JPH0641704A - Manufacture of age hardening type aluminum alloy - Google Patents

Manufacture of age hardening type aluminum alloy

Info

Publication number
JPH0641704A
JPH0641704A JP10212192A JP10212192A JPH0641704A JP H0641704 A JPH0641704 A JP H0641704A JP 10212192 A JP10212192 A JP 10212192A JP 10212192 A JP10212192 A JP 10212192A JP H0641704 A JPH0641704 A JP H0641704A
Authority
JP
Japan
Prior art keywords
alloy
temperature
soaking
treatment
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10212192A
Other languages
Japanese (ja)
Inventor
Heiriyuu Ou
炳隆 歐
Mikihiro Sugano
幹宏 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP10212192A priority Critical patent/JPH0641704A/en
Publication of JPH0641704A publication Critical patent/JPH0641704A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To manufacture an age hardening type Al alloy excellent in ductility, toughness and stress corrosion cracking resistance by improving soaking treatment therefor. CONSTITUTION:At the time of subjecting the ingot of the Al-Cu-Mg or Al-Zn- Mg-Cu age hardening type Al alloy contg. specified amounts of Mn, Cr, Zr or the like to soaking treatment, hot working, cold working and quench aging treatment, at first, it is heated to 200 to 400 deg.C at <=100 deg.C/min temp. raising rate and is held to the same temp. for <=48hr. After that, its temp. is raised to a soaking temp. at <=100 deg.C/min temp. raising rate, and soaking treatment is executed. Next, hot working, cold working and quench hardening are executed, by which the Al alloy member excellent in ductility and stress corrosion cracking resistance while the strength of the alloy is maintained can be manufactured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、時効硬化型アルミニウ
ム合金の製造方法に関するもので、特にソーキング処理
を改善することにより、合金の延性、靭性、耐SCC性
を向上せしめたものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an age hardening type aluminum alloy, and in particular, by improving the soaking treatment, the ductility, toughness and SCC resistance of the alloy are improved.

【0002】[0002]

【従来の技術】時効硬化型アルミニウム合金、例えば表
1に示すような組成を有するJIS2014、221
4、2219、2319、2419、2020、202
4、2124、2025、2036、2048(Al−
Cu−Mg系)合金やJIS7049、7050、70
75、7175、7475(Al−Zn−Mg−Cu
系)合金は、航空機などの構造部材に用いられている
が、特に大型、肉厚部材の場合には、所定の焼入れ時効
処理後も十分な強度が得られないという問題を生じるこ
とがある。即ち溶体化処理、焼入れ後に自然時効あるい
は人工時効しても、溶体化処理後の冷却速度が遅い場合
には、時効後の強度が低下する現象を生じることがあ
る。このように強度が溶体化処理後の冷却速度に敏感に
影響される場合に、焼入れ感受性が高いといわれ、熱処
理型合金では実用上大きな問題となる。
2. Description of the Prior Art Age-hardening type aluminum alloys, for example, JIS 2014 and 221 having the compositions shown in Table 1.
4, 2219, 2319, 2419, 2020, 202
4, 2124, 2025, 2036, 2048 (Al-
Cu-Mg type) alloy and JIS 7049, 7050, 70
75, 7175, 7475 (Al-Zn-Mg-Cu
The (type) alloys are used for structural members such as aircrafts, but in the case of particularly large and thick members, there is a problem that sufficient strength cannot be obtained even after a predetermined quenching aging treatment. That is, even after natural aging or artificial aging after solution treatment or quenching, if the cooling rate after solution treatment is low, the phenomenon that the strength after aging decreases may occur. When the strength is sensitively affected by the cooling rate after the solution treatment as described above, it is said that the quenching sensitivity is high, which is a serious problem in practical use of the heat-treatable alloy.

【0003】[0003]

【表1】 [Table 1]

【0004】時効硬化型アルミニウム合金では、再結晶
を抑制するため、Mn、Cr、Zrなどの遷移元素が添
加されているが、これらの遷移元素を添加すると合金の
焼入れ感受性が高くなることが知られている。したがっ
てCr添加のJIS7075などの合金は実用材として
用いられる際、焼入れ感受性が高いため、材料の寸法が
限られている。一方航空機などの構造材に用いる高力ア
ルミニウム合金では、相当な強度が要求されているが、
延性、耐応力腐食割れ性(耐SCC性)が劣っているの
が現状である。
In the age-hardening type aluminum alloy, transition elements such as Mn, Cr, and Zr are added to suppress recrystallization, but it is known that addition of these transition elements increases the quenching sensitivity of the alloy. Has been. Therefore, when a Cr-added alloy such as JIS7075 is used as a practical material, it has a high quenching susceptibility, and the size of the material is limited. On the other hand, high strength aluminum alloys used for structural materials such as aircraft require considerable strength,
At present, ductility and stress corrosion cracking resistance (SCC resistance) are inferior.

