JPH0570907A - Manufacture of aluminum alloy material for forming - Google Patents

Manufacture of aluminum alloy material for forming

Info

Publication number
JPH0570907A
JPH0570907A JP12443191A JP12443191A JPH0570907A JP H0570907 A JPH0570907 A JP H0570907A JP 12443191 A JP12443191 A JP 12443191A JP 12443191 A JP12443191 A JP 12443191A JP H0570907 A JPH0570907 A JP H0570907A
Authority
JP
Japan
Prior art keywords
heat treatment
alloy material
subjected
aluminum alloy
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12443191A
Other languages
Japanese (ja)
Inventor
Hidetoshi Uchida
秀俊 内田
Hideo Yoshida
英雄 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP12443191A priority Critical patent/JPH0570907A/en
Publication of JPH0570907A publication Critical patent/JPH0570907A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

PURPOSE:To manufacture an aluminum alloy material for forming excellent in formability at the time of press working, shape freezability and curing performance for baking and suitable particularly for transporting equipment including automobile body sheet materials. CONSTITUTION:This cover is a method in which an alloy material contg. 0.4 to 1.5% Si and 0.3 to 1.5% Mg or furthermore contg. one or more kinds among <=1.00% Cu, <=0.40% Mn, <=0.20% Cr and <=0.20% V and the balance Al with inevitable impurities is subjected to semi-continuous casting; the obtd. ingot is subjected to usual rolling, is thereafter subjected to soln. treatment, is hardened and is allowed to stand at a room temp.; and the material is subjected to pre-heat treatment in the temp. range of 50 to 120 deg.C for 2 to 200hr and is thereafter subjected to final heat treatment at 180 to 250 deg.C for 1 to 10min.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車のボディシ―ト
材をはじめとする輸送機器の製造に特に適した、プレス
加工時の成形性、形状凍結性及び塗装焼付硬化性に優れ
た成形加工用アルミニウム合金材の製造法に関するもの
である。
FIELD OF THE INVENTION The present invention relates to a molding process which is particularly suitable for the production of transportation equipment including body sheet materials for automobiles and which is excellent in moldability during press working, shape freezing property and paint bake hardening property. The present invention relates to a method for manufacturing an aluminum alloy material for automobiles.

【0002】[0002]

【従来の技術】従来より、自動車のボディシ―ト材をは
じめとする輸送機器用材料として各種アルミニウム合金
材が開発され、使用されている。特に近年の地球温暖化
対策の各種法規制の強化により、多くの部品を鉄鋼材料
からアルミニウム合金材に転換することで軽量化を図る
動きが極めて活発である。
2. Description of the Related Art Conventionally, various aluminum alloy materials have been developed and used as materials for transportation equipment including automobile body sheet materials. In particular, due to the recent strengthening of various laws and regulations as a measure against global warming, there is a very active movement to reduce the weight by converting many parts from steel materials to aluminum alloy materials.

【0003】例えば、自動車ボディシ―ト材としては、
要求される性能は1)成形性、2)形状凍結性(プレス
加工時にプレス型の形状が正確に出ること)、3)高強
度、4)耐デント性、5)耐食性等である。
For example, as an automobile body sheet material,
The required performances are 1) moldability, 2) shape fixability (the shape of the press die is accurately produced during press working), 3) high strength, 4) dent resistance, 5) corrosion resistance and the like.

【0004】こうした中で、プレス加工メ―カ―の要求
の厳しい日本国内では自動車ボディシ―ト材等用とし
て、成形性の良い5000系のAl―Mg―Zn―Cu
合金(特開昭53−103914、58−17154
7)及びAl―Mg―Cu合金(特開平1−21913
9)の開発が主になされ量産、実用化されている。
Under these circumstances, in Japan, where the demands of press makers are high, 5000 series Al-Mg-Zn-Cu with good formability is used for automobile body sheet materials and the like.
Alloys (JP-A-53-103914, 58-17154)
7) and Al-Mg-Cu alloy (JP-A-1-21913).
The development of 9) is mainly performed, mass production and practical use.

