JP2517445B2 - A1 alloy plate for forming diaphragm and method for manufacturing the same - Google Patents

A1 alloy plate for forming diaphragm and method for manufacturing the same

Info

Publication number
JP2517445B2
JP2517445B2 JP14672390A JP14672390A JP2517445B2 JP 2517445 B2 JP2517445 B2 JP 2517445B2 JP 14672390 A JP14672390 A JP 14672390A JP 14672390 A JP14672390 A JP 14672390A JP 2517445 B2 JP2517445 B2 JP 2517445B2
Authority
JP
Japan
Prior art keywords
diaphragm
less
rolled
forming
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14672390A
Other languages
Japanese (ja)
Other versions
JPH0472030A (en
Inventor
俊雄 小松原
守 松尾
勉 田形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sky Aluminium Co Ltd
Original Assignee
Sky Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sky Aluminium Co Ltd filed Critical Sky Aluminium Co Ltd
Priority to JP14672390A priority Critical patent/JP2517445B2/en
Priority to GB9111623A priority patent/GB2245591B/en
Priority to CA 2043852 priority patent/CA2043852A1/en
Publication of JPH0472030A publication Critical patent/JPH0472030A/en
Application granted granted Critical
Publication of JP2517445B2 publication Critical patent/JP2517445B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • B29C43/3642Bags, bleeder sheets or cauls for isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Forging (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention 【産業上の利用分野】[Industrial applications]

本発明は、熱可塑樹脂系複合材のダイアフラム成形用
アルミニウム合金、すなわち、200〜450℃で熱可塑樹脂
系複合材のダイアフラム成形加工を行なうためのアルミ
ニウム合金に関するものである。
TECHNICAL FIELD The present invention relates to an aluminum alloy for forming a diaphragm of a thermoplastic resin composite material, that is, an aluminum alloy for performing a diaphragm forming process of a thermoplastic resin composite material at 200 to 450 ° C.

【従来の技術】[Prior art]

近年、主に航空機の分野で、高強度、高弾性率を有す
るFRP(繊維強化複合材)の需要が高まっている。 当初はカーボン等の繊維にエポキシ系の熱硬化樹脂を
含浸させた複合材が開発されたが、これらのFRPは耐熱
性、耐衝撃性が劣る欠点がある。最近、熱硬化樹脂に変
わって、繊維に熱可塑樹脂を含浸させた繊維強化複合材
が開発され航空宇宙関係の複合材製品に飛躍的に進出し
つつある。熱可塑樹脂にはPEEK(ポリエーテルエーテル
ケトン)やPAK(ポリアリレンケトン)等が用いられる
ことが多いが、いずれも室温では硬化した状態であるの
でプレス等の室温成形はできない。従って、これらのFR
Pは加熱軟化状態で成形し、常温に冷却し硬化させるプ
ロセスが必要となる。 より具体的にはアルミニウム等の温間成形性に優れる
材料で繊維に含浸させた熱可塑樹脂に挟み、温間プレ
ス、あるいはダイアフラム成形(圧空成形)されるのが
一般的である。
In recent years, mainly in the field of aircraft, the demand for FRP (fiber reinforced composite material) having high strength and high elastic modulus is increasing. Initially, composite materials in which fibers such as carbon were impregnated with an epoxy thermosetting resin were developed, but these FRPs have the drawback of being inferior in heat resistance and impact resistance. Recently, in place of thermosetting resin, a fiber-reinforced composite material in which fibers are impregnated with a thermoplastic resin has been developed, and it is rapidly expanding into composite material products related to aerospace. PEEK (polyetheretherketone), PAK (polyaryleneketone), etc. are often used as the thermoplastic resin, but since they are all cured at room temperature, room temperature molding such as pressing cannot be performed. Therefore, these FR
P needs to be molded in a heat-softened state, cooled to room temperature and cured. More specifically, it is generally carried out by sandwiching it between thermoplastic resins in which fibers are impregnated with a material having excellent warm moldability such as aluminum and performing warm pressing or diaphragm molding (pressure molding).

【解決すべき問題点】[Problems to be solved]

