JP2001335874A - Aluminum alloy sheet for structure excellent in strength and corrosion resistance and its production method - Google Patents

Aluminum alloy sheet for structure excellent in strength and corrosion resistance and its production method

Info

Publication number
JP2001335874A
JP2001335874A JP2000150902A JP2000150902A JP2001335874A JP 2001335874 A JP2001335874 A JP 2001335874A JP 2000150902 A JP2000150902 A JP 2000150902A JP 2000150902 A JP2000150902 A JP 2000150902A JP 2001335874 A JP2001335874 A JP 2001335874A
Authority
JP
Japan
Prior art keywords
aluminum alloy
alloy sheet
corrosion resistance
strength
crystal grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000150902A
Other languages
Japanese (ja)
Other versions
JP4712159B2 (en
Inventor
Hiroki Tanaka
宏樹 田中
Tadashi Minoda
正 箕田
Hiroki Ezaki
宏樹 江崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Sky Aluminium Co Ltd
Kobe Steel Ltd
Nippon Light Metal Co Ltd
Sumitomo Light Metal Industries Ltd
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Furukawa Electric Co Ltd
Sky Aluminium Co Ltd
Kobe Steel Ltd
Nippon Light Metal Co Ltd
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd, Furukawa Electric Co Ltd, Sky Aluminium Co Ltd, Kobe Steel Ltd, Nippon Light Metal Co Ltd, Sumitomo Light Metal Industries Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2000150902A priority Critical patent/JP4712159B2/en
Publication of JP2001335874A publication Critical patent/JP2001335874A/en
Application granted granted Critical
Publication of JP4712159B2 publication Critical patent/JP4712159B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum alloy sheet for structure excellent in strength and corrosion resistance, particularly in stress corrosion cracking resistance, and to provide its production method. SOLUTION: This aluminum alloy sheet has a composition containing 4.8 to 7% Zn, 1 to 3% Mg, 1 to 2.5% Cu and 0.05 to 0.25% Zr, and the balance Al with impurities, and, in the sheet face, a structure containing grain boundaries in which the crystal orientation difference is 3 to 10 deg. are contained by >=25% is provided. It is characterized that repeated rolling is performed in the temperature range of 400 to 150 deg.C so as to control the working degree to >=70%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、強度と耐食性に優
れたアルミニウム合金板、とくに航空機用、車両用とし
て好適に使用される強度と耐食性に優れたアルミニウム
合金板およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy sheet having excellent strength and corrosion resistance, and more particularly to an aluminum alloy sheet having excellent strength and corrosion resistance suitably used for aircraft and vehicles, and a method for producing the same.

【0002】[0002]

【従来の技術】従来、構造用アルミニウム合金板、とく
に航空機用アルミニウム合金板の一例として航空機用ス
トリンガー材の製造手法が提案されている(特許第13
37646号〜1337649号公報、特許第1339
927号公報、特許第1405136号公報など)。
2. Description of the Related Art Conventionally, a method of manufacturing a stringer material for an aircraft has been proposed as an example of an aluminum alloy sheet for a structure, particularly an aluminum alloy sheet for an aircraft (Japanese Patent No. 13-135).
Nos. 37646 to 1337649, Patent No. 1339
927, Japanese Patent No. 1405136).

【0003】具体的な製造手法としては、例えば、JI
SA7075合金の鋳塊を450℃付近の温度で10〜
20時間均質化処理したのち、400〜450℃の温度
で熱間圧延を開始して厚さ6mm程度の板材とし、つい
で約410℃で1時間程度の中間熱処理を行ったのち、
100℃以下の温度域で冷間圧延を行って3〜4mm厚
さの冷延板とし、この冷延板について、320〜500
℃の温度への急速加熱による溶体化処理を行い、120
℃付近の温度で数時間〜24時間程度の時効処理を施す
ことにより所定の強度を得るものである。
[0003] As a specific manufacturing method, for example, JI
The ingot of SA7075 alloy is heated at a temperature of around 450 ° C.
After homogenizing for 20 hours, hot rolling is started at a temperature of 400 to 450 ° C. to obtain a sheet having a thickness of about 6 mm, and then an intermediate heat treatment is performed at about 410 ° C. for about 1 hour.
Cold-rolled in a temperature range of 100 ° C. or less to obtain a cold-rolled sheet having a thickness of 3 to 4 mm.
Solution treatment by rapid heating to a temperature of 120 ° C.
A predetermined strength is obtained by performing aging treatment for several hours to about 24 hours at a temperature around ℃.

【0004】上記の工程において、時効処理工程では、
結晶粒径の変化を生じることなしに析出硬化を図ること
ができ、得られた板材は25μm以下の平均結晶粒径を
有し、強度、成形性において実用上十分な特性をそなえ
たものとなる。しかしながら、耐食性、とくに耐応力腐
食割れ性の面においては、実験室レベルの耐食性評価で
は十分と判断された場合でも、実使用環境下では耐応力
腐食割れ性の点で必ずしも十分でない場合もあり、なお
一層の耐食性の改善が求められている。
[0004] In the above process, in the aging treatment process,
Precipitation hardening can be achieved without causing a change in crystal grain size, and the obtained plate material has an average crystal grain size of 25 μm or less, and has practically sufficient characteristics in strength and formability. . However, in terms of corrosion resistance, especially stress corrosion cracking resistance, even if it is judged that the corrosion resistance evaluation at the laboratory level is sufficient, it may not always be sufficient in terms of stress corrosion cracking resistance under actual use environment, Further improvement of corrosion resistance is required.

【0005】金属材料の機械的強度および成形性に関し
ては結晶粒径を微細にすることが好ましいことがよく知
られているが、耐食性に関しては、結晶粒径を微細化す
ることはむしろ耐食性を劣化させることも報告されてお
り、発明者らは、ZnとMgを含有する7000系のア
ルミニウム合金における結晶粒微細化と耐応力腐食割れ
性との関連について種々の観点から実験、検討を行い、
その過程において、隣り合う結晶粒の方位差(ミスオリ
エンテーション)が耐応力腐食割れ性に影響を与えるこ
とを知見した。
It is well known that it is preferable to reduce the crystal grain size in terms of the mechanical strength and formability of a metal material. However, in terms of corrosion resistance, reducing the crystal grain size rather deteriorates the corrosion resistance. It has also been reported that the inventors conducted experiments and studies from various viewpoints on the relationship between grain refinement and stress corrosion cracking resistance in a 7000 series aluminum alloy containing Zn and Mg,
In the process, it was found that the misorientation of adjacent crystal grains affects the stress corrosion cracking resistance.

