improved thick wrought 7xxx aluminum alloys, and methods for making the same
JP2022554035A (en) * 2019-12-23 2022-12-27 ノベリス・コブレンツ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method for manufacturing aluminum alloy rolled product
JP7286883B2 (en) 2019-12-23 2023-06-05 ノベリス・コブレンツ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method for manufacturing aluminum alloy rolled product
CN111850363A (en) * 2020-06-18 2020-10-30 天津忠旺铝业有限公司 High-damage tolerance type aluminum alloy for aviation and preparation method thereof
CN114752804A (en) * 2022-04-20 2022-07-15 江苏理工学院 Method for improving high-temperature performance of aluminum alloy plate
CN115418540B (en) * 2022-10-08 2023-08-11 哈尔滨工程大学 Large-specification high-strength high-toughness board and preparation method thereof
CN115418540A (en) * 2022-10-08 2022-12-02 哈尔滨工程大学 Large-size high-strength high-toughness plate and preparation method thereof
CN115627396A (en) * 2022-12-08 2023-01-20 中国航发北京航空材料研究院 Ultra-long aluminum alloy plate with ultrahigh strength, toughness and corrosion resistance and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2011058047A (en) Method for producing aluminum alloy thick plate having excellent strength and ductility
JP5863626B2 (en) Aluminum alloy forging and method for producing the same
JP5421613B2 (en) High strength aluminum alloy wire rod excellent in softening resistance and manufacturing method thereof
JP6273158B2 (en) Aluminum alloy plate for structural materials
JP2012207302A (en) METHOD FOR MANUFACTURING EXTRUDED MATERIAL OF HEAT TREATMENT TYPE Al-Zn-Mg-BASED ALUMINUM ALLOY
WO2013118734A1 (en) Aluminum alloy sheet for connecting components and manufacturing process therefor
JP6193808B2 (en) Aluminum alloy extruded material and method for producing the same
JP2017534762A (en) Aluminum alloy product and preparation method
JP2012001756A (en) HIGH-TOUGHNESS Al ALLOY FORGING MATERIAL, AND METHOD FOR PRODUCING THE SAME
JP5204793B2 (en) High strength aluminum alloy extruded material with excellent stress corrosion cracking resistance
JP4498180B2 (en) Al-Zn-Mg-Cu-based aluminum alloy containing Zr and method for producing the same
WO2015141647A1 (en) Aluminum alloy sheet for structural material
KR20210003196A (en) 6XXX aluminum alloy for extrusion with excellent impact performance and high yield strength, and its manufacturing method
JP2009167464A (en) Method for producing aluminum alloy material having excellent toughness
JP2004084058A (en) Method for producing aluminum alloy forging for transport structural material and aluminum alloy forging
JPH10219381A (en) High strength aluminum alloy excellent in intergranular corrosion resistance, and its production
JP5330590B1 (en) Aluminum alloy plate for bus bar and manufacturing method thereof
JP5059505B2 (en) Aluminum alloy cold-rolled sheet that can be formed with high strength
RU2468107C1 (en) High-strength deformable alloy based on aluminium with lower density and method of its processing
JP5111966B2 (en) Method for manufacturing aluminum alloy panel
JP3757831B2 (en) Al-Mg-Si aluminum alloy extruded material with excellent impact energy absorption performance
JPH10219413A (en) Production of high strength aluminum alloy excellent in intergranular corrosion resistance
JP2019183264A (en) High strength aluminum alloy, aluminum alloy sheet and aluminum alloy member using the aluminum alloy
JP4993170B2 (en) Aluminum alloy extruded shape having excellent impact absorption characteristics and good hardenability, and method for producing the same
JP5823010B2 (en) High-strength aluminum alloy extruded material for automotive structural members with excellent stress corrosion cracking resistance