近年、400℃以上の高温で300%以上の伸びを示す超塑
性アルミニウム合金材料に関して種々の研究が為されて
いる。アルミニウム超塑性合金としては、Al−78%Zn,A
l−33%Cu,Al−6%Cu−0.4%Zr(SUPRAL),Al−Zn−Mg
−Cu合金(7475,7075),Al−2.5〜6%Mg−0.05〜0.6%
Zr合金等が知られている。 しかし、SUPRALは除くこれらの熱塑性合金は低い温度
での伸びは低く、充分な伸びを得るためには0.8TM(TM:
融点゜K)程度の加熱が必要であることが経験的に知ら
れており、これはPEEK等の樹脂の成形温度よりはるかに
高い温度である。 実際、超塑性アルミニウム合金を熱可塑樹脂系複合材
のダイアフラム成形に用いようとしたが次のような問題
があることが確認された。すなわち、超塑性アルミニウ
ム合金は一般に450℃を超える高温での成形性は優れて
いるが、200〜450℃にまたがる熱可塑樹脂系複合材のダ
イアフラム成形の温度域では成形能が劣り、かつ、最適
条件下での歪速度が遅いため、工場規模での生産の場合
成形に時間がかかり、生産性が悪い。 また、熱可塑樹脂系複合材のダイアフラム成形加工を
行なうためのアルミニウム合金として唯一使用された実
績があるのは、Al−6%Cu−0.4%Zr(SUPRAL)である
が、製法が複雑なので生産性が悪くコストが高くつき、
さらに高濃度のCuを含むので使い捨ての用途であるにも
拘らずリサイクルしにくい。 本願発明は以上の事情を背景として生まれたもので、
熱可塑樹脂系複合材の温間ダイアフラム成形加工時の成
形性、すなわち200℃〜450℃の温度域でのより一層の成
形性(特に伸び)の優れたアルミニウム合金を簡単な製
法で提供することを目的とするものである。
In recent years, various studies have been conducted on superplastic aluminum alloy materials that show elongation of 300% or more at a high temperature of 400 ° C or more. As a superplastic aluminum alloy, Al-78% Zn, A
l-33% Cu, Al-6% Cu-0.4% Zr (SUPRAL), Al-Zn-Mg
-Cu alloy (7475,7075), Al-2.5-6% Mg-0.05-0.6%
Zr alloy and the like are known. However, these thermoplastic alloys, except SUPRAL, have low elongation at low temperatures, and 0.8T M (T M :
It is empirically known that heating at a melting point of about K) is required, which is much higher than the molding temperature of a resin such as PEEK. Actually, the superplastic aluminum alloy was tried to be used for the diaphragm molding of the thermoplastic resin-based composite material, but it was confirmed that there were the following problems. That is, although superplastic aluminum alloys are generally excellent in formability at high temperatures above 450 ° C, they are inferior in formability in the temperature range of diaphragm formation of thermoplastic resin-based composite materials over 200 to 450 ° C, and are optimal. Since the strain rate under the conditions is slow, it takes a long time to mold in the case of production on a factory scale, resulting in poor productivity. Al-6% Cu-0.4% Zr (SUPRAL) is the only aluminum alloy that has been used as an aluminum alloy for the diaphragm forming process of thermoplastic resin-based composite materials. Poor performance and high cost,
Furthermore, since it contains a high concentration of Cu, it is difficult to recycle even though it is a disposable application. The present invention was born in the background of the above circumstances,
To provide an aluminum alloy having excellent formability (especially elongation) in the temperature range of 200 ° C to 450 ° C in a warm diaphragm forming process of a thermoplastic resin composite material by a simple production method. The purpose is.

【問題を解決する為の手段】[Means for solving the problem]

前述のような問題点を解決するため本発明者らが鋭意
研究の結果、アルミニウム合金の成分量特に主要添加成
分のMgと不純物元素の量・最終焼鈍後の金属間化合物の
粒径・ダイアフラム成形時の再結晶粒形状を適切に調整
する事によって熱可塑樹脂系複合材のダイアフラム成形
に適したAl合金を得られることを見いだし、この発明を
なすに至った。 すなわち、請求項1は、 Mg:2.0〜6.0%(重量で、以下同じ) Be:0.0001%〜0.01%を含み、 結晶粒微細化のため Ti:0.001%〜0.15%を単独でもしくは B:0.0001%〜0.05%と同時に含み、 不純物としての Fe:0.2%以下,Si:0.2%以下,Mn:0.05%以下,Cr:0.05%
以下,Zr:0.05%以下,V:0.05%以下であり、 残部その他の不可避不純物およびアルミニウムからな
り、 ダイアフラム成形加工時の不純物に基づく金属間化合
物粒子の粒径が最大10μm以下であり、さらに、ダイア
フラム成形加工時の再結晶粒が、圧延方向に平行な断面
において(圧延方向の結晶粒径の平均/板厚方向の結晶
粒径の平均)≦1.5であることを特徴とする熱可塑樹脂
系複合材のダイアフラム成形用Al合金板。 請求項2は 添加成分として更に、 Cu:0.05〜2.0% Zn:0.2〜2.5% の一種または二種を含有することを特徴とする請求項1
に記載のダイアフラム成形用Al合金板。 請求項3は 請求項1または2記載の化学組成を有する合金の半連
続鋳塊を450℃〜580℃で0.5〜48時間加熱した後、開始
温度400℃〜530℃で熱間圧延し、必要に応じ中間焼鈍工
程をはさんで冷間圧延し、最終再結晶処理の前に少なく
とも15%以上冷間圧延を施すことを特徴とする熱可塑樹
脂系複合材のダイアフラム成形用Al合金板の製造方法。 請求項4は 請求項1または2記載の化学組成を有する合金の連続
鋳造板を、必要に応じ中間焼鈍工程をはさんで冷間圧延
し、最終再結晶処理の前に少なくとも15%以上冷間圧延
を施すことを特徴とする熱可塑樹脂系複合材のダイアフ
ラム成形用Al合金板の製造方法。である。
As a result of intensive studies by the present inventors in order to solve the above-mentioned problems, the amounts of components of the aluminum alloy, particularly the amounts of Mg and impurity elements of main additive components, the grain size of the intermetallic compound after the final annealing, and the diaphragm forming It was found that an Al alloy suitable for diaphragm forming of a thermoplastic resin composite material can be obtained by appropriately adjusting the shape of recrystallized grains at that time, and the present invention was accomplished. That is, claim 1 contains Mg: 2.0 to 6.0% (by weight, the same applies hereinafter) Be: 0.0001% to 0.01%, and Ti: 0.001% to 0.15% alone or B: 0.0001 for grain refinement. % -0.05% at the same time, Fe as impurities: 0.2% or less, Si: 0.2% or less, Mn: 0.05% or less, Cr: 0.05%
Below, Zr: 0.05% or less, V: 0.05% or less, consisting of balance and other unavoidable impurities and aluminum, and the particle size of intermetallic compound particles based on impurities during diaphragm forming is 10 μm or less at the maximum, and A thermoplastic resin system characterized in that the recrystallized grains during diaphragm forming are (average of grain size in rolling direction / average grain size in sheet thickness direction) ≦ 1.5 in a cross section parallel to the rolling direction. Al alloy plate for diaphragm formation of composite materials. Claim 2 further contains, as an additive component, one or two of Cu: 0.05 to 2.0% and Zn: 0.2 to 2.5%.
An aluminum alloy plate for forming a diaphragm according to. According to claim 3, a semi-continuous ingot of the alloy having the chemical composition according to claim 1 or 2 is heated at 450 ° C to 580 ° C for 0.5 to 48 hours, and then hot rolled at a starting temperature of 400 ° C to 530 ° C. Manufacture of Al alloy plate for diaphragm forming of thermoplastic resin composite material characterized by cold rolling with intermediate annealing step depending on the above, and cold rolling by at least 15% before final recrystallization treatment Method. A fourth aspect of the present invention is a continuous cast sheet of the alloy having the chemical composition according to the first or second aspect, which is cold-rolled with an intermediate annealing step if necessary, and cold-rolled by at least 15% or more before the final recrystallization treatment. A method for producing an aluminum alloy plate for forming a diaphragm of a thermoplastic resin-based composite material, which comprises rolling. Is.