【0005】これに対して、欧米では強度の優れた60
00系のAl―Mg―Si合金として6009、611
1、6016合金が開発、実用化されている。これらの
合金は塗装焼付工程における200℃で30min程度
の加熱処理により高強度が得られる(塗装焼付硬化)。
この強度アップにより5000系合金より一層の薄肉
化、つまり軽量化が可能となる。しかし、日本では塗装
焼付温度が170〜180℃程度と低いため、30mi
nの加熱によって現状の合金及び製造工程では十分な高
強度化は期待することができない。さらに、この600
0系合金は、わずかではあるが室温時効硬化が進み成形
性が劣り、また耐食性もやや劣るとの評価があり、諸性
能に対する要求の厳しい日本では塗装焼付工程を従来よ
り高温もしくは長時間に変更しない限り5000系合金
に対してメリットがなく採用例は少ない。
On the other hand, the strength of 60
00-based Al-Mg-Si alloy 6009, 611
1,6016 alloy has been developed and put into practical use. High strength can be obtained from these alloys by heat treatment at 200 ° C. for about 30 minutes in the paint baking process (paint baking hardening).
By increasing this strength, it is possible to make the wall thickness even thinner than the 5000 series alloy, that is, to reduce the weight. However, in Japan, the baking temperature is as low as 170-180 ° C, so 30 mi
It is not possible to expect a sufficiently high strength in the current alloy and manufacturing process by heating n. Furthermore, this 600
The 0-based alloy is evaluated to have a slight deterioration in formability due to aging hardening at room temperature and a little inferior corrosion resistance, but in Japan where demands for performance are strict, the coating baking process is changed to a higher temperature or longer time than before. Unless it is not used, there is no merit to 5000 series alloys and there are few examples of adoption.

【0006】一方、形状凍結性については、縦弾性係数
が大きいほど、また耐力が小さいほど良好となる(参考
SAE Paper No.890719)。アルミ
ニウム合金の縦弾性係数は7000kgf/mm2であ
り、鉄鋼の21000kgf/mm2の約1/3である
ことから、プレス加工時のアルミニウム合金板の耐力を
かなり小さくしないかぎり鋼板と同様の形状凍結性の材
料を得ることができない。しかしながら、構造体として
鋼板並の約30kgf/mm2の引張強さを得ようとす
ると、従来法で製造したアルミニウム合金板では500
0系、6000系合金ともに耐力が14kgf/mm2
程度以上と大きくなってしまい、この値の耐力では形状
凍結性に劣る傾向があった。
On the other hand, the shape fixability becomes better as the longitudinal elastic modulus becomes larger and the proof stress becomes smaller (reference SAE Paper No. 890719). The longitudinal elastic modulus of aluminum alloy is 7,000 kgf / mm 2, which is about 1/3 of 21,000 kgf / mm 2 of iron and steel. Therefore, unless the proof stress of the aluminum alloy plate during press working is considerably reduced, the shape is frozen. Unable to get the material of nature. However, when it is attempted to obtain a tensile strength of about 30 kgf / mm 2 equivalent to that of a steel plate as a structure, the aluminum alloy plate manufactured by the conventional method has a tensile strength of 500.
The yield strength of both 0 series and 6000 series alloys is 14 kgf / mm 2
The strength of this value tends to be inferior to the shape fixability.

【0007】従って、プレス加工前の耐力が14kgf
/mm2を極力下回り形状凍結性が向上するとともに、
プレス加工後に175℃−30min程度の塗装焼付工
程で硬化し、耐力及び引張強さが著しく増加して、耐デ
ント性、構造強度が向上するならば以上の問題点は全て
解決される。しかし、従来法で製造した既存合金ではプ
レス加工時の優れた形状凍結性とプレス加工後の耐デン
ト性や構造強度の両者を満足することはできなかった。
Therefore, the proof stress before pressing is 14 kgf.
/ Mm 2 as much as possible and the shape fixability is improved,
All of the above problems can be solved if it is hardened in a coating baking process at about 175 ° C. for 30 minutes after the press working, and the proof stress and the tensile strength are remarkably increased and the dent resistance and the structural strength are improved. However, the existing alloy produced by the conventional method could not satisfy both the excellent shape fixability during press working and the dent resistance and structural strength after press working.