【0005】[0005]

【発明が解決しようとする課題】時効硬化アルミニウム
合金を実用材料として用いる際、溶体化処理後の焼入れ
感受性が高いため、高強度を維持するには板厚が薄く抑
えられなければならない。また延性、耐SCC性を向上
させるため、強度を犠牲にするのが現状である。そこで
強度、延性、耐SCC性の共に優れたアルミニウム合金
を得るための製造方法が望まれている。
When an age-hardened aluminum alloy is used as a practical material, it has a high quenching susceptibility after solution treatment, so that the plate thickness must be kept small in order to maintain high strength. In addition, at present, strength is sacrificed in order to improve ductility and SCC resistance. Therefore, a manufacturing method for obtaining an aluminum alloy having excellent strength, ductility, and SCC resistance is desired.

【0006】[0006]

【課題を解決するための手段】本発明はこれに鑑み種々
検討の結果、高い強度を保ちながら延性、耐SCC性に
優れた時効硬化型アルミニウム合金の製造方法を開発し
たものである。
As a result of various studies in view of this, the present invention has developed a method for producing an age-hardening aluminum alloy excellent in ductility and SCC resistance while maintaining high strength.

【0007】即ち本発明は、Al−Cu−Mg系、Al
−Zn−Mg−Cu系時効硬化型アルミニウム合金を溶
解鋳造後、ソーキング処理、熱間加工、冷間加工、焼入
れ時効処理を施す製造工程において、先ず200〜40
0℃の温度まで100℃/min以下の昇温速度で昇温し、
200〜400℃の温度で48時間以内保持してからソ
ーキング温度まで100℃/min以下の昇温速度で昇温す
ることを特徴とするものである。
That is, the present invention relates to Al--Cu--Mg system, Al
In a manufacturing process in which a -Zn-Mg-Cu age-hardening aluminum alloy is melt-cast, and then subjected to soaking treatment, hot working, cold working, and quenching aging treatment, first, 200 to 40
The temperature is raised to 0 ° C at a heating rate of 100 ° C / min or less,
The method is characterized in that the temperature is maintained at 200 to 400 ° C for 48 hours and then the temperature is raised to the soaking temperature at a heating rate of 100 ° C / min or less.

【0008】[0008]

【作用】高力アルミニウム合金では、再結晶を抑制する
ため、Mn、Cr、Zrなどの遷移元素が添加され、合
金の延性、耐SCC性が改善される。これらの遷移元素
は合金の鋳塊のソーキング処理時に分散相として析出
し、その後の溶体化処理の温度でも溶けないため、普通
不溶性化合物と呼ばれている。従来のソーキング法で処
理した合金の場合、合金の鋳造時に凝固偏析が起こるこ
とによって、ソーキング処理しても不溶性化合物の分布
が不均一になり、再結晶の抑制効果は限られている。
In the high-strength aluminum alloy, transition elements such as Mn, Cr, and Zr are added to suppress recrystallization, and the ductility and SCC resistance of the alloy are improved. These transition elements are usually called insoluble compounds because they precipitate as a dispersed phase during the soaking treatment of the ingot of the alloy and do not dissolve even at the temperature of the subsequent solution treatment. In the case of an alloy treated by the conventional soaking method, solidification segregation occurs during casting of the alloy, so that the distribution of the insoluble compound becomes nonuniform even after the soaking treatment, and the effect of suppressing recrystallization is limited.

