JPH02285046A - Aluminum alloy rolled sheet for superplastic working and its manufacture - Google Patents

Aluminum alloy rolled sheet for superplastic working and its manufacture

Info

Publication number
JPH02285046A
JPH02285046A JP10679089A JP10679089A JPH02285046A JP H02285046 A JPH02285046 A JP H02285046A JP 10679089 A JP10679089 A JP 10679089A JP 10679089 A JP10679089 A JP 10679089A JP H02285046 A JPH02285046 A JP H02285046A
Authority
JP
Japan
Prior art keywords
superplastic
alloy
working
subjected
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10679089A
Other languages
Japanese (ja)
Inventor
Kenji Azuma
健司 東
Taichiro Ito
伊藤 太一郎
Masahiro Yamazaki
正浩 山崎
Nobuhiro Yasue
安江 伸浩
Mamoru Matsuo
守 松尾
Tsutomu Tagata
田形 勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sky Aluminium Co Ltd
Original Assignee
Sky Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sky Aluminium Co Ltd filed Critical Sky Aluminium Co Ltd
Priority to JP10679089A priority Critical patent/JPH02285046A/en
Publication of JPH02285046A publication Critical patent/JPH02285046A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture the Al alloy sheet for superplastic working having excellent corrosion resistance and strength by subjecting an alloy having specified compsn. constituted of Mg, Mn, Cr, Zr, V and Al to continuous casting into a specified plate thickness and thereafter executing specified homogenizing treatment and cold rolling. CONSTITUTION:The molten metal of an Al alloy contg., by weight, 0.5 to 3.8% Mg, furthermore contg. one or more kinds among 0.8 to 3.5% Mn, 0.1 to 0.5% Cr, 0.1 to 0.4% Zr and 0.1 to 0.4% V and the balance substantial Al with inevitable impurities is subjected to continuous casting into a plate having 3 to 15mm thickness. The continuously cast plate is immediately, or after cold-rolled, subjected to homogenizing treatment of holding under heating at 450 to 630 deg.C for 30min 20hr. The alloy plate is thereafter subjected to cold rolling at >=30% rolling reduction. If required, the cold rolled sheet is furthermore subjected to final annealing of heating to 400 to 600 deg.C at >=1 deg.C/sec temp. rising rate. In this way, the Al alloy rolled sheet for superplastic working contg. <=7mum maximum size of intermetallic compounds in the matrix, having excellent corrosion resistance obtainable of high strength without being subjected to heat treatment after plastic working and shownable of excellent superplastic characteristics can be obtd.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は超塑性加工に用いられるアルニウム合金圧延
板の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a method for producing rolled aluminum alloy plates used for superplastic working.

従来の技術 近年に至り、微細結晶粒を有する金属材の超塑性現象を
利用して超塑性加工を行なう技術が注目を集めている。
BACKGROUND OF THE INVENTION In recent years, technology for performing superplastic working by utilizing the superplastic phenomenon of metal materials having fine crystal grains has been attracting attention.

超塑性現象は、外部から材料に機械的な引張力を加えた
場合に、局部的変形(ネック)の発生を招くことなく数
百%以上に達する大きな伸びが得られる現象であり、こ
のような超塑性を利用した超塑性加工を適用することに
よって、複雑な成形を容易に行なうことができるととも
に、金型コストの低減等を図ることができる。
Superplasticity is a phenomenon in which when a mechanical tensile force is applied to a material from the outside, a large elongation of several hundred percent or more can be obtained without causing local deformation (neck). By applying superplastic working that utilizes superplasticity, complex molding can be easily performed and mold costs can be reduced.

従来のアルミニウム基の超塑性材料としては、Al−Z
n−MQ−Cu系合金、例えばAA規格の7475合金
、あるいはAl−Cu−Zr系合金、例えばAA規格の
2004合金、さらにはAj7−Mg−Cu−L 1−
Zr系合金、例えば8090合金等が知られている。一
方アルミニウム基の超塑性材料を再結晶挙動の面から大
別すれば、超塑性加工前の状態で既に微細再結晶組織を
有している静的再結晶利用型のものと、超塑性変形時に
微細再結晶が生じる動的再結晶利用型のものとに分けら
れ、前述のAl−Zn−Mg−Cu系合金は静的再結晶
利用型に属し、へβ−Qu−7r系合金およびAfl−
MQ−Cu−L 1−Zr系合金は動的再結晶利用型に
属する。
As a conventional aluminum-based superplastic material, Al-Z
n-MQ-Cu alloy, such as 7475 alloy of AA standard, or Al-Cu-Zr alloy, such as 2004 alloy of AA standard, and even Aj7-Mg-Cu-L 1-
Zr-based alloys, such as 8090 alloy, are known. On the other hand, aluminum-based superplastic materials can be broadly classified from the viewpoint of recrystallization behavior: those that utilize static recrystallization, which already have a fine recrystallized structure before superplastic processing, and those that utilize static recrystallization, which already have a fine recrystallized structure before superplastic processing, and The Al-Zn-Mg-Cu alloy mentioned above belongs to the static recrystallization type, and the β-Qu-7r alloy and the Afl-
The MQ-Cu-L 1-Zr alloy belongs to the dynamic recrystallization type.

発明が解決しようとする課題 前述のような従来のへ2基の超塑性加工用材料は、いず
れも超塑性特性を発運させるためにCUをはじめとする
種々の添加元素が多量に含有されているため、耐食性に
劣る問題がある。また従来の材料はいずれも熱処理材で
あって、高強度を得るためには超塑性加工後に再度溶体
化焼入れの熱処理が必要であり、そのためコスト上昇を
招くばかりでなく、焼入れによる歪が発生するから、超
塑性加工の特徴の一つである形状凍結性が良好であると
いう長所を損なってしまう問題もある。
Problems to be Solved by the Invention The two conventional superplastic processing materials mentioned above both contain large amounts of various additive elements, including CU, in order to enhance their superplastic properties. Therefore, there is a problem of poor corrosion resistance. In addition, all conventional materials are heat-treated materials, and in order to obtain high strength, they require another heat treatment of solution quenching after superplastic processing, which not only increases costs but also causes distortion due to quenching. Therefore, there is a problem in that the advantage of good shape fixability, which is one of the characteristics of superplastic working, is lost.

