EP3486340B1 - Aluminum alloy plastic working material and production method therefor - Google Patents

Aluminum alloy plastic working material and production method therefor Download PDF

Info

Publication number
EP3486340B1
EP3486340B1 EP17827456.9A EP17827456A EP3486340B1 EP 3486340 B1 EP3486340 B1 EP 3486340B1 EP 17827456 A EP17827456 A EP 17827456A EP 3486340 B1 EP3486340 B1 EP 3486340B1
Authority
EP
European Patent Office
Prior art keywords
aluminum alloy
plastic working
working material
phase
alloy plastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17827456.9A
Other languages
German (de)
French (fr)
Other versions
EP3486340A4 (en
EP3486340A1 (en
Inventor
Jun Yu
Yasuo Ishiwata
Daisuke SHIMOSAKA
Takutoshi Kondo
Yoshihiro Taguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Publication of EP3486340A1 publication Critical patent/EP3486340A1/en
Publication of EP3486340A4 publication Critical patent/EP3486340A4/en
Application granted granted Critical
Publication of EP3486340B1 publication Critical patent/EP3486340B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon

Definitions

  • the present invention relates to an aluminum alloy plastic working material which has a low Young's modulus, but has an excellent proof stress, and relates to a method for producing the working material.
  • aluminum Since aluminum has many excellent characteristics such as corrosion resistance, electric conductivity, thermal conductivity, light weight, brightness and machinability, aluminum is used for various purposes. In addition, since plastic deformation resistance is small, various shapes can be imparted, and aluminum is also widely used for members subjected to plastic working such as bending processing.
  • JP 2011-105982 A proposes an aluminum alloy containing an Al phase and an Al 4 Ca phase, wherein the Al 4 Ca phase contains an Al 4 Ca crystallized product, and an average value of the longer side of the Al 4 Ca crystallized product is 50 ⁇ m or less.
  • EP A 2189548 proposes an aluminum alloy including 0.1 to 12 et% of Ca.
  • an object of the present invention is to provide an aluminum alloy plastic working material which has a low Young's modulus, but has an excellent proof stress, and relates to a method for efficiently producing the working material.
  • a first aspect of the present invention provides an aluminum alloy plastic working material according to claim 1.
  • the crystal structure of the Al 4 Ca phase which is used as the dispersed phase is basically a tetragonal crystal
  • the present inventors have intensively studied and found that when the crystal structure of the Al 4 Ca phase contains a monoclinic crystal, the proof stress do not decrease so much, but the Young's modulus is greatly decreased.
  • the intensity ratio (I 1 /I 2 ) of the highest diffraction peak (I 1 ) attributed to the tetragonal system to the highest diffraction peak (I 2 ) attributed to the monoclinic system, which are obtained by an X-ray diffraction measurement is 1 or less, the Young's modulus can be greatly lowered while maintaining the proof stress.
  • the aluminum alloy plastically working material of the present invention further contains at least one or more of Fe: 0.05 to 1.0 wt% and Ti: 0.005 to 0.05 wt%.
  • the casting property can be improved by broadening the solidification temperature range (solid-liquid coexisting region), and thus the casting surface of the ingot can also be improved. Further there is an effect that the dispersed crystallized product of Fe makes the eutectic structure uniform. The effect becomes remarkable when the Fe content is 0.05 wt% or more. To the contrary, when contained in excess of 1.0 wt%, the eutectic structure becomes coarse and there is a risk to lower the proof stress.
  • Ti acts as a refining material of the casted structure and exhibits an action to improve casting property, extrudability, and rolling property. The effect is remarkable when the Ti content is 0.005 wt% or more. To the contrary, even when added in excess of 0.05 wt%, it cannot be expected to increase the effect of refining the casted structure, and on the contrary, there is a risk that a coarse intermetallic compound which is to be the starting point of fracture may be generated. It is preferable that Ti is added by a rod hardener (Al-Ti-B alloy) during the casting. B added at this time together with Ti as the rod hardener is acceptable.
  • a rod hardener Al-Ti-B alloy
  • an average crystal grain size of the Al 4 Ca phase is 1.5 ⁇ m or less.
  • the average grain size of the Al 4 Ca phase becomes too large, the proof stress of the aluminum alloy decreases, but when the average grain size is 1.5 ⁇ m or less, it is possible to suppress the decrease of the proof stress.
  • a second aspect of the present invention provides a method for producing an aluminum alloy plastic working material according to claim 2.
  • the first step for obtaining a plastic workpiece of an aluminum alloy by subjecting an aluminum alloy ingot which contains 5.0 to 10.0 wt% of Ca with the remainder aluminum and inevitable impurities, and has a volume ratio of an Al 4 Ca phase which is a dispersed phase of 25% or more to a plastic processing by conducting the step for subjecting to a heat treatment in a temperature range of 100 to 300 °C (Second step), a part of the tetragonal Al 4 Ca phase can be changed into monoclinic crystal.
  • the holding temperature in the second step is less than 100 °C, a change from a tetragonal to a monoclinic crystal is difficult to occur, and when the holding temperature is 300 °C or more, recrystallization of the aluminum base material occurs and there is a risk that the proof stress will be lowered.
  • the more preferable temperature range of the heat treatment is 160 to 240 °C. Though the appropriate time for the heat treatment varies depending on the size and shape of the aluminum alloy material, it is preferable that the temperature of the aluminum alloy material itself is kept at least at the holding temperature for 1 hour or more.
  • the aluminum alloy ingot contains at least one or more of Fe: 0.05 to 1.0 wt% and Ti: 0.005 to 0.05 wt%.
  • the casting property can be improved by broadening the solidification temperature range (solid-liquid coexisting region), and thus the casting surface of the ingot can also be improved. Further there is an effect that the dispersed crystallized product of Fe makes the eutectic structure uniform. The effect becomes remarkable when the Fe content is 0.05 wt% or more. To the contrary, when contained in excess of 1.0 wt%, the eutectic structure becomes coarse and there is a risk to lower the proof stress.
  • Ti acts as a refining material of the casted structure and exhibits an action to improve casting property, extrudability, and rolling property. The effect is remarkable when the Ti content is 0.005 wt% or more. To the contrary, even when added in excess of 0.05 wt%, it cannot be expected to increase the effect of refining the casted structure, and on the contrary, there is a risk that a coarse intermetallic compound which is to be the starting point of fracture may be generated. It is preferable that Ti is added by a rod hardener (Al-Ti-B alloy) during the casting. B added at this time together with Ti as the rod hardener is acceptable.
  • a rod hardener Al-Ti-B alloy
  • the aluminum alloy ingot is not subjected to a heat treatment where the ingot is maintained at a temperature of 400 °C or more.
  • a homogenization treatment is carried out where the ingot is held at a temperature of 400 to 600 °C, but when this homogenization treatment is performed, the Al 4 Ca phase contained in the aluminum alloy tends to be large, and the average grain size becomes larger than 1.5 ⁇ m. Since the proof stress reduces due to the increase in the average grain size, it is preferable that the homogenization treatment at a holding temperature of 400 °C or higher would not be performed.
  • an aluminum alloy plastic working material which has both an excellent proof stress and a low Young's modulus, and a method for efficiently producing the working material.
  • the aluminum alloy plastic working material includes 5.0 to 10.0 wt% of Ca, and the remainder aluminum and unavoidable impurities.
  • Ca forms a compound of Al 4 Ca and has the activity to lower the Young's modulus of the aluminum alloy.
  • the effect becomes remarkable when the content of Ca is 5.0% or more.
  • the casting property decreases, and since particularly casting by continuous casting such as DC casting becomes difficult, it is necessary to produce by a method with a high production cost such as powder metallurgy method.
  • powder metallurgy method there is a risk that oxides formed on the surface of the alloy powder may get mixed in the product, which may lower the proof stress.
  • the casting property can be improved by broadening the solidification temperature range (solid-liquid coexisting region), and thus the casting surface of the ingot can also be improved. Further there is an effect that the dispersed crystallized product of Fe makes the eutectic structure uniform. The effect becomes remarkable when being 0.05 wt% or more, and to the contrary, when contained in excess of 1.0 wt%, the eutectic structure becomes coarse and there is a risk to lower the proof stress.
  • Ti acts as a refining material of the casted structure and exhibits an action to improve casting property, extrudability, and rolling property.
  • the effect is remarkable when being 0.005 wt% or more, and to the contrary, even when added in excess of 0.05 wt%, it cannot be expected to increase the effect of refining the casted structure, and on the contrary, there is a risk that a coarse intermetallic compound which is to be the starting point of fracture may be generated.
  • Ti is added by a rod hardener (Al-Ti-B alloy) during the casting. B added at this time together with Ti as the rod hardener is acceptable.