【0006】隣り合う結晶粒の方位差とは、図1に示す
ように、結晶粒1と結晶粒2に共通な回転軸に対してど
の程度の角度差(方位差θ)があるかを示すものであ
る。前記航空機用ストリンガー材の製造における溶体化
処理後の結晶粒について調査した結果、方位差が20°
以上の大傾角粒界が形成されることが判明した。この場
合には、それに続く時効処理において第2相化合物の粒
界偏析が多くなり、粒内と粒界の電気化学的特性が異な
ることとなって耐食性が低下する。
[0006] The azimuth difference between adjacent crystal grains indicates, as shown in FIG. 1, how much angle difference (azimuth difference θ) exists with respect to a rotation axis common to crystal grains 1 and 2. Things. As a result of investigating the crystal grains after solution treatment in the production of the aircraft stringer material, the misorientation was 20 °.
It was found that the above-described large-angle grain boundaries were formed. In this case, in the subsequent aging treatment, the segregation of the second phase compound at the grain boundaries increases, and the electrochemical properties of the intragranular and the grain boundaries are different, so that the corrosion resistance is reduced.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記の知見
に基づいてなされたものであり、その目的は、構造用ア
ルミニウム合金板における従来の問題点を解消し、強度
特性に優れ、耐食性、とくに耐応力腐食割れ性について
さらに改善を図った構造用アルミニウム合金板およびそ
の製造方法を提供することにある。当該アルミニウム合
金板を使用した構造物はコストダウンが可能となり、信
頼性の向上を得ることができる。
DISCLOSURE OF THE INVENTION The present invention has been made on the basis of the above findings, and has as its object to solve the conventional problems in structural aluminum alloy sheets, to have excellent strength properties, to have corrosion resistance, In particular, it is an object of the present invention to provide a structural aluminum alloy sheet with further improved stress corrosion cracking resistance and a method of manufacturing the same. The structure using the aluminum alloy plate can reduce costs and improve reliability.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めの本発明の請求項1による構造用アルミニウム合金板
は、Zn:4.8〜7%、Mg:1〜3%、Cu:1〜
2.5%、Zr:0.05〜0.25%を含有し、残部
Alおよび不純物からなる組成を有するアルミニウム合
金板であって、該アルミニウム合金板の板面において結
晶方位差が3〜10°の結晶粒界を25%以上含む組織
を有することを特徴とする。
According to the first aspect of the present invention, there is provided a structural aluminum alloy plate comprising: Zn: 4.8 to 7%, Mg: 1 to 3%, Cu: 1 ~
An aluminum alloy sheet containing 2.5% and Zr: 0.05 to 0.25% and having a composition consisting of the balance of Al and impurities, wherein the crystal orientation difference on the plate surface of the aluminum alloy sheet is 3 to 10%. It is characterized by having a structure containing 25% or more of crystal grain boundaries of °.

【0009】請求項2による強度と耐食性に優れたアル
ミニウム合金板は、請求項1において、前記板面からみ
た平均結晶粒径が10μm以下であることを特徴とす
る。
The aluminum alloy sheet having excellent strength and corrosion resistance according to claim 2 is characterized in that in claim 1, the average crystal grain size as viewed from the plate surface is 10 μm or less.

【0010】本発明の請求項3による強度と耐食性に優
れたアルミニウム合金板の製造方法は、請求項1に記載
の組成を有するアルミニウム合金の鋳塊を均質化処理後
熱間加工し、その後、400〜150℃の温度域におい
て、加工度が70%以上になるよう繰り返し圧延して所
定の板厚としたのち、450〜490℃の温度で5分以
上の溶体化処理を行い、10℃/秒以上の冷却速度で冷
却することを特徴とする。
According to a third aspect of the present invention, there is provided a method for producing an aluminum alloy sheet having excellent strength and corrosion resistance, comprising: subjecting an ingot of an aluminum alloy having the composition described in the first aspect to a homogenizing treatment; In a temperature range of 400 to 150 ° C., the sheet is repeatedly rolled so that the degree of work becomes 70% or more to obtain a predetermined thickness, and then subjected to a solution treatment at a temperature of 450 to 490 ° C. for 5 minutes or more. It is characterized by cooling at a cooling rate of at least seconds.

【0011】[0011]

【発明の実施の形態】本発明は、7000系アルミニウ
ム合金の合金組成と結晶方位差の最適の組合わせによっ
て高強度と高耐食性を得ることを特徴とするものである
が、まず、本発明における含有成分の意義および限定理
由について説明すると、Znは、時効処理時にZn−M
g系の微細析出を生じ、析出硬化によって材料強度を向
上させるよう機能する。Znの好ましい含有量は4.8
〜7%の範囲であり、4.8%未満では従来合金のJI
SA7075合金やA7475合金並の強度が得られな
い。7%を越えて含有すると、熱間加工性が劣化して割
れなどの問題が生じる。Znはまた、溶体化処理時に結
晶粒成長を抑制する効果をも有する。Znのさらに好ま
しい含有範囲は5.0〜6.5%である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is characterized in that high strength and high corrosion resistance are obtained by optimally combining the alloy composition of 7000 series aluminum alloy and the crystal orientation difference. Explaining the significance of the components and the reasons for limitation, Zn is Zn-M during aging treatment.
It functions to generate g-based fine precipitation and improve the material strength by precipitation hardening. The preferred content of Zn is 4.8.
If it is less than 4.8%, the JI of the conventional alloy is used.
The strength equivalent to SA7075 alloy or A7475 alloy cannot be obtained. If the content exceeds 7%, the hot workability deteriorates, and problems such as cracks occur. Zn also has the effect of suppressing crystal grain growth during the solution treatment. The more preferable content range of Zn is 5.0 to 6.5%.