【0008】[0008]

【発明が解決しようとする課題】そこで、本発明におい
ては化学成分及び加工熱処理工程の詳細な検討により、
室温時効硬化を抑制することにより成形性が向上すると
ともに、塗装焼付硬化性を向上させることによりプレス
時に低耐力で形状凍結性を向上させ、塗装焼付後に高強
度となるプレス加工用の材料を供給するものである。
Therefore, in the present invention, a detailed examination of the chemical composition and the thermomechanical treatment step will result in
In addition to improving moldability by suppressing age hardening at room temperature, by improving paint bake hardenability, we improve shape freeze resistance with low proof stress during pressing, and supply materials for press working with high strength after paint baking. To do.

【0009】[0009]

【課題を解決するための手段】本発明は、Si:0.4
〜1.5%、Mg:0.3〜1.5%を含有し、あるい
はさらにCu:1.00以下、Mn:0.40%以下、
Cr:0.20%以下、V:0.20%以下の1種以上
を含有し、残Alおよび不可避不純物からなる合金材料
を半連続鋳造し、得られた鋳塊を通常の圧延後、溶体化
処理、焼入、室温放置した材料を、50〜120℃の温
度範囲で2〜200時間の前熱処理を行った後、室温で
60分以内に、180〜250℃で1〜10分の最終熱
処理を行うことを特徴とする成形加工用アルミニウム合
金材の製造法である。
The present invention provides Si: 0.4.
.About.1.5%, Mg: 0.3 to 1.5%, or further Cu: 1.00 or less, Mn: 0.40% or less,
An alloy material containing Cr: 0.20% or less and V: 0.20% or less, and consisting of residual Al and unavoidable impurities is semi-continuously cast, and the obtained ingot is subjected to normal rolling and then a solution. After heat treatment, quenching, and pre-heat treatment of the material left to stand at room temperature for 2 to 200 hours in the temperature range of 50 to 120 ° C, the final heat treatment is performed within 60 minutes at room temperature and at 1 to 10 minutes at 180 to 250 ° C. A method for manufacturing an aluminum alloy material for forming, which is characterized by performing heat treatment.

【0010】以上の各構成要件の限定理由は下記の通り
である。 Si:高強度を得るために必要で、Mg2Siを形成し
て高強度を得ることができる。0.4%未満では強度が
低く塗装焼付による加熱がなされても十分な強度が得ら
れない。また、1.5%を越えると、最終熱処理完了後
の耐力が高く、成形性及び形状凍結性が劣る。
The reasons for limiting each of the above constituent elements are as follows. Si: Necessary to obtain high strength, and Mg 2 Si can be formed to obtain high strength. If it is less than 0.4%, the strength is low and sufficient strength cannot be obtained even if the coating is heated by baking. On the other hand, if it exceeds 1.5%, the yield strength after the completion of the final heat treatment is high, and the formability and shape fixability are poor.

【0011】Mg:Siと同様に高強度を得るために必
要で、0.3%未満では強度が低く塗装焼付時の加熱で
十分な強度が得られない。また、1.5%を越えると最
終熱処理完了後の耐力が高く成形性及び形状凍結性が劣
る。
Like Mg: Si, it is necessary to obtain high strength. If it is less than 0.3%, the strength is low and sufficient strength cannot be obtained by heating during baking of the coating. On the other hand, if it exceeds 1.5%, the yield strength after completion of the final heat treatment is high and the formability and shape fixability are poor.

【0012】Cu:添加することにより、さらに強度を
増すことができる。しかし、1.00%を越えて添加す
ると、最終熱処理完了後の耐力が高く成形性及び形状凍
結性が劣るとともに、耐食性が劣る。
Cu: The strength can be further increased by adding Cu. However, if added over 1.00%, the yield strength after completion of the final heat treatment is high, the formability and shape fixability are poor, and the corrosion resistance is poor.