さらに、前述のような従来のへ!基の超塑性加工用材料
のうち、動的再結晶利用型のものでは、最も大きい超塑
性伸びが得られる歪速度(最適歪速度)が10°3/秒
のオーダーであるのに対し、静的再結晶利用型のもので
は最適歪速度が10−’/秒のオーダーと遅く、そのた
め加工能率が低い問題がある。一方動的再結晶利用型の
ものでは、超塑性加工時の予熱条件により性能がばらつ
く問題がある。
In addition, to the conventional as mentioned above! Among the basic materials for superplastic processing, those that utilize dynamic recrystallization have a strain rate (optimal strain rate) at which the largest superplastic elongation can be obtained, on the order of 10°3/s; In the type that utilizes recrystallization, the optimum strain rate is slow, on the order of 10-'/sec, resulting in a problem of low processing efficiency. On the other hand, the dynamic recrystallization type has the problem that performance varies depending on the preheating conditions during superplastic processing.

この発明は以上の事情を背景としてなされたもので、耐
食性が優れるとともに、超塑性加工後に熱処理を行なわ
ずに高強度が得られ、しかも静的再結晶利用型であると
同時に最適歪速度が10−3/秒のオーダーであって、
優れた超塑性特性を示すことができる超塑性加工用アル
ミニウム合金圧延板と、その製造方法を提供することを
目的とするものである。
This invention was made against the background of the above-mentioned circumstances. It has excellent corrosion resistance, high strength can be obtained without heat treatment after superplastic working, and is a type that utilizes static recrystallization. At the same time, the optimum strain rate is 10 −3/sec,
The object of the present invention is to provide an aluminum alloy rolled plate for superplastic processing that can exhibit excellent superplastic properties, and a method for manufacturing the same.

課題を解決するための手段 この発明の超塑性加工用アルミニウム合金圧延板は、基
本的には、Al基合金の成分組成を適切に定めるととも
に金属間化合物サイズを規制することによって航述の問
題を解決しており、さらにこの発明ではその製造プロセ
スを適切に設定することによって前述の問題を解決した
超塑性加工用アルミニウム合金圧延板を得る方法を提供
している。
Means for Solving the Problems The aluminum alloy rolled sheet for superplastic working of the present invention basically solves the problem of navigation by appropriately determining the composition of the Al-based alloy and regulating the size of the intermetallic compound. Furthermore, the present invention provides a method for obtaining an aluminum alloy rolled sheet for superplastic working, which solves the above-mentioned problems by appropriately setting the manufacturing process.

具体的には、請求項1の超塑性加工用アルミニウム合金
圧延板は、Mg0.5〜3.8wt%を含有し、か’:
)Mn 0.8〜3.5wt%、Qr  0.1〜0.
5wt%、Z r 0.1〜0.4wt%、V 0.1
〜0.4wt%のうちから選ばれた1種または2種以上
を含有し、残部が実質的にAlおよび不可避的不純物よ
りなり、しかもマトリックス中の金属間化合物の最大径
が7珈以下であることを特徴とするものである。
Specifically, the rolled aluminum alloy plate for superplastic working according to claim 1 contains 0.5 to 3.8 wt% of Mg;
) Mn 0.8-3.5wt%, Qr 0.1-0.
5wt%, Z r 0.1-0.4wt%, V 0.1
Contains one or more selected from ~0.4wt%, the remainder substantially consists of Al and unavoidable impurities, and the maximum diameter of the intermetallic compound in the matrix is 7 or less. It is characterized by this.

また請求項2の発明の超塑性加工用アルミニウム合金圧
延板の製造方法は、MC20,5〜3.8vt%を含有
し、かツMn 0.8〜3.5wt%、Cr001〜0
. 5wt%、Z r 0.1〜0.4wt%、V 0
.1〜0.4wt%のうちから選ばれた1種または2種
以上を含有し、残部が実質的にAlおよび不可避的不純
物よりなるアルミニウム合金浴温を、厚さ3〜15闇の
板に連続鋳造し、得られた連続鋳造板にただちに、もし
くは冷間加工を行なった後、450〜630℃の範囲内
の温度に30分〜24時間加熱保持する均質化処理を行
ない、その俊圧延率30%以上の冷間圧延を施すことを
特徴とするものである。
Further, the method for manufacturing an aluminum alloy rolled plate for superplastic working according to the invention of claim 2 contains MC20.5 to 3.8 wt%, Mn 0.8 to 3.5 wt%, and Cr001 to 0.
.. 5wt%, Z r 0.1-0.4wt%, V 0
.. An aluminum alloy bath temperature containing one or more selected from 1 to 0.4 wt%, with the remainder substantially consisting of Al and inevitable impurities, was continuously applied to a 3 to 15 mm thick plate. Immediately or after cold working, the continuous cast plate obtained is subjected to homogenization treatment by heating and holding at a temperature in the range of 450 to 630°C for 30 minutes to 24 hours, and the rapid rolling rate is 30. % or more of cold rolling.

さらに請求項3の発明の超塑性加工用アルミニウム合金
圧延板の製造方法は、Mq0.5〜3.8wt%を含有
し、かツMn 0.8〜3.5wt%、Cr0.1〜0
.swt%、zr 0.1〜0.4wt%、V0.1〜
0.4wt%のうちから選ばれた1種または2種以上を
含有し、残部が実質的にAllおよび不可避的不純物よ
りなるアルミニウム合金温潤を、厚さ3〜15agの板
に連続鋳造し、得られた連続vI造板にただちに、もし
くは冷間加工を行なった後、450〜630℃の範囲内
の温度に30分〜24時間加熱保持する均質化処理を行
ない、その後圧延率30%以上の冷間圧延を施し、さら
に1℃/sec以上の昇温速度で400〜600℃の範
囲内の温度に加熱する最終焼鈍を行なうことを特徴とす
るものである。
Furthermore, the method for manufacturing an aluminum alloy rolled sheet for superplastic working according to the invention of claim 3 contains Mq 0.5 to 3.8 wt%, Mn 0.8 to 3.5 wt%, and Cr 0.1 to 0.
.. swt%, zr 0.1~0.4wt%, V0.1~
Continuously casting an aluminum alloy containing one or more selected from 0.4 wt%, the remainder consisting essentially of All and unavoidable impurities, into a plate with a thickness of 3 to 15 ag, Immediately or after cold working, the resulting continuous vI plate is subjected to homogenization treatment by heating and holding at a temperature within the range of 450 to 630°C for 30 minutes to 24 hours, and then subjected to a rolling reduction of 30% or more. It is characterized by performing cold rolling and further performing final annealing by heating to a temperature in the range of 400 to 600°C at a temperature increase rate of 1°C/sec or more.