【0012】Mgは、Znと同様、強度の向上に寄与す
る元素であり、Mgの好ましい含有量は1〜3%の範囲
である。1%未満では従来合金並の強度を得ることが難
しく、3%を越えて含有すると熱間加工性が低下して割
れなどの問題が生じる。
Mg, like Zn, is an element that contributes to improvement in strength, and the preferable content of Mg is in the range of 1 to 3%. If it is less than 1%, it is difficult to obtain a strength equivalent to that of a conventional alloy, and if it exceeds 3%, hot workability deteriorates and problems such as cracks occur.

【0013】Cuは、時効処理時にAl−Cu−Mg系
化合物の微細析出が生じ、析出硬化によって材料強度を
向上させるよう機能する。Cuの好ましい含有量は1〜
2.5%の範囲であり、1%未満では従来合金並の強度
が得難く、2.5%を越えると、熱間加工性が低下して
割れなどの問題が生じる。
[0013] Cu functions to increase the material strength by precipitation hardening of the Al-Cu-Mg compound during aging treatment. The preferred content of Cu is 1 to
If it is less than 1%, it is difficult to obtain a strength equivalent to that of the conventional alloy, and if it exceeds 2.5%, the hot workability is lowered and problems such as cracks occur.

【0014】Zrは、溶体化処理時に結晶粒の成長を抑
制する元素であり、結果的に小傾角粒界を多く留める効
果を有する。Zrの好ましい含有量は0.05〜0.2
5%の範囲であり、0.05%未満ではその効果が小さ
く、0.25%を越えると、鋳造時に粗大なAl−Zr
系化合物を形成して最終板の成形性が低下する。0.2
5%を越えて含有しても、溶体化処理時の結晶粒成長を
抑制する効果が飽和し、それ以上の抑制効果が得られな
い。Zrのさらに好ましい含有範囲は0.08〜0.2
0%である。
Zr is an element that suppresses the growth of crystal grains during the solution treatment, and as a result, has the effect of retaining many small-angle grain boundaries. The preferable content of Zr is 0.05 to 0.2.
If it is less than 0.05%, the effect is small, and if it exceeds 0.25%, coarse Al-Zr
Formability of the final sheet is reduced by forming a system compound. 0.2
Even if the content exceeds 5%, the effect of suppressing the growth of crystal grains during the solution treatment is saturated, and no further suppressing effect can be obtained. A more preferable content range of Zr is 0.08 to 0.2.
0%.

【0015】本発明においては、通常、7000系アル
ミニウム合金に含有される程度の量のMn、Cr、T
i、B、Fe、Siを含有することができるが、Fe、
Siは成形性の観点から各々0.5%以下に制限するの
が好ましく、また、Crも0.05%以下に制限するの
が好ましい。
In the present invention, the amounts of Mn, Cr, and T generally contained in the 7000 series aluminum alloy are generally small.
i, B, Fe, Si can be contained.
From the viewpoint of formability, Si is preferably limited to 0.5% or less, and Cr is also preferably limited to 0.05% or less.

【0016】上記の組成との組み合わせにおいては、方
位差が10°以下で時効処理後の粒界偏析が少なくなる
ことが見出され、また、このような小傾角粒界をもつ組
織は微細粒化するため、粒界面積が大きくなって、さら
に粒界偏析の程度が少なくなり、耐食性が向上すること
がわかった。さらに検討を行い、板面において0.02
mm2 以上の範囲の方位差の分布を調査した結果、3〜
10°の小傾角粒界が全粒界の25%以上あれば、耐応
力腐食割れ性が著しく向上することが認められた。
In the combination with the above composition, it has been found that when the misorientation is 10 ° or less, the segregation at the grain boundaries after aging treatment is reduced. Therefore, it was found that the grain boundary area increased, the degree of grain boundary segregation decreased, and the corrosion resistance improved. After further study, 0.02
mm 2 or more ranges results of the examination of the distribution of misorientation, 3
It was recognized that when the small-angle grain boundaries of 10 ° were 25% or more of the total grain boundaries, the stress corrosion cracking resistance was significantly improved.

【0017】方位差が3〜10°の小傾角粒界が全粒界
の25%以上となる組織は、平均結晶粒径も微細にな
る。但し、平均結晶粒径が10μmを越えると、耐応力
腐食割れ性がわるくなり、材料強度も低下するから、平
均結晶粒径は10μm以下とするのが好ましい。
In a structure in which the small-angle grain boundaries having a misorientation of 3 to 10 ° account for 25% or more of all the grain boundaries, the average crystal grain size becomes fine. However, if the average crystal grain size exceeds 10 μm, the stress corrosion cracking resistance becomes poor, and the material strength also decreases. Therefore, the average crystal grain size is preferably 10 μm or less.

【0018】方位差(ミスオリエンテーション)は、走
査型電子顕微鏡(SEM)とCCDカメラの組み合わせ
からなる自動測定装置を使用する。この装置は、試料表
面に現れた結晶面に電子線を入射させて菊地パターンを
CCDカメラに取り込み、コンピュータで結晶面を特定
するもので、隣り合う結晶粒の方位差は、各々の結晶面
がわかれば共通の回転軸が特定でき、その回転軸に対す
る角度差(方位差=ミスオリエンテーション)が判明す
るというものである。なお、本発明においては、測定装
置の分解能、誤差などを考慮して方位差の下限値を3°
とした。
The azimuth difference (mis-orientation) is measured by using an automatic measuring device comprising a combination of a scanning electron microscope (SEM) and a CCD camera. This device captures the Kikuchi pattern into a CCD camera by irradiating an electron beam onto the crystal plane that appears on the sample surface, and specifies the crystal plane using a computer. This means that a common rotation axis can be specified, and an angle difference (azimuth difference = misorientation) with respect to the rotation axis can be determined. In the present invention, the lower limit of the azimuth difference is set to 3 ° in consideration of the resolution and error of the measuring device.
And

【0019】以下、本発明による構造用アルミニウム合
金板の製造方法について説明する。上記の組成を有する
アルミニウム合金を、例えば、通常のDC鋳造によって
造塊し、得られた鋳塊を常法に従って均質化処理後熱間
加工する。熱間加工後の中間熱処理は常法に従って行っ
てもよいが、省略することもできる。
Hereinafter, a method of manufacturing a structural aluminum alloy sheet according to the present invention will be described. An aluminum alloy having the above composition is formed by, for example, ordinary DC casting, and the obtained ingot is subjected to a homogenization treatment and then hot worked according to a conventional method. The intermediate heat treatment after hot working may be performed according to a conventional method, but may be omitted.