【0013】Mn:添加することにより、さらに強度を
増すことができ、また結晶粒を微細化することができ、
成形性が向上する。しかし、0.40%を越えて添加す
ると、最終熱処理完了後の耐力が高く成形性及び形状凍
結性が劣るとともに、粗大な金属間化合物が増えてくる
ため、成形性が低下する。
Mn: By adding Mn, the strength can be further increased, and the crystal grains can be made finer.
Moldability is improved. However, if added in excess of 0.40%, the yield strength after completion of the final heat treatment is high and the formability and shape fixability are inferior, and the coarse intermetallic compound increases, so the formability decreases.

【0014】Cr:添加することにより、さらに強度を
増すことができ、また結晶粒を微細化する事ができ、成
形性が向上する。しかし、0.20%を越えて添加する
と、最終熱処理完了後の耐力が高く成形性及び形状凍結
性が劣るとともに、粗大な金属間化合物が増えてくるた
め、成形性が低下する。
Cr: By adding Cr, the strength can be further increased, the crystal grains can be made finer, and the formability can be improved. However, if added in excess of 0.20%, the yield strength after completion of the final heat treatment is high and the formability and shape fixability are poor, and the coarse intermetallic compound increases, so the formability decreases.

【0015】V:添加することにより、さらに強度を増
すことができ、機械的性質の異方性を低減することがで
き、結晶粒を微細化することができ、成形性が向上す
る。しかし、0.20%を越えて添加すると、最終熱処
理完了後の耐力が高く成形性及び形状凍結性が劣る。
V: By adding, the strength can be further increased, the anisotropy of mechanical properties can be reduced, the crystal grains can be made finer, and the moldability can be improved. However, if added over 0.20%, the yield strength after completion of the final heat treatment is high and the formability and shape fixability are poor.

【0016】室温放置後の前熱処理:室温放置後に50
〜120℃の温度に2〜200時間保持することによ
り、塗装焼付時に析出するための核を生成する。この核
生成で最終熱処理後の室温時効を抑制し良好な成形性を
維持するとともに、塗装焼付の175℃程度に加熱した
時に短時間で硬化しやすくする。温度については50℃
未満ではその後の熱処理に十分な効果がなく、120℃
を越えると耐力が増加し成形性が低下する。前熱処理時
間は2時間より短ければ最終熱処理の効果が小さくな
り、塗装焼付硬化性が劣り、200時間を越えて行って
も効果が同じであるので、工業的効果が少ないかもしく
は最終熱処理後の耐力が増加しはじめ成形性が劣る。
Pre-heat treatment after standing at room temperature: 50 after standing at room temperature
By holding at a temperature of 120 ° C for 2 to 200 hours, nuclei for precipitation during coating baking are generated. This nucleation suppresses room temperature aging after the final heat treatment to maintain good formability, and facilitates hardening in a short time when heated to about 175 ° C. for coating baking. About 50 ℃
If the temperature is less than 120 ° C, there is no sufficient effect on the subsequent heat treatment and
If it exceeds, the yield strength increases and the formability decreases. If the pre-heat treatment time is shorter than 2 hours, the effect of the final heat treatment becomes small, and the paint bake hardenability is poor. Even if the pre-heat treatment time is more than 200 hours, the effect is the same, so there is little industrial effect or after the final heat treatment. The yield strength begins to increase and the formability deteriorates.

【0017】前熱処理後の最終熱処理:前熱処理後に1
80℃以上250℃以下で1〜10minの復元処理を
行うことにより、室温放置で形成したG.Pゾーンのみ
を分解し、前処理で形成した核は保持される。それによ
り核塗装焼付の175℃程度に加熱した時に短時間で硬
化しやすくなる。
Final heat treatment after preheat treatment: 1 after preheat treatment
By performing a restoration process for 1 to 10 minutes at 80 ° C. or higher and 250 ° C. or lower, the G.I. Only the P zone is decomposed and the nuclei formed in the pretreatment are retained. This makes it easy to cure in a short time when heated to about 175 ° C. for nuclear coating baking.

