WO1997008354A1 - Aluminum alloy sheet excellent in high-speed superplastic formability and process of forming the same - Google Patents

Aluminum alloy sheet excellent in high-speed superplastic formability and process of forming the same Download PDF

Info

Publication number
WO1997008354A1
WO1997008354A1 PCT/JP1995/002564 JP9502564W WO9708354A1 WO 1997008354 A1 WO1997008354 A1 WO 1997008354A1 JP 9502564 W JP9502564 W JP 9502564W WO 9708354 A1 WO9708354 A1 WO 9708354A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
less
elongation
alloy
strain rate
Prior art date
Application number
PCT/JP1995/002564
Other languages
French (fr)
Japanese (ja)
Inventor
Hideo Yoshida
Hiroki Tanaka
Kouichirou Takiguchi
Original Assignee
Sumitomo Light Metal Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries, Ltd. filed Critical Sumitomo Light Metal Industries, Ltd.
Priority to EP95940435A priority Critical patent/EP0846781B1/en
Priority to DE69519444T priority patent/DE69519444T2/en
Publication of WO1997008354A1 publication Critical patent/WO1997008354A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent

Definitions

  • the present invention high-speed superplastic forming excellent aluminum alloy plate, A 1 one Mg-based alloy sheet, especially strain rate to enable high-speed superplastic forming of 10 one 2 ⁇ 10Vs, and to a molding how.
  • a superplastic alloy has been developed that suppresses recrystallization and refines the crystal grains of Mg-based alloys, for example, to produce several hundred percent elongation in the high temperature range of 500 to 550, and is applicable to various applications.
  • strain rate is 10- 4 ⁇ 10_ 3 / s
  • Mg 2.0-6.0%
  • Be 0.0001-0.01%
  • Ti 0.001-0.15%
  • Fe and Si of impurities are both limited to 0.2% or less
  • metals based on impurities are limited.
  • An aluminum alloy plate in which the maximum grain size of the intermetallic compound is limited to 10 / m or less has been proposed (Japanese Unexamined Patent Publication No. 4-72030). This alloy plate has a strain rate of 10% at high temperature deformation at 400 ° C. - while indicating 350% or more elongation at Vs, hand stretch as the molding rate is increased is reduced, 10- not sufficient elongation is obtained in 2 / s or more strain rate.
  • the present invention provides an alloy component and a quantitative combination thereof, an impurity amount, a distribution mode of an intermetallic compound based on the impurity, and a crystal. It was the result of repeated and diversified experiments and studies on the relationship between grain size and superplastic forming. The purpose was to limit Fe and Si as impurities, in particular.
  • An object of the present invention is to provide an aluminum alloy sheet excellent in high-speed superplastic forming and a method for forming the aluminum alloy sheet.
  • the aluminum alloy sheet excellent in high-speed superplastic forming according to the present invention for achieving the above object contains Mg: 3.0 to 8.0%, Ti: 0.001 to 0.1%, and has Fe as an impurity. 0.01% or less, Si is limited to 0.06% or less, an alloy consisting of the balance of A1 and unavoidable impurities, and an A1-Fe-Si system having a particle size of 1m or more in the matrix of the alloy.
  • compound 2000 / fraction 2 below, the elongation when the average crystal grain size was molded at a strain rate of 10- 2 ⁇ 10Vs in a temperature range of 25 ⁇ 200 jam, 350 ⁇ 550 ° C is 350% or more This is a basic feature of the configuration.
  • the second and third features of the present invention are to contain one or two of Mn: 0.10% or less and Cr: 0.10% or less in addition to Mg, Ti, and Cu. .
  • Mg has an action of recrystallizing the alloy during high-temperature deformation.
  • the preferred content range is 3.0 to 8.0%, and if less than 3.0%, the effect of accelerating recrystallization is small, and if it exceeds 8.0%, hot workability is deteriorated.
  • a preferable content range is 0.05 to 0.50%. If the content is less than 0.05%, the effect is not sufficient, and if it exceeds 0.50%, the hot workability is reduced.
  • Ti refines the crystal grains of the lump and helps to improve the superplastic properties of the alloy.
  • a preferable content range is 0.001 to 0.1%. When the content is less than 0.001%, the effect is small, and when the content exceeds 0.1%, a coarse compound is formed to impair workability and ductility.
  • Mn and Cr have a function of refining recrystallized grains during recrystallization of an alloy during high-temperature deformation.
  • the preferred contents are each in the range of 0.10% or less, and if it exceeds 0.10%, the A1-FeSi-based compound having a particle size of 1 or more tends to increase, and the high-speed superplastic deformability of the alloy tends to decrease. .
  • each of Fe and Si as impurities to 0.06 or less.
  • the impurities Fe and Si produce insoluble A1-Fe-Si-based compounds, which precipitate at the grain boundaries, increasing the cavity and reducing the superplastic elongation.
  • Fe: 0.05% or less and Si: 0.05% or less are limited.
  • Be can be added in a range of 50 ppm or less to prevent oxidation of the molten metal, as in the case of the ordinary A1-Mg alloy.
  • the A1-Fe-Si-based compound present in the matrix of the alloy causes the above-mentioned adverse effects, and the smaller the compound having a particle size of 1 m or more, the better.
  • Its limit is the particle diameter A 1 -Fe- above 1 ⁇ M is S i diameter compounds 2000 / ⁇ 2 below, when distributed over 2,000 / field 2, Kiyabiti to the grain boundary is increased more than Reduces plastic elongation.
  • the initial average grain size of the aluminum alloy plate it is necessary to control the initial average grain size of the aluminum alloy plate to 25 to 200 um. If the initial average crystal grain size is less than 25 m, the original crystal grains will appear when recrystallized during high-temperature deformation, and the insoluble compounds will precipitate. The grain boundaries disappear, and it is difficult to obtain a recrystallized structure composed of clean crystal grains resulting from the recrystallization. If the initial average grain size exceeds 200 jim, as the deformation rate increases, the shear deformation within the grains becomes remarkable and it becomes easy to break, so that the superplastic elongation decreases,
  • the forming of the aluminum alloy sheet of the present invention is preferably performed at a temperature of 350 to 550. If the temperature is lower than 350 ° C, Al-Mg compounds and A 1 -Mg-(: 11 compounds are likely to precipitate at the crystal grain boundaries and the elongation decreases. If the forming temperature exceeds 550 ° C occur coarsening of crystal grains, the elongation becomes poor.