【0020】本発明の特徴は、その後、400〜150
℃の温度域、さらに好ましくは350〜180℃の温度
域において、加工度が70%以上になるよう繰り返し圧
延を行うことにある。特定温度域での繰り返し圧延によ
り、その後の溶体化処理時に結晶粒成長を抑制し得る下
部組織を形成することができる。加工度が70%未満で
は、Zrの微細析出が不十分となり、溶体化処理時の結
晶粒成長を抑制することが困難となる。400℃を越え
る温度で繰り返し圧延を開始すると、Zrの析出が阻害
されて溶体化処理時の結晶粒成長抑制効果が薄れ、15
0℃未満では、Zrの析出が遅れ、溶体化処理時の結晶
粒成長抑制効果が薄れる。
The characteristics of the present invention are as follows:
In a temperature range of ℃, more preferably in a temperature range of 350 to 180 ° C., rolling is repeatedly performed so that the working ratio becomes 70% or more. By repeated rolling in a specific temperature range, a lower structure capable of suppressing crystal grain growth during the subsequent solution treatment can be formed. If the working ratio is less than 70%, fine precipitation of Zr becomes insufficient, and it becomes difficult to suppress the crystal grain growth during the solution treatment. When rolling is repeatedly started at a temperature exceeding 400 ° C., precipitation of Zr is inhibited, and the effect of suppressing the growth of crystal grains during the solution treatment is weakened.
If the temperature is less than 0 ° C., the precipitation of Zr is delayed, and the effect of suppressing the growth of crystal grains during the solution treatment is weakened.

【0021】溶体化繰り返し圧延により所定の板厚とし
たのち、450〜490℃の温度で5分以上の溶体化処
理を行い、10℃/秒以上の冷却速度で冷却する。溶体
化処理温度が450℃未満では合金元素の固溶が不十分
となり、時効処理後に所定の強度が得られない。490
℃を越えると、結晶粒成長が抑制できず10°以下の小
傾角粒界の割合が少なくなる。
After a predetermined thickness is obtained by repeated rolling of a solution, a solution treatment is performed at a temperature of 450 to 490 ° C. for 5 minutes or more, and cooled at a cooling rate of 10 ° C./sec or more. If the solution treatment temperature is lower than 450 ° C., the solid solution of the alloy element becomes insufficient, and a predetermined strength cannot be obtained after the aging treatment. 490
If the temperature exceeds ℃, the growth of crystal grains cannot be suppressed, and the proportion of small-angle grain boundaries of 10 ° or less decreases.

【0022】溶体化処理後の冷却速度が10℃/秒未満
では、冷却途中において第2相の析出が生じ、溶体化の
効果が薄れて時効処理後の所定の強度が得られなくな
る。溶体化処理、冷却後は、常法に従って時効処理を行
う。
If the cooling rate after the solution treatment is less than 10 ° C./sec, precipitation of the second phase occurs during the cooling, and the effect of the solution treatment is weakened, and the predetermined strength after the aging treatment cannot be obtained. After the solution treatment and cooling, aging treatment is performed according to a conventional method.

【0023】本発明においては、合金元素として、遷移
元素のZrを添加することにより、400〜150℃の
温度域での圧延時にZrを微細に析出させ、溶体化処理
での結晶粒成長(大傾角化)を防ぐことが重要である。
アルミニウム合金における結晶粒微細化のために同じ遷
移元素のCrの添加が行われることがあるが、本発明で
は有効ではなく、CrとZrの併用も溶体化処理での結
晶粒成長を抑制することができなかった。
In the present invention, Zr, a transition element, is added as an alloying element, so that Zr is finely precipitated during rolling in a temperature range of 400 to 150 ° C., and the crystal grain growth in the solution treatment is performed. It is important to prevent tilting.
The same transition element, Cr, may be added for grain refinement in aluminum alloys, but this is not effective in the present invention, and the combined use of Cr and Zr also suppresses crystal grain growth during solution treatment. Could not.

【0024】また、これまでの研究により、強加工され
たアルミニウム合金に100〜300℃の中温度域で熱
処理を行うことにより小傾角粒界をもつ組織(サブグレ
イン組織)が得られることは知られているが、本発明の
7000系アルミニウム合金においては、450℃以上
の温度での溶体化処理が必須であり、溶体化処理後も小
傾角粒界を多く含む組織を維持なければならない。その
ための製造方法について多くの実験、検討を行った結
果、上記400〜150℃の温度域で加工度が70%以
上になるよう繰り返し圧延を行う手法が有効であること
を知見し、本発明に至ったものである。
[0024] Further, it is known from the research so far that a structure (sub-grain structure) having a small angle grain boundary can be obtained by subjecting a strongly processed aluminum alloy to heat treatment at a medium temperature range of 100 to 300 ° C. However, in the 7000 series aluminum alloy of the present invention, a solution treatment at a temperature of 450 ° C. or more is essential, and a structure containing many small-angle grain boundaries must be maintained after the solution treatment. As a result of conducting many experiments and examinations on the manufacturing method therefor, it was found that a method of performing rolling repeatedly so that the degree of work was 70% or more in the above-mentioned temperature range of 400 to 150 ° C. was effective. It has been reached.

【0025】[0025]

【実施例】以下、本発明の実施例を比較例と対比して説
明するとともに、それに基づいてその効果を実証する。
なお、これらの実施例は、本発明の好ましい一実施態様
を説明するためのものであって、これにより本発明が制
限されるものではない。
EXAMPLES Examples of the present invention will be described below in comparison with comparative examples, and the effects thereof will be demonstrated based on them.
It should be noted that these examples are for describing a preferred embodiment of the present invention, and the present invention is not limited thereto.