【0009】また、MnやCrを添加したアルミニウム
合金では、合金の溶体化処理後、焼入れ速度が遅い場
合、焼入れ中にすでに偏析したMn系不溶性化合物やC
r系不溶性化合物上に粗大な析出相が優先的に不均一析
出するため、最終的に析出相の分布が不均一になり合金
の高い強度が得られない。即ちこれら合金の焼入れ感受
性が高く実用上問題がある。
In addition, in the case of an aluminum alloy containing Mn or Cr, if the quenching rate is slow after the solution treatment of the alloy, the Mn-based insoluble compound or C which has already segregated during quenching is added.
Since a coarse precipitation phase preferentially precipitates nonuniformly on the r-type insoluble compound, the distribution of the precipitation phase finally becomes nonuniform and high strength of the alloy cannot be obtained. That is, the quenching sensitivity of these alloys is high and there is a practical problem.

【0010】以上の知見に基づいて、時効硬化型アルミ
ニウム合金を対象に工業的製造方法用いて、合金の強度
を保ちながら、延性、耐SCC性も向上できる製造方法
を検討した。即ち溶解鋳造後、ソーキング処理、熱間加
工、冷間加工、焼入れ時効処理する製造工程について、
それぞれ検討の結果、通常の方法により合金を溶解鋳造
後、図1に示すように先ず、(A)100℃/min以下の
昇温速度で昇温し、(B)200℃から400℃の温度
範囲に達した時に、その温度で48時間以内、好ましく
は数時間以上保持し、その後(C)ソーキング温度まで
再び100℃/min以下の昇温速度で昇温してから、
(D)長時間ソーキングし、続いて焼入れ時効処理した
後、従来と同様に熱間加工、冷間加工、焼入れ時効処理
を行なうことにより、合金の強度を保ちながら、延性、
耐SCC性を向上し得たものである。
Based on the above findings, an industrial manufacturing method was applied to an age hardening type aluminum alloy, and a manufacturing method capable of improving ductility and SCC resistance while maintaining the strength of the alloy was examined. That is, regarding the manufacturing process of soaking treatment, hot working, cold working, quenching aging treatment after melt casting,
As a result of each examination, after melting and casting the alloy by a usual method, as shown in FIG. 1, first, (A) the temperature is raised at a heating rate of 100 ° C./min or less, and (B) the temperature is from 200 ° C. to 400 ° C. When the temperature reaches the range, the temperature is maintained within 48 hours, preferably several hours or more, and then the temperature is raised to the soaking temperature (C) again at a heating rate of 100 ° C./min or less,
(D) After soaking for a long time, followed by quenching and aging treatment, hot working, cold working and quenching aging treatment are carried out in the same manner as in the conventional method, whereby ductility, while maintaining the strength of the alloy,
It is possible to improve the SCC resistance.

【0011】しかして昇温速度を100℃/min以下とし
たのは原子の拡散をさせながら、不溶性化合物をより均
一に析出させるためで、100℃/minを越えると不溶性
化合物の析出が不均一になり、再結晶の抑制効果は低下
する。
However, the heating rate is set to 100 ° C./min or less in order to more uniformly precipitate the insoluble compound while diffusing the atoms. When the heating rate exceeds 100 ° C./min, the precipitation of the insoluble compound is not uniform. And the effect of suppressing recrystallization is reduced.

【0012】また昇温の途中の保持温度を200〜40
0℃としたのは、不溶性化合物の核生成を十分させて最
終的に均一な不溶性化合物の分布を得るためで、200
℃未満では不溶性化合物の核生成が起こりにくく、また
400℃を越えると不溶性化合物が粗大化しやすいた
め、合金の性質に悪影響を与える。更にその温度に保持
する時間を48時間以内としたのは高密・均一な不溶性
化合物の分布を得るためで、48時間を越えると合金が
十分均質化されないうちに、不溶性化合物が粗大化し、
合金の諸性質に悪影響を与える。
The holding temperature during the temperature rise is set to 200-40
The temperature was set to 0 ° C. in order to ensure sufficient nucleation of the insoluble compound and finally obtain a uniform distribution of the insoluble compound.
Nucleation of the insoluble compound is less likely to occur at a temperature lower than 400 ° C., and if the temperature exceeds 400 ° C., the insoluble compound is likely to coarsen, which adversely affects the properties of the alloy. Furthermore, the reason why the temperature is kept within 48 hours is to obtain a highly dense and uniform distribution of the insoluble compound. If it exceeds 48 hours, the insoluble compound becomes coarse before the alloy is sufficiently homogenized.
It adversely affects the properties of the alloy.