【作用】[Action]

まず本発明の成分組成の限定理由を以下に示す。 Mg: Mgは、温間加工時に、加工軟化もしくは、動的再結晶
を促進させることにより、温間加工性を向上させる。 2%未満では強度が不足し、温間加工性が不十分であ
り、6%を超えると熱間圧延性・冷間圧延性が悪くな
り、製造が困難となる。したがってMg量は2〜6%とす
る。 Be; 溶解時のMg酸化防止、ダイアフラム成形時の型かじり
防止のためBeを添加する。 Beが0.0001%未満ではこの効果がなく、Beが0.01%を
超えると効果が飽和する。 Ti,B; 鋳塊結晶粒微細化のためTiを単独でもしくはBと同時
に添加する。但し、Tiが0.001%未満ではこの効果がな
く、0.15%を超えると初晶TiAl3粒子が晶出してしま
う。 また、Bを添加する場合にはBが0.0001%未満では効
果がなく、0.05%を超えるとTiB2粒子が生成してしま
う。 Cu,Zn; Cu,Znは強度を向上させるとともに、積層欠陥エネル
ギーを増加させ、加工時の転位セル構造を強化する。 Cu,Znが各々0.05%,0.2%未満ではこの効果が不十分
であり、またCu,Znが各々2.0%,2.5%を超えると耐食性
が低下するとともにCu,Znが粒界析出し温間伸びが低下
する。 不純物Fe,Si,Mn,Cr,Zr,V,その他; Fe,Si,Mn,Cr,Zr,V,その他の不純物が多く含有される
と、鋳造時に粗大な金属間化合物が生成されやすく、一
度形成されたこれらの金属間化合物はその後の加工熱処
理で除去することはできない。これらの金属間化合物は
10μm以上になるとダイアフラム成形時に破断の起点に
なり、ダイアフラム成形性を著しく低下させる。そこで
Feは0.2%以下,Siは0.2%以下,Mnは0.05%以下,Crは0.0
5%以下,Zrは0.05%以下,Vは0.05%以下とする。 なおその他の不純物は合計で0.1%以下とする。 次に、金属組成の限定理由を以下に示す。 不純物に基づく金属間化合物粒子の粒径; これらの金属間化合物は10μm以上になるとダイアフ
ラム成形時に破断の起点になり、ダイアフラム成形性を
著しく低下させる。よってダイアフラム成形加工時にお
ける金属間化合物は最大10μm以下であることが必要で
ある。 ダイアフラム成形加工時の再結晶粒形状; 200〜450℃にまたがる熱可塑樹脂系複合材のダイアフ
ラム成形の温度域では、「粒内変形」と「(動的及び静
的)再結晶の繰り返し」によって変形する。ダイアフラ
ム成形加工時の再結晶粒形状が偏平だと、「粒内変形」
において局部応力集中して破断を招き易く、「(動的及
び静的)再結晶」においても不均一再結晶を生じるため
局部応力集中して破断を招き易い。 よって本願発明においてはダイアフラム成形加工時の
再結晶粒形状の偏平度の尺度として、圧延方向に平行な
断面において(圧延方向の結晶粒径の平均/板厚方向の
結晶粒径の平均)をとり、この値が1.5以下であること
を必要とする。 なお上記の金属間化合物粒子の粒径と再結晶粒形状の
規定は、ダイアフラム成形加工時にこれを満たしていれ
ば良い。従って、ダイアフラム成形加工工程の余熱(例
えば400℃で5分保持)後で実際のダイアフラム成形加
工直前に測定した値が上記を満たしていれば良い。しか
しこれはシミュレーション加熱を行った場合等を除いて
通常は不可能なことが多く、板製造工程の最終焼鈍で再
結晶させた場合には最終焼鈍後とダイアフラム成形加工
時との組織変化はわずかなので、便宜上最終焼鈍板の段
階での測定値が上記を満たしていれば良いこととする。 最後に製造方法について説明する。 鋳造:鋳造方法としては、半連続鋳造(DC鋳造)が一般
的である。 鋳塊加熱: 鋳塊を450℃〜580℃で0.5〜48時間加熱する。 この加熱は1段で行っても均熱処理等と組み合わせて
多段で行ってもよい。多段で行う場合、そのなかでの最
高温度での条件がこの熱処理条件を満たせばよい。 この条件未満の加熱では熱間圧延の開始温度がを400
℃にすることが困難となり、均質化の効果も無い。 この条件を超える加熱では金属間化合物の粗大化を招
きダイアフラム成形性を妨げ、また共晶融解を生じる恐
れもある。 熱間圧延開始温度; 400℃未満では熱間圧延性が低下し、530℃を超えると
Mgの高温脆化により熱間圧延時に耳割れが発生しやすく
なる。 よって400〜530℃とする。 最終再結晶処理前の冷間圧下率; 15%未満だと最終再結晶処理時に再結晶が生じなかっ
たり不均一再結晶になったりして、ダイアフラム成形性
を低下させる。 よって15%以上とする。 なお、バッチ焼鈍の場合250℃〜450℃で0.5〜24時
間、連続焼鈍の場合300℃〜580℃で保持無しか5分以下
の条件であれば、熱間圧延と冷間圧延の間および/また
は冷間圧延の途中に、適宜中間焼鈍を施してもなんら本
発明の効果を損なうものではない。 必要なのは、最終再結晶処理前の冷間圧下率を15%以
上とすることである。 最終再結晶処理; 一般に最終焼鈍をほどこし、再結晶組織とする。 但し、ダイアフラム成形は、熱可塑樹脂の軟化温度、
すなわち、200℃から450℃で行なわれるため、熱可塑樹
脂をアルミニウム材で挟んだ材料は、加熱された成形機
内にセットされ材料が所定の温度になるまで保持するこ
とによって再結晶する。あるいは別の予熱炉を用いるこ
とによって、予熱され、この予熱の温度が、250℃以上
で、予熱中に再結晶が生じる場合には、板製造工程にお
ける最終焼鈍により再結晶組織にしておく必要はない。 条件は再結晶する温度・保持時間であれば良く、焼鈍
による場合には連続焼鈍によってもバッチ焼鈍によって
もかまわない。 バッチ焼鈍の場合、250℃〜400℃で0.5時間以上が一
般的であり、連続焼鈍の場合、350℃〜550℃で保持は無
しか多くても180秒以内とする。 以上、鋳造法は半連続鋳造(DC鋳造)を用いた例で説
明してきたが、連続鋳造(CC鋳造)でもかまわない。こ
の場合、熱間圧延が不要なので鋳塊加熱に替わる連鋳板
の加熱も不要である。 以上をまとめると、本発明のアルミニウム合金板の製
法は、次に示すようなバイエーションを有する。但し、
括弧内は必須ではない工程である。 半連続鋳造→鋳塊加熱→熱間圧延→(中間焼鈍)→冷間
圧延→(中間焼鈍)→冷間圧延→(最終焼鈍) 連続鋳造→(連鋳板加熱)→冷間圧延→(中間焼鈍)→
冷間圧延→(最終焼鈍)
First, the reasons for limiting the component composition of the present invention are shown below. Mg: Mg improves warm workability by promoting work softening or dynamic recrystallization during warm working. If it is less than 2%, the strength is insufficient and the warm workability is insufficient, and if it exceeds 6%, the hot rolling property / cold rolling property is deteriorated, and the production becomes difficult. Therefore, the amount of Mg is set to 2 to 6%. Be; Add Be to prevent Mg oxidation during melting and to prevent galling during diaphragm molding. When Be is less than 0.0001%, this effect does not exist, and when Be exceeds 0.01%, the effect is saturated. Ti, B; Ti is added alone or at the same time as B for refining the ingot crystal grains. However, if Ti