【0026】実施例1 DC鋳造法により表1に示す組成を有するアルミニウム
合金を造塊し、得られたビレット(直径90mm)を1
00mm長さに切断し、これについて、470℃で10
時間の均質化処理を行ったのち、400℃の温度で鍛造
を行い、30mm厚さの試料を作製した。
Example 1 An aluminum alloy having a composition shown in Table 1 was ingoted by a DC casting method, and the obtained billet (diameter: 90 mm) was used as an ingot.
And cut to a length of 100 mm.
After performing the homogenizing treatment for a long time, forging was performed at a temperature of 400 ° C. to prepare a sample having a thickness of 30 mm.

【0027】上記の試料を面削して20mm厚さとし、
350〜200℃の温度域で繰り返し圧延を行い、厚さ
1.5mmの板材とした。圧延繰り返し数は12回であ
る。ついで、板材にソルトバス中において480℃で5
分の溶体化処理を施し、水冷したのち、120℃で24
時間の時効処理を行い、試験材を得た。
The above sample was chamfered to a thickness of 20 mm.
Rolling was repeatedly performed in a temperature range of 350 to 200 ° C. to obtain a 1.5 mm-thick plate. The number of rolling repetitions is 12. Then, the plate material was placed in a salt bath at 480 ° C for 5 minutes.
Solution treatment, and water-cooled.
Aging treatment was performed for a time to obtain a test material.

【0028】得られた試験材について、以下の方法に従
って結晶粒組織の調査、引張試験、耐応力腐食割れ試験
を行った。 結晶粒組織の調査:板面の結晶粒組織を(株)日立製作
所製SEM、Oxford社製EBSD(Electron backscatt
er diffraction) 装置を用いて調査し、結晶方位差(ミ
スオリエンテーション)分布を示すヒストグラムから傾
角3〜10°を示す結晶粒界の比率を求めた
With respect to the obtained test material, a crystal grain structure examination, a tensile test, and a stress corrosion cracking resistance test were carried out according to the following methods. Investigation of the crystal grain structure: The crystal grain structure on the plate surface was determined by SEM manufactured by Hitachi, Ltd. and EBSD (Electron backscatt manufactured by Oxford).
er diffraction), and the ratio of crystal grain boundaries showing a tilt angle of 3 to 10 ° was determined from a histogram showing the crystal orientation difference (misorientation) distribution.

【0029】引張試験:試験材の圧延方向に対して90
°方向に試験片を採取し、試験片の標点間距離を10m
mとして、インストロン型引張試験機を用いて引張試験
を行い、引張強さ(σB ) 、0.2%耐力(σ0.2)、伸
び(δ)を測定した。
Tensile test: 90 with respect to the rolling direction of the test material
The specimen was sampled in the ° direction, and the distance between the gauges of the specimen was 10 m.
As m, a tensile test was performed using an Instron type tensile tester, and the tensile strength (σ B ), 0.2% proof stress (σ 0.2 ), and elongation (δ) were measured.

【0030】耐応力腐食割れ試験:試験材の圧延方向に
対して90°方向に試験片を採取し、試験片に0.2%
耐力の82%の負荷を与え、温度30℃の3.5%Na
Cl溶液に10分間浸漬後、25℃で50分乾燥させる
サイクルを繰り返す乾湿交互試験を行い、試験時間20
0時間内の破断数を調査した。なお、試験片として、各
合金について5本づつの試験片を準備して耐応力腐食割
れ試験を行った。
Stress corrosion cracking test: A test piece was sampled in a direction at 90 ° to the rolling direction of the test material, and 0.2% was added to the test piece.
Load 82% of proof stress, 3.5% Na at 30 ° C
After immersion in a Cl solution for 10 minutes, a dry-wet alternating test is repeated, in which a cycle of drying at 25 ° C. for 50 minutes is performed.
The number of breaks within 0 hours was investigated. In addition, as a test piece, five test pieces were prepared for each alloy, and a stress corrosion cracking test was performed.

【0031】これらの調査、試験結果を表2に示す。表
2にみられるように、本発明に従う試験材No.1〜4
はいずれも、500MPaを越える優れた耐力をそなえ
ているとともに、耐応力腐食割れ試験において破断が生
じることなく、優れた耐応力腐食割れ性を示した。
Table 2 shows the results of these investigations and tests. As can be seen from Table 2, the test material No. 1-4
Each of them had excellent proof stress exceeding 500 MPa and exhibited excellent stress corrosion cracking resistance without breaking in a stress corrosion cracking test.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】比較例1 DC鋳造法により表3に示す組成を有するアルミニウム
合金を造塊し、得られたビレット(直径90mm)を1
00mm長さに切断し、これについて、470℃で10
時間の均質化処理を行ったのち、400℃の温度で鍛造
を行い、30mm厚さの試料を作製した。この試料を実
施例1と同一の工程で処理して試験材を作製し、得られ
た試験材について、実施例1と同じ方法に従って結晶粒
組織の調査、引張試験、耐応力腐食割れ試験を行った。
結果を表4に示す。
Comparative Example 1 An aluminum alloy having a composition shown in Table 3 was ingoted by DC casting, and the obtained billet (diameter: 90 mm) was used as an ingot.
And cut to a length of 100 mm.
After performing the homogenizing treatment for a long time, forging was performed at a temperature of 400 ° C. to prepare a sample having a thickness of 30 mm. This sample was processed in the same process as in Example 1 to produce a test material, and the obtained test material was subjected to a crystal grain structure survey, a tensile test, and a stress corrosion cracking test according to the same method as in Example 1. Was.
Table 4 shows the results.