【0018】温度については、180℃未満では焼付け
硬化性が低下し、250℃を越えると耐力が増加し成形
性が劣り焼付け硬化性も低下する。前熱処理から最終熱
処理までの室温での時間的制限はなくいずれの条件でも
良好な材料が得られる。
Regarding the temperature, if it is less than 180 ° C., the bake hardenability is lowered, and if it exceeds 250 ° C., the yield strength is increased and the formability is poor and the bake hardenability is also lowered. There is no time limit at room temperature from the pre-heat treatment to the final heat treatment, and a good material can be obtained under any condition.

【0019】[0019]

【実施例】表1に示す合金を半連続鋳造後、鋳肌部の表
面切削を行った。Fe、Tiは不純物である。次いで5
40℃で24hの均質化処理後、500℃まで降温しそ
の温度で熱間圧延を開始し、厚さ6mmまで圧延した。
次に350℃にて1hのバッチ炉での中間焼鈍を行っ
た。そして冷間圧延を経て、厚さ1mmの板とした。さ
らに連続焼鈍炉において昇温速度500℃/minにて
540℃×20sの溶体化処理を行い、100℃まで5
00℃/minで冷却の後、室温で48h放置後、表2
に示す条件の前熱処理−最終熱処理を施した。これらの
材料の機械的性質の評価は、最終熱処理後1カ月室温時
効させた後に行った。また、1カ月室温時効差せた材料
に、さらに塗装焼付硬化処理に相当する175℃−30
minの加熱処理を行った後、耐力を調べた。
[Examples] After semi-continuous casting of the alloys shown in Table 1, the surface of the casting surface was cut. Fe and Ti are impurities. Then 5
After the homogenization treatment at 40 ° C. for 24 hours, the temperature was lowered to 500 ° C., hot rolling was started at that temperature, and rolling was performed to a thickness of 6 mm.
Next, intermediate annealing was performed in a batch furnace at 350 ° C. for 1 hour. After cold rolling, a plate having a thickness of 1 mm was obtained. Furthermore, in a continuous annealing furnace, a solution heat treatment of 540 ° C. × 20 s was performed at a temperature rising rate of 500 ° C./min, and the solution was heated to 100 ° C.
After cooling at 00 ° C./min and leaving at room temperature for 48 hours, Table 2
The pre-heat treatment-final heat treatment under the conditions shown in FIG. The mechanical properties of these materials were evaluated after aging for 1 month at room temperature after the final heat treatment. In addition, the material is aged at room temperature for 1 month, and further subjected to a paint bake hardening treatment at 175 ° C.-30
After performing the heat treatment for min, the yield strength was examined.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】表3に供試材の評価結果を示す。判定は、
1カ月室温時効後の耐力が13.5kgf/mm2以下
のものを優れた形状凍結性とし、伸びが28%以上及び
エリクセン値が9.5mm以上のものを良好な成形性が
あるものとし、1カ月室温時効後でも175℃に30m
in加熱した後の耐力の増加が5kgf/mm2以上で
あるものを塗装焼付硬化性が良好とし、塗装焼付硬化後
の耐力が13.5kgf/mm2以上のものをデント性
が良好な材料とし合格とした。さらに結晶粒径について
は、板面の観察において100μm以下を合格とした。
Table 3 shows the evaluation results of the test materials. The judgment is
A product having a yield strength after 1 month room temperature aging of 13.5 kgf / mm 2 or less is considered to have excellent shape fixability, and a product having an elongation of 28% or more and an Erichsen value of 9.5 mm or more is considered to have good moldability, 30 m at 175 ° C even after aging for 1 month at room temperature
A material with an increase in yield strength after heating of 5 kgf / mm 2 or more is considered to have good paint bake hardenability, and a material with a yield strength after paint bake hardening of 13.5 kgf / mm 2 or more is considered to be good dent material. Passed. Further, regarding the crystal grain size, 100 μm or less was determined to be acceptable in the observation of the plate surface.