  • the aluminum alloy plastic working material has a volume ratio of an Al 4 Ca phase, which is a dispersed phase, is 25% or more, the Al 4 Ca phase comprises a tetragonal Al 4 Ca phase and a monoclinic Al 4 Ca phase, and an intensity ratio (I 1 /I 2 ) of the highest diffraction peak (I 1 ) attributed to the tetragonal system to the highest diffraction peak (I 2 ) attributed to the monoclinic system, which are obtained by an X-ray diffraction measurement, is 1 or less.
  • the tetragonal Al 4 Ca phase and the monoclinic Al 4 Ca phase exist in the Al 4 Ca phase, which is a dispersed phase, and the volume ratio of the combined Al 4 Ca phase is 25% or more.
  • the volume ratio of the Al 4 Ca phase is 25% or more, it is possible to impart an excellent proof stress to the aluminum alloy plastic working material.
  • an average crystal grain size of the Al 4 Ca phase is 1.5 ⁇ m or less.
  • the average grain size of the Al 4 Ca phase exceeds 1.5 ⁇ m, there is a risk that the proof stress of the aluminum alloy plastic working material decreases.
  • the crystal structure of the Al 4 Ca phase is generally a tetragonal crystal
  • the present inventors have intensively studied and found that when the monoclinic crystal structure exists in the Al 4 Ca phase, the proof stress do not almost decrease, but the Young's modulus is greatly decreased. It is not necessary that all crystal structure of the Al 4 Ca phases is monoclinic, and it may be in the state of being mixed with the tetragonal crystal.
  • the existence of the Al 4 Ca phase which has the monoclinic crystal structure can be identified, for example, by measuring the diffraction peak with X ray diffraction method.
  • the intensity ratio (I 1 /I 2 ) of the highest diffraction peak (I 1 ) attributed to the tetragonal system to the highest diffraction peak (I 2 ) attributed to the monoclinic system can generally be obtained by a X-ray diffraction measurement.
  • FIG. 1 shows a process chart of the aluminum alloy plastic working material of the present invention.
  • the method for producing the aluminum alloy plastic working material of the present invention includes a first step (S01) of subjecting an aluminum alloy ingot to plastic working, and a second step (S02) of applying a heat treatment. Each step and the like will be explained herein below.
  • the molten metal After subjecting the aluminum alloy molten metal having the composition of the above-mentioned aluminum alloy plastic working material of the present invention to conventionally known molten metal cleaning treatments such as desulfurization treatment, degassing treatment, and filtration treatment, the molten metal is casted into an ingot having a desired shape.
  • the casting method there is no particular restriction on the casting method, and various conventionally known casting methods can be used. For example, it is preferable, by using a continuous casting method such as DC casting, to cast into a shape that the plastic working (extrusion, rolling, forging, etc.) in the first step (S01) is easy to be performed.
  • a rod hardener Al-Ti-B
  • Al-Ti-B may be added to improve casting property.
  • a homogenization treatment is carried out where the ingot is held at a temperature of 400 to 600 °C, but when this homogenization treatment is performed, the Al 4 Ca phase tends to be large (average grain size of 1.5 ⁇ m or larger), and since the proof stress of the aluminum alloy reduces, it is preferable that the homogenization treatment would not be performed in the method for producing aluminum alloy plastic working material according to the present invention.
  • the first step (S01) is a step of subjecting the aluminum alloy ingot obtained in (1) to the plastic working to obtain a desired shape.
  • either hot working or cold working may be used, or a plurality of them may be combined.
  • the aluminum alloy becomes a processed structure, and the proof stress is improved.
  • most Al 4 Ca phases contained in the aluminum alloy have the tetragonal crystal structure.
  • the second step (S02) is a step for applying the heat treatment to the aluminum alloy plastic working material obtained in the first step (S01).
  • the holding temperature of the heat treatment is preferably 100 to 300 °C, more preferably 160 to 240 °C.
  • the temperature of at least the aluminum alloy plastic working material is kept at the above holding temperature for 1 hour or more.
  • An aluminum alloy having the composition shown Table 1 was cast into an ingot (billet) of ⁇ 8 inches by a DC casting method without any homogenization treatment, and then, plastic-working at an extrusion temperature of 500 °C to obtain a plate having a width of 180 mm ⁇ a thickness of 8 mm. Then, after cold rolling to a thickness of 5 mm, a heat treatment was carried out to hold at 200 °C for 4 hours to obtain the present aluminum alloy working plastic material.
  • [Table 1] (unit: wt%) Ca Fe Ti Al Present aluminum alloy plastic working material 1 5.2 0.001 0.002 Bal. Comparative aluminum alloy plastic working material 1 Present aluminum alloy plastic working material 2 6.2 0.05 0.002 Bal.
  • Comparative aluminum alloy plastic working material 2 Present aluminum alloy plastic working material 3 7.3 0.05 0.01 Bal. Comparative aluminum alloy plastic working material 3 Present aluminum alloy plastic working material 4 8.1 0.001 0.01 Bal. Comparative aluminum alloy plastic working material 4 Present aluminum alloy plastic working material 5 9.5 0.05 0.05 Bal. Comparative aluminum alloy plastic working material 5
  • the obtained present aluminum alloy plastic working material 3 was subjected to the X-ray diffraction measurement to measure the position pf the peak of the Al 4 Ca phase.
  • a specimen of 20 mm ⁇ 20 mm was cut out from the plate-like aluminum alloy plastic working material, the surface layer portion was removed by about 500 ⁇ m, and then a ⁇ -2 ⁇ measurement was carried out with respect to the region from a Cu-Ka beam source. The results are shown in FIG. 2 .
  • the intensity ratio (I 1 /I 2 ) of the highest diffraction peak (I 1 ) attributed to the tetragonal system to the highest diffraction peak (I 2 ) attributed to the monoclinic system was 0.956.
  • the present aluminum alloy plastic working materials 6 to 9 were obtained in the same manner as in the case of the present aluminum alloy plastic working material 3 except that the heat treatment temperature was any one of 100 °C, 160 °C, 240 °C and 300 °C.
  • the Young's modulus and proof stress were measured by a tensile test. The obtained results are shown in Table 3.
  • An aluminum alloy having the composition shown Table 1 was cast into an ingot (billet) of ⁇ 8 inches by a DC casting method without any homogenization treatment, and then, plastic-working at an extrusion temperature of 500 °C to obtain a plate having a width of 180 mm ⁇ a thickness of 8 mm. Thereafter, the cold rolling to a thickness of 5 mm was carried out to obtain the comparative aluminum alloy plastic working materials 1 to 5.
  • the obtained comparative aluminum alloy plastic working material 3 was subjected to the X-ray diffraction measurement to measure the position pf the peak of the Al 4 Ca phase.
  • a specimen of 20 mm ⁇ 20 mm was cut out from the plate-like aluminum alloy plastic working material, the surface layer portion was removed by about 500 ⁇ m, and then a ⁇ -2 ⁇ measurement was carried out with respect to the region from a Cu-K ⁇ beam source.
  • the results are shown in FIG. 2 .
  • the intensity ratio (I 1 /I 2 ) of the highest diffraction peak (I 1 ) attributed to the tetragonal system to the highest diffraction peak (I 2 ) attributed to the monoclinic system was 1.375.
  • the comparative aluminum alloy plastic working materials 6 and 7 were obtained in the same manner as in the case of the present aluminum alloy plastic working material 3 except that the heat treatment temperature was 90 °C and 310 °C.
  • the Young's modulus and proof stress were measured by a tensile test. The obtained results are shown in Table 3.
  • the comparative aluminum alloy plastic working material 8 was obtained in the same manner as in the case of the present aluminum alloy plastic working material 3 except that, after casting in an ingot (billet), the homogenization treatment was carried out while holding at 550 °C.
  • JIS-14B specimen was cut out from the comparative aluminum alloy plastic working material 8, and the Young's modulus and proof stress were measured by a tensile test. The obtained results are shown in Table 4.
  • the Young's modulus and the proof stress of the present aluminum alloy plastic working material 3 which is different only in the presence or absence of homogenization treatment are also shown as comparison data.
  • the Young's modulus of the aluminum alloy plastic working materials of the present invention (the present aluminum alloy plastic working materials 1 to 5) are greatly lower than the Young's modulus of the comparative aluminum alloy plastic working materials 1 to 5 which were not subjected to the heat treatment.
  • the proof stress and tensile strength of the present aluminum alloy plastic working materials 1 to 5 are not greatly reduced as compared with the comparative aluminum alloy plastic working materials 1 to 5. It is clear that the volume ratios of the dispersed phase (Al 4 Ca phase) in the aluminum alloy plastic working materials of the present invention are 25% or more.
  • FIG. 3 and FIG. 4 The structural photographs of the present aluminum alloy plastic working material 3 and the comparative aluminum alloy plastic working material 8 by an optical microscope are shown in FIG. 3 and FIG. 4 , respectively.
  • the black region is the Al 4 Ca phase
  • the average crystal grain size of the Al 4 Ca phase is measured by image analysis.
  • Table 4 Homogenization treatment Average crystal grain size of Al 4 Ca phase Young's modulus Proof stress Tensile strength ( ⁇ m) (GPa) (MPa) (MPa) Comparative aluminum alloy plastic working material 8 Did 1.56 53 158 229 Present aluminum alloy plastic working material 3 Non 1.15 53 169 254