【0035】[0035]

【表3】 《表注》合金I:JIS A7475[Table 3] << Table Note >> Alloy I: JIS A7475

【0036】[0036]

【表4】 [Table 4]

【0037】表4に示すように、試験材No.5は、Z
nの含有量が少ないため強度が低く、小傾角結晶粒界の
比率が低いため耐応力腐食割れ性が劣っている。試験材
No.6はMg量、Cu量が少ないため、強度が劣って
いる。試験材No.7はZrの含有量が少ないため、溶
体化処理時に結晶粒成長の抑制効果が小さく、小傾角結
晶粒界の比率が低くなって耐応力腐食割れ性が劣る。試
験材No.8は、Zn含有量が上限を越えているため、
熱間圧延時に割れが生じ最終板の製造ができなかった。
試験材No.9は従来のJIS A7475合金であ
り、小傾角結晶粒界の比率が低くなって耐応力腐食割れ
性が劣る。
As shown in Table 4, the test material No. 5 is Z
The strength is low due to the small content of n, and the stress corrosion cracking resistance is inferior due to the low ratio of small angle grain boundaries. Test material No. No. 6 is inferior in strength because the amount of Mg and the amount of Cu are small. Test material No. Since the content of Zr is small, the effect of suppressing the growth of crystal grains during the solution treatment is small, the ratio of the small-angle crystal grain boundaries is reduced, and the stress corrosion cracking resistance is poor. Test material No. 8 has a Zn content exceeding the upper limit,
Cracks occurred during hot rolling, and the final plate could not be manufactured.
Test material No. Reference numeral 9 denotes a conventional JIS A7475 alloy, which has a low ratio of small-angle grain boundaries and is inferior in stress corrosion cracking resistance.

【0038】実施例2 実施例1のA合金を使用し、製造条件を変えて特性を評
価した。造塊、均質化処理、熱間鍛造および面削条件は
実施例1と同一とし、繰り返し圧延以降の工程を表5に
示す条件で行い、試験材を作製した。圧延繰り返し数は
8〜12回とし、時効処理は全て120℃で24時間と
した。
Example 2 The alloy A of Example 1 was used to evaluate the characteristics while changing the manufacturing conditions. The ingot, homogenization, hot forging, and facing conditions were the same as in Example 1, and the steps after repeated rolling were performed under the conditions shown in Table 5 to produce a test material. The number of rolling repetitions was 8 to 12, and the aging treatment was all performed at 120 ° C for 24 hours.

【0039】得られた試験材について、実施例1と同じ
方法に従って結晶粒組織の調査、引張試験、耐応力腐食
割れ試験を行った。結果を表6に示す。表6にみられる
ように、本発明に従う試験材No.10〜14はいずれ
も、500MPaを越える優れた耐力をそなえていると
ともに、耐応力腐食割れ試験において破断が生じること
なく、優れた耐応力腐食割れ性を示した。
With respect to the obtained test material, the examination of the crystal grain structure, the tensile test, and the stress corrosion cracking test were performed in the same manner as in Example 1. Table 6 shows the results. As shown in Table 6, the test material No. All of Nos. 10 to 14 had excellent proof stress exceeding 500 MPa, and exhibited excellent stress corrosion cracking resistance without breaking in a stress corrosion cracking test.

【0040】[0040]

【表5】 [Table 5]

【0041】[0041]

【表6】 [Table 6]

【0042】比較例2 実施例1のA合金を使用し、製造条件を変えて特性を評
価した。造塊、均質化処理、熱間鍛造および面削条件は
実施例1と同一とし、繰り返し圧延以降の工程を表7に
示す条件で行い、試験材を作製した。圧延繰り返し数は
8〜12回とし、時効処理は全て120℃で24時間と
した。得られた試験材について、実施例1と同じ方法に
従って結晶粒組織の調査、引張試験、耐応力腐食割れ試
験を行った。結果を表8に示す。
Comparative Example 2 Using the alloy A of Example 1, the characteristics were evaluated under different manufacturing conditions. Ingot making, homogenization treatment, hot forging, and facing conditions were the same as in Example 1, and the steps after repeated rolling were performed under the conditions shown in Table 7, to produce test materials. The number of rolling repetitions was 8 to 12, and the aging treatment was all performed at 120 ° C. for 24 hours. With respect to the obtained test material, an examination of a crystal grain structure, a tensile test, and a stress corrosion cracking test were performed in the same manner as in Example 1. Table 8 shows the results.

【0043】[0043]

【表7】 [Table 7]

【0044】[0044]

【表8】 [Table 8]

【0045】表8に示すように、試験材No.15は、
圧延開始温度が高くZrの効果が十分でないため、溶体
化処理時の結晶粒成長を抑制できず耐応力腐食割れ性が
劣っている。試験材No.16は繰り返し圧延の温度の
下限が低くZrの効果が十分でないため、溶体化処理時
の結晶粒成長を抑制できず耐応力腐食割れ性が劣る。試
験材No.17は圧延加工度が低くZrの析出が十分で
ないため、溶体化処理時の結晶粒成長を抑制できず耐応
力腐食割れ性が劣る。試験材No.18は、溶体化処理
温度が高いため結晶粒成長が生じ、耐応力腐食割れ性が
劣るものとなった。試験材No.19は、溶体化処理後
の冷却速度が低いため冷却途中で第2相の析出が生じ、
時効処理において十分な析出硬化が得られなかった。ま
た耐応力腐食割れ試験においても破断が生じた。
As shown in Table 8, the test material No. 15 is
Since the rolling start temperature is high and the effect of Zr is not sufficient, the growth of crystal grains during the solution treatment cannot be suppressed, and the stress corrosion cracking resistance is poor. Test material No. In No. 16, since the lower limit of the temperature of the repeated rolling is low and the effect of Zr is not sufficient, the growth of crystal grains during the solution treatment cannot be suppressed, and the stress corrosion cracking resistance is poor. Test material No. No. 17 has a low degree of rolling and insufficient precipitation of Zr, so that the growth of crystal grains during the solution treatment cannot be suppressed and the stress corrosion cracking resistance is poor. Test material No. In No. 18, crystal grain growth occurred due to the high solution treatment temperature, and the stress corrosion cracking resistance was poor. Test material No. In No. 19, since the cooling rate after the solution treatment was low, precipitation of the second phase occurred during cooling,
Sufficient precipitation hardening was not obtained in the aging treatment. In addition, fracture occurred in the stress corrosion cracking test.

