JP4498180B2 - Al-Zn-Mg-Cu-based aluminum alloy containing Zr and method for producing the same - Google Patents

Al-Zn-Mg-Cu-based aluminum alloy containing Zr and method for producing the same Download PDF

Info

Publication number
JP4498180B2
JP4498180B2 JP2005078744A JP2005078744A JP4498180B2 JP 4498180 B2 JP4498180 B2 JP 4498180B2 JP 2005078744 A JP2005078744 A JP 2005078744A JP 2005078744 A JP2005078744 A JP 2005078744A JP 4498180 B2 JP4498180 B2 JP 4498180B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
fracture toughness
hours
less
alloy containing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005078744A
Other languages
Japanese (ja)
Other versions
JP2006257522A (en
Inventor
藤田和子
林稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky Aluminum Corp
Original Assignee
Furukawa Sky Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky Aluminum Corp filed Critical Furukawa Sky Aluminum Corp
Priority to JP2005078744A priority Critical patent/JP4498180B2/en
Publication of JP2006257522A publication Critical patent/JP2006257522A/en
Application granted granted Critical
Publication of JP4498180B2 publication Critical patent/JP4498180B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Rolling (AREA)
  • Forging (AREA)

Description

この発明は主に航空機材に使用され、AA7050合金としても知られるZrを含むAl−Zn−Mg−Cu系アルミニウム合金及びその製造方法に関する。   The present invention relates to an Al—Zn—Mg—Cu based aluminum alloy containing Zr, which is mainly used for aircraft materials and is also known as an AA7050 alloy, and a method for producing the same.

構造物を構成する部材には介在物、欠陥、傷、接合部などが不可避的に存在し、係る欠陥等に応力が集中してき裂発生の起点になりやすい。そのようにして発生したき裂が突如急速に進展して破壊に至る様な材料、すなわちわずかな応力集中が急速破壊の起点となるような材料は高度の安全性が要求される構造物には使用されない。係る特性を定量的に表示する指標が破壊勒性である。   Inclusions, defects, scratches, joints, and the like are unavoidably present in the members constituting the structure, and stress concentrates on the defects and the like, and tends to be the starting point of crack generation. A material in which the cracks generated in this way suddenly rapidly progress to break, that is, a material in which a slight stress concentration becomes the starting point of rapid fracture, is a structure that requires a high level of safety. Not used. An index for quantitatively displaying such characteristics is fracture inertia.

この破壊靱性に特に着目した場合にアルミニウム合金で高い破壊勒性を備えて最高の強度を有する合金の一つにAA7075合金として知られるAl−Zn−Mg−Cu系合金が有る。
このAA7075合金として知られるAl−Zn−Mg−Cu系合金ではCr, Mnなどの遷移元素を添加することによってアルミニウム合金鋳塊の均質化処理過程で分散相を形成し、これによって再結晶化を抑制してサブグレイン組織を維持することにより高い強度と優れた靭性が得られる。
When paying particular attention to this fracture toughness, an Al—Zn—Mg—Cu-based alloy known as an AA7075 alloy is one of aluminum alloys having high fracture toughness and the highest strength.
In this Al-Zn-Mg-Cu alloy known as AA7075 alloy, a transition phase such as Cr and Mn is added to form a dispersed phase in the homogenization process of the aluminum alloy ingot, thereby recrystallization. By suppressing and maintaining the subgrain structure, high strength and excellent toughness can be obtained.

しかし、このAA7075合金として知られるAl−Zn−Mg−Cu系合金ではCr, Mn添加によって分散相と母相との界面が非整合となり、界面に不均一析出が起こり、焼入れ感受性が高くなることが知られている。すなわちMnやCrを添加したアルミニウム合金では、合金の溶体化処理後、焼入れ速度が遅い場合、焼入れ中にMn系不溶性化合物やCr系不溶性化合物上に粗大な析出相が優先的に不均一析出するため、最終的に析出相の分布が不均一になり合金の高い強度が得られないという問題がある。さらにこのAA7075合金ではそのように焼入れ感受性が高いことに起因して材料の寸法が限られるだけでなく、耐食性に劣る、特に耐応力腐食割れ性(耐SCC性)が劣っている難点が指摘されている。   However, in the Al-Zn-Mg-Cu alloy known as AA7075 alloy, the interface between the dispersed phase and the parent phase becomes inconsistent due to the addition of Cr and Mn, and non-uniform precipitation occurs at the interface, resulting in high quenching sensitivity. It has been known. That is, in the case of an aluminum alloy to which Mn or Cr is added, if the quenching speed is slow after the alloy solution treatment, a coarse precipitation phase preferentially precipitates on the Mn-based insoluble compound or Cr-based insoluble compound during quenching. Therefore, there is a problem that the distribution of the precipitated phase eventually becomes non-uniform and the high strength of the alloy cannot be obtained. Furthermore, this AA7075 alloy is not only limited in material dimensions due to its high quenching sensitivity, but also has a problem in that it is inferior in corrosion resistance, particularly in stress stress cracking resistance (SCC resistance). ing.

このAA7075合金における焼入れ感受性が高いという問題を改善し、特に耐応力腐食割れ性に優れた合金としてAA7050合金として知られるAl−Zn−Mg−Cu系合金が有る。このAA7050合金は航空機の構造部材や高速回転体の材料として適用されている。このAA7050合金として知られるAl−Zn−Mg−Cu系合金では、遷移元素としてCr, MnではなくZrを添加することによってCr, Mnを添加した場合と同様に均質化中に分散相を形成して再結晶化が抑制され高い強度と優れた靭性、延性を得ると共にCr, Mnを添加した場合とは異なり耐応力腐食割れ性(耐SCC性)が改善される。
これはZr添加による場合にはAlZrと母相の界面が整合性を保ち、η相すなわちMgZnの析出サイトとして界面が作用することはなくη相の分散密度が高く焼入れ感受性が低いことに起因する。
特表2000−504068号公報 特開平6−41704号公報
There is an Al—Zn—Mg—Cu-based alloy known as AA7050 alloy that improves the problem of high quenching sensitivity in this AA7075 alloy and is particularly excellent in stress corrosion cracking resistance. The AA7050 alloy is used as a material for aircraft structural members and high-speed rotating bodies. In this Al-Zn-Mg-Cu alloy known as the AA7050 alloy, a dispersed phase is formed during homogenization by adding Zr instead of Cr and Mn as a transition element as in the case of adding Cr and Mn. Thus, recrystallization is suppressed and high strength, excellent toughness and ductility are obtained, and stress corrosion cracking resistance (SCC resistance) is improved unlike the case of adding Cr and Mn.
This is because, when Zr is added, the interface between Al 3 Zr and the parent phase maintains consistency, the interface does not act as a precipitation site of η phase, that is, Mg 2 Zn, and the dispersion density of η phase is high and quenching sensitivity is low. Due to that.
Special Table 2000-504068 JP-A-6-41704

現在、アルミニウム合金の強度特性、特には破壊靱性を更に向上することによってその適用分野を拡大し、特に大型、肉厚の構造部材の一層の軽量化を実現して資源の節約に寄与し、これによって環境適性の向上を図るという社会的要請が切実なものとなっている。
この点で、従来のZrを含むAl−Zn−Mg−Cu系合金の製造方法では合金の鋳造時に凝固偏析が起こることによってZrの分布が不均一になり、AlZrの析出が不十分な部分では再結晶抑制効果が限定的となり、再結晶が起こった場合、AlZrの整合性が失われ、AlZrを核にη相の不均一析出が生じることに起因して破壊靱性が低下するという問題があった。したがって製造方法の改善によって破壊靭性値を更に向上する余地が残されていた。
Currently, by further improving the strength characteristics, especially fracture toughness, of aluminum alloys, its application fields are expanded, contributing to resource saving by realizing further weight reduction of particularly large and thick structural members. As a result, social demands to improve environmental aptitude are urgent.
In this regard, in the conventional method for producing an Al—Zn—Mg—Cu-based alloy containing Zr, solidification segregation occurs during casting of the alloy, resulting in nonuniform Zr distribution and insufficient precipitation of Al 3 Zr. In part, the effect of suppressing recrystallization is limited, and when recrystallization occurs, the consistency of Al 3 Zr is lost, and the fracture toughness is caused by non-uniform precipitation of η phase with Al 3 Zr as the nucleus. There was a problem of lowering. Accordingly, there remains room for further improving the fracture toughness value by improving the manufacturing method.