  • strain rate during molding is preferably in the range of 10 one 3 ⁇ lOVs, the strain rate of less than 10_ 3 / s, elongation crystal grains are coarsened during deformation At a strain rate exceeding 10 ° ⁇ , shear deformation occurs in the crystal grains and causes cracks, or precipitation occurs at the crystal grain boundaries to reduce elongation.
  • An aluminum alloy having the above composition is melted and manufactured according to a conventional method, and the obtained ingot is homogenized.
  • the homogenization treatment is preferably performed at a temperature of 450 to 550 ° C. If it is less than 450, g Mg and Cu deviated at the crystal grain interface and cell boundary of the lump are not sufficiently re-dissolved to cause hot rolling cracks. At temperatures exceeding 550 ° C, A1-Mg-based or Al-Mg-Cu-based crystallization, which has a low melting point, causes eutectic melting and causes cracking during hot rolling. .
  • the starting temperature of the hot rolling is from 250 to 500 ° C, and preferably less than 400 ° C. If hot rolling is started below 250 ° C, the hot rolling becomes difficult due to high deformation resistance of the material. When the hot rolling temperature is increased, it may be difficult to obtain a predetermined grain structure and a distribution of the precipitated compound due to a change in the distribution of the precipitate.
  • cold rolling is performed.
  • intermediate annealing may be performed during cold rolling.
  • the final annealing of cold rolled material is carried out at temperatures between 350 and 550. In the case of annealing at less than 350 ° C, the anisotropy of the structure formed by hot rolling may not be sufficiently eliminated, and if it exceeds 550 ° C, local melting may occur at recrystallized grain boundaries.
  • the final annealing is Preferably, rapid annealing treatment such as continuous annealing is used.
  • the existing A 1 -Fe-Si compound is controlled to a specific distribution, and the crystal grain size is controlled to a specific range.
  • the formation of cavities as grain boundaries is suppressed, and recrystallized grains of an average of 20 111 or less are formed during high-temperature deformation, and a strain rate of 10— It is possible to obtain a sufficient ductility of 350% or more, preferably 380% or more, even with high-speed molding.
  • An A1-Mg-based aluminum alloy having the composition shown in Table 1 was melted and agglomerated by the DC method. After the obtained lump was homogenized at 530 for 10 hours, the thickness was reduced to 30 and hot rolling was started at a temperature of 390, followed by hot rolling to a thickness of 4 mm. Next, cold rolling was performed to reduce the sheet thickness to 2 mm, and rapid annealing was performed by rapidly heating to a temperature of 480 ° C and holding for 5 minutes. These plate as a test material, Te temperature of 480, a tensile test was performed at a strain rate of 10- 2 / s.
  • the rates are shown in Table 1.
  • the amount of the compound was determined by image processing. Also, in Table 1, those that are outside the conditions of the present invention are underlined. table 1
  • test material Nos. 1 to 5 As shown in Table 1, all of the test materials Nos. 1 to 5 according to the present invention exhibited excellent elongation exceeding 400%. On the other hand, test material No. 6 had too much Cu content, and test material No. 7 had too much Mg content. . Test material No. 8 has a large amount of large-diameter compounds and a low elongation rate because it contains a large amount of impurities Fe and Si. Test material No. 9 has a low Mg content, so the recrystallization is insufficient during bow deformation and the elongation is low.
  • a 1-Mg-based aluminum alloy having the composition shown in Table 2 was melted and manufactured in the same manner as in Example 1, and processed in the same process and under the same conditions as in Example 1 to produce a test material having a thickness of 2 mra. Then, a tensile test was performed on each test material under the same conditions as in Example 1. Average crystal grain size of each test material, amount of A1-Fe-Si-based compound with a grain size of 1 xm or more, measured by tensile test Table 2 shows the calculated elongation. In addition, in Table 2, those which are out of the conditions of the present invention are underlined.
  • test materials Nos. 10 to 12 according to the present invention all exhibited excellent elongation exceeding 380%, whereas the test materials Nos. 13 to 14 had a high Mn content.
  • test material No. 15 has a large amount of Cr, so that the distribution of A1-Fe-Si-based compounds with a particle size of 1 zm or more is large, and high-temperature elongation cannot be obtained.
  • Example 2 An aluminum alloy having the same composition as that of test material No. 5 of Example 1 was melted and produced in the same manner as in Example 1, and the obtained ingot was homogenized at 520 for 8 hours, and then the ingot was removed. Hot rolling was started at a temperature of 390 ° C with a thickness of 30 mm, and hot-rolled to a thickness of 4 mm. Subsequently, a two-thick plate was formed by cold rolling, subjected to rapid annealing at a temperature of 480 and maintained for 5 minutes. As shown in Table 3, a tensile test was performed using the prepared sheet material as a test material while changing the forming temperature and the strain rate. Table 3 shows the elongation percentage of each test material.
  • test materials Nos. 16 to 20 according to the present invention all exhibited excellent elongation of 380% or more, but the test material No. 21 had a high tensile test temperature and coarse grains. And the growth rate is decreasing. Test material No. 22 had a low strain rate, so the crystal grains became coarse during deformation and the elongation decreased. In test material No. 23, the elongation was reduced because the strain rate was too high. Industrial applicability
  • An alloy plate is provided, and the superplastic forming is performed using the aluminum alloy plate, thereby shortening the forming time and improving the productivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

An alloy containing 3.0 to 8.0 wt.% of Mg, 0.001 to 0.1 wt.% of Ti and as small amounts of Fe and Si (as impurities) as 0.06 wt.% or below and the balance consisting of A1 and unavoidable impurities wherein the number per square millimeter of grains of an Al-Fe-Si compound having a diameter of 1 νm or above is 2000 or below, the mean crystal grain diameter is 25 to 200 νm and the elongation is 350 % or above as worked at 350 to 550 °C and a strain rate of 10?-2 to 100¿/s. This alloy may further contain a small amount of Cu, Mn and/or Cr and is formed at a temperature of 350 to 550 °C and a strain rate of 10?-3 to 100¿/s. An aluminum alloy sheet which is excellent in high-speed superplastic formability and therefore can be formed at high temperature and high speed is obtained and the use of this sheet shortens the forming time to improve the productivity.