Description

    FIELD OF THE INVENTION
  • The present invention relates to an aluminum alloy plastic working material which has a low Young's modulus, but has an excellent proof stress, and relates to a method for producing the working material.
  • Since aluminum has many excellent characteristics such as corrosion resistance, electric conductivity, thermal conductivity, light weight, brightness and machinability, aluminum is used for various purposes. In addition, since plastic deformation resistance is small, various shapes can be imparted, and aluminum is also widely used for members subjected to plastic working such as bending processing.
  • Here, when the rigidity of the aluminum alloy is high, there is a problem that the spring back amount increases when the plastic working such as bending processing is performed, and thus it is difficult to obtain dimensional accuracy. Under such circumstances, an aluminum alloy material having a low Young's modulus is desired, and a method for lowering the Young's modulus of the aluminum alloy material has been studied.
  • For example, JP 2011-105982 A proposes an aluminum alloy containing an Al phase and an Al4Ca phase, wherein the Al4Ca phase contains an Al4Ca crystallized product, and an average value of the longer side of the Al4Ca crystallized product is 50 µm or less.
  • In the aluminum alloy disclosed in JP 2011-105982 A , the movement of the Al4Ca crystallized product accompanying the dislocation in the matrix becomes easy, so that the rolling workability of the aluminum alloy can be remarkably improved.
  • CITATION LIST Patent Literature
  • JP 2011-105982 A is discussed above. EP A 2189548 proposes an aluminum alloy including 0.1 to 12 et% of Ca.
  • SUMMARY OF INVENTION Technical Problem
  • However, as represented by, for example, terminals of electrical equipment, the requirement for the dimensional accuracy of the product where aluminum alloys are used has been strict year by year, so that aluminum alloys with lower rigidity are required while maintaining proof stress. Under such technical background, the current situation is that the aluminum alloy of Patent Literature 1 cannot sufficiently satisfy the above requirements.
  • Considering the above problems in the prior arts, an object of the present invention is to provide an aluminum alloy plastic working material which has a low Young's modulus, but has an excellent proof stress, and relates to a method for efficiently producing the working material.
  • Solution to Problem
  • As a result of extensive study with respect to the aluminum alloy plastic working material and production method therefor in order to achieve the above object, the present inventors have found that it is extremely effective that an Al4Ca phase is used as the dispersed phase and the crystal structure of the Al4Ca phase is appropriately controlled, and have reached the present invention.
  • Namely, a first aspect of the present invention provides an aluminum alloy plastic working material according to claim 1.
  • By addition of Ca, a compound of Al4Ca is prepared, which has an activity to lower the Young's modulus of the aluminum alloy. The effect becomes remarkable when the content of Ca is 5.0% or more. To the contrary, when added in excess of 10.0%, the casting property decreases, and since particularly casting by continuous casting such as DC casting becomes difficult, it is necessary to produce by a method with a high production cost such as powder metallurgy method. In the case of producing by the powder metallurgy method, there is a risk that oxides formed on the surface of the alloy powder may get mixed in the product, which may lower the proof stress.
  • In the aluminum alloy plastic working product of the present invention, though the crystal structure of the Al4Ca phase which is used as the dispersed phase is basically a tetragonal crystal, the present inventors have intensively studied and found that when the crystal structure of the Al4Ca phase contains a monoclinic crystal, the proof stress do not decrease so much, but the Young's modulus is greatly decreased. Here, when the intensity ratio (I1/I2) of the highest diffraction peak (I1) attributed to the tetragonal system to the highest diffraction peak (I2) attributed to the monoclinic system, which are obtained by an X-ray diffraction measurement, is 1 or less, the Young's modulus can be greatly lowered while maintaining the proof stress.
  • Further, it is preferable that the aluminum alloy plastically working material of the present invention further contains at least one or more of Fe: 0.05 to 1.0 wt% and Ti: 0.005 to 0.05 wt%.
  • When Fe is contained in the aluminum alloy, the casting property can be improved by broadening the solidification temperature range (solid-liquid coexisting region), and thus the casting surface of the ingot can also be improved. Further there is an effect that the dispersed crystallized product of Fe makes the eutectic structure uniform. The effect becomes remarkable when the Fe content is 0.05 wt% or more. To the contrary, when contained in excess of 1.0 wt%, the eutectic structure becomes coarse and there is a risk to lower the proof stress.
  • Ti acts as a refining material of the casted structure and exhibits an action to improve casting property, extrudability, and rolling property. The effect is remarkable when the Ti content is 0.005 wt% or more. To the contrary, even when added in excess of 0.05 wt%, it cannot be expected to increase the effect of refining the casted structure, and on the contrary, there is a risk that a coarse intermetallic compound which is to be the starting point of fracture may be generated. It is preferable that Ti is added by a rod hardener (Al-Ti-B alloy) during the casting. B added at this time together with Ti as the rod hardener is acceptable.
  • Further, in the aluminum alloy plastic working product of the present invention, an average crystal grain size of the Al4Ca phase is 1.5 µm or less. When the average grain size of the Al4Ca phase becomes too large, the proof stress of the aluminum alloy decreases, but when the average grain size is 1.5 µm or less, it is possible to suppress the decrease of the proof stress.
  • Further, a second aspect of the present invention provides a method for producing an aluminum alloy plastic working material according to claim 2.
  • After the first step for obtaining a plastic workpiece of an aluminum alloy by subjecting an aluminum alloy ingot which contains 5.0 to 10.0 wt% of Ca with the remainder aluminum and inevitable impurities, and has a volume ratio of an Al4Ca phase which is a dispersed phase of 25% or more to a plastic processing, by conducting the step for subjecting to a heat treatment in a temperature range of 100 to 300 °C (Second step), a part of the tetragonal Al4Ca phase can be changed into monoclinic crystal.