この破壊靱性の向上という点に関してZrを含むAl−Zn−Mg−Cu系アルミニウム合金の特に厚板に着目した場合、その結晶粒は圧延方向に伸びた形状になっているため、圧延方向に亀裂が伝播する際の破壊靭性値が低下する傾向にあり、T−L(4分の1厚み)方向の破壊靭性値を向上することが重要な条件となる。
破壊靭性値の向上に関して例えば特許文献1には化学組成あるいは時効処理条件を検討することによって特性向上を図ったAl−Zn−Mg−Cu合金製の厚い製品のS−LあるいはL−T方向のKIcに関し述べられている。
しかし、特許文献1では化学組成あるいは時効処理条件を検討するのみであって、詳細な検討特にはAlZrの分布状態に起因する組織の検討は行われていない。
When focusing on the thick plate of the Al—Zn—Mg—Cu-based aluminum alloy containing Zr in terms of improving the fracture toughness, the crystal grains have a shape extending in the rolling direction, and therefore cracks in the rolling direction. There is a tendency that the fracture toughness value at the time of propagating decreases, and it is an important condition to improve the fracture toughness value in the TL (1/4 thickness) direction.
Regarding the improvement of the fracture toughness value, for example, in Patent Document 1, the S-L or LT direction of a thick product made of an Al-Zn-Mg-Cu alloy whose characteristics have been improved by examining the chemical composition or aging treatment conditions is disclosed. With regard to KIc.
However, Patent Document 1 only examines the chemical composition or the aging treatment conditions, and does not examine the detailed structure, particularly the structure caused by the Al 3 Zr distribution state.

また、特許文献2には時効硬化型アルミニウム合金を対象に工業的製造方法を用いて、合金の強度を保ちながら、延性、耐SCC性も向上できる製造方法を検討し、時効硬化型アルミニウム合金を溶解鋳造後、200〜400℃の温度まで100℃/min以下の昇温速度で昇温し、200〜400℃の温度で48時間以内保持してからソ−キング温度まで100℃/min以下の昇温速度で昇温することを特徴とする時効硬化型アルミニウム合金の製造方法が開示されている。   In addition, Patent Document 2 discusses a manufacturing method that can improve ductility and SCC resistance while maintaining the strength of an alloy using an industrial manufacturing method for age-hardening aluminum alloys. After melting and casting, the temperature is increased to a temperature of 200 to 400 ° C. at a rate of temperature increase of 100 ° C./min or less, held at a temperature of 200 to 400 ° C. for 48 hours or less, and then to a soaking temperature of 100 ° C./min or less. A method for producing an age-hardening aluminum alloy, characterized in that the temperature is raised at a rate of temperature rise, is disclosed.

しかしこの特許文献2の時効硬化型アルミニウム合金の製造方法では、Mn、Crを添加してなるAl−Cu−Mg系、Al−Zn−Mg−Cu系時効硬化型アルミニウム合金一般につき取り扱っており、特にZrを含むAl−Zn−Mg−Cu系合金に焦点を絞って直接検討するものではなく、その点で処理条件が複雑であって現状の生産性向上の要請に応えがたいという問題があった。   However, the method for producing an age-hardening aluminum alloy of Patent Document 2 deals with Al-Cu-Mg-based and Al-Zn-Mg-Cu-based age-hardening aluminum alloys in which Mn and Cr are added, In particular, it does not focus directly on Al—Zn—Mg—Cu-based alloys containing Zr, but there is a problem that the processing conditions are complicated and it is difficult to meet the current demand for improvement in productivity. It was.

この発明は以上の従来技術における問題に鑑みてなされたものであって、破壊靱性が向上されて効率良く製造できるZrを含むAl−Zn−Mg−Cu系アルミニウム合金及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above problems in the prior art, and provides an Al-Zn-Mg-Cu-based aluminum alloy containing Zr that can be efficiently manufactured with improved fracture toughness and a method for manufacturing the same. With the goal.

この発明の発明者等は、工業的製造法に基づいてZrを含むAl−Zn−Mg−Cu系合金の靭性を向上させる製造方法について種々検討した。その結果、特性低下を防止するには再結晶を抑制する必要があり、そのためにはAlZrを微細かつ高密度に分散させることが必要であると認められることから、鋳塊に対する均質化処理条件を検討することでサブグレイン組織を制御し、これにより破壊靱性値を向上できることを見出しこの発明に想到するに至った。 The inventors of the present invention have studied various production methods for improving the toughness of an Al—Zn—Mg—Cu based alloy containing Zr based on an industrial production method. As a result, it is necessary to suppress recrystallization in order to prevent deterioration of characteristics, and for this purpose, it is recognized that it is necessary to disperse Al 3 Zr finely and with high density. The inventors have found that the subgrain structure can be controlled by studying the conditions, and that the fracture toughness value can be improved thereby, leading to the present invention.

すなわちこの発明のZrを含むAl−Zn−Mg−Cu系アルミニウム合金の製造方法はCu:2.0〜2.6%、Mg:1.9〜2.6%、Zn:5.7〜6.7、 Zr:0.08〜0.15%を含有し、残部Alと不可避不純物からなる合金鋳塊に第1段の加熱処理として、150℃以上200℃未満の温度で24時間以上保持した後、第2段の加熱処理として、450℃以上485℃以下の温度で4時間以上保持する均質化処理を施し、続いて熱間加工、溶体化焼入れ、残留応力除去のための冷間加工、時効処理を行うことを特徴とする。 That is, the production method of the Al—Zn—Mg—Cu-based aluminum alloy containing Zr of the present invention is Cu: 2.0 to 2.6%, Mg: 1.9 to 2.6%, Zn: 5.7 to 6 .7, Zr: 0.08 to 0.15%, and the alloy ingot composed of the balance Al and inevitable impurities was kept at a temperature of 150 ° C. or higher and lower than 200 ° C. for 24 hours or more as the first stage heat treatment. After that, as the second stage heat treatment, a homogenization treatment is performed at a temperature of 450 ° C. or higher and 485 ° C. or lower for 4 hours or more, followed by hot working, solution hardening and cold working for removing residual stress, An aging treatment is performed.

またこの発明のZrを含むAl−Zn−Mg−Cu系アルミニウム合金はCu:2.0〜2.6%、Mg:1.9〜2.6%、Zn:5.7〜6.7、 Zr:0.08〜0.15%を含有し、残部Alと不可避不純物からなり、時効処理後に板厚中央でL−ST面でのサブグレイン組織の占める面積割合が60%以上であり、T−L方向での平面ひずみ破壊靭性値が次式を満足することを特徴とする。
KIc(T−L) MPa・m1/2 ≧ 28.67MPa・m1/2 − 0.028MPa・m1/2 /mm×t (tはmm単位の板厚)
The Al—Zn—Mg—Cu-based aluminum alloy containing Zr of the present invention has Cu: 2.0 to 2.6%, Mg: 1.9 to 2.6%, Zn: 5.7 to 6.7, Zr: 0.08 to 0.15%, the balance being Al and inevitable impurities, the area ratio of the subgrain structure in the L-ST plane at the center of the plate thickness after aging treatment being 60% or more, T The plane strain fracture toughness value in the -L direction satisfies the following formula.
KIc (T-L) MPa · m 1/2 ≧ 28.67MPa · m 1/2 - 0.028MPa · m 1/2 / mm × t (t thickness of mm units)