is less than 0.001%, this effect does not exist, and if it exceeds 0.15%, primary TiAl 3 particles are crystallized. Further, when B is added, if B is less than 0.0001%, there is no effect, and if it exceeds 0.05%, TiB 2 particles are generated. Cu, Zn; Cu, Zn improves the strength, increases the stacking fault energy, and strengthens the dislocation cell structure during processing. If Cu and Zn are less than 0.05% and 0.2%, respectively, this effect is insufficient.If Cu and Zn exceed 2.0% and 2.5%, respectively, corrosion resistance decreases and Cu and Zn precipitate at grain boundaries, causing a warm elongation. Is reduced. Impurities Fe, Si, Mn, Cr, Zr, V, etc .; If Fe, Si, Mn, Cr, Zr, V, and other impurities are contained in large amounts, coarse intermetallic compounds are likely to be generated during casting. The formed intermetallic compounds cannot be removed by the subsequent thermomechanical treatment. These intermetallic compounds are
If it is 10 μm or more, it becomes a starting point of breakage during diaphragm molding, and the diaphragm moldability is remarkably reduced. Therefore
Fe 0.2% or less, Si 0.2% or less, Mn 0.05% or less, Cr 0.0%
5% or less, Zr is 0.05% or less, and V is 0.05% or less. The total amount of other impurities is 0.1% or less. Next, the reasons for limiting the metal composition are shown below. Particle diameter of intermetallic compound particles based on impurities; When the intermetallic compound has a particle size of 10 μm or more, it becomes a starting point of fracture during diaphragm molding, and the diaphragm moldability is remarkably deteriorated. Therefore, the intermetallic compound must be 10 μm or less at the maximum during the diaphragm forming process. Recrystallized grain shape during diaphragm forming process: In the temperature range of diaphragm forming of thermoplastic resin composite material that spans 200 to 450 ° C, "intragranular deformation" and "(dynamic and static) recrystallization repeat" Deform. If the recrystallized grain shape during diaphragm forming is flat, "intra-grain deformation"
In (3), local stress concentration is likely to cause fracture, and in "(dynamic and static) recrystallization", non-uniform recrystallization occurs, so that local stress concentration is likely to cause fracture. Therefore, in the present invention, as a measure of the flatness of the recrystallized grain shape during the diaphragm forming process, (average grain size in rolling direction / average grain size in plate thickness direction) is taken in a cross section parallel to the rolling direction. , Requires that this value be less than or equal to 1.5. The particle size and recrystallized particle shape of the intermetallic compound particles should be satisfied when the diaphragm is formed. Therefore, the value measured after the residual heat of the diaphragm forming process (for example, holding at 400 ° C. for 5 minutes) immediately before the actual diaphragm forming process may satisfy the above. However, this is usually impossible except in the case of performing simulation heating, and when recrystallized in the final annealing of the plate manufacturing process, there is little change in the structure between the final annealing and the diaphragm forming process. Therefore, for the sake of convenience, it is only necessary that the measured value at the stage of the final annealed plate satisfies the above. Finally, the manufacturing method will be described. Casting: As a casting method, semi-continuous casting (DC casting) is generally used. Ingot heating: The ingot is heated at 450 ° C to 580 ° C for 0.5 to 48 hours. This heating may be performed in one step or may be performed in multiple steps in combination with soaking. When performing in multiple stages, the condition at the highest temperature among them should satisfy this heat treatment condition. If heating below this condition, the hot rolling start temperature will be 400