  • When the holding temperature in the second step is less than 100 °C, a change from a tetragonal to a monoclinic crystal is difficult to occur, and when the holding temperature is 300 °C or more, recrystallization of the aluminum base material occurs and there is a risk that the proof stress will be lowered. The more preferable temperature range of the heat treatment is 160 to 240 °C. Though the appropriate time for the heat treatment varies depending on the size and shape of the aluminum alloy material, it is preferable that the temperature of the aluminum alloy material itself is kept at least at the holding temperature for 1 hour or more.
  • In the method for producing the aluminum alloy plastic working material of the present invention, it is preferable that the aluminum alloy ingot contains at least one or more of Fe: 0.05 to 1.0 wt% and Ti: 0.005 to 0.05 wt%.
  • When Fe is contained in the aluminum alloy, the casting property can be improved by broadening the solidification temperature range (solid-liquid coexisting region), and thus the casting surface of the ingot can also be improved. Further there is an effect that the dispersed crystallized product of Fe makes the eutectic structure uniform. The effect becomes remarkable when the Fe content is 0.05 wt% or more. To the contrary, when contained in excess of 1.0 wt%, the eutectic structure becomes coarse and there is a risk to lower the proof stress.
  • Ti acts as a refining material of the casted structure and exhibits an action to improve casting property, extrudability, and rolling property. The effect is remarkable when the Ti content is 0.005 wt% or more. To the contrary, even when added in excess of 0.05 wt%, it cannot be expected to increase the effect of refining the casted structure, and on the contrary, there is a risk that a coarse intermetallic compound which is to be the starting point of fracture may be generated. It is preferable that Ti is added by a rod hardener (Al-Ti-B alloy) during the casting. B added at this time together with Ti as the rod hardener is acceptable.
  • Furthermore, in the method for producing an aluminum alloy plastic working material according to the present invention, it is preferable that, before the first step, the aluminum alloy ingot is not subjected to a heat treatment where the ingot is maintained at a temperature of 400 °C or more.
  • Generally, in the case of preparing an aluminum alloy, before the ingot is subjected to plastic working, a homogenization treatment is carried out where the ingot is held at a temperature of 400 to 600 °C, but when this homogenization treatment is performed, the Al4Ca phase contained in the aluminum alloy tends to be large, and the average grain size becomes larger than 1.5 µm. Since the proof stress reduces due to the increase in the average grain size, it is preferable that the homogenization treatment at a holding temperature of 400 °C or higher would not be performed.
  • Effects of the invention
  • According to the present invention, it is possible to provide an aluminum alloy plastic working material which has both an excellent proof stress and a low Young's modulus, and a method for efficiently producing the working material.
  • BRIEF DESCRIPTION OF THE DRAWINGS
    • FIG. 1 is a process chart relating to the method of producing the aluminum alloy plastic working material of the present invention.
    • FIG. 2 is an X-ray diffraction pattern of the aluminum alloy plastic working material.
    • FIG. 3 is a photograph of the structure of the present aluminum alloy plastic working material 3.
    • FIG. 4 is a photograph of the structure of the comparative aluminum alloy plastic working material 3.
    Embodiments for achieving the invention
  • Hereinafter, the aluminum alloy plastic working material and the method for producing therefor of the present invention will be described in detail with reference to the drawings, but the present inventions are not limited to only those.
  • 1. Aluminum alloy plastically working material (1) Composition
  • The aluminum alloy plastic working material includes 5.0 to 10.0 wt% of Ca, and the remainder aluminum and unavoidable impurities. In addition, it is preferable to further contain at least one or more of Fe: 0.05 to 1.0 wt% and Ti: 0.005 to 0.05 wt%.
  • Each component element will be explained below.
  • Ca: 5.0 to 10.0 wt% (preferably 6.0 to 8.0 wt%)
  • Ca forms a compound of Al4Ca and has the activity to lower the Young's modulus of the aluminum alloy. The effect becomes remarkable when the content of Ca is 5.0% or more. To the contrary, when added in excess of 10.0%, the casting property decreases, and since particularly casting by continuous casting such as DC casting becomes difficult, it is necessary to produce by a method with a high production cost such as powder metallurgy method. In the case of producing by the powder metallurgy method, there is a risk that oxides formed on the surface of the alloy powder may get mixed in the product, which may lower the proof stress.
  • Fe: 0.05 to 1.0 wt%
  • When Fe is contained, the casting property can be improved by broadening the solidification temperature range (solid-liquid coexisting region), and thus the casting surface of the ingot can also be improved. Further there is an effect that the dispersed crystallized product of Fe makes the eutectic structure uniform. The effect becomes remarkable when being 0.05 wt% or more, and to the contrary, when contained in excess of 1.0 wt%, the eutectic structure becomes coarse and there is a risk to lower the proof stress.
  • Ti: 0.005 to 0.05 wt%
  • Ti acts as a refining material of the casted structure and exhibits an action to improve casting property, extrudability, and rolling property. The effect is remarkable when being 0.005 wt% or more, and to the contrary, even when added in excess of 0.05 wt%, it cannot be expected to increase the effect of refining the casted structure, and on the contrary, there is a risk that a coarse intermetallic compound which is to be the starting point of fracture may be generated. It is preferable that Ti is added by a rod hardener (Al-Ti-B alloy) during the casting. B added at this time together with Ti as the rod hardener is acceptable.
  • Other Component Elements
  • As long as the effects of the present invention are not impaired, it is permissible to contain other elements.
  • (2) Structure
  • The aluminum alloy plastic working material has a volume ratio of an Al4Ca phase, which is a dispersed phase, is 25% or more, the Al4Ca phase comprises a tetragonal Al4Ca phase and a monoclinic Al4Ca phase, and an intensity ratio (I1/I2) of the highest diffraction peak (I1) attributed to the tetragonal system to the highest diffraction peak (I2) attributed to the monoclinic system, which are obtained by an X-ray diffraction measurement, is 1 or less.
  • The tetragonal Al4Ca phase and the monoclinic Al4Ca phase exist in the Al4Ca phase, which is a dispersed phase, and the volume ratio of the combined Al4Ca phase is 25% or more. By making the volume ratio of the Al4Ca phase to 25% or more, it is possible to impart an excellent proof stress to the aluminum alloy plastic working material.
  • Further, an average crystal grain size of the Al4Ca phase is 1.5 µm or less. When the average grain size of the Al4Ca phase exceeds 1.5 µm, there is a risk that the proof stress of the aluminum alloy plastic working material decreases.