作   用 先ずこの発明の超塑性加工用アルミニウム合金圧延板の
成分限定理由について説明する。
Function First, the reason for limiting the components of the rolled aluminum alloy plate for superplastic working of the present invention will be explained.

MQ: MQはこの発明で対象としている系のアルミニウム合金
で基本となる元素であって、強度を付与すると同時に超
塑性特性を発現させるに必要な元素であり、冷間加工に
よる転位の増殖を促進させて再結晶粒を微細化させ、こ
れにより超塑性特性を有効に発現させる。Mgが0.5
wt%未満ではこれらの効果が得られず、一方Mgが3
.8wt%を越えれば、鋳造が困難となる。したがって
M(IIは0.5〜3.8wt%の範囲内とした。
MQ: MQ is a basic element in the aluminum alloy targeted by this invention, and is an element necessary to impart strength and at the same time exhibit superplastic properties, and promotes the proliferation of dislocations during cold working. The recrystallized grains are made finer, thereby effectively exhibiting superplastic properties. Mg is 0.5
These effects cannot be obtained when Mg is less than 3 wt%.
.. If it exceeds 8 wt%, casting becomes difficult. Therefore, M(II was set within the range of 0.5 to 3.8 wt%.

Mn、Cr、Zr、V: これらはいずれも遷移元素であって、超塑性特性を付与
するに重要な元素である。これらはいずれもI造時点で
はAlマトリックスに固溶している必要があり、鋳造後
の均質化処理と組合せることによって、静的再結晶粒の
微細化と、超塑性変形時の結晶粒の安定化に寄与する。
Mn, Cr, Zr, V: These are all transition elements, and are important elements for imparting superplastic properties. All of these must be in solid solution in the Al matrix at the time of I-forming, and by combining them with the homogenization treatment after casting, it is possible to refine the static recrystallized grains and improve the crystal grain size during superplastic deformation. Contributes to stabilization.

これらは、いずれか1種または2種以上を添加すれば良
いが、M n 0.8wt%未満、Qr0.1wt%未
満、zr0.1W」%未満、70.1wt%未満では前
述の効果が充分ニ嵜らず、一方Mn 3.5wt%、c
r0.swt%、zr0.4wt%、V 0.4wt%
を越えれば、鋳造時に充分に固溶されずに粗大な初晶金
属間化合物が生じ、鋳造が困難となるばかりでなく、超
塑性加工時にキVビテーション発生の原因となって成形
性が低下し、充分な超塑性特性がをられなくなってしま
い、また超塑性加工時の製品の特性としても、伸びの低
下や疲労特性の低下などの問題が生じる。
Any one or two or more of these may be added, but the above-mentioned effects are not sufficient when Mn is less than 0.8 wt%, Qr is less than 0.1 wt%, zr is less than 0.1 W''%, and less than 70.1 wt%. On the other hand, Mn 3.5wt%, c
r0. swt%, zr0.4wt%, V 0.4wt%
If it exceeds this, coarse primary crystal intermetallic compounds will not be sufficiently dissolved during casting, which will not only make casting difficult, but also cause vitiation during superplastic processing, reducing formability. However, sufficient superplastic properties cannot be obtained, and problems such as a decrease in elongation and a decrease in fatigue properties occur in the properties of the product during superplastic processing.

したがってMnは0.8〜3.5wt%、Crは0.1
〜0. swt%、zrは0.1〜0.4wt%、Vは
0.i〜0.4wt%の範囲内とした。なおこれらのう
ちでも特に1.6wt%以上のMnを単独であるいは他
と混合して添加することが望ましい。またQrは、0.
1〜0.5wt%の範囲内でも0.35 wt%未満と
することが好ましい。
Therefore, Mn is 0.8 to 3.5 wt%, Cr is 0.1
~0. swt%, zr is 0.1 to 0.4wt%, and V is 0. It was set within the range of i to 0.4 wt%. Among these, it is particularly desirable to add 1.6 wt % or more of Mn alone or in combination with others. Also, Qr is 0.
Even within the range of 1 to 0.5 wt%, it is preferably less than 0.35 wt%.

以上の各成分の残部は、基本的にAllおよび不可避的
不純物とすれば良い。
The remainder of each of the above components may basically be All and unavoidable impurities.

なお通常のアルミニウム合金においては不可避的不純物
としてFe、5iが混入するが、Feが0、5wt%以
上、あるいは5iが0.5wt%以上では金R間化合物
が粗大化して超塑性特性を損なうから、Feは0. s
wt%未満、S:は0.swt%未満に規制することが
好ましい。
Note that in normal aluminum alloys, Fe and 5i are mixed as unavoidable impurities, but if Fe exceeds 0.5 wt% or 5i exceeds 0.5 wt%, the gold-R compound becomes coarse and impairs superplastic properties. , Fe is 0. s
less than wt%, S: is 0. It is preferable to regulate it to less than swt%.

また強度向上等の点からQuおよび/またはZnを添加
することもあるが、Quが10wt%を越えれば耐食性
が低下し、またznが2.5wt%をこえても同様に耐
食性が低下するから、CLIは1.0wt%以下、Zn
は2.5wt%以下とすることが好ましい。
In addition, Qu and/or Zn are sometimes added to improve strength, but if Qu exceeds 10 wt%, corrosion resistance will decrease, and if Zn exceeds 2.5 wt%, corrosion resistance will similarly decrease. , CLI is 1.0wt% or less, Zn
is preferably 2.5 wt% or less.

さらに通常のアルミニウム合金においては鋳塊結晶粒微
細化のためにT i %あるいはTiおよびBを微量添
加することがあり、この発明の場合も微量のT i s
あるいはTiおよびBを含有していても良い。但し、T
i添加量が0.20 wt%を越えれば初晶TiAla
が晶出して成形性を害し、またB添加量が0.01 w
t%を越えればTiB2の粗大粒子が生じて成形性を害
するから、T iは0.20wt%以下、Bは0.01
 wt%以下とすることが好ましい。そのほか、鋳造時
のwI潮酸化゛防止のために3eを200ppi以下の
範囲で添加しても良い。
Furthermore, in ordinary aluminum alloys, Ti % or a trace amount of Ti and B may be added to refine the ingot crystal grains, and in the case of the present invention, a trace amount of Ti s is also added.
Alternatively, it may contain Ti and B. However, T
If the amount of i added exceeds 0.20 wt%, primary TiAla
crystallizes and impairs formability, and the amount of B added is 0.01 w
If it exceeds t%, coarse particles of TiB2 will be generated and the moldability will be impaired, so Ti is 0.20wt% or less and B is 0.01wt%.
It is preferable to make it below wt%. In addition, 3e may be added in a range of 200 ppi or less to prevent wI tide oxidation during casting.