Description

明 細 書 高速超塑性成形に優れたアルミニゥム合金板およびその成形方法 技術分野  Description Aluminum alloy sheet excellent in high-speed superplastic forming and forming method
本発明は、 高速超塑性成形に優れたアルミニウム合金板、 とくに歪速度が 10一2 〜10Vs の高速超塑性成形を可能とする A 1一 Mg系合金板、 およびその成形方 法に関する。 背景技術 The present invention, high-speed superplastic forming excellent aluminum alloy plate, A 1 one Mg-based alloy sheet, especially strain rate to enable high-speed superplastic forming of 10 one 2 ~10Vs, and to a molding how. Background art
A 1— Mg系合金において、 再結晶を抑制して結晶粒を微細化し、 例えば 500 〜550での高温領域で数 100 %の伸びを生じるようにした超塑性合金が開発され、 各種用途に適用されているが、 従来の A 1 — Mg系超塑性合金は、 成形速度 (歪 速度) が 10— 4〜10_3/sでの成形において最適の伸びが得られるもので、 このよう な成形速度を適用した場合、 一般的な器物などの成形では、 成形に例えば 30〜10 0分程度の時間を要するため、 工業規模での生産においては生産性がわるく、 さ らに早レ、成形速度で成形加工し得る超塑性合金が求められている。 A1— A superplastic alloy has been developed that suppresses recrystallization and refines the crystal grains of Mg-based alloys, for example, to produce several hundred percent elongation in the high temperature range of 500 to 550, and is applicable to various applications. have been, conventional a 1 - Mg-based superplastic alloy, in which elongation of the optimum is obtained in the molding at a molding speed (strain rate) is 10- 4 ~10_ 3 / s, such molding rate When molding is applied, the molding of general objects and the like takes about 30 to 100 minutes, for example.Therefore, the productivity is low in industrial scale production. There is a need for a superplastic alloy that can be formed.
例えば、 Mg:2.0〜6.0 %、 B e :0.0001 〜0.01%、 T i :0.001〜0.15%を含 み、 不純物の F eおよび S iをいずれも 0.2 %以下の制限し、 不純物に基づく金 属間化合物の最大粒径を 10 /m以下に限定したアルミニウム合金板が提案されて いる(特開平 4- 72030号公報) 力 この合金板は、 400 °Cでの高温変形において、 歪速度が 10— Vsでは 350 %以上の伸びを示すものの、 成形速度が増加するにつれ て伸びが減少し、 10—2/s以上の歪速度では十分な伸びが得られない。 For example, Mg: 2.0-6.0%, Be: 0.0001-0.01%, Ti: 0.001-0.15%, Fe and Si of impurities are both limited to 0.2% or less, and metals based on impurities are limited. An aluminum alloy plate in which the maximum grain size of the intermetallic compound is limited to 10 / m or less has been proposed (Japanese Unexamined Patent Publication No. 4-72030). This alloy plate has a strain rate of 10% at high temperature deformation at 400 ° C. - while indicating 350% or more elongation at Vs, hand stretch as the molding rate is increased is reduced, 10- not sufficient elongation is obtained in 2 / s or more strain rate.
また、 Mg:2〜5 %、 Cu:0.04〜0.10%を含み、 さらに選択成分として少量 の遷移元素、 C r、 Zr、 Mnを含有し、 不純物の S iを 0.10%以下、 6を0. 15%以下に制限し、 結晶粒径 20 m以下、 遷移元素系の金属間化合物の粒径およ び体積率を特定範囲に制御した超塑性アルミニウム合金板も提案されている(特 開平 4- 318145号公報) が、 この合金板も 10_4/s程度の歪速度での成形加工に適す るものであり、 高速超塑性成形には問題がある。 発明の開示 It also contains Mg: 2 to 5%, Cu: 0.04 to 0.10%, further contains a small amount of transition elements, Cr, Zr, and Mn as selective components, the Si of impurities is 0.10% or less, and 6 is 0. A superplastic aluminum alloy sheet with a grain size of 20 m or less and a grain size and volume fraction of transition element-based intermetallic compound of which are limited to 15% or less and which are controlled to specific ranges has also been proposed. No. 4-three hundred eighteen thousand one hundred forty-five JP) is, the alloy plate is also shall that Suitable for molding at 10_ 4 / s approximately strain rate, there are problems with high-speed superplastic forming. Disclosure of the invention
本発明は、 A 1一 Mg系の超塑性アルミニウム合金における上記従来の問題点 を解消するために、 合金成分とその量的組合わせ、 不純物量と不純物に基づく金 属間化合物の分布態様および結晶粒径と、 超塑性成形との関連性にっレ、て多角的 な実験、 検討を重ねた結果としてなされたものであり、 その目的は、 とくに不純 物としての F eおよび S iの制限に基づく A 1— F e— S i系化合物の特定な分 布と結晶粒径の特定によって、 高速の成形速度、 例えば 10 — 2 〜10°/s の歪速度 での成形において、 十分な伸びが得られるようにした高速超塑性成形に優れたァ ルミニゥム合金板および当該アルミニゥ厶合金板の成形加工方法を提供すること にある。 In order to solve the above-mentioned conventional problems in the A1-Mg superplastic aluminum alloy, the present invention provides an alloy component and a quantitative combination thereof, an impurity amount, a distribution mode of an intermetallic compound based on the impurity, and a crystal. It was the result of repeated and diversified experiments and studies on the relationship between grain size and superplastic forming.The purpose was to limit Fe and Si as impurities, in particular. the specific crystal grain size and specific distribution of a 1- F e- S i based compound-based, high-speed molding rate, for example 10 - in the molding of a strain rate of 2 to 10 ° / s, sufficient elongation An object of the present invention is to provide an aluminum alloy sheet excellent in high-speed superplastic forming and a method for forming the aluminum alloy sheet.
上記の目的を達成するための本発明による高速超塑性成形に優れたアルミニゥ ム合金板は、 Mg:3.0〜8.0 %、 T i :0·001〜0.1 %を含有し、 不純物としての F eを 0.06%以下、 S iを 0.06%以下に制限し、 残部 A 1および不可避的不純物 からなる合金よりなり、 該合金のマトリックス中に存在する粒径 1 m以上の A 1— F e - S i系化合物が 2000個/画2以下、 平均結晶粒径が 25〜200 jam、 350 〜550 °Cの温度域で歪速度 10— 2〜10Vs で成形加工した場合の伸びが 350 %以上 であることを構成上の基本的特徴とする。 The aluminum alloy sheet excellent in high-speed superplastic forming according to the present invention for achieving the above object contains Mg: 3.0 to 8.0%, Ti: 0.001 to 0.1%, and has Fe as an impurity. 0.01% or less, Si is limited to 0.06% or less, an alloy consisting of the balance of A1 and unavoidable impurities, and an A1-Fe-Si system having a particle size of 1m or more in the matrix of the alloy. compound 2000 / fraction 2 below, the elongation when the average crystal grain size was molded at a strain rate of 10- 2 ~10Vs in a temperature range of 25~200 jam, 350 ~550 ° C is 350% or more This is a basic feature of the configuration.