  • Though the crystal structure of the Al4Ca phase is generally a tetragonal crystal, the present inventors have intensively studied and found that when the monoclinic crystal structure exists in the Al4Ca phase, the proof stress do not almost decrease, but the Young's modulus is greatly decreased. It is not necessary that all crystal structure of the Al4Ca phases is monoclinic, and it may be in the state of being mixed with the tetragonal crystal. The existence of the Al4Ca phase which has the monoclinic crystal structure can be identified, for example, by measuring the diffraction peak with X ray diffraction method.
  • Regarding the Al4Ca phases, the intensity ratio (I1/I2) of the highest diffraction peak (I1) attributed to the tetragonal system to the highest diffraction peak (I2) attributed to the monoclinic system, can generally be obtained by a X-ray diffraction measurement. The lattice constants of the tetragonal Al4Ca are a = 0.4354 and c = 1.118, and the lattice constants of the orthorhombic Al4Ca are a = 0.6158, b = 0.6175, c = 1.118, β = 88.9 °.
  • 2. Method for Producing Aluminum Alloy Plastic Material
  • FIG. 1 shows a process chart of the aluminum alloy plastic working material of the present invention. The method for producing the aluminum alloy plastic working material of the present invention includes a first step (S01) of subjecting an aluminum alloy ingot to plastic working, and a second step (S02) of applying a heat treatment. Each step and the like will be explained herein below.
  • (1) Casting
  • After subjecting the aluminum alloy molten metal having the composition of the above-mentioned aluminum alloy plastic working material of the present invention to conventionally known molten metal cleaning treatments such as desulfurization treatment, degassing treatment, and filtration treatment, the molten metal is casted into an ingot having a desired shape.
  • There is no particular restriction on the casting method, and various conventionally known casting methods can be used. For example, it is preferable, by using a continuous casting method such as DC casting, to cast into a shape that the plastic working (extrusion, rolling, forging, etc.) in the first step (S01) is easy to be performed. In the casting, a rod hardener (Al-Ti-B) may be added to improve casting property.
  • Generally, in the case of preparing an aluminum alloy, before the ingot is subjected to plastic working, a homogenization treatment is carried out where the ingot is held at a temperature of 400 to 600 °C, but when this homogenization treatment is performed, the Al4Ca phase tends to be large (average grain size of 1.5 µm or larger), and since the proof stress of the aluminum alloy reduces, it is preferable that the homogenization treatment would not be performed in the method for producing aluminum alloy plastic working material according to the present invention.
  • (2) First Step (S01)
  • The first step (S01) is a step of subjecting the aluminum alloy ingot obtained in (1) to the plastic working to obtain a desired shape.
  • For the plastic working such as extrusion, rolling, or forging, either hot working or cold working may be used, or a plurality of them may be combined. By performing the plastic working, the aluminum alloy becomes a processed structure, and the proof stress is improved. In the stage of the plastic working, most Al4Ca phases contained in the aluminum alloy have the tetragonal crystal structure.
  • (3) Second Step (S02)
  • The second step (S02) is a step for applying the heat treatment to the aluminum alloy plastic working material obtained in the first step (S01).
  • By subjecting the aluminum alloy plastic working material subjected to plastic working in the first step (S01) to the heat treatment at 100 to 300 °C, a part of the tetragonal Al4Ca phase can be converted into the monoclinic crystal. The change from the tetragonal to the monoclinic is difficult to occur when the holding temperature is less than 100 °C. On the other hand, since, when the holding temperature is 300 °C or higher, recrystallization of the aluminum base material may occur and there is a risk that the proof stress may be reduced, the holding temperature of the heat treatment is preferably 100 to 300 °C, more preferably 160 to 240 °C.
  • Though the optimum period of time for the heat treatment varies depending on the size and shape of the aluminum alloy plastic working material to be treated, it is preferable that the temperature of at least the aluminum alloy plastic working material is kept at the above holding temperature for 1 hour or more.
  • The representative embodiments of the present invention have been described above, but the present invention is not limited only to these embodiments, and various design changes are possible, and all such design changes are included in the technical scope of the present invention.
  • EXAMPLES <<Example>>
  • An aluminum alloy having the composition shown Table 1 was cast into an ingot (billet) of ϕ8 inches by a DC casting method without any homogenization treatment, and then, plastic-working at an extrusion temperature of 500 °C to obtain a plate having a width of 180 mm × a thickness of 8 mm. Then, after cold rolling to a thickness of 5 mm, a heat treatment was carried out to hold at 200 °C for 4 hours to obtain the present aluminum alloy working plastic material. [Table 1]
    (unit: wt%)
    Ca Fe Ti Al
    Present aluminum alloy plastic working material 1 5.2 0.001 0.002 Bal.
    Comparative aluminum alloy plastic working material 1
    Present aluminum alloy plastic working material 2 6.2 0.05 0.002 Bal.
    Comparative aluminum alloy plastic working material 2
    Present aluminum alloy plastic working material 3 7.3 0.05 0.01 Bal.
    Comparative aluminum alloy plastic working material 3
    Present aluminum alloy plastic working material 4 8.1 0.001 0.01 Bal.
    Comparative aluminum alloy plastic working material 4
    Present aluminum alloy plastic working material 5 9.5 0.05 0.05 Bal.
    Comparative aluminum alloy plastic working material 5
  • The obtained present aluminum alloy plastic working material 3 was subjected to the X-ray diffraction measurement to measure the position pf the peak of the Al4Ca phase. In the X-ray diffraction measurement, a specimen of 20 mm × 20 mm was cut out from the plate-like aluminum alloy plastic working material, the surface layer portion was removed by about 500 µm, and then a θ-2 θ measurement was carried out with respect to the region from a Cu-Ka beam source. The results are shown in FIG. 2. The intensity ratio (I1/I2) of the highest diffraction peak (I1) attributed to the tetragonal system to the highest diffraction peak (I2) attributed to the monoclinic system was 0.956.
  • In addition, JIS-14B specimens were cut out from the present aluminum alloy plastic working materials 1 to 5, and the Young's modulus and proof stress were measured by a tensile test. The obtained results are shown in Table 2. In addition, the volume ratio of the dispersed phase (Al4Ca phase) calculated from the structural observation by the optical microscope are shown in Table 2.