さらにこの発明のZrを含むAl−Zn−Mg−Cu系アルミニウム合金はCu:2.0〜2.6%、Mg:1.9〜2.6%、Zn:5.7〜6.7、 Zr:0.08〜0.15%を含有し、残部Alと不可避不純物からなる合金鋳塊に第1段の加熱処理として、150℃以上200℃未満の温度で24時間以上保持した後、第2段の加熱処理として、450℃以上485℃以下の温度で4時間以上保持する均質化処理を施し、続いて熱間加工、溶体化焼入れ、残留応力除去のための冷間加工、時効処理を行って製造され、時効処理後に板厚中央でL−ST面でのサブグレイン組織の占める面積割合が60%以上であり、T−L方向での平面ひずみ破壊靭性値が次式を満足することを特徴とする。
KIc(T−L) MPa・m1/2 ≧ 28.67MPa・m1/2 − 0.028MPa・m1/2 /mm×t (tはmm単位の板厚)
Furthermore, the Al—Zn—Mg—Cu-based aluminum alloy containing Zr of the present invention has Cu: 2.0 to 2.6%, Mg: 1.9 to 2.6%, Zn: 5.7 to 6.7, Zr: The alloy ingot containing 0.08 to 0.15% and comprising the balance Al and inevitable impurities, as a first stage heat treatment, after being held at a temperature of 150 ° C. or more and less than 200 ° C. for 24 hours or more, As a two-stage heat treatment, a homogenization treatment is performed at a temperature of 450 ° C. or more and 485 ° C. or less for 4 hours or more, followed by hot working, solution hardening, cold working for removing residual stress, and aging treatment. The area ratio of the subgrain structure in the L-ST plane at the center of the plate thickness after aging treatment is 60% or more, and the plane strain fracture toughness value in the TL direction satisfies the following formula: It is characterized by.
KIc (T-L) MPa · m 1/2 ≧ 28.67MPa · m 1/2 - 0.028MPa · m 1/2 / mm × t (t thickness of mm units)

[作用]
サブグレイン組織を最適な体積割合で残留させるためには均質化熱処理を特定の条件に制御することにより分散相であるAlZrを微細かつ高密度に析出させる必要がある。この発明のZrを含むAl−Zn−Mg−Cu系アルミニウム合金の製造方法では、溶解鋳造後の均質化処理で、先ず第1段の加熱処理として、150℃以上200℃未満の温度で24時間以上、好ましくは48時間以内保持した後、第2段の加熱処理として、450℃以上485℃以下の温度で4時間以上、好ましくは48時間以内保持し、熱間圧延、溶体化焼入れ、時効処理を行うことにより、AlZrが微細かつ高密度に分散し、合金の強度を保ちながら靭性を向上したこの発明のZrを含むAl−Zn−Mg−Cu系アルミニウム合金が得られる。
[Action]
In order to leave the subgrain structure at an optimal volume ratio, it is necessary to deposit Al 3 Zr which is a dispersed phase finely and densely by controlling the homogenization heat treatment to a specific condition. In the method for producing an Al—Zn—Mg—Cu-based aluminum alloy containing Zr according to the present invention, the first stage heat treatment is performed at a temperature of 150 ° C. or more and less than 200 ° C. for 24 hours in the homogenization treatment after melt casting. As described above, preferably after holding within 48 hours, as the second stage heat treatment, hold at a temperature of 450 ° C. or more and 485 ° C. or less for 4 hours or more, preferably within 48 hours, hot rolling, solution hardening, aging treatment As a result, Al 3 Zr is finely and densely dispersed, and an Al—Zn—Mg—Cu-based aluminum alloy containing Zr of the present invention in which the toughness is improved while maintaining the strength of the alloy is obtained.

またこの発明のZrを含むAl−Zn−Mg−Cu系アルミニウム合金はサブグレイン組織の占める面積割合が60%以上であり、T−L方向での平面ひずみ破壊靭性値がKIc(T−L) MPa・m1/2 ≧ 28.67MPa・m1/2 − 0.028MPa・m1/2 /mm×t (tはmm単位の板厚) となる様にしたことから、AMS4050規格も満足する破壊靱性値をそなえることができ、薄肉の場合はもちろん、肉厚50mm以上の構造部品への適用も可能となる。 Moreover, the Al-Zn-Mg-Cu-based aluminum alloy containing Zr of the present invention has an area ratio occupied by the subgrain structure of 60% or more, and the plane strain fracture toughness value in the TL direction is KIc (TL). MPa · m 1/2 ≧ 28.67MPa · m 1/2 - 0.028MPa · m 1/2 / mm × t (t is the thickness in mm) from the fact that was set to become, even to satisfy AMS4050 standard The fracture toughness value can be provided, and it can be applied not only to a thin wall but also to a structural part having a wall thickness of 50 mm or more.

この発明のZrを含むAl−Zn−Mg−Cu系アルミニウム合金によれば破壊靭性に優れ、特に厚肉部品への適用も可能であることから各種の航空機部材として広い適用範囲を有し、しかも特に航空機材料として求められる材料の安全性に貢献するところが非常に大きい。
またこの発明のZrを含むAl−Zn−Mg−Cu系アルミニウム合金の製造方法によれば、この発明のZrを含むAl−Zn−Mg−Cu系アルミニウム合金を効率の良い工程で高い生産性を実現して生産することができる。
According to the Al-Zn-Mg-Cu-based aluminum alloy containing Zr of the present invention, it has excellent fracture toughness, and in particular can be applied to thick parts. In particular, it greatly contributes to the safety of materials required as aircraft materials.
Further, according to the method for producing an Al—Zn—Mg—Cu-based aluminum alloy containing Zr of the present invention, the Al—Zn—Mg—Cu-based aluminum alloy containing Zr of the present invention has high productivity in an efficient process. Can be realized and produced.

以下に本発明の組成限定理由及び製造方法についての限定理由を説明する。
この発明のZrを含むAl−Zn−Mg−Cu系アルミニウム合金はCu:2.0〜2.6質量%(以下%)、Mg:1.9〜2.6%、Zn:5.7〜6.7、 Zr:0.08〜0.15%を含有し、残部Alと不可避不純物からなる。
ZnはMgと結合してη相を形成し、Al中に微細に析出して強度を向上させる働きをする。その効果は5.7%未満では十分でなく、6.7%を超えると耐食性が低下する。
MgはAl中に固溶し、かつZnと同様にη相を形成し、強度を向上させる。その効果は1.9%未満では十分でなく、十分な機械的特性を維持しようとすれば1.7%未満に下げることはできない。一方、2.6%を超えると応力腐食割れが起こり易くなる。
Cuは時効処理時に析出量及び密度を増大させ、強度上昇に有効である。その効果は2.0%未満では十分でなく、2.6%を超えると晶出物の粗大化が起こり、破壊靭性が低下する。
Zrは均質化処理中にAlZrを形成し、再結晶を抑制し、サブグレイン組織を残留させることで強度および靭性に寄与する。その効果は0.08%未満では十分でなく、0.15%を超えると粗大晶出物を生成し、延性及び靭性が低下する。
The reason for limiting the composition of the present invention and the reason for limiting the manufacturing method will be described below.
The Al—Zn—Mg—Cu-based aluminum alloy containing Zr of this invention has Cu: 2.0 to 2.6 mass% (hereinafter referred to as “%”), Mg: 1.9 to 2.6%, Zn: 5.7 to 6.7, Zr: 0.08 to 0.15%, and the balance is Al and inevitable impurities.
Zn combines with Mg to form an η phase, and precipitates finely in Al to improve the strength. If the effect is less than 5.7%, it is not sufficient, and if it exceeds 6.7%, the corrosion resistance decreases.
Mg forms a solid solution in Al and forms a η phase in the same manner as Zn to improve the strength. The effect is not sufficient if it is less than 1.9%, and cannot be lowered to less than 1.7% in order to maintain sufficient mechanical properties. On the other hand, if it exceeds 2.6%, stress corrosion cracking tends to occur.
Cu increases the precipitation amount and density during the aging treatment, and is effective in increasing the strength. If the effect is less than 2.0%, it is not sufficient, and if it exceeds 2.6%, the crystallized material becomes coarse and the fracture toughness is lowered.
Zr contributes to strength and toughness by forming Al 3 Zr during the homogenization treatment, suppressing recrystallization, and leaving a subgrain structure. If the effect is less than 0.08%, it is not sufficient. If it exceeds 0.15%, a coarse crystallized product is formed, and the ductility and toughness are lowered.