It becomes difficult to bring the temperature to ℃, and there is no homogenizing effect. Heating above this condition may lead to coarsening of the intermetallic compound, impairing diaphragm formability, and possibly causing eutectic melting. Hot rolling start temperature: Hot rolling property deteriorates below 400 ° C, and exceeds 530 ° C
Due to the high temperature embrittlement of Mg, ear cracks are likely to occur during hot rolling. Therefore, it should be 400-530 ℃. Cold reduction rate before final recrystallization treatment: If it is less than 15%, recrystallization does not occur during final recrystallization treatment or non-uniform recrystallization occurs, resulting in deterioration of diaphragm formability. Therefore, it should be 15% or more. In the case of batch annealing, 250 ° C to 450 ° C for 0.5 to 24 hours, and in the case of continuous annealing, 300 ° C to 580 ° C without holding or for 5 minutes or less, hot rolling and cold rolling and / or Alternatively, the effect of the present invention will not be impaired even if intermediate annealing is appropriately performed during cold rolling. What is required is a cold reduction ratio of 15% or more before the final recrystallization treatment. Final recrystallization treatment: Generally, final annealing is performed to obtain a recrystallized structure. However, the diaphragm molding is the softening temperature of the thermoplastic resin,
That is, since the process is carried out at 200 ° C. to 450 ° C., the material in which the thermoplastic resin is sandwiched between the aluminum materials is recrystallized by being set in the heated molding machine and being held until the material reaches a predetermined temperature. Alternatively, if another preheating furnace is used for preheating and the temperature of this preheating is 250 ° C. or higher and recrystallization occurs during preheating, it is not necessary to make a recrystallization structure by final annealing in the plate manufacturing process. Absent. The conditions may be the temperature and the holding time for recrystallization, and when annealing, continuous annealing or batch annealing may be used. In the case of batch annealing, it is generally performed at 250 ° C to 400 ° C for 0.5 hour or longer, and in the case of continuous annealing, it is kept at 350 ° C to 550 ° C for no holding or at most 180 seconds. In the above, the casting method has been described by using the example of using semi-continuous casting (DC casting), but continuous casting (CC casting) may also be used. In this case, since hot rolling is unnecessary, it is not necessary to heat the continuous casting plate instead of heating the ingot. Summarizing the above, the method for producing an aluminum alloy plate of the present invention has the following viations. However,
Steps in parentheses are optional steps. Semi-continuous casting → Ingot heating → Hot rolling → (Intermediate annealing) → Cold rolling → (Intermediate annealing) → Cold rolling → (Final annealing) Continuous casting → (Continuous cast plate heating) → Cold rolling → (Intermediate casting Annealing) →
Cold rolling → (final annealing)