  • The present aluminum alloy plastic working materials 6 to 9 were obtained in the same manner as in the case of the present aluminum alloy plastic working material 3 except that the heat treatment temperature was any one of 100 °C, 160 °C, 240 °C and 300 °C. In addition, in the same manner as in the case of the present aluminum alloy plastic working materials 1 to 5, the Young's modulus and proof stress were measured by a tensile test. The obtained results are shown in Table 3.
  • <<Comparative Example>>
  • An aluminum alloy having the composition shown Table 1 was cast into an ingot (billet) of ϕ8 inches by a DC casting method without any homogenization treatment, and then, plastic-working at an extrusion temperature of 500 °C to obtain a plate having a width of 180 mm × a thickness of 8 mm. Thereafter, the cold rolling to a thickness of 5 mm was carried out to obtain the comparative aluminum alloy plastic working materials 1 to 5.
  • The obtained comparative aluminum alloy plastic working material 3 was subjected to the X-ray diffraction measurement to measure the position pf the peak of the Al4Ca phase. In the X-ray diffraction measurement, a specimen of 20 mm × 20 mm was cut out from the plate-like aluminum alloy plastic working material, the surface layer portion was removed by about 500 µm, and then a θ-2 θ measurement was carried out with respect to the region from a Cu-Kα beam source. The results are shown in FIG. 2. The intensity ratio (I1/I2) of the highest diffraction peak (I1) attributed to the tetragonal system to the highest diffraction peak (I2) attributed to the monoclinic system was 1.375.
  • In addition, JIS-14B specimens were cut out from the comparative aluminum alloy plastic working materials 1 to 5, and the Young's modulus and proof stress were measured by a tensile test. The obtained results are shown in Table 2.
  • The comparative aluminum alloy plastic working materials 6 and 7 were obtained in the same manner as in the case of the present aluminum alloy plastic working material 3 except that the heat treatment temperature was 90 °C and 310 °C. In addition, in the same manner as in the case of the comparative aluminum alloy plastic working materials 1 to 5, the Young's modulus and proof stress were measured by a tensile test. The obtained results are shown in Table 3.
  • The comparative aluminum alloy plastic working material 8 was obtained in the same manner as in the case of the present aluminum alloy plastic working material 3 except that, after casting in an ingot (billet), the homogenization treatment was carried out while holding at 550 °C. In addition, JIS-14B specimen was cut out from the comparative aluminum alloy plastic working material 8, and the Young's modulus and proof stress were measured by a tensile test. The obtained results are shown in Table 4. The Young's modulus and the proof stress of the present aluminum alloy plastic working material 3 which is different only in the presence or absence of homogenization treatment are also shown as comparison data. [Table 2]
    Heat treatment Volume ratio of dispersed phase Young's modulus Proof stress Tensile strength
    (%) (GPa) (MPa) (MPa)
    Present aluminum alloy plastic working material 1 Did 26.7 58 147 245
    Present aluminum alloy plastic working material 2 31.2 167 258
    Present aluminum alloy plastic working material 3 35.9 53 169 254
    Present aluminum alloy plastic working material 4 39.9 51 208 272
    Present aluminum alloy plastic working material 5 44.3 48 173 269
    Comparative aluminum alloy plastic working material 1 Non - 67 176 259
    Comparative aluminum alloy plastic working material 2 - 64 184 268
    Comparative aluminum alloy plastic working material 3 - 61 189 265
    Comparative aluminum alloy plastic working material 4 - 57 222 285
    Comparative aluminum alloy plastic working material 5 - 56 186 276
  • From the results shown in Table 2, when comparing the present aluminum alloy plastic working material having the same composition with the comparative aluminum alloy plastic working material, the Young's modulus of the aluminum alloy plastic working materials of the present invention (the present aluminum alloy plastic working materials 1 to 5) are greatly lower than the Young's modulus of the comparative aluminum alloy plastic working materials 1 to 5 which were not subjected to the heat treatment. On the other hand, the proof stress and tensile strength of the present aluminum alloy plastic working materials 1 to 5 are not greatly reduced as compared with the comparative aluminum alloy plastic working materials 1 to 5. It is clear that the volume ratios of the dispersed phase (Al4Ca phase) in the aluminum alloy plastic working materials of the present invention are 25% or more. [Table 3]
    Heat treatment temperature Young's modulus Proof stress Tensile strength
    (°C) (GPa) (MPa) (MPa)
    Present aluminum alloy plastic working material 6 100 54 187 267
    Present aluminum alloy plastic working material 7 160 54 172 262
    Present aluminum alloy plastic working material 8 240 53 167 252
    Present aluminum alloy plastic working material 9 300 52 161 240
    Comparative aluminum alloy plastic working material 6 90 59 195 275
    Comparative aluminum alloy plastic working material 7 310 53 143 231
  • From the results shown in Table 3, when the holding temperature of the heat treatment is 90 °C (comparative aluminum alloy plastic working material 6), the Young's modulus shows a high value (almost not lowered). In addition, when the holding temperature of the heat treatment is 310 °C (comparative aluminum alloy plastic working material 7), though the Young's modulus is lowered, the proof stress and tensile strength are simultaneously lowered. From the results, when the holding temperature of the heat treatment was 310 °C, it is considered that the recrystallization of the plastic working structure progressed.
  • The structural photographs of the present aluminum alloy plastic working material 3 and the comparative aluminum alloy plastic working material 8 by an optical microscope are shown in FIG. 3 and FIG. 4, respectively. In the structure photograph, the black region is the Al4Ca phase, and the average crystal grain size of the Al4Ca phase is measured by image analysis. The obtained results are shown in Table 4. [Table 4
    Homogenization treatment Average crystal grain size of Al4Ca phase Young's modulus Proof stress Tensile strength
    (µm) (GPa) (MPa) (MPa)
    Comparative aluminum alloy plastic working material 8 Did 1.56 53 158 229
    Present aluminum alloy plastic working material 3 Non 1.15 53 169 254
  • From the results shown in Table 4, when subjecting to the homogenization treatment maintained at 550 °C (comparative aluminum alloy plastic working material 8), it is recognized that the proof stress and the tensile strength are reduced. Here, the average crystal grain size of the Al4Ca phase is increased by the homogenization treatment to 1.56 µm. It is considered that the proof stress and the tensile strength are reduced due to the increase in the average crystal grain size.