また、 Mg、 T iの他に Cu:0.05〜0.50%を含有すること、 および Mg、 T iの他に Mn :0.10以下、 C r :0.10 %以下のうちの 1種または 2種を含有し、 あるいは Mg、 T i、 C uに加えて Mn: 0.10 %以下、 C r :0.10 %以下のうち の 1種または 2種を含有することを発明構成上の第 2、 第 3の特徴とする。 本発明による高速超塑性成形に優れたアルミニウム合金板の成形方法は、 上記 のアルミニウム合金板を、 350〜550 °Cの温度で、 歪速度 10— 3〜10Vs で成形加 ェすることを特徴とする。 708354 In addition, Cu: 0.05 to 0.50% in addition to Mg and Ti; and Mn: 0.10 or less and Cr: 0.10% or less in addition to Mg and Ti Or the second and third features of the present invention are to contain one or two of Mn: 0.10% or less and Cr: 0.10% or less in addition to Mg, Ti, and Cu. . Method of forming an aluminum alloy sheet with excellent high-speed superplastic forming according to the present invention, the above aluminum alloy plate, and characterized in that at a temperature of 350 to 550 ° C, molding pressure E at a strain rate 10- 3 ~10Vs I do. 708354
本発明における含有成分の意義および限定理由について説明すると、 Mgは、 高温変形中に合金を再結晶させる作用を有する。 好ましい含有範囲は 3.0〜8.0 %で、 3.0 %未満では再結晶促進の効果が小さく、 8.0 %を越えて含有すると熱 間加工性が劣化する。 Ci^ Al— Mg系合金の超塑性伸びを向上させる元素で ある。 好ましい含有範囲は 0.05〜0.50%であり、 0.05%未満ではその効果が十分 でなく、 0.50%を越えると熱間加工性が低下する。  Explaining the significance of the components contained in the present invention and the reasons for limitation, Mg has an action of recrystallizing the alloy during high-temperature deformation. The preferred content range is 3.0 to 8.0%, and if less than 3.0%, the effect of accelerating recrystallization is small, and if it exceeds 8.0%, hot workability is deteriorated. Ci ^ Al—An element that improves the superplastic elongation of Mg-based alloys. A preferable content range is 0.05 to 0.50%. If the content is less than 0.05%, the effect is not sufficient, and if it exceeds 0.50%, the hot workability is reduced.
T iは铸塊の結晶粒を微細化し、 合金の超塑性特性の向上に役立つ。 好ましい 含有範囲は 0.001 〜0.1 %であり、 0.001 %未満ではその効果が小さく、 0.1 % を越えて含有すると、 粗大な化合物が生じ加工性、 延性が害される。 Mn、 Cr は、 高温変形中の合金の再結晶において、 再結晶粒を微細にする機能を有する。 好ましい含有量はそれぞれ 0.10%以下の範囲であり、 0.10%を越えると、 粒径が 1 以上の A 1 -F e-S i系化合物を増加させ、 合金の高速超塑性変形能を 低下させる傾向がある。  Ti refines the crystal grains of the lump and helps to improve the superplastic properties of the alloy. A preferable content range is 0.001 to 0.1%. When the content is less than 0.001%, the effect is small, and when the content exceeds 0.1%, a coarse compound is formed to impair workability and ductility. Mn and Cr have a function of refining recrystallized grains during recrystallization of an alloy during high-temperature deformation. The preferred contents are each in the range of 0.10% or less, and if it exceeds 0.10%, the A1-FeSi-based compound having a particle size of 1 or more tends to increase, and the high-speed superplastic deformability of the alloy tends to decrease. .
本発明においては、 不純物としての Fe、 S iをそれぞれ 0.06 以下に制限す ることが重要である。 不純物の F e、 S iは不溶性の A 1— F e— S i系化合物 を生成し、 この化合物が結晶粒界に析出してキヤビティを増加させ、 超塑性伸び を低下させる。 好ましくは Fe :0.05 %以下、 S i :0.05 %以下の制限する。 ま た、 B eを通常の A 1— Mg系合金と同様、 溶湯の酸化を防止するために 50ppm 以下の範囲で添加することもできる。  In the present invention, it is important to limit each of Fe and Si as impurities to 0.06 or less. The impurities Fe and Si produce insoluble A1-Fe-Si-based compounds, which precipitate at the grain boundaries, increasing the cavity and reducing the superplastic elongation. Preferably, Fe: 0.05% or less and Si: 0.05% or less are limited. In addition, Be can be added in a range of 50 ppm or less to prevent oxidation of the molten metal, as in the case of the ordinary A1-Mg alloy.
本発明の合金組織について説明すると、 合金のマトリックス中に存在する A 1 一 Fe— S i系化合物は、 上記の弊害をもたらすものであり、 とくに粒径が 1 m以上の化合物は少ないほどよい。 その限界は粒径が 1 〃m以上の A 1 -Fe- S i径化合物が 2000個/謹2以下であり、 2000個/画2を越えて分布すると、 結晶粒 界にキヤビティが増加し超塑性伸びを低下させる。 Explaining the alloy structure of the present invention, the A1-Fe-Si-based compound present in the matrix of the alloy causes the above-mentioned adverse effects, and the smaller the compound having a particle size of 1 m or more, the better. Its limit is the particle diameter A 1 -Fe- above 1 〃M is S i diameter compounds 2000 /謹2 below, when distributed over 2,000 / field 2, Kiyabiti to the grain boundary is increased more than Reduces plastic elongation.
結晶粒径については、 アルミニウム合金板の初期の平均結晶粒径を 25〜200 u mに制御することが必要である。 初期の平均結晶粒径が 25 m未満では、 高温変 形中に再結晶した場合に元の結晶粒が現出され、 上記不溶性化合物の析出してい る粒界が消失し、 再結晶した結果として生じる清浄な結晶粒からなる再結晶組織 が得難い。 初期の平均結晶粒径が 200 ji mを越えると、 変形速度が増大するにつ れて結晶粒内の剪断変形が顕著となって破断し易くなるため、 超塑性伸びが低下 し勿レ、0 Regarding the grain size, it is necessary to control the initial average grain size of the aluminum alloy plate to 25 to 200 um. If the initial average crystal grain size is less than 25 m, the original crystal grains will appear when recrystallized during high-temperature deformation, and the insoluble compounds will precipitate. The grain boundaries disappear, and it is difficult to obtain a recrystallized structure composed of clean crystal grains resulting from the recrystallization. If the initial average grain size exceeds 200 jim, as the deformation rate increases, the shear deformation within the grains becomes remarkable and it becomes easy to break, so that the superplastic elongation decreases,