この発明の超塑性加工用アルミニウム合金圧延板におい
ては、その成分組成を上述のように定めるばかりでなく
、へ2マトリックス中に晶出している金属間化合物品出
物の最大サイズが7m以下である必要がある。すなわち
、大きな金属間化合物晶出物が存在すれば、超塑性加工
時にその晶出物が起点となってキャビテーションと称さ
れる空洞(ボイド)が発生し、遂には材料が破断してし
まうから、大きな超塑性伸びを得るためには大きな金属
間化合物晶出物が存在しないことが必要である。本発明
者等の実験によれば、圧延板中に含まれる金属間化合物
の晶出物サイズが最大7趨以下であれば数百%以上の超
塑性伸びが得られることが判明しており、したがって晶
出物サイズを7顯以下とした。
In the aluminum alloy rolled sheet for superplastic working of the present invention, not only the component composition is determined as described above, but also the maximum size of the intermetallic compound crystallized in the hema matrix is 7 m or less. There is a need. In other words, if large crystallized intermetallic compounds exist, the crystallized substances will become a starting point during superplastic processing, creating cavities called cavitation, and eventually the material will break. In order to obtain a large superplastic elongation, it is necessary that large intermetallic compound crystallizes do not exist. According to experiments conducted by the present inventors, it has been found that a superplastic elongation of several hundred percent or more can be obtained if the size of crystallized intermetallic compounds contained in a rolled sheet is 7 or less. Therefore, the size of the crystallized material was set to 7 or less.

さらに、超塑性特性を得るために必要な条件として、再
結晶粒が微細でかつ安定であることが必要であり、具体
的には再結晶粒径が10趨以下、好ましくは5IJa以
下であることが望まれる。再結晶粒が10tIIn以下
で良好な超塑性伸びを示し、特に5趨以下でより一層優
れた超塑性を示す。但し、このような微細再結晶粒組織
は、後述するように超塑性加工が開始される直前までに
生じていれば良く、したたがってこの発明の圧延板を実
際に使用に供するにあたっては、冷間圧延上りの圧延板
に対して再結晶のための最終焼鈍を独立の工程として施
して前述のような微細再結晶粒組織を形成した後、改め
て超塑性加工温度に加熱して超塑性加工を行なう場合と
、冷間圧延上りの圧延板に対して再結晶のための最終焼
鈍を特に行なっておかず、超塑性加工前の予熱もしくは
超塑性加工温度に達するまでの加熱昇温過程で微細再結
晶粒組織を生成させる場合とがあり、そこで請求項1の
圧延板においては再結晶粒径を特に規定していない。
Furthermore, as a necessary condition to obtain superplastic properties, it is necessary that the recrystallized grains be fine and stable, and specifically, the recrystallized grain size must be 10 or less, preferably 5IJa or less. is desired. Good superplastic elongation is exhibited when the recrystallized grains are 10 tIIn or less, and even more excellent superplasticity is exhibited especially when the recrystallized grains are 5 or less. However, as will be described later, such a fine recrystallized grain structure only needs to be formed just before superplastic working is started, and therefore, when the rolled sheet of the present invention is actually used, it is necessary to After the final annealing for recrystallization is performed as an independent process on the rolled sheet after inter-rolling to form the fine recrystallized grain structure as described above, the sheet is heated again to the superplastic processing temperature to perform superplastic processing. In some cases, final annealing for recrystallization is not particularly performed on the rolled sheet after cold rolling, and fine recrystallization occurs during preheating before superplastic processing or during the heating process until the superplastic processing temperature is reached. There are cases where a grain structure is generated, so in the rolled sheet of claim 1, the recrystallized grain size is not particularly defined.

前述のように金属間化合物最大サイズが7#以下であっ
て、かつ結晶粒径が10IJa以下の微細再結晶組織を
有するかまたはそのような微細再結晶組織を超塑性加工
前の予熱もしくは超塑性加工温度への昇温過程で生成す
ることのできる圧延板は、請求項2もしくは請求項3の
発明で規定するプロセスによって得ることができる。以
下にそのプロセスについて説明する。
As mentioned above, the maximum intermetallic compound size is 7# or less and the crystal grain size is 10IJa or less and has a fine recrystallized structure, or such a fine recrystallized structure is preheated or superplasticized before superplastic processing. A rolled plate that can be produced in the process of raising the temperature to the processing temperature can be obtained by the process defined in the invention of claim 2 or claim 3. The process will be explained below.

先ず前述のような成分組成を有するアルミニウム合金溜
溝を常法にしたがって溶製し、板厚3〜15mの薄板に
連続鋳造する。ここで、最大金属間化合物サイズを7趨
以下とするためには、上述のような簿仮連続鋳造法(連
続鋳造圧延法)を適用して鋳造時の冷却速度を大きくす
ることが必要である。3u未満の極薄板にvt造するこ
とは実際上困難であり、一方15aをを越える板に鋳造
する場合には冷却速度が小さくなって最大金属間化合物
サイズ7M以下が達成できなくなる。したがって連続鋳
造時の板厚は3〜15.とじた。
First, an aluminum alloy reservoir groove having the above-mentioned composition is melted in accordance with a conventional method and continuously cast into a thin plate having a thickness of 3 to 15 m. Here, in order to make the maximum intermetallic compound size 7 or less, it is necessary to increase the cooling rate during casting by applying the above-mentioned temporary continuous casting method (continuous casting and rolling method). . It is actually difficult to cast an ultra-thin plate of less than 3u, while when casting a plate of more than 15a, the cooling rate becomes so low that a maximum intermetallic compound size of 7M or less cannot be achieved. Therefore, the plate thickness during continuous casting is 3 to 15 mm. Closed.