Claims (3)

  1. An aluminum alloy plastic working material, which comprises:
    5.0 to 10.0 wt% of Ca,
    optionally at least one or more of 0.05 to 1.0 wt% of Fe and 0.005 to 0.05 wt%. of Ti, and
    the remainder aluminum and unavoidable impurities,
    wherein:
    a volume ratio of an Al4Ca phase, which is a dispersed phase, is 25% or more,
    the Al4Ca phase comprises a tetragonal Al4Ca phase and a monoclinic Al4Ca phase,
    an intensity ratio (I1/I2) of the highest diffraction peak (I1) attributed to the tetragonal system to the highest diffraction peak (I2) attributed to the monoclinic system, which are obtained by an X-ray diffraction measurement, is 1 or less, and
    an average crystal grain size of the Al4Ca phase is 1.5 µm or less.
  2. A method for producing an aluminum alloy plastic working material, comprising:
    a first step for obtaining a plastic workpiece of an aluminum alloy by subjecting an aluminum alloy ingot which contains 5.0 to 10.0 wt% of Ca and optionally contains at least one or more of 0.05 to 1.0 wt% of Fe and 0.005 to 0.05 wt%. of Ti with the remainder aluminum and inevitable impurities, and has a volume ratio of an Al4Ca phase which is a dispersed phase of 25% or more to a plastic processing, and
    a second step for subjecting to a heat treatment in a temperature range of 100 to 300 °C.
  3. The method for producing an aluminum alloy plastic working material according to claim 2, wherein, before the first step, the aluminum alloy ingot is not subjected to a heat treatment where the ingot is maintained at a temperature of 400 °C or more.
EP17827456.9A 2016-07-12 2017-06-30 Aluminum alloy plastic working material and production method therefor Active EP3486340B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016137522 2016-07-12
PCT/JP2017/024184 WO2018012326A1 (en) 2016-07-12 2017-06-30 Aluminum alloy plastic working material and production method therefor