【0046】[0046]

【発明の効果】本発明によれば、強度と耐食性とくに耐
応力腐食割れ性に優れた構造用アルミニウム合金板が提
供される。当該アルミニウム合金板を使用することによ
り、材料の薄肉化が可能となり、構造物の軽量化、コス
トダウンを達成することができる。また、優れた耐応力
腐食割れ性により構造物に対する信頼性向上の効果も達
成できる。
According to the present invention, there is provided a structural aluminum alloy sheet having excellent strength and corrosion resistance, especially resistance to stress corrosion cracking. By using the aluminum alloy plate, the thickness of the material can be reduced, and the weight and cost of the structure can be reduced. In addition, the effect of improving the reliability of the structure can be achieved due to the excellent stress corrosion cracking resistance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】結晶粒の方位差を示す図である。FIG. 1 is a diagram showing a difference in orientation of crystal grains.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 640 C22F 1/00 640A 682 682 683 683 691 691B 691C 692 692A 694 694A 694B (71)出願人 000004743 日本軽金属株式会社 東京都品川区東品川二丁目2番20号 (71)出願人 000005290 古河電気工業株式会社 東京都千代田区丸の内2丁目6番1号 (71)出願人 000107538 スカイアルミニウム株式会社 東京都墨田区錦糸一丁目2番1号 (72)発明者 田中 宏樹 東京都港区新橋5丁目11番3号 住友軽金 属工業株式会社内 (72)発明者 箕田 正 東京都港区新橋5丁目11番3号 住友軽金 属工業株式会社内 (72)発明者 江崎 宏樹 東京都港区新橋5丁目11番3号 住友軽金 属工業株式会社内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22F 1/00 640 C22F 1/00 640A 682 682 683 683 691 691B 691C 692 692A 694 694A 694B (71) Applicant 000004743 Nippon Light Metal Co., Ltd. 2-2-2 Higashi Shinagawa, Shinagawa-ku, Tokyo (71) Applicant 000005290 Furukawa Electric Co., Ltd. 2-6-1 Marunouchi, Chiyoda-ku, Tokyo (71) Applicant 000107538 Sky Aluminum Co., Ltd. Tokyo 1-2-1 Kinshi, Sumida-ku, Tokyo (72) Inventor Hiroki Tanaka 5-11-3, Shimbashi, Minato-ku, Tokyo Sumitomo Light Metal Industries Co., Ltd. (72) Inventor Tadashi Minoda 5-chome, Shimbashi, Minato-ku, Tokyo No. 11-3 Sumitomo Light Metal Industries Co., Ltd. (72) Inventor Ezaki Hiroki 5-11-3 Shimbashi, Minato-ku, Tokyo Sumitomo Light Metal Industries Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Zn:4.8〜7%(質量%、以下同
じ)、Mg:1〜3%、Cu:1〜2.5%、Zr:
0.05〜0.25%を含有し、残部Alおよび不純物
からなる組成を有するアルミニウム合金板であって、該
アルミニウム合金板の板面において結晶方位差が3〜1
0°の結晶粒界を25%以上含む組織を有することを特
徴とする強度と耐食性に優れたアルミニウム合金板。
1. Zn: 4.8 to 7% (mass%, the same applies hereinafter), Mg: 1 to 3%, Cu: 1 to 2.5%, Zr:
An aluminum alloy sheet containing 0.05 to 0.25% and having a balance of Al and impurities, wherein a crystal orientation difference on a plate surface of the aluminum alloy sheet is 3-1.
An aluminum alloy sheet having excellent strength and corrosion resistance, characterized by having a structure containing 25% or more of 0 ° crystal grain boundaries.
【請求項2】 前記板面からみた平均結晶粒径が10μ
m以下であることを特徴とする請求項1記載の強度と耐
食性に優れたアルミニウム合金板。
2. An average crystal grain size as viewed from the plate surface is 10 μm.
m or less, and the aluminum alloy plate having excellent strength and corrosion resistance according to claim 1.
【請求項3】 請求項1に記載の組成を有するアルミニ
ウム合金の鋳塊を均質化処理後熱間加工し、その後、4
00〜150℃の温度域において、加工度が70%以上
になるよう繰り返し圧延して所定の板厚としたのち、4
50〜490℃の温度で5分以上の溶体化処理を行い、
10℃/秒以上の冷却速度で冷却することを特徴とする
強度と耐食性に優れたアルミニウム合金板の製造方法。
3. An ingot of an aluminum alloy having the composition according to claim 1 is subjected to hot working after homogenization treatment, and
In a temperature range of 00 to 150 ° C., the sheet is repeatedly rolled to a predetermined thickness so that the working ratio becomes 70% or more.
Perform a solution treatment for 5 minutes or more at a temperature of 50 to 490 ° C,
A method for producing an aluminum alloy sheet having excellent strength and corrosion resistance, characterized by cooling at a cooling rate of 10 ° C./sec or more.
JP2000150902A 2000-05-23 2000-05-23 Aluminum alloy plate excellent in strength and corrosion resistance and method for producing the same Expired - Lifetime JP4712159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000150902A JP4712159B2 (en) 2000-05-23 2000-05-23 Aluminum alloy plate excellent in strength and corrosion resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000150902A JP4712159B2 (en) 2000-05-23 2000-05-23 Aluminum alloy plate excellent in strength and corrosion resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001335874A true JP2001335874A (en) 2001-12-04
JP4712159B2 JP4712159B2 (en) 2011-06-29