本発明のアルミニウム合金板の成形加工は、 350〜550 での温度で行うのが好 ましい。 350 °C未満では、 A l—M g系化合物、 A 1— M g - (:11系化合物が結 晶粒界に析出し易く、 伸びが低下する。 成形加工温度が 550 °Cを越えると結晶粒 の粗大化が生じ、 伸びがわるくなる。 成形加工時の歪速度は 10一3〜 lOVs の範囲 が好ましく、 10_3/s未満の歪速度では、 変形中に結晶粒が粗大化して伸びの低下 を招き、 10°Λ を越える歪速度では、 結晶粒内に剪断変形が生じて割れの原因と なったり、 結晶粒界に析出が生じ伸びを低下させる。 The forming of the aluminum alloy sheet of the present invention is preferably performed at a temperature of 350 to 550. If the temperature is lower than 350 ° C, Al-Mg compounds and A 1 -Mg-(: 11 compounds are likely to precipitate at the crystal grain boundaries and the elongation decreases. If the forming temperature exceeds 550 ° C occur coarsening of crystal grains, the elongation becomes poor. strain rate during molding is preferably in the range of 10 one 3 ~ lOVs, the strain rate of less than 10_ 3 / s, elongation crystal grains are coarsened during deformation At a strain rate exceeding 10 ° Λ, shear deformation occurs in the crystal grains and causes cracks, or precipitation occurs at the crystal grain boundaries to reduce elongation.
本発明のアルミニウム合金板の製造方法について説明すると、 常法に従って、 上記組成のアルミニウム合金を溶解、 錶造し、 得られた鐯塊を均質化処理する。 均質化処理条件は 450〜550 °Cの温度で行うのが好ましい。 450 で未満では、 铸 塊の結晶粒界面やセル境界に偏折した M g、 C uが十分に再固溶されず熱間圧延 割れの原因となる。 550 °Cを越えた温度では、 融点の低い A 1— M g系あるいは A l—M g— C u系晶出物が共晶融解を生じ、 熱間圧延時における割れ発生の原 因となる。  The method of manufacturing an aluminum alloy sheet according to the present invention will be described. An aluminum alloy having the above composition is melted and manufactured according to a conventional method, and the obtained ingot is homogenized. The homogenization treatment is preferably performed at a temperature of 450 to 550 ° C. If it is less than 450, g Mg and Cu deviated at the crystal grain interface and cell boundary of the lump are not sufficiently re-dissolved to cause hot rolling cracks. At temperatures exceeding 550 ° C, A1-Mg-based or Al-Mg-Cu-based crystallization, which has a low melting point, causes eutectic melting and causes cracking during hot rolling. .
均質化処理後、 熱間圧延を行い、 銹塊組織を展伸材組織とする。 熱間圧延の開 始温度は 250〜500 °Cであるが、 好ましくは 400°C未満とするのがよい。 250 °C 未満で熱間圧延を開始すると、 材料の変形抵抗が高く熱間圧延が困難となる。 熱 間圧延温度が高くなると、 析出物の分布態様の変化により、 所定の結晶粒組織お よび析出化合物の分布が得難くなる場合がある。  After homogenization, hot rolling is performed, and the rust structure is taken as the wrought material structure. The starting temperature of the hot rolling is from 250 to 500 ° C, and preferably less than 400 ° C. If hot rolling is started below 250 ° C, the hot rolling becomes difficult due to high deformation resistance of the material. When the hot rolling temperature is increased, it may be difficult to obtain a predetermined grain structure and a distribution of the precipitated compound due to a change in the distribution of the precipitate.
熱間圧延に続いて冷間圧延を行う。 必要に応じて、 冷間圧延中に中間焼鈍を行 つてもよい。 冷間圧延材の最終焼鈍は 350〜550 での温度で実施する。 350 °C未 満の焼鈍では、 熱間圧延で形成された組織の異方性が十分に消失しない場合があ り、 550 °Cを越えると再結晶粒界に局部溶解が生じるおそれがある。 最終焼鈍は、 連続焼鈍などの急速焼鈍処理によるのが好ましい。 After hot rolling, cold rolling is performed. If necessary, intermediate annealing may be performed during cold rolling. The final annealing of cold rolled material is carried out at temperatures between 350 and 550. In the case of annealing at less than 350 ° C, the anisotropy of the structure formed by hot rolling may not be sufficiently eliminated, and if it exceeds 550 ° C, local melting may occur at recrystallized grain boundaries. The final annealing is Preferably, rapid annealing treatment such as continuous annealing is used.
本発明においては、 A 1一 M g系合金中の不純物である F e、 S iを制限し、 合金組成の組合わせに応じて上記の製造条件の組合わせを調整することにより、 マトリックス中に存在する A 1 - F e - S i系化合物を特定の分布に制御すると ともに、 結晶粒径を特定の範囲に制御し、 この組織性状によって結晶粒界におけ る化合物を少なくして、 清浄な粒界としてキヤビティの生成を抑制し、 高温変形 中に平均で 20 111以下の再結晶粒が形成され、 350〜550 °Cの温度域において、 歪速度 10—
Figure imgf000007_0001
の高速成形でも、 350 %以上、 好ましくは 380 %以上の十分 な延性を得ることを可能とする。 発明を実施するための最良の形態
In the present invention, by limiting the impurities Fe and Si in the A1-Mg-based alloy and adjusting the combination of the above-described production conditions according to the combination of the alloy composition, The existing A 1 -Fe-Si compound is controlled to a specific distribution, and the crystal grain size is controlled to a specific range. The formation of cavities as grain boundaries is suppressed, and recrystallized grains of an average of 20 111 or less are formed during high-temperature deformation, and a strain rate of 10—
Figure imgf000007_0001
It is possible to obtain a sufficient ductility of 350% or more, preferably 380% or more, even with high-speed molding. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施例を比較例と対比して説明する。  Hereinafter, examples of the present invention will be described in comparison with comparative examples.
実施例 1、 比較例 1 Example 1, Comparative Example 1
表 1に示す組成の A 1— M g系アルミニウム合金を溶解し、 D C铸造法により 造塊した。 得られた鐯塊を 530でで 10時間均質化処理したのち、 30譲厚さとし、 390での温度で熱間圧延を開始し、 4讓厚さまで熱間圧延した。 ついで冷間圧延 を行って板厚を 2讓 とし、 480 °Cの温度に急速に加熱し 5分間保持する急速焼鈍 処理を行った。 これらの板材を試験材として、 温度 480て、 歪速度 10— 2/sで引張 試験を行った。 各試験材の平均結晶粒径(板面の平均結晶粒径) 、 粒径が 1 in 以上の A l - F e - Sし罕、化合物の 1隱 2当たりの個数、 引張試験により測定した 伸び率を表 1に示す。 なお、 化合物量は画像処理により求めた。 また表 1におい て、 本発明の条件を外れたものには下線を付した。 表 1 An A1-Mg-based aluminum alloy having the composition shown in Table 1 was melted and agglomerated by the DC method. After the obtained lump was homogenized at 530 for 10 hours, the thickness was reduced to 30 and hot rolling was started at a temperature of 390, followed by hot rolling to a thickness of 4 mm. Next, cold rolling was performed to reduce the sheet thickness to 2 mm, and rapid annealing was performed by rapidly heating to a temperature of 480 ° C and holding for 5 minutes. These plate as a test material, Te temperature of 480, a tensile test was performed at a strain rate of 10- 2 / s. Elongation measured S to罕, 1 hide 2 number per compound, by a tensile test - the average crystal grain size of each test material (average grain size of the plate surface), particle size 1 in more A l - F e The rates are shown in Table 1. The amount of the compound was determined by image processing. Also, in Table 1, those that are outside the conditions of the present invention are underlined. table 1