Publications (3)

Publication Number Publication Date
EP3486340A1 EP3486340A1 (en) 2019-05-22
EP3486340A4 EP3486340A4 (en) 2019-11-20
EP3486340B1 true EP3486340B1 (en) 2021-01-27

Family

ID=60952486

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17827456.9A Active EP3486340B1 (en) 2016-07-12 2017-06-30 Aluminum alloy plastic working material and production method therefor

Country Status (7)

Country Link
US (1) US20190316241A1 (en)
EP (1) EP3486340B1 (en)
JP (1) JP6341337B1 (en)
KR (1) KR102444566B1 (en)
CN (1) CN109477169B (en)
TW (1) TWI718319B (en)
WO (1) WO2018012326A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4339316A1 (en) * 2021-05-14 2024-03-20 LG Electronics Inc. Aluminum alloy, method for manufacturing same, and parts using same
CN115522102B (en) * 2022-10-12 2023-07-18 苏州大学 Aluminum alloy conductive material and preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1452646A (en) * 1974-11-13 1976-10-13 Euratom Aluminium based alloy
JPS60194039A (en) * 1984-03-14 1985-10-02 Toyota Central Res & Dev Lab Inc Fiber-reinforced aluminum alloy composite material and its production
US6290748B1 (en) * 1995-03-31 2001-09-18 Merck Pateng Gmbh TiB2 particulate ceramic reinforced Al-alloy metal-matrix composites
JP5305067B2 (en) * 2007-09-14 2013-10-02 日産自動車株式会社 Stress buffer material made of aluminum alloy
JP5287171B2 (en) * 2008-11-25 2013-09-11 日産自動車株式会社 Aluminum alloy and method for producing the same
JP2011105982A (en) 2009-11-16 2011-06-02 Nissan Motor Co Ltd Aluminum alloy and method for producing the same
KR101241426B1 (en) * 2009-11-20 2013-03-11 한국생산기술연구원 Method of manufacturing aluminium alloy
KR101273383B1 (en) * 2011-05-20 2013-06-11 한국생산기술연구원 Filler metal for welding aluminum and manufacturing method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
KR20190028472A (en) 2019-03-18
EP3486340A4 (en) 2019-11-20
TWI718319B (en) 2021-02-11
EP3486340A1 (en) 2019-05-22
TW201816140A (en) 2018-05-01
JP6341337B1 (en) 2018-06-13
CN109477169A (en) 2019-03-15
CN109477169B (en) 2021-03-26
US20190316241A1 (en) 2019-10-17
JPWO2018012326A1 (en) 2018-07-12
KR102444566B1 (en) 2022-09-20
WO2018012326A1 (en) 2018-01-18

Similar Documents

Publication Publication Date Title
KR101422382B1 (en) Cu-Ni-Si-Co COPPER ALLOY FOR ELECTRONIC MATERIAL AND PROCESS FOR PRODUCING SAME
EP2695959B2 (en) Method for the Production of an Aluminum Alloy Sheet that Exhibits Excellent Surface Quality After Anodizing
KR102306527B1 (en) Copper-alloy production method, and copper alloy
KR102302032B1 (en) High-strength 6000-based alloy thick plate having uniform strength in plate thickness direction and method for manufacturing the same
KR101802009B1 (en) Cu-si-co-base copper alloy for electronic materials and method for producing same
JP6119937B1 (en) Aluminum alloy extruded material having anodized film with excellent appearance quality and method for producing the same
US10128019B2 (en) Copper alloy for electronic/electrical device, plastically-worked copper alloy material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
CN114450425B (en) Aluminum alloy precision plate
KR101603393B1 (en) Copper alloy sheet material and process for producing same
EP3101149A1 (en) High strength 7xxx series aluminum alloy products and methods of making such products
EP3495520B1 (en) Low cost, substantially zr-free aluminum-lithium alloy for thin sheet product with high formability
EP2840156A1 (en) Magnesium alloy and method for producing same
EP2662467A1 (en) Ultra-thick high strength 7xxx series aluminum alloy products and methods of making such products
JP2009167464A (en) Method for producing aluminum alloy material having excellent toughness
EP3486340B1 (en) Aluminum alloy plastic working material and production method therefor
EP4043601A1 (en) Aluminum alloy material
WO2017006816A1 (en) Aluminum alloy extruded material having positive electrode oxide film and excellent external appearance quality and production method therefor
JP2001335874A (en) Aluminum alloy sheet for structure excellent in strength and corrosion resistance and its production method
EP3521479A1 (en) Method for making deformed semi-finished products from aluminium alloys
JP7213086B2 (en) Copper alloy sheet material and manufacturing method thereof
JP7213083B2 (en) Copper alloy sheet material and manufacturing method thereof
EP3126536B1 (en) Aluminum alloy composition and method
JP7140892B1 (en) Aluminum alloy extruded material and manufacturing method thereof
EP2971214B1 (en) Process for producing a uniform grain size in hot worked spinodal alloy
JP7468931B2 (en) Magnesium alloy, magnesium alloy plate, magnesium alloy rod, and methods for producing the same, and magnesium alloy member

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190103

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20191023

RIC1 Information provided on ipc code assigned before grant

Ipc: C22F 1/00 20060101ALI20191017BHEP

Ipc: C22F 1/04 20060101ALI20191017BHEP

Ipc: C22C 21/00 20060101AFI20191017BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200902

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1358406

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017032236

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1358406

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210527

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210427

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210527

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017032236

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20211028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210527

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20220620

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220630

Year of fee payment: 7

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20230701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230701