また、この発明のZrを含むAl−Zn−Mg−Cu系アルミニウム合金の製造方法では、第1段の加熱処理として、150℃以上200℃未満の温度で24時間以上保持した後、第2段の加熱処理として、450℃以上485℃以下の温度で4時間以上保持する均質化処理を施す。係る均質化処理における均質化処理条件の限定理由について次に説明する。
図1に示される様に、第1段の保持温度を150℃以上200℃未満としたのは、AlZrの核生成を十分にさせて最終的に均一なAlZrを分布させるためで、200℃以上では続く高温での均質化中に分散相であるAlZrが粗大化する可能性があるからである。150℃以上200℃未満での保持時間を24時間以上としたのは24時間未満ではAlZrが十分に生成されない可能性があるからである。48時間を超えるとAlZrの核生成は飽和し、経済的に不利である。
In the method for producing an Al—Zn—Mg—Cu-based aluminum alloy containing Zr according to the present invention, the first stage heat treatment is carried out at the temperature of 150 ° C. or higher and lower than 200 ° C. for 24 hours or more, and then the second stage. As the heat treatment, a homogenization treatment is performed by holding at a temperature of 450 ° C. or more and 485 ° C. or less for 4 hours or more. The reason for limiting the homogenization processing conditions in the homogenization processing will be described next.
As shown in FIG. 1, the reason why the holding temperature of the first stage is set to 150 ° C. or higher and lower than 200 ° C. is to sufficiently distribute the nucleation of Al 3 Zr and finally distribute uniform Al 3 Zr. This is because Al 3 Zr which is a dispersed phase may be coarsened during homogenization at a high temperature that continues at 200 ° C. or higher. The reason why the holding time at 150 ° C. or more and less than 200 ° C. is set to 24 hours or more is that if it is less than 24 hours , Al 3 Zr may not be sufficiently generated. If it exceeds 48 hours, the nucleation of Al 3 Zr is saturated, which is economically disadvantageous.

第2段の保持温度を450℃以上485℃以下としたのは、450℃未満では十分に均質化されない可能性があり、485℃を超えると融液を生じる危険性があるためである。保持時間を4時間以上としたのは4時間未満では十分に均質化されない可能性があるからである。48時間を超えると均質化処理の効果は飽和すると同時に微細に析出させたAlZrの粗大化が生じるため、経済的に不利である。
第1段の保持温度である150℃以上200℃未満への昇温速度および第2段の保持温度である450以上485℃以下への昇温速度は鋳塊内部を均一に加熱するために100℃/min以下とするのがよい。
The reason why the holding temperature of the second stage is set to 450 ° C. or more and 485 ° C. or less is that there is a possibility that the material is not sufficiently homogenized if it is less than 450 ° C., and there is a risk of forming a melt if it exceeds 485 ° C. The reason why the holding time is set to 4 hours or longer is that if it is less than 4 hours, it may not be sufficiently homogenized. If it exceeds 48 hours, the effect of the homogenization treatment is saturated and at the same time coarsening of finely precipitated Al 3 Zr occurs, which is economically disadvantageous.
In order to uniformly heat the inside of the ingot, the rate of temperature increase from 150 ° C. to less than 200 ° C., which is the first stage holding temperature, and the rate of temperature increase, from 450 ° C. to 485 ° C., which is the second stage holding temperature. It is preferable that the temperature is not more than ° C / min.

またこの発明のZrを含むAl−Zn−Mg−Cu系アルミニウム合金は時効処理後に板厚中央でL−ST面でのサブグレイン組織の占める面積割合が60%以上として規定される。
ここにL−ST面は圧延方向−板厚断面であって、この圧延方向−板厚断面でサブグレイン組織の占める面積割合が60%以上として規定するのは、この断面におけるサブグレイン組織の占める面積割合がZrを含むAl−Zn−Mg−Cu系アルミニウム合金の破壊靱性値に影響する支配因子であると認められることによる。
このL−ST面でのサブグレイン組織の占める面積割合が60%未満では、破壊靭性値の向上効果が不十分であり好ましくない。
このL−ST面でのサブグレイン組織の占める面積割合は65%以上とするのがさらに好ましく、最も好ましくは70%以上とするのがよい。
In the Al—Zn—Mg—Cu based aluminum alloy containing Zr of the present invention, the area ratio of the subgrain structure in the L-ST plane at the center of the plate thickness after aging treatment is defined as 60% or more.
Here, the L-ST plane is the rolling direction-thickness cross section, and the area ratio occupied by the subgrain structure in the rolling direction-thickness cross section is defined as 60% or more. This is because the area ratio is recognized as a dominant factor affecting the fracture toughness value of the Al—Zn—Mg—Cu-based aluminum alloy containing Zr.
If the area ratio of the subgrain structure on the L-ST plane is less than 60%, the effect of improving the fracture toughness value is insufficient, which is not preferable.
The area ratio of the subgrain structure on the L-ST plane is more preferably 65% or more, and most preferably 70% or more.

また、この発明では、この発明のZrを含むAl−Zn−Mg−Cu系アルミニウム合金は次式を満足する特性を有するものとして規定される。
KIc(T−L) MPa・m1/2 ≧ 28.67MPa・m1/2 − 0.028MPa・m1/2 /mm×t (tはmm単位の板厚)
KIc(T−L):T−L方向の平面ひずみ破壊靱性値
材料中に鋭いき裂がすでに存在していることを前提としてき裂先端近くの弾性応力分布を示す式から応力(σ)とき裂長さ(α)の因子だけを取り出しそれをKとした場合(K=ασ√πa)、係るKは応力拡大係数といわれる。ここでαは試験片とき裂の形状に依存する定数である。Kはき裂先端の応力の大きさを示すパラメ−タであり、あるK値に達すると外力を大きくしなくてもき裂は不安定に進展を続けるようになり、試験片は破断する。そのKの臨界値が破壊靱性(Kc)である。したがって破壊靱性値は亀裂が進展する際の抵抗の目安となるもので、この値が高いほど特性が良好であることを意味する。またこの破壊靱性(Kc)は板厚が厚くなるとともに減少し、ある板厚以上では一定値になる。特に平面ひずみ条件(モードI)でKc値は最も小さい値をとるためKIc値が設計時に最も重要となる。またKIc値には板厚依存性があり、板厚が厚くなるとともに減少し、ある板厚以上では一定値になる。そのため破壊靭性値を高めることは板厚の薄い板ではもちろん厚い板で非常に重要である。
In the present invention, the Al—Zn—Mg—Cu-based aluminum alloy containing Zr of the present invention is defined as having a characteristic satisfying the following formula.
KIc (T-L) MPa · m 1/2 ≧ 28.67MPa · m 1/2 - 0.028MPa · m 1/2 / mm × t (t thickness of mm units)
KIc (TL): Plane strain fracture toughness value in the TL direction When stress (σ) is obtained from the equation showing the elastic stress distribution near the crack tip on the assumption that a sharp crack already exists in the material. When only the factor of the crack length (α) is extracted and set as K (K = ασ√πa), such K is called a stress intensity factor. Here, α is a constant depending on the shape of the test piece and the crack. K is a parameter indicating the magnitude of the stress at the crack tip. When a certain K value is reached, the crack continues to grow unstablely without increasing the external force, and the test piece breaks. The critical value of K is fracture toughness (Kc). Therefore, the fracture toughness value is a measure of resistance when a crack progresses, and the higher this value, the better the characteristics. Further, the fracture toughness (Kc) decreases as the plate thickness increases, and becomes a constant value above a certain plate thickness. In particular, since the Kc value takes the smallest value under the plane strain condition (mode I), the KIc value is most important at the time of design. Further, the KIc value is dependent on the plate thickness, and decreases as the plate thickness increases, and becomes a constant value above a certain plate thickness. Therefore, increasing the fracture toughness value is very important not only for thin plates but also for thick plates.

この平面ひずみ破壊靱性(KIc)につき、Zrを含むAl−Zn−Mg−Cu系アルミニウム合金の厚板材の板厚とT−L方向の破壊靱性値の関係を調査した結果、板厚の増加に対して 0.028MPa・m1/2 /mmの低下が認められた。係る調査に基づきこの発明のZrを含むAl−Zn−Mg−Cu系アルミニウム合金のT−L方向の平面ひずみ破壊靱性値KIc(T−L) の規定式が得られた。 As for this plane strain fracture toughness (KIc), as a result of investigating the relationship between the thickness of the plate material of Al-Zn-Mg-Cu-based aluminum alloy containing Zr and the fracture toughness value in the TL direction, On the other hand, a decrease of 0.028 MPa · m 1/2 / mm was observed. Based on this investigation, the formula for the plane strain fracture toughness value KIc (TL) in the TL direction of the Al—Zn—Mg—Cu based aluminum alloy containing Zr of the present invention was obtained.