得られた連続鋳造板に対しては、直ちに均質化処理(均
熱処理)を施すか、または冷間加工を行なって所要の中
間板厚とした後、均質化処理を施す。この均質化処理は
、組織の均一化を図って最終的に微細な再結晶組織を得
るために必要な工程である。均質化処理の加熱温度が4
50℃未満では均質化の効果が充分ではなく、そのため
最終的に充分に微細化した再結晶組織を得ることが困難
となり、一方630℃を越えれば共晶融解のおそれがあ
り、したがって均質化処理温度は450〜630℃の範
囲内とする必要がある。また均質化処理時間は、コイル
全体を均一に加熱するためには0.5時間以上が必要で
あり、一方24時間を越えても経済的にコスト上昇を沼
くだけであり、したがって均質化処理時間は0.5時間
〜24時間の範囲内とした。
The obtained continuously cast plate is immediately subjected to a homogenization treatment (soaking treatment) or cold worked to a required intermediate plate thickness, and then subjected to a homogenization treatment. This homogenization treatment is a necessary step to homogenize the structure and finally obtain a fine recrystallized structure. The heating temperature for homogenization treatment is 4
If the temperature is below 50°C, the homogenization effect will not be sufficient, making it difficult to obtain a sufficiently refined recrystallized structure.On the other hand, if the temperature exceeds 630°C, there is a risk of eutectic melting, and therefore the homogenization process The temperature must be within the range of 450-630°C. In addition, the homogenization treatment time requires 0.5 hours or more to uniformly heat the entire coil, and on the other hand, exceeding 24 hours will only increase the cost economically, so the homogenization treatment time was within the range of 0.5 hours to 24 hours.

なおこの均質化処理は、連続!a造後のコイルに対して
ただちに行なうのが一般的であるが、前述のように連続
鋳造板に対して冷間加工を行なってから均質化処理を施
しても良い。後者の場合、工程は複雑となるが、均質化
処理前に冷間加工歪が導入されるため、均質化の効果は
一層優れ、再結晶粒微細化の効果も大きくなる。
This homogenization process is continuous! Generally, the homogenization treatment is performed immediately after the coil is formed, but as described above, the homogenization treatment may be performed after cold working the continuous cast plate. In the latter case, the process is complicated, but since cold working strain is introduced before the homogenization treatment, the homogenization effect is even better and the recrystallized grain refinement effect is also greater.

均質化処理後には冷間圧延を施して、所要の最終板厚と
する。この冷間圧延は、微細な再結晶組織を得るために
必須であり、冷間圧延率が大きいほど再結晶粒はm細化
する。圧延率が30%未満では、10趨以下の再結晶粒
を得ることが困難となるから、圧延率30%以上の冷間
圧延を施すこととした。なおこの冷間圧延工程は、間に
中間焼鈍を挟んで2回以上の冷間圧延を行なっても良く
、この場合には中間焼t!@優の最終の冷間圧延で圧延
率を30%以上とすれば良い。またこの場合の中間焼鈍
は、250〜450℃程度で1時間〜10Bi間程度行
なえば良い。
After the homogenization treatment, cold rolling is performed to obtain the required final thickness. This cold rolling is essential to obtain a fine recrystallized structure, and the larger the cold rolling rate, the finer the recrystallized grains. If the rolling ratio is less than 30%, it will be difficult to obtain recrystallized grains with 10 or less grains, so cold rolling was performed at a rolling ratio of 30% or more. In this cold rolling step, cold rolling may be performed two or more times with intermediate annealing in between; in this case, intermediate annealing t! It is sufficient if the rolling ratio is set to 30% or more in the final cold rolling. Moreover, the intermediate annealing in this case may be performed at about 250 to 450° C. for about 1 hour to 10 Bi.

以上のようにして得られた超塑性加工用圧延板は、再結
晶焼鈍後の再結晶粒径や再結晶粒形状が、再結晶焼鈍時
の加熱速度にはさほど大きく依存しないという特徴があ
る。したがって特に独立した工程として再結晶のための
aX焼鈍を施さずに、冷間圧延上りのままで超塑性加工
工程に供して、超塑性加工前の予熱や超塑性加工温度に
到達するまでの昇温過程で再結晶が生じた場合でも、そ
の結晶粒は充分に微細となって良好なffi塑性特性を
示す。そこで請求項2の発明の製法では、冷間圧延工程
までを規定し、冷間圧延上りの圧延板をそのまま超塑性
加工工程に供する場合を含ませることとした。
The rolled sheet for superplastic working obtained as described above is characterized in that the recrystallized grain size and recrystallized grain shape after recrystallization annealing do not depend so much on the heating rate during recrystallization annealing. Therefore, as an independent process, the cold-rolled product is subjected to the superplastic working process without aX annealing for recrystallization, and preheating before superplastic working and heating until the superplastic working temperature is reached. Even when recrystallization occurs during the hot process, the crystal grains become sufficiently fine and exhibit good ffi plasticity. Therefore, in the manufacturing method according to the second aspect of the invention, the steps up to the cold rolling step are specified, and a case where the rolled plate after cold rolling is directly subjected to the superplastic working step is included.

但し、前述のように再結晶粒径や再結晶粒形状が再結晶
時の加熱速度にさはと大きく依存しないとは言えども、
ある程度は加熱速度の影響を受けることは勿論であり、
加熱速度が速いほど、再結晶粒は等方的かつ微細になる
。また、再結晶させた後の状態で超塑性加工工程に供給
した方が、材料が安定であって、超塑性加工のための予
熱条件や超塑性加工8度に至るまでの昇温条件等の影響
を受けにくい。したがって超塑性加工工程に供する前の
段階で、独立した工程として、再結晶のために比較的急
速加熱のI#終焼鈍を行なっておくことが好ましく、こ
れを規定したのが請求項3の発明である。
However, as mentioned above, although the recrystallized grain size and recrystallized grain shape do not greatly depend on the heating rate during recrystallization,
Of course, it is affected to some extent by the heating rate,
The faster the heating rate, the more isotropic and fine the recrystallized grains become. In addition, the material is more stable if it is supplied to the superplastic processing process in the state after recrystallization, and the preheating conditions for superplastic processing and the temperature increase conditions up to 8 degrees superplastic processing, etc. Not easily affected. Therefore, it is preferable to perform I# final annealing with relatively rapid heating for recrystallization as an independent step before the superplastic working step, and the invention of claim 3 stipulates this. It is.