【0023】[0023]

【表3】 V:エリクセン値[Table 3] E V: Erichsen value

【0024】本発明例1〜12は、いずれも特許請求の
範囲内であり、良好な性能が得られている。
All of Examples 1 to 12 of the present invention are within the scope of the claims, and excellent performances are obtained.

【0025】比較例13はSi量が、また比較例14は
Mg量がそれぞれ特許請求の範囲の下限よりも少ないた
め、最終熱処理後175℃−30min加熱処理におい
ても耐力が低かった。
Since Comparative Example 13 has a smaller amount of Si and Comparative Example 14 has a smaller amount of Mg than the lower limit of the claimed range, the yield strength was low even in the 175 ° C.-30 min heat treatment after the final heat treatment.

【0026】比較例15はSi量、比較例16はMgお
よびCu量、比較例17はMn量およびV量、比較例1
8はCr量がそれぞれ特許請求の範囲の上限よりも多
く、耐力が13.5kgf/mm2を越えたため、形状
凍結性が悪く、成形性も悪かった。比較例19は前熱処
理が特許請求の範囲の下限より短かかったため、比較例
20は前処理温度感が特許請求の範囲の下限よりも低か
ったため、それぞれ塗装焼付硬化性が劣った。比較例2
1は前熱処理時間が特許請求範囲の上限よりも長かった
ため、比較例22は前熱処理温度が特許請求範囲の上限
よりも高かったため、それぞれ耐力がアップし形状凍結
性が悪く、成形性がおとった。比較例23は最終熱処理
温度が特許請求範囲の下限よりも低かったため塗装焼付
硬化性が劣り、比較例24は最終熱処理温度が特許請求
範囲の上限よりも高かったため比較例25は最終熱処理
時間が特許請求範囲の上限よりも長かったため、それぞ
れ耐力が増加し形状凍結性が悪く、成形性が劣った。比
較例26は最終熱処理時間が特許請求の範囲の下限より
も短かったため塗装焼付硬化性が低かった。
Comparative Example 15 is the amount of Si, Comparative Example 16 is the amount of Mg and Cu, Comparative Example 17 is the amount of Mn and V, Comparative Example 1
In No. 8, the Cr content was larger than the upper limit of the claimed range and the proof stress exceeded 13.5 kgf / mm 2. Therefore, the shape fixability was poor and the moldability was poor. In Comparative Example 19, the pre-heat treatment was shorter than the lower limit of the claimed range, and in Comparative Example 20, the pretreatment temperature feeling was lower than the lower limit of the claimed range, and thus the coating bake hardenability was poor. Comparative example 2
In No. 1, the pre-heat treatment time was longer than the upper limit of the claim range, and in Comparative Example 22, the pre-heat treatment temperature was higher than the upper limit of the claim range. Therefore, the proof stress was increased, the shape fixability was poor, and the moldability was low. It was In Comparative Example 23, the final bake hardenability was poor because the final heat treatment temperature was lower than the lower limit of the claimed range. In Comparative Example 24, the final heat treatment temperature was higher than the upper limit of the claimed range. Since the length was longer than the upper limit of the claimed range, the yield strength was increased, the shape fixability was poor, and the moldability was poor. In Comparative Example 26, the final heat treatment time was shorter than the lower limit of the claimed range, and thus the coating bake hardenability was low.

【0027】[0027]

【発明の効果】本発明を用いることで、従来の設備を利
用して薄板の各種成形材が製造可能となり、より一層の
軽量化を促進することが可能となる。さらに本発明は、
主に板材の例を述べたが、押出材等の他の製造方法の場
合にも合金材製造の原理は同じであるため、適用可能で
ある。また、塗装焼付温度が近い将来150℃もしくは
それ以下に低下しても、175℃加熱ほどの硬化は期待
できないが、本発明によって製造すれば、従来法より
も、明らかに良好な性能が得られる。
EFFECTS OF THE INVENTION By using the present invention, various kinds of thin plate molding materials can be manufactured using conventional equipment, and further weight reduction can be promoted. Further, the present invention is
Although an example of a plate material has been mainly described, the principle of alloy material production is the same as in the case of other production methods such as extruded material, and therefore, it is applicable. Further, even if the coating baking temperature is lowered to 150 ° C. or lower in the near future, curing as high as 175 ° C. cannot be expected, but the production according to the present invention can obviously provide better performance than the conventional method. ..