この平面ひずみ破壊靱性(KIc)値で特にT−L方向の平面ひずみ破壊靱性値であるKIc(T−L)がKIc(T−L) MPa・m1/2 ≧ 28.67MPa・m1/2 − 0.028MPa・m1/2 /mm×t (tはmm単位の板厚) という関係を満足することによって、この発明のZrを含むAl−Zn−Mg−Cu系アルミニウム合金は十分な破壊靱性値をそなえるということができ、具体的にはAMS4050規格も満足することができる。 In this plane strain fracture toughness (KIc) value, in particular, the plane strain fracture toughness value KIc (TL) in the TL direction is KIc (TL) MPa · m 1/2 ≧ 28.67 MPa · m 1 / The Al—Zn—Mg—Cu-based aluminum alloy containing Zr according to the present invention is sufficient by satisfying the relationship of 2−0.028 MPa · m 1/2 / mm × t (t is the plate thickness in mm). It can be said that the fracture toughness value is provided, and specifically, the AMS 4050 standard can also be satisfied.

このAMS4050規格では、板厚の範囲ごとに破壊靭性値が決められており、この点この発明のZrを含むAl−Zn−Mg−Cu系アルミニウム合金は、その破壊靱性値がKIc(T−L) MPa・m1/2 ≧ 28.67MPa・m1/2 − 0.028MPa・m1/2 /mm×t (tはmm単位の板厚) という関係を満足することによって、この規格を十分に満足する。 In this AMS 4050 standard, the fracture toughness value is determined for each range of sheet thickness. In this respect, the Al—Zn—Mg—Cu-based aluminum alloy containing Zr of this invention has a fracture toughness value of KIc (TL ) MPa · m 1/2 ≧ 28.67MPa · m 1/2 - by satisfying the relationship of 0.028MPa · m 1/2 / mm × t (t thickness of mm units), plenty this standard Satisfied with.

また、KIc(T−L) MPa・m1/2 ≧ 28.67MPa・m1/2 − 0.028MPa・m1/2 /mm×t (tはmm単位の板厚) なるこの発明のZrを含むAl−Zn−Mg−Cu系アルミニウム合金の破壊靱性値の規定式における 28.67MPa・m1/2 − 0.028MPa・m1/2 /mm×t は、100mm厚の合金板で、25.87以上のKIc(T−L) が得られるべきことを規定するものである。 Further, KIc (T-L) MPa · m 1/2 ≧ 28.67MPa · m 1/2 - 0.028MPa · m 1/2 / mm × t (t is a plate thickness in mm) composed Zr of the invention 28.67 MPa · m 1/2 −0.028 MPa · m 1/2 / mm × t in the formula for defining the fracture toughness value of an Al—Zn—Mg—Cu-based aluminum alloy containing is an alloy plate having a thickness of 100 mm, This stipulates that a KIc (TL) of 25.87 or more should be obtained.

この点、Zrを含むAl−Zn−Mg−Cu系アルミニウム合金であってもKIc(T−L) MPa・m1/2 ≧ 28.67MPa・m1/2 − 0.028MPa・m1/2 /mm×t (tはmm単位の板厚) という関係を満足しない場合には、十分な破壊靱性値をそなえるとは認められず、AMS4050規格も満足できない。 In this regard, even in Al-Zn-Mg-Cu series aluminum alloy containing Zr KIc (T-L) MPa · m 1/2 ≧ 28.67MPa · m 1/2 - 0.028MPa · m 1/2 If the relationship of / mm × t (t is the plate thickness in mm) is not satisfied, it is not recognized that a sufficient fracture toughness value is provided, and the AMS 4050 standard cannot be satisfied.

この発明のZrを含むAl−Zn−Mg−Cu系アルミニウム合金の製造方法では、上記の均質化処理を施した後に、続いて常法により熱間加工、溶体化焼入れを行い、さらに残留応力除去のための冷間加工、時効処理が行われる。   In the method for producing an Al—Zn—Mg—Cu-based aluminum alloy containing Zr according to the present invention, after performing the above-mentioned homogenization treatment, it is subsequently subjected to hot working and solution hardening by ordinary methods, and further, residual stress removal Cold working and aging treatment are performed.

この発明においては特に限定するものではないが、400-450℃で熱間圧延あるいは熱間鍛造を開始し、所定の板厚あるいは形状まで加工を行う。続く溶体化処理は471-482℃で実施され、その保持時間は均一な固溶体を得るため肉厚によって時間が異なるが数十分から数時間保持される。   Although not particularly limited in the present invention, hot rolling or hot forging is started at 400 to 450 ° C., and processing is performed up to a predetermined plate thickness or shape. The subsequent solution treatment is performed at 471 to 482 ° C., and the holding time is maintained for several tens of minutes to several hours although the time varies depending on the thickness in order to obtain a uniform solid solution.

焼入れ処理は溶体化処理後、急冷により過飽和固溶体を得ることを目的とし、一般的には板材の場合は水冷によって実施されており、鍛造材の場合は温水やポリエチレングリコール等の水溶液中に焼入れする場合もある。   The purpose of quenching treatment is to obtain a supersaturated solid solution by rapid cooling after solution treatment. Generally, in the case of plate materials, it is carried out by water cooling, and in the case of forging materials, it is quenched in an aqueous solution such as warm water or polyethylene glycol. In some cases.

残留応力除去のための冷間加工は必要に応じて板材の場合は引張り矯正により、鍛造材の場合は圧縮加工により1.5-3%の永久歪みを与え残留応力を除去する。   In the cold working for removing the residual stress, a permanent deformation of 1.5 to 3% is applied to remove the residual stress as necessary by tensile correction in the case of a plate material and compression processing in the case of a forged material.

時効処理は自然時効に続いて約120℃で人工時効が行われる。特に本系合金は耐応力腐食割れ性や耐剥離腐食性を改善するために過時効処理が行われることが多くこの場合は1段目に約120℃で人工時効を行った後、2段目の時効条件として160-180℃の人工時効が行われる。   In the aging treatment, artificial aging is performed at about 120 ° C. following natural aging. In particular, this alloy is often over-aged to improve stress corrosion cracking resistance and exfoliation corrosion resistance. In this case, the first stage is artificially aged at about 120 ° C and then the second stage. As an aging condition, an artificial aging of 160 to 180 ° C. is performed.

以下にこの発明の実施例につき説明する。
この発明の実施例としてZrを含むAl−Zn−Mg−Cu系アルミニウム合金板を製造し、その特性を比較例および従来例と比較した結果について説明する。
表1に示す化学成分(mass%)からなるZrを含むAl−Zn−Mg−Cu系アルミニウム合金としてのAA7050合金を溶解鋳造して厚さ350mmに面削後、それぞれ135〜215℃の間の温度範囲に達してからその温度で24時間もしくは48時間保持し、475℃まで昇温し、その温度で3〜50時間均質化処理した。400℃で熱間圧延の後、板厚を100mmとし、溶体化処理を行い残留応力除去のためにストレッチ矯正により2%の永久歪みを付与した後、時効処理を施した。溶体化処理は475℃で5時間保持した。時効処理は120℃で5時間、165℃で24時間行った。
Examples of the present invention will be described below.
As an example of the present invention, an Al—Zn—Mg—Cu-based aluminum alloy plate containing Zr is manufactured, and the results of comparing the characteristics of the comparative example and the conventional example will be described.
AA7050 alloy as an Al—Zn—Mg—Cu-based aluminum alloy containing Zr composed of chemical components (mass%) shown in Table 1 was melt cast and chamfered to a thickness of 350 mm, each between 135 and 215 ° C. After reaching the temperature range, the temperature was maintained for 24 hours or 48 hours, the temperature was raised to 475 ° C., and the mixture was homogenized at that temperature for 3 to 50 hours. After hot rolling at 400 ° C., the plate thickness was set to 100 mm, a solution treatment was performed, 2% permanent strain was applied by stretch correction to remove residual stress, and an aging treatment was performed. The solution treatment was held at 475 ° C. for 5 hours. The aging treatment was performed at 120 ° C. for 5 hours and at 165 ° C. for 24 hours.