この場合の最終焼鈍は、加熱速度(昇温速度)が1℃/
sec未満では、最終焼鈍を独立した工程として行なう
ことによる前述の効果が充分に得られない。また最終焼
鈍温度が400℃未満では再結晶せず、一方600℃を
越えれば再結晶粒が大きくなったり局部的な再溶融が生
じるおそれがある。したがって最終焼鈍は、1℃/se
c以上の加熱速度で400〜600℃の範囲内に加熱す
る必要がある。
In this case, the final annealing has a heating rate (temperature increase rate) of 1℃/
If it is less than sec, the above-mentioned effects obtained by performing the final annealing as an independent process cannot be sufficiently obtained. Further, if the final annealing temperature is less than 400°C, recrystallization will not occur, while if it exceeds 600°C, recrystallized grains may become large or local remelting may occur. Therefore, the final annealing is 1℃/se
It is necessary to heat within the range of 400 to 600°C at a heating rate of c or more.

実  施  例 第1表中に示す本発明成分組成範囲内の合金A。Example Alloy A within the composition range of the present invention shown in Table 1.

B、Cと、本発明成分組成範囲外の合金りについて、第
2表の条件番号1〜4に示すような本光明プロセス条件
範囲内のプロセスを適用した。すなわち、板厚5.5緒
、幅500sに連続鋳造し、得られた31!続鋳造板に
550℃×12時間の均質化処理を施し、次いで板厚1
.5闇まで冷間圧延した(冷間圧延工程73%)。
For B, C, and alloys outside the composition range of the present invention, processes within the present Komei process conditions as shown in condition numbers 1 to 4 in Table 2 were applied. That is, 31! The continuously cast plate was subjected to homogenization treatment at 550°C for 12 hours, and then the plate thickness was 1
.. It was cold rolled to a temperature of 5 (73% of the cold rolling process).

また、合金已に近い成分組成を有する本発明成分組成範
囲内の合金B′について、比較プロセスとして第2表の
条件番号5に示すようなプロセスを適用した。すなわち
合金B′を横断面寸法400關x BootyにDC鋳
造し、をられた鋳塊に550℃X 12hrの均熱処理
を施した後、SOO℃で板厚5,5闇まで熱間圧延し、
さらに板厚1.5Mまで冷間圧延した。
Further, for alloy B' within the composition range of the present invention, which has a composition close to that of the alloy, a process as shown in condition number 5 in Table 2 was applied as a comparative process. That is, Alloy B' was DC cast into a cross-sectional dimension of 400 x Booty, and the cast ingot was soaked at 550°C for 12 hours, and then hot rolled at SOO°C to a plate thickness of 5.5mm.
It was further cold rolled to a thickness of 1.5M.

一方、本発明成分組成範囲内の合金Bについて、比較プ
ロセスとして第2表の条件番号6に示すようなプロセス
を適用した。すなわち、均質化処理以外は条件番号1〜
4と同様とし、均質化処理を本発明範囲より低温の40
0℃において12時間行なった。
On the other hand, for alloy B within the composition range of the present invention, a process as shown in condition number 6 in Table 2 was applied as a comparative process. In other words, except for the homogenization process, condition number 1~
4, and the homogenization treatment was performed at a temperature of 40°C at a temperature lower than the range of the present invention.
The test was carried out at 0°C for 12 hours.

さらに本発明成分組成範囲内の合金Bについて、第2表
の条件番号7に示すような本発明プロセス条件範囲内の
製法を適用した。すなわち、冷間圧延までは条件番号1
〜4と同じとし、その俊、ソルトバスを用いて再結晶の
ための最終焼鈍を450℃×45秒行なった。なおこの
ときの昇温速度は10℃/富以上である。
Furthermore, for alloy B within the composition range of the present invention, a manufacturing method within the process condition range of the present invention as shown in condition number 7 in Table 2 was applied. In other words, condition number 1 until cold rolling
The final annealing for recrystallization was carried out at 450° C. for 45 seconds using the same procedure as in Step 4. Note that the temperature increase rate at this time is 10° C./rich or more.

以上のようにして得られた各試料について、最大晶出物
サイズと再結晶後の再結晶粒径とを調べた結果について
、第3表中に示す。なおここで第3表中に示した再結晶
粒径は、後述するような超塑性加工を行なった債の状態
で調べた値を示す。
Table 3 shows the results of examining the maximum crystallized product size and recrystallized grain size after recrystallization for each sample obtained as described above. Note that the recrystallized grain sizes shown in Table 3 are values determined from bonds subjected to superplastic working as described below.

したがって超塑性変形が開始される直前の状態では、再
結晶粒径は実際には第3表中に示した値よりもさらに小
さくなっていたものと考えられる。
Therefore, it is considered that the recrystallized grain size was actually smaller than the values shown in Table 3 in the state immediately before superplastic deformation started.

また前記各試料について、450℃に保持された炉内に
セットし、15分保持した後、各種の引張速度(歪速度
)で引張試験を行なった時の伸びを調べた結果を第3表
中に示す。さらに各試料について、歪速度3x10−3
/秒で100%伸びが生じた状態でのキャビテーション
の発生割合(断面における面積%)を調べた結果を第3
表中に示す。
Table 3 shows the results of elongation of each of the above samples when tensile tests were conducted at various tensile rates (strain rates) after being placed in a furnace maintained at 450°C for 15 minutes. Shown below. Furthermore, for each sample, strain rate 3x10-3
The results of investigating the cavitation occurrence rate (area % in cross section) under the condition of 100% elongation at 100% elongation at
Shown in the table.

第3表に示すように本発明実施例による試料の場合は、
いずれも金属間化合物晶出物のサイズが著しく小さいと
ともに、再結晶粒が超塑性変形後でも最大6顯と著しく
小さく、そのため同じ第3表中に示しているように、超
塑性加工時におけるキャビテーションの発生も少なく、
SOO%以上の大きな超塑性特性を示していることが判
る。また本発明実施例による試料では、最大の伸びを示
す歪速度(最適歪速度)がいずれも1G−3/秒のオー
ダーであり、従来の静的再結晶利用超塑性材の最適歪速
度が10″4/秒のオーダーであったことを考慮すれば
、従来よりも1桁速い速度で成形できることが明らかで
ある。
As shown in Table 3, in the case of the samples according to the examples of the present invention,
In both cases, the size of intermetallic compound crystallization is extremely small, and the recrystallized grains are extremely small at maximum of 6 yen even after superplastic deformation, so as shown in the same Table 3, cavitation occurs during superplastic processing. The occurrence of
It can be seen that the material exhibits large superplastic properties exceeding SOO%. In addition, in the samples according to the examples of the present invention, the strain rate at which the maximum elongation occurs (optimum strain rate) is on the order of 1 G-3/sec, and the optimum strain rate of the conventional superplastic material using static recrystallization is 10 Considering that the molding speed was on the order of 4/sec, it is clear that molding can be performed at an order of magnitude faster than conventional molding speeds.