Figure imgf000008_0001
Figure imgf000008_0001
表 1に示すように、 本発明に従う試験材 No. 1〜5 は、 いずれも 400 %を越える 優れた伸び率を示した。 一方、 試験材 No. 6は C u量が多過ぎるため、 また試験材 No. 7は M g含有量が多過ぎるため、 レ、ずれも熱間圧延において割れが生じ試験片 が形成できなかった。 試験材 No. 8は、 不純物の F eおよび S iが多量に含まれる ため、 大径の化合物量が多く伸び率が劣る。 試験材 No. 9は M g量が少ないため、 弓【張変形中に再結晶が不十分となり伸び率が低レヽ。  As shown in Table 1, all of the test materials Nos. 1 to 5 according to the present invention exhibited excellent elongation exceeding 400%. On the other hand, test material No. 6 had too much Cu content, and test material No. 7 had too much Mg content. . Test material No. 8 has a large amount of large-diameter compounds and a low elongation rate because it contains a large amount of impurities Fe and Si. Test material No. 9 has a low Mg content, so the recrystallization is insufficient during bow deformation and the elongation is low.
実施例 2、 比較例 2 Example 2, Comparative Example 2
表 2に示す組成の A 1 一 M g系アルミニウム合金を、 実施例 1と同様に溶解、 铸造し、 実施例 1と同一の工程、 同一の条件で処理して厚さ 2mraの試験材を作製 し、 各試験材について実施例 1と同じ条件で引張試験を行った。 各試験材の平均 結晶粒径、 粒径 1 x m以上の A 1— F e— S i系化合物の量、 引張試験で測定さ れた伸び率を表 2に示す。 なお、 表 2において、 本発明の条件を外れたものには 下線を付した。 A 1-Mg-based aluminum alloy having the composition shown in Table 2 was melted and manufactured in the same manner as in Example 1, and processed in the same process and under the same conditions as in Example 1 to produce a test material having a thickness of 2 mra. Then, a tensile test was performed on each test material under the same conditions as in Example 1. Average crystal grain size of each test material, amount of A1-Fe-Si-based compound with a grain size of 1 xm or more, measured by tensile test Table 2 shows the calculated elongation. In addition, in Table 2, those which are out of the conditions of the present invention are underlined.
表 2 Table 2
Figure imgf000009_0001
Figure imgf000009_0001
表 2にみられるように、 本発明に従う試験材 No. 10〜12は、 いずれも 380 %を 越える優れた伸び率を示したが、 試験材 No. 13〜14は M nの含有量が多く、 試験 材 No. 15 は C r量が多いため、 ともに粒径が 1 zm以上の A 1—F e— S i系化 合物の分布が多く、 高温伸びが得られない。  As can be seen from Table 2, the test materials Nos. 10 to 12 according to the present invention all exhibited excellent elongation exceeding 380%, whereas the test materials Nos. 13 to 14 had a high Mn content. However, test material No. 15 has a large amount of Cr, so that the distribution of A1-Fe-Si-based compounds with a particle size of 1 zm or more is large, and high-temperature elongation cannot be obtained.
実施例 3、 比較例 3 Example 3, Comparative Example 3
実施例 1の試験材 No. 5と同一の組成を有するアルミニウム合金を、 実施例 1と 同様に溶解、 铸造し、 得られた铸塊を 520 でで 8時間均質化処理したのち、 鐯塊 を 30議厚さとして、 390 °Cの温度で熱間圧延を開始し、 4圆厚さまで熱間圧延し た。 続いて冷間圧延により 2匪厚の板材とし、 480での温度に急速加熱して 5分 間保持する急速焼鈍処理を行った。 作製された板材を試験材として、 表 3に示す ように、 成形温度、 歪速度を変えて引張試験を行った。 各試験材の伸び率を表 3 に示す。 表 3において、 本発明の条件を外れたものには下線を付した。 なお、 各 試験材の平均結晶粒径 (板面の平均結晶粒径) はいずれも 50〜60 mの範囲、 粒 径が 1 〃m以上の A l - F e - S i系化合物の 1譲2当たりの個数はいずれも 2000 個以下であった。 An aluminum alloy having the same composition as that of test material No. 5 of Example 1 was melted and produced in the same manner as in Example 1, and the obtained ingot was homogenized at 520 for 8 hours, and then the ingot was removed. Hot rolling was started at a temperature of 390 ° C with a thickness of 30 mm, and hot-rolled to a thickness of 4 mm. Subsequently, a two-thick plate was formed by cold rolling, subjected to rapid annealing at a temperature of 480 and maintained for 5 minutes. As shown in Table 3, a tensile test was performed using the prepared sheet material as a test material while changing the forming temperature and the strain rate. Table 3 shows the elongation percentage of each test material. In Table 3, those out of the conditions of the present invention are underlined. In addition, each The range of both 50-60 m (average crystal grain size of the plate surface) average crystal grain size of the test material, the particle diameter is more than 1 〃M A l - F e - 1 Yuzuru 2 per S i based compound The number was less than 2000.
表 3 Table 3
Figure imgf000010_0001
Figure imgf000010_0001
表 3に示すように、 本発明に従う試験材 No. 16〜20は、 いずれも 380 %以上の 優れた伸び率を示したが、 試験材 No. 21 は引張試験温度が高いため結晶粒が粗大 化し、 伸び率が低下している。 試験材 No. 22 は歪速度が小さいため、 変形中に結 晶粒の粗大化が生じ伸び率が低下した。 試験材 No. 23 は歪速度が大き過ぎるため 伸びの低下が生じた。 産業上の利用可能性  As shown in Table 3, the test materials Nos. 16 to 20 according to the present invention all exhibited excellent elongation of 380% or more, but the test material No. 21 had a high tensile test temperature and coarse grains. And the growth rate is decreasing. Test material No. 22 had a low strain rate, so the crystal grains became coarse during deformation and the elongation decreased. In test material No. 23, the elongation was reduced because the strain rate was too high. Industrial applicability
以上のとおり、 本発明によれば、 高温において、 歪速度が 10 —2〜10Vs のよ うな高速成形においても十分な超塑性伸びが得られる A 1—M g系アルミニウム 合金板が提供され、 当該アルミニゥム合金板を使用して超塑性成形を行うこと より成形時間が短縮され生産性が改善される。 As described above, according to the present invention, at high temperature, strain rate 10 - 2 ~10Vs yo Una A 1-M g series aluminum sufficient superplastic elongation can be obtained even in high-speed molding An alloy plate is provided, and the superplastic forming is performed using the aluminum alloy plate, thereby shortening the forming time and improving the productivity.