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Si:0.4〜1.5%(重量%、以下
同じ)、Mg:0.3〜1.5%を含有し、残Alおよ
び不可避不純物からなる合金材料を半連続鋳造し、得ら
れた鋳塊を通常の圧延後、溶体化処理、焼入、室温放置
した材料を、50〜120℃の温度範囲で2〜200時
間の前熱処理を行った後、180〜250℃で1〜10
分の最終熱処理を行うことを特徴とする成形加工用アル
ミニウム合金材の製造法。
1. An alloy material containing Si: 0.4 to 1.5% (weight%, the same applies hereinafter), Mg: 0.3 to 1.5%, and a balance of Al and unavoidable impurities. Then, the obtained ingot is subjected to normal rolling, solution treatment, quenching, and pre-heat treatment of the material left at room temperature for 2 to 200 hours in a temperature range of 50 to 120 ° C., and then 180 to 250 ° C. 1 to 10
A method for producing an aluminum alloy material for forming, which comprises performing a final heat treatment for minutes.
【請求項2】 Si:0.4〜1.5%、Mg:0.3
〜1.5%を含有し、さらにCu:1.00%以下、M
n:0.40%以下、Cr:0.20%以下、V:0.
20%以下の1種以上を含有し、残Alおよび不可避不
純物からなる合金材料を半連続鋳造し、得られた鋳塊を
通常の圧延後、溶体化処理、焼入、室温放置した材料
を、50〜120℃の温度範囲で2〜200時間の前熱
処理を行った後、180〜250℃で1〜10分の最終
熱処理を行うことを特徴とする成形加工用アルミニウム
合金材の製造法。
2. Si: 0.4 to 1.5%, Mg: 0.3
.About.1.5%, further Cu: 1.00% or less, M
n: 0.40% or less, Cr: 0.20% or less, V: 0.
An alloy material containing 20% or less of one or more and semi-continuously casting an alloy material consisting of residual Al and unavoidable impurities, and subjecting the obtained ingot to normal solution rolling, solution treatment, quenching, and leaving at room temperature, A method for producing an aluminum alloy material for forming, which comprises performing a preheat treatment at a temperature range of 50 to 120 ° C. for 2 to 200 hours and then performing a final heat treatment at 180 to 250 ° C. for 1 to 10 minutes.
JP12443191A 1991-04-30 1991-04-30 Manufacture of aluminum alloy material for forming Pending JPH0570907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12443191A JPH0570907A (en) 1991-04-30 1991-04-30 Manufacture of aluminum alloy material for forming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12443191A JPH0570907A (en) 1991-04-30 1991-04-30 Manufacture of aluminum alloy material for forming

Publications (1)

Publication Number Publication Date
JPH0570907A true JPH0570907A (en) 1993-03-23

Family

ID=14885322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12443191A Pending JPH0570907A (en) 1991-04-30 1991-04-30 Manufacture of aluminum alloy material for forming

Country Status (1)