Figure 0004498180
Figure 0004498180

平面ひずみ破壊靱性試験は板厚の1/4位置からコンパクトタイプの試験片を採取し、ASTM E399に準拠し試験を実施した。
またサブグレインの面積率の測定は圧延方向−板厚断面(L−ST面)で板厚中央部分より薄膜サンプルを作製し、透過型電子顕微鏡を用い倍率3000倍にて20視野観察しサブグレインの面積率を求めた。
以上の試験結果を表2に示す。
In the plane strain fracture toughness test, a compact type test piece was sampled from a 1/4 position of the plate thickness, and the test was conducted in accordance with ASTM E399.
The area ratio of subgrains was measured by preparing a thin film sample from the central part of the plate thickness in the rolling direction-plate thickness cross section (L-ST plane), and observing 20 fields of view using a transmission electron microscope at a magnification of 3000 times. The area ratio was determined.
The test results are shown in Table 2.

Figure 0004498180
Figure 0004498180

表2より、従来の475℃×24hの一段の均質化処理法で製造した合金にあってはサブグレインの占める割合が40%程度であるのに対し、均質化処理を2段で行ったこの発明各実施例では、いずれも60%以上となっており、サブグレインの占める割合が増加している。
また、従来の均質化処理法で製造した合金にあってはT−L方向の平面ひずみ破壊靱性値KIc(T−L) が板厚100mmにおいて25.1MPa・m1/2 <28.67MPa・m1/2 − 0.028MPa・m1/2 /mm×100mm=25.87MPa・m1/2 であるのに対して、この発明各実施例では、いずれも板厚100mmにおいても25.87MPa・m1/2 を超える26.5MPa・m1/2 以上であり、この結果から破壊靱性が向上されていることがわかる。
From Table 2, the alloy produced by the conventional one-stage homogenization method at 475 ° C. × 24 h has a subgrain content of about 40%, whereas the homogenization process was performed in two stages. In each embodiment of the invention, all are 60% or more, and the proportion of subgrains is increasing.
Further, in the alloy manufactured by the conventional homogenization method, the plane strain fracture toughness value KIc (TL) in the TL direction is 25.1 MPa · m 1/2 <28.67 MPa · when the plate thickness is 100 mm. m 1/2 - whereas a 0.028MPa · m 1/2 /mm×100mm=25.87MPa · m 1/2 , in the present invention each embodiment, in any thickness 100 mm 25.87MPa · m is 1/2 greater than 26.5MPa · m 1/2 or more, it can be seen that the fracture toughness is improved from this result.

また、比較例1の135℃×25h+475℃×25hの二段の均質化処理法で製造した合金にあっては、第1段の保持温度が150℃未満であってこの発明の条件に達しておらず、AlZrの核生成が不充分となって均一なAlZrを分布させることができない結果、サブグレインの占める割合が48%程度となっており、時効処理後に板厚中央でL−ST面でのサブグレイン組織の占める面積割合が60%以上であるというこの発明のZrを含むAl−Zn−Mg−Cu系アルミニウム合金の条件が充足されていない。
その結果この比較例1の合金ではT−L方向の平面ひずみ破壊靱性値KIc(T−L) が板厚100mmにおいて25.3MPa・m1/2 <28.67MPa・m1/2 − 0.028MPa・m1/2 /mm×100mm=25.87MPa・m1/2 となっており、十分な破壊靱性値が得られていない。
Further, in the alloy manufactured by the two-stage homogenization method of 135 ° C. × 25 h + 475 ° C. × 25 h of Comparative Example 1, the first stage holding temperature is less than 150 ° C. not reached, Al 3 Zr nucleation can not be distributed uniform Al 3 Zr becomes insufficient result of the proportion of sub-grains are on the order of 48%, the plate thickness center after aging However, the condition of the Al—Zn—Mg—Cu based aluminum alloy containing Zr of the present invention that the area ratio of the subgrain structure on the L-ST plane is 60% or more is not satisfied.
Consequently 25.3MPa · m 1/2 plane T-L direction in the alloy of Comparative Example 1 strain fracture toughness value KIc (T-L) are in plate thickness 100mm <28.67MPa · m 1/2 - 0 . 028 MPa · m 1/2 / mm × 100 mm = 28.57 MPa · m 1/2 , and a sufficient fracture toughness value is not obtained.

また、比較例2の155℃×22h+475℃×25hの二段の均質化処理法で製造した合金にあっては、第1段の均質化処理の保持時間が22時間であってこの発明の24時間以上保持するという条件に達しておらず、AlZrの核生成が不充分となって均一なAlZrを分布させることができない結果、サブグレインの占める割合が55%程度となっており、時効処理後に板厚中央でL−ST面でのサブグレイン組織の占める面積割合が60%以上であるというこの発明のZrを含むAl−Zn−Mg−Cu系アルミニウム合金の条件が充足されていない。
その結果この比較例2の合金ではT−L方向の平面ひずみ破壊靱性値KIc(T−L) が板厚100mmにおいて25.3MPa・m1/2 <28.67MPa・m1/2 − 0.028MPa・m1/2 /mm×100mm=25.87MPa・m1/2となっており、十分な破壊靱性値が得られていない。
Further, in the alloy manufactured by the two-stage homogenization method of Comparative Example 2 at 155 ° C. × 22h + 475 ° C. × 25 h, the retention time of the first stage homogenization treatment is 22 hours, and this invention The condition of holding for 24 hours or more is not reached, and nucleation of Al 3 Zr is insufficient and uniform Al 3 Zr cannot be distributed. As a result, the proportion of subgrains is about 55%. The condition of the Al—Zn—Mg—Cu based aluminum alloy containing Zr of the present invention that the area ratio of the subgrain structure in the L-ST plane at the center of the plate thickness after aging treatment is 60% or more is satisfied. It has not been.
Consequently 25.3MPa · m 1/2 plane T-L direction in the alloy of Comparative Example 2 strain fracture toughness value KIc (T-L) are in plate thickness 100mm <28.67MPa · m 1/2 - 0 . 028 MPa · m 1/2 / mm × 100 mm = 28.57 MPa · m 1/2 , and a sufficient fracture toughness value is not obtained.

また、比較例3の155℃×25h+475℃×3hの二段の均質化処理法で製造した合金にあっては、第2段の均質化処理の保持時間が3時間であって4時間以上保持するというこの発明の条件に達しておらず、AlZrの析出による微細化効果が不十分となり、サブグレインの占める割合が54%程度となって、時効処理後に板厚中央でL−ST面でのサブグレイン組織の占める面積割合が60%以上であるというこの発明のZrを含むAl−Zn−Mg−Cu系アルミニウム合金の条件が充足されていない。
その結果この比較例3の合金ではT−L方向の平面ひずみ破壊靱性値KIc(T−L) が板厚100mmにおいて25.6MPa・m1/2 <28.67MPa・m1/2 − 0.028MPa・m1/2 /mm×100mm=25.87MPa・m1/2となっており、十分な破壊靱性値が得られていない。
Further, in the alloy manufactured by the two-stage homogenization method of Comparative Example 3 at 155 ° C. × 25 h + 475 ° C. × 3 h, the holding time of the second stage homogenization treatment is 3 hours and 4 hours. The condition of the present invention of holding the above is not reached, the effect of refining by precipitation of Al 3 Zr becomes insufficient, the proportion of subgrains is about 54%, and L− The condition of the Al—Zn—Mg—Cu based aluminum alloy containing Zr of the present invention that the area ratio of the subgrain structure on the ST plane is 60% or more is not satisfied.
Consequently 25.6MPa · m 1/2 plane T-L direction in the alloy of Comparative Example 3 strain fracture toughness value KIc (T-L) are in plate thickness 100mm <28.67MPa · m 1/2 - 0 . 028 MPa · m 1/2 / mm × 100 mm = 28.57 MPa · m 1/2 , and a sufficient fracture toughness value is not obtained.