Family

ID=18656538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000150902A Expired - Lifetime JP4712159B2 (en) 2000-05-23 2000-05-23 Aluminum alloy plate excellent in strength and corrosion resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP4712159B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006257522A (en) * 2005-03-18 2006-09-28 Furukawa Sky Kk Al-Zn-Mg-Cu-BASED ALUMINUM ALLOY CONTAINING ZR AND METHOD FOR MANUFACTURING THE SAME
US7678205B2 (en) 2000-12-21 2010-03-16 Alcoa Inc. Aluminum alloy products having improved property combinations and method for artificially aging same
US8083871B2 (en) 2005-10-28 2011-12-27 Automotive Casting Technology, Inc. High crashworthiness Al-Si-Mg alloy and methods for producing automotive casting
US8206517B1 (en) 2009-01-20 2012-06-26 Alcoa Inc. Aluminum alloys having improved ballistics and armor protection performance
US8673209B2 (en) 2007-05-14 2014-03-18 Alcoa Inc. Aluminum alloy products having improved property combinations and method for artificially aging same
WO2014046047A1 (en) 2012-09-20 2014-03-27 株式会社神戸製鋼所 Aluminum alloy plate for automobile part
US8840737B2 (en) 2007-05-14 2014-09-23 Alcoa Inc. Aluminum alloy products having improved property combinations and method for artificially aging same
US9163304B2 (en) 2010-04-20 2015-10-20 Alcoa Inc. High strength forged aluminum alloy products
CN107130149A (en) * 2016-02-29 2017-09-05 株式会社神户制钢所 Intensity and the excellent aluminum alloy forged material of ductility and its manufacture method
WO2019124554A1 (en) * 2017-12-22 2019-06-27 日本発條株式会社 Aluminum alloy, spring made of aluminum alloy, and fastening member made of aluminum alloy

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015132932A1 (en) 2014-03-06 2015-09-11 株式会社Uacj Structural aluminum alloy and process for producing same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8524014B2 (en) 2000-12-21 2013-09-03 Alcoa Inc. Aluminum alloy products having improved property combinations and method for artificially aging same
US7678205B2 (en) 2000-12-21 2010-03-16 Alcoa Inc. Aluminum alloy products having improved property combinations and method for artificially aging same
US8083870B2 (en) 2000-12-21 2011-12-27 Alcoa Inc. Aluminum alloy products having improved property combinations and method for artificially aging same
JP4498180B2 (en) * 2005-03-18 2010-07-07 古河スカイ株式会社 Al-Zn-Mg-Cu-based aluminum alloy containing Zr and method for producing the same
JP2006257522A (en) * 2005-03-18 2006-09-28 Furukawa Sky Kk Al-Zn-Mg-Cu-BASED ALUMINUM ALLOY CONTAINING ZR AND METHOD FOR MANUFACTURING THE SAME
US9353430B2 (en) 2005-10-28 2016-05-31 Shipston Aluminum Technologies (Michigan), Inc. Lightweight, crash-sensitive automotive component
US8721811B2 (en) 2005-10-28 2014-05-13 Automotive Casting Technology, Inc. Method of creating a cast automotive product having an improved critical fracture strain
US8083871B2 (en) 2005-10-28 2011-12-27 Automotive Casting Technology, Inc. High crashworthiness Al-Si-Mg alloy and methods for producing automotive casting
US8673209B2 (en) 2007-05-14 2014-03-18 Alcoa Inc. Aluminum alloy products having improved property combinations and method for artificially aging same
US8840737B2 (en) 2007-05-14 2014-09-23 Alcoa Inc. Aluminum alloy products having improved property combinations and method for artificially aging same
US8206517B1 (en) 2009-01-20 2012-06-26 Alcoa Inc. Aluminum alloys having improved ballistics and armor protection performance
US9163304B2 (en) 2010-04-20 2015-10-20 Alcoa Inc. High strength forged aluminum alloy products
WO2014046047A1 (en) 2012-09-20 2014-03-27 株式会社神戸製鋼所 Aluminum alloy plate for automobile part
CN107130149A (en) * 2016-02-29 2017-09-05 株式会社神户制钢所 Intensity and the excellent aluminum alloy forged material of ductility and its manufacture method
WO2019124554A1 (en) * 2017-12-22 2019-06-27 日本発條株式会社 Aluminum alloy, spring made of aluminum alloy, and fastening member made of aluminum alloy
US11505851B2 (en) 2017-12-22 2022-11-22 Nhk Spring Co., Ltd. Aluminum alloy, aluminum alloy spring, and fastening member made of aluminum alloy

Also Published As

Publication number Publication date
JP4712159B2 (en) 2011-06-29

Similar Documents

Publication Publication Date Title
JP4285916B2 (en) Manufacturing method of aluminum alloy plate for structural use with high strength and high corrosion resistance
AU2008268813B2 (en) Magnesium alloy sheet
RU2492260C2 (en) Recrsytallised aluminium alloys with brass texture and methods of their production
WO2012066986A1 (en) Magnesium alloy sheet and process for producing same
JP6465338B2 (en) Magnesium alloy, magnesium alloy plate, magnesium alloy member, and method for producing magnesium alloy
EP3395458B1 (en) Magnesium alloy sheet and method for manufacturing same
WO2008069049A1 (en) Magnesium alloy material and process for production thereof
EP3495520B1 (en) Low cost, substantially zr-free aluminum-lithium alloy for thin sheet product with high formability
JP4712159B2 (en) Aluminum alloy plate excellent in strength and corrosion resistance and method for producing the same
JP5215710B2 (en) Magnesium alloy with excellent creep characteristics at high temperature and method for producing the same
US20170233853A1 (en) Aluminum alloy sheet for forming
JP2014237896A (en) Magnesium alloy sheet
JP4398117B2 (en) Structural aluminum alloy plate having microstructure and method for producing the same
JP4856368B2 (en) Aluminum alloy fin material with excellent formability
JP2004027253A (en) Aluminum alloy sheet for molding, and method of producing the same
EP3486340B1 (en) Aluminum alloy plastic working material and production method therefor
WO2019132497A1 (en) Magnesium alloy sheet and manufacturing method thereof
JP2003171726A (en) Aluminum alloy sheet having excellent bending workability and corrosion resistance, and production method therefor
JP7138229B2 (en) Magnesium alloy plate and manufacturing method thereof
EP1141433A2 (en) High strength aluminium alloy sheet and process
JP3223430B2 (en) Method for producing Al-Mg alloy plate with excellent pitting resistance
JP7468931B2 (en) Magnesium alloy, magnesium alloy plate, magnesium alloy rod, and methods for producing the same, and magnesium alloy member
JPH03294445A (en) High strength aluminum alloy having good formability and its manufacture
JP5637378B2 (en) Magnesium alloy plate
JP2012107274A (en) Manufacturing method of magnesium alloy sheet

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060607

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060607

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080623

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110323

R150 Certificate of patent or registration of utility model

Ref document number: 4712159

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term