【実施例】【Example】

第1表に示す成分組成の合金を断面1000mm×400mmの
サイズにDC鋳造し、その鋳塊にたいし530℃×10時間の
均質化処理を施し、500℃×3時間の加熱を行い450℃で
熱間圧延を開始し板厚を4mmに仕上げた、この熱延板を
冷間圧延で板厚1mmにした(冷間圧延率75%)後、350℃
×2時間の最終焼鈍を施した。また、合金1と合金3と
ほぼ同じ成分組成の合金を厚さ3.0mm×幅400mmのサイズ
にCC鋳造し、冷間圧延で板厚1mmにした(冷間圧延率66.
6%)後、350℃×2時間の最終焼鈍を施した板も用意し
それぞれ合金1′,3′とした。 この最終焼鈍後の材料を圧延面に平行に研磨し、 画像解析装置を用いて金属間化合物粒子の最大サイズを
測定した。結果を第2表に示す。発明合金の金属間化合
物粒子のサイズは比較合金にくらべて小さくなってい
る。 次に、熱可塑樹脂系複合材のダイアフラム成形性を比
較するため400℃での温間引張り試験での伸びを測定し
た。結果を第3表に示す。発明合金の温間伸びは比較合
金にくらべて大きくなっており特に歪速度が大きくなる
にしたがってこの差が大きくなる。 さらに上記の冷間圧延で板厚1mmにした板を350℃×2
時間の最終焼鈍を施した材料、および一部板製造工程の
この段階で最終焼鈍を施さないが次のバルジ成形機中で
昇温保持をうけ再結晶する材料で、炭素繊維を含浸させ
た厚さ0.1mmのPEEK樹脂を8枚重ねたものを挟み、温度4
00℃で5分保持した後、直径100mmのバルジ成形をする
ことによるダイアフラム成形を行い、バルジ成形高さと
バルジ成形機で昇温し400℃で5分保持後の結晶粒サイ
ズを測定し圧延方向・板厚方向の比(圧延方向の結晶粒
径の平均/板厚方向の結晶粒径の平均)をとった。結果
を第4表に示す。 発明合金の結晶粒形状は比較合金にくらべて偏平でな
く(圧延方向の結晶粒径の平均/板厚方向の結晶粒径の
平均)が1.5以下になっており、発明合金の成形高さは
比較合金にくらべて短時間でしかも大きくなっている。 次に、参考までに超塑性、温間成形後の常温強度を構
造用材料として代表的なAl−Mg系の従来合金と比較す
る。400℃で50%温間引張りを行なった材料から、JIS5
号試験片を切出し、常温で引張り試験を行なった。結果
を第5表にしめす。 発明合金は温間成形後も同レベルのMg量で比較した場
合、温間引張りを行わなかった従来合金と同等以上の強
度を有し、超塑性成形材料としても使用可能である。
An alloy with the composition shown in Table 1 was DC cast into a size of 1000 mm x 400 mm in cross section, and the ingot was homogenized at 530 ° C for 10 hours and heated at 500 ° C for 3 hours to 450 ° C. After that, hot rolling was started to finish the plate thickness to 4 mm, and this hot rolled plate was cold rolled to a plate thickness of 1 mm (cold rolling rate 75%), and then 350 ° C.
× Final annealing for 2 hours was performed. In addition, an alloy having almost the same composition as alloys 1 and 3 was CC cast into a size of 3.0 mm thick and 400 mm wide and cold-rolled to a plate thickness of 1 mm (cold rolling rate 66.
After 6%), a plate that was subjected to final annealing at 350 ° C. for 2 hours was also prepared, and alloys 1 ′ and 3 ′ were prepared. Polish the material after this final annealing parallel to the rolling surface, The maximum size of the intermetallic compound particles was measured using an image analyzer. The results are shown in Table 2. The size of the intermetallic compound particles of the invention alloy is smaller than that of the comparative alloy. Next, the elongation in a warm tensile test at 400 ° C. was measured to compare the diaphragm moldability of the thermoplastic resin-based composite materials. The results are shown in Table 3. The warm elongation of the invented alloy is larger than that of the comparative alloy, and this difference increases as the strain rate increases. Furthermore, the plate cold-rolled to a thickness of 1 mm was 350 ° C x 2
The material that has been finally annealed for a certain time, and the material that has not been finally annealed at this stage of the plate manufacturing process, but that is recrystallized by being kept at the elevated temperature in the next bulge forming machine. 8 layers of 0.1 mm PEEK resin are sandwiched and the temperature is 4
After holding at 00 ℃ for 5 minutes, perform diaphragm molding by performing bulge molding with a diameter of 100 mm. Measure the bulge molding height and the crystal grain size after holding at 400 ℃ for 5 minutes and measure the rolling direction. The ratio in the plate thickness direction (average grain size in rolling direction / average grain size in sheet thickness direction) was calculated. The results are shown in Table 4. The crystal grain shape of the invention alloy is flatter than that of the comparative alloy (average grain size in rolling direction / average grain size in sheet thickness direction) is 1.5 or less, and the forming height of the invention alloy is Compared to the comparative alloy, it is larger in a shorter time. Next, for reference, superplasticity and room temperature strength after warm forming are compared with a conventional Al-Mg-based alloy that is a typical structural material. JIS5 from the material that was warm-stretched at 400% at 50%
No. 4 test piece was cut out and a tensile test was performed at room temperature. The results are shown in Table 5. The invention alloy has a strength equal to or higher than that of the conventional alloy that was not subjected to warm drawing when compared at the same level of Mg content even after warm forming, and can be used as a superplastic forming material.

【効果】 以上の結果より、本発明によれば、従来にない優れた
熱可塑樹脂系複合材のダイアフラム成形性を有する材料
を得ることができ、熱可塑樹脂系複合材の生産性を計り
しれず向上させることが可能となる。 また、本発明の材料は単にダイアフラム成形だけでな
く、そのまま超塑性的な成形や温間成形的な成形に供す
ることもでき、複雑形状の器物や他、電気制御記筐体、
計測記筐体、VTRその他の弱電機器のシャーシ等および
自動車車体、ガソリンタンク、オイルパン等の部品の用
途に好適である。
[Effect] From the above results, according to the present invention, it is possible to obtain a material having an unprecedentedly excellent thermoplastic resin composite diaphragm formability, and to measure the productivity of the thermoplastic resin composite. It is possible to improve without fail. Further, the material of the present invention can be used not only for diaphragm molding, but also for superplastic molding or warm molding as it is, a complex-shaped instrument or other, electric control storage housing,
It is suitable for applications such as measurement cabinets, VTRs and other chassis for weak electrical equipment, and parts such as automobile bodies, gasoline tanks, and oil pans.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Mg:2.0〜6.0%(重量で、以下同じ) Be:0.0001%〜0.01%を含み、 結晶粒微細化のため Ti:0.001%〜0.15%を単独でもしくは B:0.0001%〜0.05%と同時に含み、 不純物としての Fe:0.2%以下,Si:0.2%以下,Mn:0.05%以下,Cr:0.05%
以下,Zr:0.05%以下,V:0.05%以下であり、 残部その他の不可避不純物およびアルミニウムからな
り、 ダイアフラム成形加工時の不純物に基づく金属間化合物
粒子の粒径が最大10μm以下であり、さらに、ダイアフ
ラム成形加工時の再結晶粒が、圧延方向に平行な断面に
おいて(圧延方向の結晶粒径の平均/板厚方向の結晶粒
径の平均)≦1.5であることを特徴とする熱可塑樹脂系
複合材のダイアフラム成形用Al合金板。
1. Including Mg: 2.0 to 6.0% (by weight, the same applies hereinafter) Be: 0.0001% to 0.01%, and Ti: 0.001% to 0.15% alone or B: 0.0001% to refine grain size. 0.05% at the same time, Fe as impurities: 0.2% or less, Si: 0.2% or less, Mn: 0.05% or less, Cr: 0.05%
Below, Zr: 0.05% or less, V: 0.05% or less, consisting of balance and other unavoidable impurities and aluminum, and the particle size of intermetallic compound particles based on impurities during diaphragm forming is 10 μm or less at the maximum, and A thermoplastic resin system characterized in that the recrystallized grains during diaphragm forming are (average of grain size in rolling direction / average grain size in sheet thickness direction) ≦ 1.5 in a cross section parallel to the rolling direction. Al alloy plate for diaphragm formation of composite materials.
【請求項2】添加成分として更に、 Cu:0.05〜2.0% Zn:0.2〜2.5% の一種または二種を含有することを特徴とする請求項1
に記載のダイアフラム成形用Al合金板。
2. An additive component further containing one or two of Cu: 0.05 to 2.0% and Zn: 0.2 to 2.5%.
An aluminum alloy plate for forming a diaphragm according to.
【請求項3】請求項1または2記載の化学組成を有する
合金の半連続鋳塊を450℃〜580℃で0.5〜48時間加熱し
た後、開始温度400℃〜530℃で熱間圧延し、必要に応じ
中間焼鈍工程をはさんで冷間圧延し、最終再結晶処理の
前に少なくとも15%以上冷間圧延を施すことを特徴とす
る熱可塑樹脂系複合材のダイアフラム成形用Al合金板の
製造方法。
3. A semi-continuous ingot of the alloy having the chemical composition according to claim 1 or 2 is heated at 450 ° C. to 580 ° C. for 0.5 to 48 hours, and then hot rolled at a starting temperature of 400 ° C. to 530 ° C. An aluminum alloy plate for diaphragm forming of a thermoplastic resin composite material, which is cold-rolled with an intermediate annealing step if necessary, and cold-rolled by at least 15% or more before the final recrystallization treatment. Production method.
【請求項4】請求項1または2の化学組成を有する合金
の連続鋳造板を、必要に応じ中間焼鈍 工程をはさんで冷間圧延し、最終再結晶処理の前に少な
くとも15%以上冷間圧延を施すことを特徴とする熱可塑
樹脂系複合材のダイアフラム成形用Al合金板の製造方
法。
4. A continuous cast sheet of an alloy having the chemical composition of claim 1 or 2 is cold-rolled with an intermediate annealing step if necessary, and cold-rolled by at least 15% or more before the final recrystallization treatment. A method for producing an aluminum alloy plate for forming a diaphragm of a thermoplastic resin-based composite material, which comprises rolling.
JP14672390A 1990-06-05 1990-06-05 A1 alloy plate for forming diaphragm and method for manufacturing the same Expired - Lifetime JP2517445B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP14672390A JP2517445B2 (en) 1990-06-05 1990-06-05 A1 alloy plate for forming diaphragm and method for manufacturing the same
GB9111623A GB2245591B (en) 1990-06-05 1991-05-30 Diaphragm molding aluminum alloy plates and their preparation
CA 2043852 CA2043852A1 (en) 1990-06-05 1991-06-04 Diaphragm molding aluminum alloy plates and their preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14672390A JP2517445B2 (en) 1990-06-05 1990-06-05 A1 alloy plate for forming diaphragm and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0472030A JPH0472030A (en) 1992-03-06
JP2517445B2 true JP2517445B2 (en) 1996-07-24

Family

ID=15414107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14672390A Expired - Lifetime JP2517445B2 (en) 1990-06-05 1990-06-05 A1 alloy plate for forming diaphragm and method for manufacturing the same

Country Status (3)

Country Link
JP (1) JP2517445B2 (en)
CA (1) CA2043852A1 (en)
GB (1) GB2245591B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0563903B1 (en) * 1992-03-31 1996-02-07 Kabushiki Kaisha Toshiba X-ray image intensifier
DE69304009T2 (en) * 1992-10-23 1997-02-06 Furukawa Electric Co Ltd Process for the production of sheet metal from Al-Mg alloy for press molds
CA2102951A1 (en) * 1992-11-13 1994-05-14 Yoichiro Bekki Aluminum alloy sheet suitable for high-speed forming and process for manufacturing the same
US5518558A (en) * 1992-11-17 1996-05-21 The Furukawa Electric Co., Ltd. Aluminum alloy sheets excellent in strength and deep drawing formability and process for manufacturing same
US5354195A (en) * 1992-12-23 1994-10-11 United Technologies Corporation Composite molding apparatus for high pressure co-cure molding of lightweight honeycomb core composite articles having ramped surfaces utilizing low density, stabilized ramped honeycomb cores
JP3145904B2 (en) * 1995-08-23 2001-03-12 住友軽金属工業株式会社 Aluminum alloy sheet excellent in high speed superplastic forming and its forming method
WO1998024940A1 (en) * 1996-12-04 1998-06-11 Alcan International Limited A1 alloy and method
FR2854021B1 (en) * 2003-04-16 2006-03-31 Focal Jmlab ACOUSTIC TRANSDUCER IN DIRECT RADIATION DIRECT RADIATION BERYLLIUM ACRYLIC, FOR CONCAVE-SHAPED MEMBRANE, FOR AUDIO APPLICATIONS ESPECIALLY FOR ACOUSTIC SPEAKERS
CN104451283B (en) * 2014-12-12 2017-01-04 西南铝业(集团)有限责任公司 A kind of production method of 5A06 aluminium alloy cast ingot
HRP20221546T1 (en) * 2017-12-28 2023-03-03 Fehrmann Alloys GmbH & Co. KG Aluminium alloy
CN114250391A (en) * 2021-12-28 2022-03-29 大力神铝业股份有限公司 Anodic oxidation high-magnesium aluminum alloy material and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2628899A (en) * 1950-12-12 1953-02-17 William F Jobbins Inc Aluminum-magnesium casting alloys
GB966505A (en) * 1962-02-15 1964-08-12 P D Sage Company Ltd Aluminium alloys

Also Published As

Publication number Publication date
JPH0472030A (en) 1992-03-06
GB9111623D0 (en) 1991-07-24
GB2245591B (en) 1994-04-20
GB2245591A (en) 1992-01-08
CA2043852A1 (en) 1991-12-06

Similar Documents

Publication Publication Date Title
US9193134B2 (en) Automobile body part
JP4939093B2 (en) Method for producing 6000 series aluminum alloy plate for automobile panel having excellent hem bendability and bake hardness
US20030087122A1 (en) Weldable high strength Al-Mg-Si alloy product
CN113710826B (en) Non-heat treated cast alloy for automotive structural applications
EP2635720A1 (en) Formed automotive part made from an aluminium alloy product and method of its manufacture
JP2517445B2 (en) A1 alloy plate for forming diaphragm and method for manufacturing the same
KR20230043868A (en) New 6XXX aluminum alloy and its manufacturing method
JP5111966B2 (en) Method for manufacturing aluminum alloy panel
JPH08269652A (en) Production of aluminum alloy extruded shape having excellent bendability and high strength
JP2921820B2 (en) Aluminum alloy sheet for superplastic forming capable of cold preforming and method for producing the same
JP4201745B2 (en) 6000 series aluminum alloy plate for superplastic forming excellent in paint bake hardenability and method for producing the same
JP2001131666A (en) Al-Mn-Mg ALLOY PLATE FOR FORMING CASE, AND ITS MANUFACTURING METHOD
JP2626958B2 (en) Method for producing aluminum alloy sheet excellent in formability and bake hardenability
JP3207413B2 (en) Manufacturing method of aluminum alloy material for forming process excellent in formability, shape freezing property and paint baking hardenability
JP2000087199A (en) Manufacture of rolled product of magnesium alloy, method of press working magnesium alloy, and press worked product
JPH0959736A (en) Aluminum alloy sheet excellent in high speed superplastic formability and its formation
JPH05125505A (en) Manufacture of baking hardenability aluminum alloy plate for forming
JPH0447019B2 (en)
JPH05247610A (en) Production of aluminum alloy material excellent in moldability, shape freezability and hardenability in coating/baking and small in anisotropy
JPH04276048A (en) Production of aluminum alloy sheet for forming excellent in baking hardenability
KR960007633B1 (en) Al-mg alloy & the preparation
JP3359428B2 (en) Manufacturing method of aluminum alloy sheet for forming
JPH05230605A (en) Manufacture of aluminum alloy for baking and hardening formation
JPH0570907A (en) Manufacture of aluminum alloy material for forming
JP5376812B2 (en) Manufacturing method of high-temperature pressurized gas molded product