Claims

請 求 の 範 囲 The scope of the claims
1. Mg:3.0〜8.0 % (重量%、 以下同じ) 、 T i :0.001〜0·1 %を含有し、 不 純物としての F eを 0.06%以下、 S iを 0.06%以下に制限し、 残部 A 1および不 可避的不純物からなる合金よりなり、 該合金のマトリックス中に存在する粒径 11. Contain Mg: 3.0-8.0% (wt%, same hereafter), Ti: 0.001-0.1%, limit Fe as impurity to 0.06% or less, and limit Si to 0.06% or less. , The balance consisting of an alloy consisting of A1 and unavoidable impurities, and having a particle size of 1 in the matrix of the alloy.
〃m以上の A 1 -F e-S i系化合物が 2000個/画2以下、 平均結晶粒径が 25〜20 0 〃m、 350〜550での温度域で歪速度 10— 2〜10Q/s で成形加工した場合の伸び が 350 以上であることを特徴とする高速超塑性成形に優れたアルミニゥム合金 板。 A 1 -F eS i based compound above 〃M is 2,000 / image 2 or less, the average crystal grain size is 25 to 20 0 〃M, strain rate 10- 2 to 10 Q / s in a temperature range of at 350 to 550 An aluminum alloy sheet excellent in high-speed superplastic forming, characterized by having an elongation of 350 or more when formed by molding.
2. Cu:0.05〜0.50 を含有することを特徴とする請求項 1記載の高速超塑性 成形に優れたアルミニゥム合金板。  2. The aluminum alloy sheet excellent in high-speed superplastic forming according to claim 1, characterized by containing Cu: 0.05 to 0.50.
3. Mn:0.10 %以下、 C r :0.10 %以下のうちの 1種または 2種を含有するこ とを特徴とする請求項 1または 2記載の高速超塑性成形に優れたアルミ二ゥム合  3. The aluminum alloy excellent in high-speed superplastic forming according to claim 1 or 2, wherein one or two of Mn: 0.10% or less and Cr: 0.10% or less are contained.
4. 請求項 1〜 3記載のアルミニウム合金板を、 350〜550での温度で、 歪速度 10一3〜 10e/s で成形加工することを特徴とする高速超塑性成形に優れたアルミ二 ゥム合金板の成形方法。 4. An aluminum alloy sheet according to claim 1 to 3, wherein, at a temperature in the 350 to 550, secondary aluminum with excellent high-speed superplastic forming, characterized in that the molding at a strain rate of 10 one 3 ~ 10 e / s A method for forming a pum alloy plate.
PCT/JP1995/002564 1995-08-23 1995-12-12 Aluminum alloy sheet excellent in high-speed superplastic formability and process of forming the same WO1997008354A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP95940435A EP0846781B1 (en) 1995-08-23 1995-12-12 Process of forming an aluminium sheet with excellent high speed superplastic formability
DE69519444T DE69519444T2 (en) 1995-08-23 1995-12-12 Process for producing an aluminum sheet with excellent high speed super plasticity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP23770795A JP3145904B2 (en) 1995-08-23 1995-08-23 Aluminum alloy sheet excellent in high speed superplastic forming and its forming method
JP7/237707 1995-08-23

Publications (1)

Publication Number Publication Date
WO1997008354A1 true WO1997008354A1 (en) 1997-03-06

Family

ID=17019320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/002564 WO1997008354A1 (en) 1995-08-23 1995-12-12 Aluminum alloy sheet excellent in high-speed superplastic formability and process of forming the same

Country Status (5)