【0013】[0013]

【実施例】以下本発明を実施例について説明する。表2
に示す化学成分(wt%)を有する3種類のアルミニウム
合金を通常の方法により溶解鋳造した後、50℃/minの
昇温速度で昇温し、200℃から400℃の温度範囲に
達してからその温度で24時間保持した。その後50℃
/minの昇温速度で465℃まで昇温し、その温度で24
時間ソーキングした。次に400℃で熱間圧延後、冷間
圧延して厚さ1mmの板材とし、焼入れ時効処理を施し
た。溶体化処理は465℃で1時間とし、その後焼入れ
してT73処理(121℃×6hr+177℃×9hr)を
行った。比較のため、上記と同じ合金の鋳塊を従来のソ
ーキング法により、50℃/minの昇温速度で途中の保持
をせずに465℃まで昇温し、その温度で24時間ソー
キングした。その後上記と同様な条件で加工、熱処理を
行った。
EXAMPLES The present invention will be described below with reference to examples. Table 2
After melting and casting three kinds of aluminum alloys having the chemical composition (wt%) shown in Fig. 1 by the usual method, the temperature is raised at a heating rate of 50 ° C / min, and after reaching the temperature range of 200 ° C to 400 ° C. Hold at that temperature for 24 hours. Then 50 ° C
The temperature is raised to 465 ° C at a heating rate of / min and the temperature is raised to 24
I soaked time. Next, after hot rolling at 400 ° C., cold rolling was performed to a plate material having a thickness of 1 mm, which was subjected to quenching aging treatment. The solution treatment was performed at 465 ° C. for 1 hour, followed by quenching and T73 treatment (121 ° C. × 6 hr + 177 ° C. × 9 hr). For comparison, an ingot of the same alloy as the above was heated to 465 ° C. by a conventional soaking method at a temperature rising rate of 50 ° C./min without being held midway, and was soaked at that temperature for 24 hours. After that, processing and heat treatment were performed under the same conditions as above.

【0014】これらの板材について強度を測定すると共
にSCC試験を行った。その結果を表3に示す。SCC
試験は30℃の3.5%NaCl水溶液中での静置浸漬
試験により、0.2%耐力の95%の単軸引張負荷、1
mA/cm 2 の促進アノード電流負荷により行った。
The strength of these plate materials was measured and the SCC test was conducted. The results are shown in Table 3. SCC
The test is a static immersion test in a 3.5% NaCl aqueous solution at 30 ° C., and a uniaxial tensile load of 0.2% proof stress of 95%, 1
It was carried out with an accelerated anode current load of mA / cm 2 .

【0015】[0015]

【表2】 [Table 2]

【0016】[0016]

【表3】 [Table 3]

【0017】表3より明らかなように本発明例で製造し
た合金は、従来のソーキングを行った従来合金と比較
し、強度のみならず、延性、靭性、耐SCC性のいずれ
においても優れていることが判る。
As is clear from Table 3, the alloys produced in the examples of the present invention are superior not only in strength but also in ductility, toughness and SCC resistance as compared with the conventional alloys subjected to conventional soaking. I understand.

【0018】[0018]

【発明の効果】このように本発明によれば、従来のソー
キング法で処理した合金と比較して特に延性、靭性、耐
SCC性が優れており、強度においても遜色がなく、航
空機などの部材として最適のもので、材料の安全性の向
上に貢献するところが大きい等顕著な効果を奏する。
As described above, according to the present invention, the ductility, the toughness, and the SCC resistance are particularly excellent as compared with the alloy treated by the conventional soaking method, and the strength is not inferior, and the member for aircraft or the like. It is most suitable as, and has remarkable effects such as large contribution to the improvement of material safety.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明におけるソーキング処理工程を示す説明
図である。
FIG. 1 is an explanatory diagram showing a soaking process step in the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Al−Cu−Mg系、Al−Zn−Mg
−Cu系時効硬化型アルミニウム合金を溶解鋳造後、ソ
ーキング処理、熱間加工、冷間加工、焼入れ時効処理を
施す製造工程において、先ず200〜400℃の温度ま
で100℃/min以下の昇温速度で昇温し、200〜40
0℃の温度で48時間以内保持してからソーキング温度
まで100℃/min以下の昇温速度で昇温することを特徴
とする時効硬化型アルミニウム合金の製造方法。
1. Al-Cu-Mg system, Al-Zn-Mg
-In the manufacturing process of performing soaking treatment, hot working, cold working, and quenching aging treatment after melt-casting a Cu-based age hardening type aluminum alloy, first, a heating rate of 100 ° C / min or less up to a temperature of 200 to 400 ° C. Temperature rises at 200-40
A method for producing an age-hardening aluminum alloy, which is characterized by holding at a temperature of 0 ° C for 48 hours or less and then raising the temperature to a soaking temperature at a heating rate of 100 ° C / min or less.
JP10212192A 1992-03-27 1992-03-27 Manufacture of age hardening type aluminum alloy Pending JPH0641704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10212192A JPH0641704A (en) 1992-03-27 1992-03-27 Manufacture of age hardening type aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10212192A JPH0641704A (en) 1992-03-27 1992-03-27 Manufacture of age hardening type aluminum alloy

Publications (1)

Publication Number Publication Date
JPH0641704A true JPH0641704A (en) 1994-02-15

Family

ID=14318968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10212192A Pending JPH0641704A (en) 1992-03-27 1992-03-27 Manufacture of age hardening type aluminum alloy

Country Status (1)

Country Link
JP (1) JPH0641704A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006257522A (en) * 2005-03-18 2006-09-28 Furukawa Sky Kk Al-Zn-Mg-Cu-BASED ALUMINUM ALLOY CONTAINING ZR AND METHOD FOR MANUFACTURING THE SAME
KR20220131403A (en) * 2021-03-18 2022-09-28 (주) 동양에이.케이코리아 High-strength aluminum rolled plate manufacturing method and high-strength aluminum rolled plate using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006257522A (en) * 2005-03-18 2006-09-28 Furukawa Sky Kk Al-Zn-Mg-Cu-BASED ALUMINUM ALLOY CONTAINING ZR AND METHOD FOR MANUFACTURING THE SAME
JP4498180B2 (en) * 2005-03-18 2010-07-07 古河スカイ株式会社 Al-Zn-Mg-Cu-based aluminum alloy containing Zr and method for producing the same
KR20220131403A (en) * 2021-03-18 2022-09-28 (주) 동양에이.케이코리아 High-strength aluminum rolled plate manufacturing method and high-strength aluminum rolled plate using the same

Similar Documents

Publication Publication Date Title
US5108520A (en) Heat treatment of precipitation hardening alloys
US4863528A (en) Aluminum alloy product having improved combinations of strength and corrosion resistance properties and method for producing the same
US4092181A (en) Method of imparting a fine grain structure to aluminum alloys having precipitating constituents
US3856584A (en) Reducing the susceptibility of alloys, particularly aluminium alloys, to stress corrosion cracking
US3901743A (en) Processing for the high strength alpha-beta titanium alloys
US3847681A (en) Processes for the fabrication of 7000 series aluminum alloys
JP2023085484A (en) 7xxx-series aluminium alloy product
US3287185A (en) Process for improving alloys based on aluminum, zinc and magnesium, and alloys obtained thereby
JP7223121B2 (en) High-strength fastener material by forged titanium alloy and its manufacturing method
US4832758A (en) Producing combined high strength and high corrosion resistance in Al-Zn-MG-CU alloys
JPS6246621B2 (en)
IL45569A (en) Thermal treatment of articles composed of aluminum based alloys
JP2004530043A (en) Heat treatment of age hardenable aluminum alloy using secondary precipitation
CN112501482B (en) Si microalloyed AlZnMgCu alloy and preparation method thereof
JP2001504551A (en) Method for producing AA7000 aluminum forged product subjected to modified solution heat treatment
US3133839A (en) Process for improving stress-corrosion resistance of age-hardenable alloys
US3743549A (en) Thermomechanical process for improving the toughness of the high strength aluminum alloys
JPS58167757A (en) Preparation of al-mg-si alloy for processing excellent in corrosion resistance, weldability and hardenability
JPH0641704A (en) Manufacture of age hardening type aluminum alloy
JPH073409A (en) Heat treatment for extruded billet of al-mg-si based aluminum alloy
EP0495844B1 (en) Auxiliary heat treatment for aluminium-lithium alloys
US3573117A (en) Method of improving stress corrosion resistance of aluminum alloys
JP2004513226A (en) Improved rapid quenching of large section precipitation hardenable alloys.
JP7140892B1 (en) Aluminum alloy extruded material and manufacturing method thereof
JPH05255823A (en) Method for heat treating high tensile strength aluminum alloy