さらに合金Bについて第2表の条件番号2のプロセスを
適用した本発明実施例による試料と、従来のAll超超
塑性加工用材料して知られているAA規格の7475合
金につ(Xで、次のように強度と耐食性を比較する実験
を行なった。すなわち、超塑性加工後の状態に相当する
状態での強度と耐食性を評価するため、50sX  1
5Gagの板について超塑性加工での熱II歴に相当す
る450℃×30分保持1so℃/hrで冷却する超塑
性加工熱H歴シミュレーションを行なった後、硬さを調
べ、さらにJIs  22371による500時間の塩
水噴霧試験を行なって耐食性を評価した。その結果を第
4表に示す。
Furthermore, for alloy B, a sample according to an embodiment of the present invention to which the process of condition number 2 in Table 2 was applied, and a sample of 7475 alloy of AA standard, which is known as a conventional All super superplastic processing material (X, An experiment was conducted to compare strength and corrosion resistance as follows.In other words, in order to evaluate the strength and corrosion resistance in a state corresponding to the state after superplastic working, 50s
After conducting a superplastic processing thermal H history simulation of a 5Gag plate by holding at 450°C for 30 minutes and cooling at 1so°C/hr, which corresponds to the thermal II history in superplastic processing, the hardness was investigated and further A time salt spray test was conducted to evaluate corrosion resistance. The results are shown in Table 4.

第  4  表 従来材の7475合金は、超塑性加工後に再溶体化焼入
処理を行なえば硬さがHv 180程度と著しく高強度
化するが、超塑性加工のままでは第4表に示すように硬
さHv61と低強度であり、これに対し本発明材では超
塑性加工のままでもHv91と高強度を示すことが確認
された。また塩水噴霧試験の結果は、本発明材ではほと
んど変化が認められなかったが、7475合金では表面
の変色が激しく、明らかに耐食性が劣っていた。
Table 4 If the conventional 7475 alloy is subjected to re-solution quenching treatment after superplastic working, the hardness will be significantly increased to about Hv 180, but as shown in Table 4, if the hardness is left as it is after superplastic working, It was confirmed that the hardness was Hv61 and low strength, whereas the material of the present invention showed high strength of Hv91 even after superplastic working. Further, as a result of the salt spray test, almost no change was observed in the material of the present invention, but the surface of the 7475 alloy had severe discoloration, and its corrosion resistance was clearly inferior.

発明の効果 以上の実施例からも明らかなように、この発明による超
塑性加工用アルミニウム合金圧延板は、最大の超塑性伸
びを示す最適歪速度が10−3/秒のオーダーと速く、
しかも超塑性変形時にキャビテーションを発生するおそ
れが少ないなど、優れた超塑性特性を示すことができ、
またそればかりでなく、超塑性加工の後に改めて熱処理
を施すことなく超塑性加工のままで高い強度を示すこと
ができるとともに、耐食性にも著しく優れており、した
がって超塑性加工用材料として実際に使用する上におい
て有意義なものである。
Effects of the Invention As is clear from the above examples, the aluminum alloy rolled sheet for superplastic working according to the present invention has a fast optimum strain rate showing maximum superplastic elongation of the order of 10-3/sec.
Moreover, it can exhibit excellent superplastic properties, such as less risk of cavitation occurring during superplastic deformation.
In addition, it can exhibit high strength without undergoing heat treatment after superplastic processing, and it also has extremely excellent corrosion resistance, so it can be used as a material for superplastic processing. It is meaningful in terms of doing so.

出願人  スカイアルミニウム株式会社代理人  弁理
士  豊 1)武 久 (ほか1名)
Applicant Sky Aluminum Co., Ltd. Agent Patent Attorney Yutaka 1) Hisashi Take (and 1 other person)

Claims (3)

【特許請求の範囲】[Claims] (1)Mg0.5〜3.8wt%を含有し、かつMn0
.8〜3.5wt%、Cr0.1〜0.5wt%、Zr
0.1〜0.4wt%、V0.1〜0.4wt%のうち
から選ばれた1種または2種以上を含有し、残部が実質
的にAlおよび不可避的不純物よりなり、しかもマトリ
ックス中の金属間化合物の最大径が7μm以下であるこ
とを特徴とする超塑性加工用アルミニウム合金圧延板。
(1) Contains Mg0.5-3.8wt% and Mn0
.. 8-3.5wt%, Cr0.1-0.5wt%, Zr
0.1 to 0.4 wt%, V0.1 to 0.4 wt%, and the remainder consists essentially of Al and unavoidable impurities; An aluminum alloy rolled sheet for superplastic working, characterized in that the maximum diameter of intermetallic compounds is 7 μm or less.
(2)Mg0.5〜3.8wt%を含有し、かつMn0
.8〜3.5wt%、Cr0.1〜0.5wt%、Zr
0.1〜0.4wt%、V0.1〜0.4wt%のうち
から選ばれた1種または2種以上を含有し、残部が実質
的にAlおよび不可避的不純物よりなるアルミニウム合
金溶湯を、厚さ3〜15mmの板に連続鋳造し、得られ
た連続鋳造板にただちに、もしくは冷間加工を行なった
後、450〜630℃の範囲内の温度に30分〜24時
間加熱保持する均質化処理を行ない、その後圧延率30
%以上の冷間圧延を施すことを特徴とする超塑性加工用
アルミニウム合金圧延板の製造方法。
(2) Contains Mg0.5-3.8wt% and Mn0
.. 8-3.5wt%, Cr0.1-0.5wt%, Zr
A molten aluminum alloy containing one or more selected from 0.1 to 0.4 wt%, V0.1 to 0.4 wt%, and the remainder substantially consisting of Al and inevitable impurities, Homogenization by continuous casting into plates with a thickness of 3 to 15 mm, immediately or after cold working, and heating and holding at a temperature within the range of 450 to 630°C for 30 minutes to 24 hours. treatment, and then the rolling rate was 30.
1. A method for producing an aluminum alloy rolled sheet for superplastic working, characterized by subjecting it to cold rolling of % or more.
(3)Mg0.5〜3.8wt%を含有し、かつMn0
.8〜3.5wt%、Cr0.1〜0.5wt%、Zr
0.1〜0.4wt%、V0.1〜0.4wt%のうち
から選ばれた1種または2種以上を含有し、残部が実質
的にAlおよび不可避的不純物よりなるアルミニウム合
金溶湯を、厚さ3〜15mmの板に連続鋳造し、得られ
た連続鋳造板にただちに、もしくは冷間加工を行なった
後、450〜630℃の範囲内の温度に30分〜24時
間加熱保持する均質化処理を行ない、その後圧延率30
%以上の冷間圧延を施し、さらに1℃/sec以上の昇
温速度で400〜600℃の範囲内の温度に加熱する最
終焼鈍を行なうことを特徴とする超塑性加工用アルミニ
ウム合金圧延板の製造方法。
(3) Contains Mg0.5-3.8wt% and Mn0
.. 8-3.5wt%, Cr0.1-0.5wt%, Zr
A molten aluminum alloy containing one or more selected from 0.1 to 0.4 wt%, V0.1 to 0.4 wt%, and the remainder substantially consisting of Al and inevitable impurities, Homogenization by continuous casting into plates with a thickness of 3 to 15 mm, immediately or after cold working, and heating and holding at a temperature within the range of 450 to 630°C for 30 minutes to 24 hours. treatment, and then the rolling rate was 30.
An aluminum alloy rolled sheet for superplastic working, characterized in that it is cold-rolled to a temperature of 400 to 600°C at a heating rate of 1°C/sec or more, and then subjected to final annealing at a temperature in the range of 400 to 600°C. Production method.
JP10679089A 1989-04-26 1989-04-26 Aluminum alloy rolled sheet for superplastic working and its manufacture Pending JPH02285046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10679089A JPH02285046A (en) 1989-04-26 1989-04-26 Aluminum alloy rolled sheet for superplastic working and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10679089A JPH02285046A (en) 1989-04-26 1989-04-26 Aluminum alloy rolled sheet for superplastic working and its manufacture

Publications (1)

Publication Number Publication Date
JPH02285046A true JPH02285046A (en) 1990-11-22

Family

ID=14442692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10679089A Pending JPH02285046A (en) 1989-04-26 1989-04-26 Aluminum alloy rolled sheet for superplastic working and its manufacture

Country Status (1)

Country Link
JP (1) JPH02285046A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04218635A (en) * 1990-06-11 1992-08-10 Sky Alum Co Ltd Rolled aluminum alloy sheet for superplastic forming
US5540791A (en) * 1993-07-12 1996-07-30 Sky Aluminum Co., Ltd. Preformable aluminum-alloy rolled sheet adapted for superplastic forming and method for producing the same
JPH0959736A (en) * 1995-08-23 1997-03-04 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet excellent in high speed superplastic formability and its formation
US6261391B1 (en) 1994-05-11 2001-07-17 Honda Giken Kogyo Kabushiki Kaisha Aluminum alloy plate for super plastic molding capable of cold pre-molding, and production method for the same
JP2006307285A (en) * 2005-04-28 2006-11-09 Furukawa Sky Kk Aluminum alloy extruded material for high temperature molding

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04218635A (en) * 1990-06-11 1992-08-10 Sky Alum Co Ltd Rolled aluminum alloy sheet for superplastic forming
US5540791A (en) * 1993-07-12 1996-07-30 Sky Aluminum Co., Ltd. Preformable aluminum-alloy rolled sheet adapted for superplastic forming and method for producing the same
US6261391B1 (en) 1994-05-11 2001-07-17 Honda Giken Kogyo Kabushiki Kaisha Aluminum alloy plate for super plastic molding capable of cold pre-molding, and production method for the same
JPH0959736A (en) * 1995-08-23 1997-03-04 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet excellent in high speed superplastic formability and its formation
WO1997008354A1 (en) * 1995-08-23 1997-03-06 Sumitomo Light Metal Industries, Ltd. Aluminum alloy sheet excellent in high-speed superplastic formability and process of forming the same
JP2006307285A (en) * 2005-04-28 2006-11-09 Furukawa Sky Kk Aluminum alloy extruded material for high temperature molding

Similar Documents

Publication Publication Date Title
JP4577218B2 (en) Method for producing Al-Mg-Si alloy sheet excellent in bake hardness and hemmability
CN107604222B (en) It is a kind of can ageing strengthening Al-Mg alloy and preparation method thereof
JP2008542526A (en) Aluminum alloy plate and manufacturing method thereof
WO2009096622A1 (en) Magnesium alloy panel having high strength and manufacturing method thereof
JPS63286557A (en) Production of article from al base alloy
JP3101280B2 (en) Manufacturing method of Al-based alloy and Al-based alloy product
CN111074121B (en) Aluminum alloy and preparation method thereof
JP2001517735A (en) Aluminum alloy and heat treatment method thereof
JPH093610A (en) Thin aluminum diecast product excellent in dimensional accuracy and ductility and its production
JPH05195171A (en) Production of aluminum hard plate excellent in formability and low in earing rate
JP3849095B2 (en) Aluminum alloy plate for forming and method for producing the same
JP3845312B2 (en) Aluminum alloy plate for forming and method for producing the same
JPH02285046A (en) Aluminum alloy rolled sheet for superplastic working and its manufacture
JP3516566B2 (en) Aluminum alloy for cold forging and its manufacturing method
JPS626740B2 (en)
JPH04221036A (en) Aluminum two piece can body and its manufacture
JPH0447019B2 (en)
JP2745340B2 (en) Method for manufacturing aluminum two-piece can
JPH01501325A (en) Aluminum-lithium alloy and its manufacturing process
CN111910138A (en) Step-by-step thermal mechanical treatment process for casting aluminum-silicon alloy
JPH10259464A (en) Production of aluminum alloy sheet for forming
JPH01127642A (en) Heat treatment type high strength aluminum alloy plate for drawing and its manufacture
KR960007633B1 (en) Al-mg alloy &amp; the preparation
JPH0978168A (en) Aluminum alloy sheet
JP2858069B2 (en) Stress corrosion cracking resistant high strength aluminum alloy sheet and method for producing the same