Country Link
US (1) US20010001969A1 (en)
EP (1) EP0846781B1 (en)
JP (1) JP3145904B2 (en)
DE (1) DE69519444T2 (en)
WO (1) WO1997008354A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4534573B2 (en) * 2004-04-23 2010-09-01 日本軽金属株式会社 Al-Mg alloy plate excellent in high-temperature high-speed formability and manufacturing method thereof
EP1842935B1 (en) * 2005-01-19 2014-10-29 Kabushiki Kaisha Kobe Seiko Sho Aluminum alloy plate and process for producing the same
WO2007080938A1 (en) 2006-01-12 2007-07-19 Furukawa-Sky Aluminum Corp. Aluminum alloys for high-temperature and high-speed forming, processes for production thereof, and process for production of aluminum alloy forms
KR100676174B1 (en) * 2006-05-25 2007-02-01 주식회사 엠코 Attachment-free safety net support for steel construction frame
US8323428B2 (en) * 2006-09-08 2012-12-04 Honeywell International Inc. High strain rate forming of dispersion strengthened aluminum alloys
JP2016191137A (en) * 2015-03-31 2016-11-10 株式会社神戸製鋼所 Aluminum alloy sheet for resin coated can body
JP2018199866A (en) * 2018-08-24 2018-12-20 株式会社神戸製鋼所 Aluminum alloy sheet for resin coated can body
CN113695538B (en) * 2021-09-03 2023-07-25 中铝河南洛阳铝加工有限公司 Preparation method of high-formability mirror aluminum plate strip and mirror aluminum plate strip

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02285046A (en) * 1989-04-26 1990-11-22 Sky Alum Co Ltd Aluminum alloy rolled sheet for superplastic working and its manufacture
JPH05212562A (en) * 1992-01-31 1993-08-24 Sky Alum Co Ltd Roll bond panel and production thereof
JPH0617178A (en) * 1991-09-26 1994-01-25 Takeshi Masumoto Superplastic aluminum base alloy material and manufacture of superplastic alloy material
JPH06240395A (en) * 1993-02-12 1994-08-30 Sky Alum Co Ltd Aluminum alloy sheet for superplastic forming, its production and superplastic formed body using it
JPH07197177A (en) * 1994-01-10 1995-08-01 Sky Alum Co Ltd Aluminum alloy rolled sheet for superplastic formation and low in cavitation

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59159961A (en) * 1983-02-28 1984-09-10 Mitsubishi Alum Co Ltd Superplastic al alloy
JP2517445B2 (en) * 1990-06-05 1996-07-24 スカイアルミニウム株式会社 A1 alloy plate for forming diaphragm and method for manufacturing the same
JPH05230583A (en) * 1992-02-25 1993-09-07 Mitsubishi Alum Co Ltd High strength al alloy sheet excellent in formability
JPH05345963A (en) * 1992-06-12 1993-12-27 Furukawa Alum Co Ltd Manufacture of high formability aluminum alloy sheet
CA2109004A1 (en) * 1992-10-23 1994-04-24 Ryo Shoji Process for manufacturing a1-mg alloy sheets for press forming
EP0599696B1 (en) * 1992-11-17 1996-07-03 The Furukawa Electric Co., Ltd. Process for manufacturing aluminum alloy sheets excellent in strength and deep drawing formability
JPH07145441A (en) * 1993-01-27 1995-06-06 Toyota Motor Corp Superplastic aluminum alloy and its production
JPH08199272A (en) * 1995-01-19 1996-08-06 Nippon Steel Corp Aluminum alloy sheet and forming method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02285046A (en) * 1989-04-26 1990-11-22 Sky Alum Co Ltd Aluminum alloy rolled sheet for superplastic working and its manufacture
JPH0617178A (en) * 1991-09-26 1994-01-25 Takeshi Masumoto Superplastic aluminum base alloy material and manufacture of superplastic alloy material
JPH05212562A (en) * 1992-01-31 1993-08-24 Sky Alum Co Ltd Roll bond panel and production thereof
JPH06240395A (en) * 1993-02-12 1994-08-30 Sky Alum Co Ltd Aluminum alloy sheet for superplastic forming, its production and superplastic formed body using it
JPH07197177A (en) * 1994-01-10 1995-08-01 Sky Alum Co Ltd Aluminum alloy rolled sheet for superplastic formation and low in cavitation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0846781A4 *

Also Published As

Publication number Publication date
DE69519444T2 (en) 2001-06-13
JPH0959736A (en) 1997-03-04
US20010001969A1 (en) 2001-05-31
EP0846781B1 (en) 2000-11-15
JP3145904B2 (en) 2001-03-12
EP0846781A4 (en) 1998-11-18
DE69519444D1 (en) 2000-12-21
EP0846781A1 (en) 1998-06-10

Similar Documents

Publication Publication Date Title
EP0610006B1 (en) Superplastic aluminum alloy and process for producing same
EP1339888B1 (en) High strength magnesium alloy
EP0480402B1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
JPS608300B2 (en) Manufacturing method of metal products
JPS59159961A (en) Superplastic al alloy
JPS623225B2 (en)
CN100482834C (en) Easily-workable magnesium alloy and method for preparing same
WO1997008354A1 (en) Aluminum alloy sheet excellent in high-speed superplastic formability and process of forming the same
CN113474479B (en) Method for producing sheet or strip from aluminium alloy and sheet, strip or shaped part produced therefrom
JP3516566B2 (en) Aluminum alloy for cold forging and its manufacturing method
JP2931538B2 (en) High strength aluminum alloy material for bumpers excellent in bending workability and method for producing the same
JPH0726342A (en) Aluminum alloy sheet for superplastic forming, capable of cold preforming, and its production
JP3523500B2 (en) Pressed part of magnesium alloy and method of manufacturing the same
JPH07305131A (en) Aluminum alloy sheet for super plastic forming capable of cold preforming and its production
JPH0447019B2 (en)
JPH10259441A (en) Aluminum alloy sheet excellent in high speed superplastic formability and small number of cavity after forming and its production
JP3286119B2 (en) Aluminum alloy foil and method for producing the same
JP3297010B2 (en) Manufacturing method of nearβ type titanium alloy coil
JP2858069B2 (en) Stress corrosion cracking resistant high strength aluminum alloy sheet and method for producing the same
US3649377A (en) Process for improving creep resistance of zinc-copper alloys
JPS5911651B2 (en) Superplastic aluminum alloy and its manufacturing method
JPH0259859B2 (en)
JP2895510B2 (en) Manufacturing method of aluminum alloy material for forming
JPH06145869A (en) Aluminum alloy sheet for high speed forming and its production
JP3247149B2 (en) Manufacturing method of aluminum alloy sheet

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09000097

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1995940435

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1995940435

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1995940435

Country of ref document: EP