また、比較例4の195℃×22h+475℃×25hの二段の均質化処理法で製造した合金にあっては、第1段の均質化処理の保持時間が22時間であって24時間以上保持するというこの発明の条件に達しておらず、AlZrの核生成が不充分となって均一なAlZrを分布させることができない結果、サブグレインの占める割合が56%程度となっており、時効処理後に板厚中央でL−ST面でのサブグレイン組織の占める面積割合が60%以上であるというこの発明のZrを含むAl−Zn−Mg−Cu系アルミニウム合金の条件が充足されていない。
その結果この比較例4の合金ではT−L方向の平面ひずみ破壊靱性値KIc(T−L) が板厚100mmにおいて25.7MPa・m1/2 <28.67MPa・m1/2 − 0.028MPa・m1/2 /mm×100mm=25.87MPa・m1/2となっており、十分な破壊靱性値が得られていない。
Further, in the alloy manufactured by the two-stage homogenization method of 195 ° C. × 22 h + 475 ° C. × 25 h of Comparative Example 4, the holding time of the first stage homogenization treatment is 22 hours and 24 hours. The condition of the present invention for maintaining the above is not reached, and the nucleation of Al 3 Zr is insufficient and uniform Al 3 Zr cannot be distributed. As a result, the proportion of subgrains is about 56%. The condition of the Al—Zn—Mg—Cu-based aluminum alloy containing Zr of the present invention that the area ratio of the subgrain structure in the L-ST plane at the center of the plate thickness after aging treatment is 60% or more is satisfied. It has not been.
Consequently 25.7MPa · m 1/2 plane T-L direction in the alloy of Comparative Example 4 strain fracture toughness value KIc (T-L) are in plate thickness 100mm <28.67MPa · m 1/2 - 0 . 028 MPa · m 1/2 / mm × 100 mm = 28.57 MPa · m 1/2 , and a sufficient fracture toughness value is not obtained.

また、比較例5の195℃×25h+475℃×3hの二段の均質化処理法で製造した合金にあっては、第2段の均質化処理の保持時間が3時間であって4時間以上保持するというこの発明の条件に達しておらず、AlZrの析出による微細化効果が不十分となり、サブグレインの占める割合が57%程度となって、時効処理後に板厚中央でL−ST面でのサブグレイン組織の占める面積割合が60%以上であるというこの発明のZrを含むAl−Zn−Mg−Cu系アルミニウム合金の条件が充足されていない。
その結果この比較例5の合金ではT−L方向の平面ひずみ破壊靱性値KIc(T−L) が板厚100mmにおいて25.8MPa・m1/2 <28.67MPa・m1/2 − 0.028MPa・m1/2 /mm×100mm=25.87MPa・m1/2となっており、十分な破壊靱性値は未だ得られていない。
Further, in the alloy manufactured by the two-stage homogenization method of Comparative Example 5 of 195 ° C. × 25 h + 475 ° C. × 3 h, the holding time of the second stage homogenization treatment is 3 hours and 4 hours. The condition of the present invention of holding the above is not reached, the effect of refining by precipitation of Al 3 Zr becomes insufficient, the proportion of subgrains is about 57%, and L− The condition of the Al—Zn—Mg—Cu based aluminum alloy containing Zr of the present invention that the area ratio of the subgrain structure on the ST plane is 60% or more is not satisfied.
Consequently 25.8MPa · m 1/2 plane T-L direction in the alloy of Comparative Example 5 strain fracture toughness value KIc (T-L) are in plate thickness 100mm <28.67MPa · m 1/2 - 0 . 028 MPa · m 1/2 / mm × 100 mm = 28.57 MPa · m 1/2 , and a sufficient fracture toughness value has not yet been obtained.

また、比較例6の215℃×25h+475℃×25hの二段の均質化処理法で製造した合金にあっては、第1段の保持温度が200℃を越える215℃であってこの発明の200℃未満という条件を充足せず、高温での均質化中に分散相であるAlZrが粗大化して、サブグレインの占める割合が55%程度となって、時効処理後に板厚中央でL−ST面でのサブグレイン組織の占める面積割合が60%以上であるというこの発明のZrを含むAl−Zn−Mg−Cu系アルミニウム合金の条件が充足されていない。
その結果、この比較例6の合金ではT−L方向の平面ひずみ破壊靱性値KIc(T−L) が板厚100mmにおいて25.6MPa・m1/2 <28.67MPa・m1/2 −0.028MPa・m1/2 /mm×100mm=25.87MPa・m1/2 となっており、十分な破壊靱性値が得られていない。
Further, in the alloy manufactured by the two-stage homogenization method of 215 ° C. × 25 h + 475 ° C. × 25 h of Comparative Example 6, the first stage holding temperature is 215 ° C. exceeding 200 ° C. Of Al 3 Zr, which is a dispersed phase, becomes coarse during homogenization at a high temperature, and the proportion of subgrains is about 55%. The condition of the Al—Zn—Mg—Cu based aluminum alloy containing Zr according to the present invention that the area ratio of the subgrain structure on the L-ST plane is 60% or more is not satisfied.
As a result, in the alloy of Comparative Example 6, the plane strain fracture toughness value KIc (TL) in the TL direction was 25.6 MPa · m 1/2 <28.67 MPa · m 1/2 −0 at a plate thickness of 100 mm. 0.028 MPa · m 1/2 / mm × 100 mm = 28.57 MPa · m 1/2 , and a sufficient fracture toughness value is not obtained.

この発明のZrを含むAl−Zn−Mg−Cu系アルミニウム合金及びその製造方法は主に航空機の構造部材、各種高速回転体に好適に使用される。   The Al—Zn—Mg—Cu-based aluminum alloy containing Zr and the manufacturing method thereof according to the present invention are preferably used mainly for aircraft structural members and various high-speed rotating bodies.

この発明の均質加熱処理条件を示す説明図である。It is explanatory drawing which shows the homogeneous heat processing conditions of this invention.

Claims (3)

Cu:2.0〜2.6質量%(以下%)、Mg:1.9〜2.6%、Zn:5.7〜6.7、 Zr:0.08〜0.15%を含有し、残部Alと不可避不純物からなる合金鋳塊に第1段の加熱処理として、150℃以上200℃未満の温度で24時間以上保持した後、第2段の加熱処理として、450℃以上485℃以下の温度で4時間以上保持する均質化処理を施し、続いて熱間加工、溶体化焼入れ、残留応力除去のための冷間加工、時効処理を行うことを特徴とするZrを含むAl−Zn−Mg−Cu系アルミニウム合金の製造方法。 Cu: 2.0 to 2.6% by mass (%), Mg: 1.9 to 2.6%, Zn: 5.7 to 6.7, Zr: 0.08 to 0.15% Then, the alloy ingot composed of the remaining Al and inevitable impurities is held as a first stage heat treatment at a temperature of 150 ° C. or higher and lower than 200 ° C. for 24 hours or more, and then as a second stage heat treatment as 450 ° C. or higher and 485 ° C. or lower. Al-Zn-containing Zr, characterized in that it is subjected to a homogenization treatment at a temperature of 4 hours or more, followed by hot working, solution hardening, cold working for residual stress removal, and aging treatment Manufacturing method of Mg-Cu type aluminum alloy. Cu:2.0〜2.6%、Mg:1.9〜2.6%、Zn:5.7〜6.7、 Zr:0.08〜0.15%を含有し、残部Alと不可避不純物からなり、板厚中央でL−ST面でのサブグレイン組織の占める面積割合が60%以上であり、T−L方向での平面ひずみ破壊靭性値が次式を満足することを特徴とするZrを含むAl−Zn−Mg−Cu系アルミニウム合金。
KIc(T−L) MPa・m1/2 ≧ 28.67MPa・m1/2 − 0.028MPa・m1/2 /mm×t (tはmm単位の板厚)
It contains Cu: 2.0-2.6%, Mg: 1.9-2.6%, Zn: 5.7-6.7, Zr: 0.08-0.15%, and the balance is inevitable with Al. It consists of impurities, and the area ratio of the subgrain structure in the L-ST plane at the center of the plate thickness is 60% or more, and the plane strain fracture toughness value in the TL direction satisfies the following formula: An Al—Zn—Mg—Cu-based aluminum alloy containing Zr.
KIc (T-L) MPa · m 1/2 ≧ 28.67MPa · m 1/2 - 0.028MPa · m 1/2 / mm × t (t thickness of mm units)
Cu:2.0〜2.6%、Mg:1.9〜2.6%、Zn:5.7〜6.7、 Zr:0.08〜0.15%を含有し、更に Si:0.12%以下、Mn:0.1%以下、Ti:0.06%以下を含有し、残部Alと不可避不純物からなる合金鋳塊に第1段の加熱処理として、150℃以上200℃未満の温度で24時間以上保持した後、第2段の加熱処理として、450℃以上485℃以下の温度で4時間以上保持する均質化処理を施し、続いて熱間加工、溶体化焼入れ、残留応力除去のための冷間加工、時効処理を行って製造され、時効処理後に板厚中央でL−ST面でのサブグレイン組織の占める面積割合が60%以上であり、T−L方向での平面ひずみ破壊靭性値が次式を満足することを特徴とするZrを含むAl−Zn−Mg−Cu系アルミニウム合金。
KIc(T−L) MPa・m1/2 ≧ 28.67MPa・m1/2 − 0.028MPa・m1/2 /mm×t (tはmm単位の板厚)
Cu: 2.0 to 2.6%, Mg: 1.9 to 2.6%, Zn: 5.7 to 6.7, Zr: 0.08 to 0.15%, and Si: 0 0.12% or less, Mn: 0.1% or less, Ti: 0.06% or less, and the alloy ingot composed of the balance Al and inevitable impurities is heated to 150 ° C. or more and less than 200 ° C. as the first stage heat treatment. After holding at temperature for 24 hours or more, as the second stage heat treatment, homogenization treatment is performed at 450 ° C. or more and 485 ° C. or less for 4 hours or more, followed by hot working, solution hardening and residual stress removal Is produced by performing cold working and aging treatment, and the area ratio of the subgrain structure in the L-ST plane is 60% or more at the center of the plate thickness after aging treatment, and the plane strain in the TL direction Al-Zn-Mg-Cu-based aluminum alloy containing Zr characterized by fracture toughness value satisfying the following formula .
KIc (T-L) MPa · m 1/2 ≧ 28.67MPa · m 1/2 - 0.028MPa · m 1/2 / mm × t (t thickness of mm units)
JP2005078744A 2005-03-18 2005-03-18 Al-Zn-Mg-Cu-based aluminum alloy containing Zr and method for producing the same Expired - Fee Related JP4498180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005078744A JP4498180B2 (en) 2005-03-18 2005-03-18 Al-Zn-Mg-Cu-based aluminum alloy containing Zr and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005078744A JP4498180B2 (en) 2005-03-18 2005-03-18 Al-Zn-Mg-Cu-based aluminum alloy containing Zr and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006257522A JP2006257522A (en) 2006-09-28
JP4498180B2 true JP4498180B2 (en) 2010-07-07