Country Link
JP (1) JPH0570907A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5441582A (en) * 1993-09-30 1995-08-15 Nkk Corporation Method of manufacturing natural aging-retardated aluminum alloy sheet exhibiting excellent formability and excellent bake hardenability
WO1995031580A1 (en) * 1994-05-11 1995-11-23 Aluminum Company Of America Corrosion resistant aluminum alloy rolled sheet
FR2726007A1 (en) * 1994-10-25 1996-04-26 Pechiney Rhenalu PROCESS FOR MANUFACTURING ALSIMGCU ALLOY PRODUCTS HAVING IMPROVED RESISTANCE TO INTERCRYSTAL CORROSION
JPH09316616A (en) * 1996-05-13 1997-12-09 Aluminum Co Of America <Alcoa> Production of improved long aluminum alloy formed part and formed part produced by the same method
JP2009007617A (en) * 2007-06-27 2009-01-15 Kobe Steel Ltd Aluminum alloy sheet for warm forming and manufacturing method therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5441582A (en) * 1993-09-30 1995-08-15 Nkk Corporation Method of manufacturing natural aging-retardated aluminum alloy sheet exhibiting excellent formability and excellent bake hardenability
WO1995031580A1 (en) * 1994-05-11 1995-11-23 Aluminum Company Of America Corrosion resistant aluminum alloy rolled sheet
FR2726007A1 (en) * 1994-10-25 1996-04-26 Pechiney Rhenalu PROCESS FOR MANUFACTURING ALSIMGCU ALLOY PRODUCTS HAVING IMPROVED RESISTANCE TO INTERCRYSTAL CORROSION
WO1996012829A1 (en) * 1994-10-25 1996-05-02 Pechiney Rhenalu METHOD FOR MAKING AlSiMgCu ALLOY PRODUCTS HAVING ENHANCED INTERCRYSTALLINE CORROSION RESISTANCE
US5858134A (en) * 1994-10-25 1999-01-12 Pechiney Rhenalu Process for producing alsimgcu alloy products with improved resistance to intercrystalline corrosion
JPH09316616A (en) * 1996-05-13 1997-12-09 Aluminum Co Of America <Alcoa> Production of improved long aluminum alloy formed part and formed part produced by the same method
JP2009007617A (en) * 2007-06-27 2009-01-15 Kobe Steel Ltd Aluminum alloy sheet for warm forming and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP2614686B2 (en) Manufacturing method of aluminum alloy for forming process excellent in shape freezing property and paint bake hardenability
JP3590685B2 (en) Manufacturing method of aluminum alloy sheet for automobile outer panel
JP2006241548A (en) Al-Mg-Si ALLOY SHEET SUPERIOR IN BENDABILITY, MANUFACTURING METHOD THEREFOR, AND AUTOMOTIVE SKIN PLATE OBTAINED FROM THE SHEET
JP2001501672A (en) Bake-hardenable vanadium-containing steel
JPH06240424A (en) Production of aluminum alloy sheet excellent in formability and baking hardenability
JPH083702A (en) Production of aluminum alloy sheet material excellent in formability and heating hardenability
JPH06340940A (en) Aluminum alloy sheet excellent in press formability and baking hardenability and its production
JP2599861B2 (en) Manufacturing method of aluminum alloy material for forming process excellent in paint bake hardenability, formability and shape freezing property
JPH0570907A (en) Manufacture of aluminum alloy material for forming
JPH0570908A (en) Production of aluminum alloy material for forming
JPH08176764A (en) Production of aluminum alloy sheet for forming
JP3207413B2 (en) Manufacturing method of aluminum alloy material for forming process excellent in formability, shape freezing property and paint baking hardenability
JPH05247610A (en) Production of aluminum alloy material excellent in moldability, shape freezability and hardenability in coating/baking and small in anisotropy
JPH07166285A (en) Hardened al alloy sheet by baking and production thereof
JPH06272000A (en) Production of al alloy sheet excellent in formability and baking hardenability
JP2925884B2 (en) Method for producing Al-Mg-Si alloy sheet excellent in heat-curability
JPH05279820A (en) Production of aluminum alloy sheet excellent in formability
JP3062274B2 (en) Manufacturing method of aluminum alloy sheet for forming with excellent deep drawability
JPH04276048A (en) Production of aluminum alloy sheet for forming excellent in baking hardenability
JP3359428B2 (en) Manufacturing method of aluminum alloy sheet for forming
JP2001254161A (en) METHOD OF MANUFACTURING HIGH STRENGTH Al-Cu-Mg ALLOY EXCELLENT IN WORKABILITY
CN114086034B (en) Al-Mg-Si series aluminum alloy plate
JPH07228957A (en) Production of aluminum alloy sheet having excellent formability and quench-hardenability
JPH0941062A (en) Alum.-magnesium-silicon type alum. alloy sheet material for automotive body sheet small in secular change and excellent in baking hardenability and its production
JPH07173565A (en) Aluminum alloy sheet for press forming excellent in curability for coating/baking