Family

ID=37097099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005078744A Expired - Fee Related JP4498180B2 (en) 2005-03-18 2005-03-18 Al-Zn-Mg-Cu-based aluminum alloy containing Zr and method for producing the same

Country Status (1)

Country Link
JP (1) JP4498180B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012165086A1 (en) 2011-06-02 2012-12-06 アイシン軽金属株式会社 Aluminum alloy and method of manufacturing extrusion using same
CN104195480A (en) * 2014-09-08 2014-12-10 广西南南铝加工有限公司 Integral aging method of Al-Zn-Mg alloy profile

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103451583B (en) * 2013-09-12 2016-09-07 中国商用飞机有限责任公司 Method for producing section bar for airplane wing stringer
CA3125048A1 (en) 2019-06-03 2021-02-18 Novelis Inc. Ultra-high strength aluminum alloy products and methods of making the same
CN111235441A (en) * 2020-02-24 2020-06-05 山东南山铝业股份有限公司 Sb-containing heat-resistant aluminum alloy and preparation method thereof
CN113913656B (en) * 2021-10-25 2022-07-12 广东省科学院新材料研究所 7075 aluminum alloy and preparation method and application thereof
CN115948666B (en) * 2022-09-30 2024-09-03 佛山市三水凤铝铝业有限公司 Preparation method of Al-Zn-Mg aluminum alloy containing Zr
CN115537616B (en) * 2022-12-05 2023-03-17 中国航发北京航空材料研究院 High-strength and high-toughness thick large-section aluminum alloy forging with low quenching sensitivity and preparation method thereof
CN116024509A (en) * 2022-12-29 2023-04-28 西南铝业(集团)有限责任公司 Homogenization method of 2A14 aluminum alloy ingot
CN116288085B (en) * 2023-02-08 2024-01-05 常州工学院 Heat treatment method for improving high-temperature strength of Al-Cu-Mn-Zr aluminum alloy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0641704A (en) * 1992-03-27 1994-02-15 Furukawa Electric Co Ltd:The Manufacture of age hardening type aluminum alloy
JPH1180876A (en) * 1997-09-08 1999-03-26 Kobe Steel Ltd Production of aluminum-zinc-magnesium series aluminum alloy excellent in extrudability and the series aluminum alloy extruded material
JP2001335874A (en) * 2000-05-23 2001-12-04 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet for structure excellent in strength and corrosion resistance and its production method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0641704A (en) * 1992-03-27 1994-02-15 Furukawa Electric Co Ltd:The Manufacture of age hardening type aluminum alloy
JPH1180876A (en) * 1997-09-08 1999-03-26 Kobe Steel Ltd Production of aluminum-zinc-magnesium series aluminum alloy excellent in extrudability and the series aluminum alloy extruded material
JP2001335874A (en) * 2000-05-23 2001-12-04 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet for structure excellent in strength and corrosion resistance and its production method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012165086A1 (en) 2011-06-02 2012-12-06 アイシン軽金属株式会社 Aluminum alloy and method of manufacturing extrusion using same
US10087508B2 (en) 2011-06-02 2018-10-02 Aisin Keikinzoku Co., Ltd. Aluminum alloy and method of manufacturing extrusion using same
CN104195480A (en) * 2014-09-08 2014-12-10 广西南南铝加工有限公司 Integral aging method of Al-Zn-Mg alloy profile

Also Published As

Publication number Publication date
JP2006257522A (en) 2006-09-28

Similar Documents

Publication Publication Date Title
JP4498180B2 (en) Al-Zn-Mg-Cu-based aluminum alloy containing Zr and method for producing the same
JP5180496B2 (en) Aluminum alloy forging and method for producing the same
JP5863626B2 (en) Aluminum alloy forging and method for producing the same
JP5343333B2 (en) Method for producing high-strength aluminum alloy material with excellent resistance to stress corrosion cracking
WO2015146654A1 (en) Forged aluminum alloy material and method for producing same
Cong et al. Effect of homogenization treatment on microstructure and mechanical properties of DC cast 7X50 aluminum alloy
JP5723192B2 (en) Aluminum alloy forging and method for producing the same
JP6022882B2 (en) High strength aluminum alloy extruded material and manufacturing method thereof
KR102003569B1 (en) 2xxx series aluminum lithium alloys
JP2011058047A (en) Method for producing aluminum alloy thick plate having excellent strength and ductility
WO2008120237A1 (en) Alloy composition and preparation thereof
JP4185247B2 (en) Aluminum-based alloy and heat treatment method thereof
Lu et al. A new fast heat treatment process for cast A356 alloy motorcycle wheel hubs
CN112626401A (en) 2XXX series aluminum alloy and preparation method thereof
JP5215710B2 (en) Magnesium alloy with excellent creep characteristics at high temperature and method for producing the same
Zhihao et al. Effect of Mn on microstructures and mechanical properties of Al-Mg-Si-Cu-Cr-V alloy.
JP2008075176A (en) Magnesium alloy excellent in strength and elongation at elevated temperature and its manufacturing method
JP7565728B2 (en) Aluminum alloy forged member and manufacturing method thereof
JP4088546B2 (en) Manufacturing method of aluminum alloy forging with excellent high temperature characteristics
CN108866460B (en) Aging process of Al-Si-Mg-Zr-Ti-Sc alloy
JP2001181771A (en) High strength and heat resistant aluminum alloy material
JPH11302764A (en) Aluminum alloy excellent in high temperature characteristic
CN115896558A (en) 4xxx series aluminum alloy forging and preparation method thereof
Kaiser Trace Impurity effect on the precipitation behaviuor of commercially pure aluminium through repeated melting
Baruah et al. Structure–Property Correlation of Al–Mg–Si Alloys Micro-alloyed with Sn

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100413

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4498180

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160423

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees