JPS63137148A - Manufacture of high-strength iron-copper alloy foil for lead frame - Google Patents

Manufacture of high-strength iron-copper alloy foil for lead frame

Info

Publication number
JPS63137148A
JPS63137148A JP28383486A JP28383486A JPS63137148A JP S63137148 A JPS63137148 A JP S63137148A JP 28383486 A JP28383486 A JP 28383486A JP 28383486 A JP28383486 A JP 28383486A JP S63137148 A JPS63137148 A JP S63137148A
Authority
JP
Japan
Prior art keywords
weight
minutes
less
iron
copper alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28383486A
Other languages
Japanese (ja)
Other versions
JPH0430465B2 (en
Inventor
Kunio Watanabe
渡辺 國男
Satoru Nishimura
哲 西村
Kenichi Miyazawa
憲一 宮沢
Toshiaki Mizoguchi
利明 溝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP28383486A priority Critical patent/JPS63137148A/en
Publication of JPS63137148A publication Critical patent/JPS63137148A/en
Publication of JPH0430465B2 publication Critical patent/JPH0430465B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Lead Frames For Integrated Circuits (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To improve strength and thermal and electric conductivities, by subjecting an Fe-Cu alloy in which respective contents of Cu, O, Si, Al, Ti and Fe are specified to casting and aging treatment under the prescribed conditions. CONSTITUTION:The alloy which has a composition consisting of, by weight, 20-90% Cu, 0.03-0.2% O, 0.012-0.2% Si, 0.015-0.25% Al, 0.02-0.3% Ti, and the balance Fe and satisfying (8/7Si+8/9Al+2/3Ti)>=0.013% and (8/7Si+8/9 Al+2/3Ti)/O<=1 is refined. This molten alloy is continuously cast at >=100 deg.C/sec cooling rate. The resulting thin alloy slab is cold rolled and then subjected to aging treatment at 450-650 deg.C for 20-500min.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、熱・電気伝導性に優れた低コストの半導体I
C,LSIなどに用いられる高強度リードフレーム用鉄
銅合金薄帯の製造方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention provides a low-cost semiconductor I with excellent thermal and electrical conductivity.
This invention relates to a method for producing iron-copper alloy ribbon for high-strength lead frames used in C, LSI, etc.

(従来の技術) 半導体IC,LSI等用のリードフレーム材としては、
たとえば特開昭59−198741号公報に示されてい
る鉄に26〜30重量%ニッケル、11〜16重量%コ
バルトを含む合金(コバール合金)、また特開昭60−
111447号公報に示されている鉄に30〜55重量
%ニッケルを含む合金(42%Ni合金が代表的成分)
等がガラス封止材やSiと熱膨張特性がマツチングして
いる理由で用いられている。一方、銅、銅合金も高い熱
・電気伝導性を必要とするICに次第に用いられるよう
になった。
(Prior art) Lead frame materials for semiconductor ICs, LSIs, etc.
For example, an alloy containing 26 to 30% by weight of nickel and 11 to 16% by weight of cobalt in iron (kovar alloy) disclosed in JP-A-59-198741, and JP-A-60-1987-
An alloy containing 30 to 55% by weight of nickel in iron as shown in Publication No. 111447 (42% Ni alloy is a typical component)
etc. are used because their thermal expansion characteristics match those of glass sealants and Si. On the other hand, copper and copper alloys have also gradually come to be used in ICs that require high thermal and electrical conductivity.

すなわち、以上で述べたコバール合金や42Ni合金は
強度、耐熱性は優れているが、熱・電気伝導性が悪(、
加工性が劣り、コストが高いために近年ICの高集積度
化に伴う熱放散性に対する要求から安価で熱・電気伝導
性、加工性の良い銅合金へ移行する傾向にある。
In other words, the Kovar alloy and 42Ni alloy mentioned above have excellent strength and heat resistance, but have poor thermal and electrical conductivity (,
Due to poor workability and high cost, there has been a trend in recent years to shift to copper alloys, which are inexpensive and have good thermal and electrical conductivity and workability, due to the demand for heat dissipation as ICs become more highly integrated.

(発明が解決しようとする問題点) しかしながら、一般に銅合金は耐熱性ならびに強度が劣
るために、たとえばCA −195合金、あるいは特開
昭60−218442号公報記載の合金はその欠点を改
善するために錫、鉄、珪素、燐、コバルトなどを添加し
たものであるが、これらの元素添加により合金コストが
上昇し、さらに熱・電気伝導性を劣化させるなどの問題
があった。
(Problems to be Solved by the Invention) However, since copper alloys generally have poor heat resistance and strength, for example, the CA-195 alloy or the alloy described in JP-A-60-218442 aims to improve these drawbacks. These alloys contain tin, iron, silicon, phosphorus, cobalt, etc., but the addition of these elements increases the cost of the alloy and also causes problems such as deterioration of thermal and electrical conductivity.

本発明は鉄銅合金に適量の酸素、珪素、アルミニウム、
チタンを添加することにより、リードフレームとして充
分な熱・電気伝導性および高い強度と良好な加工性を兼
ね備えたリードフレーム用鉄銅合金薄帯を提供すること
を目的とする。
The present invention provides an iron-copper alloy with appropriate amounts of oxygen, silicon, aluminum,
The object of the present invention is to provide an iron-copper alloy ribbon for lead frames that has sufficient thermal and electrical conductivity, high strength, and good workability as a lead frame by adding titanium.

(問題点を解決するだめの手段) 本発明はこれらの先行技術の問題点を克服し・リードフ
レーム用材料として優れた特性を有する鉄銅合金薄帯を
製造するため、発明者らは直接鋳造鉄銅合金の薄鋳片を
用いて材質改善に関して多くの研究を行い、高強度リー
ドフレーム用鉄銅合金薄帯の製造方法を発明するに至っ
た。
(Means for Solving the Problems) The present invention overcomes the problems of these prior art techniques, and in order to produce an iron-copper alloy ribbon having excellent properties as a material for lead frames, the inventors have developed a direct casting method. We conducted a lot of research on material improvement using iron-copper alloy thin slabs, and came up with the invention of a method for manufacturing iron-copper alloy thin strips for high-strength lead frames.

本発明の要旨とするところは下記のとおりである。The gist of the present invention is as follows.

(11Cuを20重量%以上90重量%以下、0を0.
03重量%以上0.2重量%以下、Si、 Aj、 T
iの一種又は二種以上をそれぞれSiを0.012〜0
.2重量%、IVを0.015〜0.25重量%、Ti
を0.02〜0.3重世%の範囲で含みかつ8/7 S
t +8/9 A1+2/3 Tiが0.013重量%
以上、(8/7 St +8/9 A!+2/3 Ti
) / Oが1以下の範囲で含み、残部が主としてFe
からなる組成の鉄銅合金薄鋳片を100℃/秒以上の冷
却速度で連続鋳造し、冷間圧延後450〜650℃で2
0分以上500分以下の時効処理を施すことを特徴とす
る高強度リードフレーム用鉄銅合金薄帯の製造方法。
(11Cu is 20% by weight or more and 90% by weight or less, 0 is 0.
03% by weight or more and 0.2% by weight or less, Si, Aj, T
One or more types of i each have Si of 0.012 to 0.
.. 2 wt%, IV 0.015-0.25 wt%, Ti
8/7 S
t +8/9 A1+2/3 Ti is 0.013% by weight
Above, (8/7 St +8/9 A!+2/3 Ti
)/O is included in the range of 1 or less, and the remainder is mainly Fe.
An iron-copper alloy thin slab with a composition of
A method for producing a high-strength iron-copper alloy ribbon for lead frames, which comprises subjecting it to an aging treatment for 0 minutes or more and 500 minutes or less.

(2)  Cuを20重量%以上901iffi%以下
、0を0.03重量%以上0.2重量%以下、St、 
N、 Tlの一種又は二種以上をそれぞれSiを0.0
12〜0.2ffl量%、Alを0.015〜0.25
重量%、Tiを0.02〜0.3重量%の範囲で含みか
つ8/7 Si +8/9 A1+2/3 Tiが0.
013重量%以上、(8/7 Si +8/9 A!+
2/3 Ti) / Oが1以下の範囲で含み、残部が
主としてFeからなる組成の鉄銅合金薄鋳片を100℃
/秒以上の冷却速度で連続鋳造し、冷間圧延後650〜
1050℃で5分以上60分以下の焼鈍を行い、450
〜650℃で20分以上500分以下の時効処理を施す
ことを特徴とする高強度リードフレーム用鉄銅合金薄帯
の製造方法。
(2) Cu from 20% by weight to 901iffi%, 0 from 0.03% by weight to 0.2% by weight, St,
One or more of N and Tl and 0.0 Si each
12~0.2ffl amount%, Al 0.015~0.25
% by weight, Ti in the range of 0.02 to 0.3% by weight, and 8/7 Si + 8/9 A1 + 2/3 Ti is 0.02 to 0.3% by weight.
013% by weight or more, (8/7 Si +8/9 A!+
An iron-copper alloy thin slab having a composition containing 2/3 Ti)/O in a range of 1 or less and the remainder mainly consisting of Fe was heated at 100°C.
Continuously cast at a cooling rate of /sec or more, and after cold rolling 650 ~
Annealed at 1050°C for 5 minutes or more and 60 minutes or less, and
A method for producing a high-strength iron-copper alloy ribbon for lead frames, which comprises subjecting it to an aging treatment at ~650°C for 20 minutes or more and 500 minutes or less.

(3)  Cuを20重量%以上90重量%以下、Oを
0.03重量%以上0.2重量%以下、Sl、 Al、
 Tlの一種又は二種以上をそれぞれSiを0.012
〜0.2重量%、IVを0.015〜0.25重量%、
Tiを0.02〜0.3重量%の範囲で含みかつ8/T
 Si +8/9 jV+2/3 Tiが0.013重
四型取上、(8/7 Si +8/9 N+2/3Ti
)10が1以下の範囲で含み、残部が主としてFeから
なる組成の鉄銅合金薄鋳片を100℃/秒以上の冷却速
度で連続鋳造し、冷間圧延後650〜1050℃で5分
以上60分以下の焼鈍を行い、450〜650℃で20
分以上500分以下の時効処理を施した後、最終冷間圧
延を圧下率15〜60%で行うことを特徴とする高強度
リードフレーム用鉄銅合金薄帯の製造方法。
(3) Cu from 20% by weight to 90% by weight, O from 0.03% by weight to 0.2% by weight, Sl, Al,
One or more types of Tl and 0.012 Si each
~0.2 wt%, 0.015-0.25 wt% IV,
Contains Ti in the range of 0.02 to 0.3% by weight and 8/T
Si +8/9 jV+2/3 Ti is 0.013x4 type, (8/7 Si +8/9 N+2/3Ti
) An iron-copper alloy thin slab having a composition in which 10 is in the range of 1 or less and the remainder mainly consists of Fe is continuously cast at a cooling rate of 100 ° C / sec or more, and after cold rolling at 650 to 1050 ° C for 5 minutes or more Anneal for 60 minutes or less at 450-650℃ for 20 minutes.
1. A method for producing an iron-copper alloy ribbon for high-strength lead frames, which comprises performing an aging treatment for at least 500 minutes and then final cold rolling at a reduction rate of 15 to 60%.

以下本構成要件の限定理由を説明する。The reasons for limiting this configuration requirement will be explained below.

まず、合金の化学組成の限定理由は以下の通りである。First, the reason for limiting the chemical composition of the alloy is as follows.

銅は熱・電気伝導性を向上にさせるためには含有量が高
いほど好ましいが、用途上強度の要求が強い場合には鉄
の含有量を高めることが望ましい。
A higher content of copper is preferable in order to improve thermal and electrical conductivity, but if the application requires strong strength, it is desirable to increase the content of iron.

銅含有量が20重量%以下ではICリードフレームとし
て必要な熱・電気伝導性が得られないのでこれを下限と
する。また上限を90重量%とするのは、鉄含有量が1
0重量%では組織の微細化に有効に働く鉄相の分布が不
十分になり、またはノ\ンダ付は時のヒートショックを
緩和するためある程度上限を定める方が好ましい場合も
あるからである。
If the copper content is less than 20% by weight, the thermal and electrical conductivity necessary for an IC lead frame cannot be obtained, so this is set as the lower limit. Also, the upper limit is 90% by weight because the iron content is 1
This is because if the content is 0% by weight, the distribution of the iron phase, which effectively works to refine the structure, will be insufficient, or it may be preferable to set an upper limit to some extent in order to alleviate the heat shock caused by soldering.

つぎに、酸素を0.03重量%以上添加するのは下記の
酸化物生成元素との関係で鉄中のSi、Aff。
Next, 0.03% by weight or more of oxygen is added to Si and Aff in iron due to the relationship with the following oxide-forming elements.

Tiおよび銅あるいは鋼中のSi+Aj!+Ttおよび
鉄などと酸化物を形成して分散強化作用を示すとともに
、これらの固溶元素量を減することにより熱・電気伝導
性を向上させるからである。また上限を0.2重量%と
するのは上記の効果が飽和すると同時に酸化物量の増加
により加工性の劣化が顕著になるからである。
Ti and Si+Aj in copper or steel! This is because it forms an oxide with +Tt, iron, etc., exhibits a dispersion strengthening effect, and improves thermal and electrical conductivity by reducing the amount of these solid solution elements. Further, the upper limit is set to 0.2% by weight because at the same time as the above effects are saturated, the deterioration of workability becomes noticeable due to an increase in the amount of oxides.

つぎに、S i 、 AJ 、 T iの一種または二
種以上をSiを0.012〜0.2重量%、Alを0.
015〜0.25重量%、Tiをρ、02〜0,3重量
%の範囲で含みかっ8/7 St +8/9 A (1
+2/3 Tiが0.013重量%以上になるように添
加するのは、これらがいずれも強い酸化物生成元素であ
って、鋳片の銅冨化相の凝固開始時あるいは開始直後に
微細な酸化物を形成させるときは固溶元素による導電率
の低下を防止し、強度を高めるため極めて有効であるた
めである。
Next, one or more of Si, AJ, and Ti are mixed with Si in an amount of 0.012 to 0.2% by weight and Al in an amount of 0.012 to 0.2% by weight.
8/7 St +8/9 A (1
+2/3 The reason why Ti is added to be 0.013% by weight or more is that these are strong oxide-forming elements, and they cause fine particles to form at or immediately after the solidification of the copper-rich phase of the slab. This is because forming an oxide is extremely effective in preventing a decrease in conductivity due to solid solution elements and increasing strength.

そしてこれらの元素の添加量は酸化物形成に対する化学
量論的考察から決められる。これらの制限の中、下限は
これらの酸化物が一種または二種以上で鉄富化相・洞窟
化相中に微細に分散して存在するのに必要な量であり、
上限は酸素量との関係で決まるが、それは酸化物が粗大
化し過ぎて強化に寄与しないばかりか、延性を著しく低
下させるからそれぞれの量に決定される。
The amounts of these elements to be added are determined from stoichiometric considerations for oxide formation. Among these restrictions, the lower limit is the amount necessary for one or more of these oxides to exist finely dispersed in the iron-enriched phase/caved phase,
The upper limit is determined in relation to the amount of oxygen, but this is because the oxide becomes too coarse and not only does not contribute to strengthening, but also significantly reduces ductility, so each amount is determined accordingly.

その他、Cr + Z n + S n + N bな
どを微量添加することは有用な場合が多いので添加して
もよいが、これについては特に規定しない。それ以外は
原料および溶製その他の工程で不可避的に混入される不
純物元素とする。
In addition, it is often useful to add a small amount of Cr + Z n + S n + N b, etc., so it may be added, but this is not particularly stipulated. Other elements are impurity elements that are unavoidably mixed in raw materials, melting, and other processes.

つぎに本発明の製造プロセスについて説明する。Next, the manufacturing process of the present invention will be explained.

まず、連続鋳造により鉄銅合金薄鋳片を製造するが、こ
のときの−次冷却速度は100℃/秒以上に限定する。
First, an iron-copper alloy thin slab is produced by continuous casting, but the secondary cooling rate at this time is limited to 100° C./second or more.

その理由は一般に凝固後の冷却速度が大きいほど、凝固
組織のサイズは微細化し、その後に熱処理または冷間圧
延−焼鈍を行ってもその効果は保存される。その限界は
合金中に銅を70%以上含む高い強度が比較的得られ難
い場合にも、高強度リードフレーム用材料に要求される
値が得られることによるものである。そして冷却速度が
100℃/秒未満であると鋳片の板厚が厚くなり、最終
用途に要求される板厚を達成するための冷間圧延率が高
(なって生産能率を落とすことになるので重要な限定と
なる。
The reason for this is generally that the larger the cooling rate after solidification, the finer the size of the solidified structure, and the effect is preserved even if heat treatment or cold rolling-annealing is performed thereafter. This limit is due to the fact that the values required for high-strength lead frame materials can be obtained even when it is relatively difficult to obtain high strength when the alloy contains 70% or more of copper. If the cooling rate is less than 100°C/second, the thickness of the slab will increase, and the cold rolling rate required to achieve the thickness required for the final use will be high (which will reduce production efficiency). Therefore, this is an important limitation.

さらに、引き続いて冷延・時効処理を行う。冷間圧延は
リードフレームに必要な板厚を得るのが主要目的である
が、−次の冷間圧延の圧下率は化学組成、鋳造厚みと最
終冷間圧延工程の組合せにより、目的とする板厚・強度
・加工性が得られる条件となる。その効果的な圧下率の
範囲は30〜95%である。
Furthermore, cold rolling and aging treatment are subsequently performed. The main purpose of cold rolling is to obtain the required plate thickness for the lead frame, but the reduction rate of the next cold rolling depends on the combination of chemical composition, casting thickness, and final cold rolling process. These are the conditions for obtaining thickness, strength, and workability. The effective rolling reduction range is 30-95%.

時効処理は、熱・電気伝導性を向上させるために、製造
工程上必須のものであり、化学組成と前工程条件により
適正な温度を選定すべきである。
Aging treatment is essential in the manufacturing process in order to improve thermal and electrical conductivity, and an appropriate temperature should be selected depending on the chemical composition and pre-process conditions.

一般に低温過ぎると析出物の周りに歪を生じ、母材の特
性を劣化させることや、加熱時間が長くなるため設備・
製造能率に対する制約になる。また高温過ぎると析出量
が少なくなり良い特性が得られないばかりか、析出物が
粗大化して、強度確保上不利になるので、450〜65
0℃で20分以上500分以下の時効処理が適正条件と
なる。
In general, if the temperature is too low, distortion will occur around the precipitates, deteriorating the properties of the base material, and increasing the heating time, resulting in
This becomes a constraint on manufacturing efficiency. If the temperature is too high, not only will the amount of precipitate decrease and good properties will not be obtained, but the precipitates will also become coarse, which is disadvantageous in terms of ensuring strength.
Appropriate conditions include aging treatment at 0° C. for 20 minutes or more and 500 minutes or less.

またリードフレームとして加工性が特に要求される場合
には、時効処理の前に650〜1050℃温度域で実用
的な時間として5分以上60分以下の焼鈍を行い、冷間
圧延時に導入された加工歪の除去と再結晶・粒成長によ
り加工性を向上させることが可能である。
In addition, if workability is particularly required as a lead frame, annealing is performed for a practical time of 5 minutes to 60 minutes at a temperature range of 650 to 1050 degrees Celsius before aging treatment. It is possible to improve workability by removing processing strain, recrystallization, and grain growth.

本発明はリードフレームとして強度が要求される用途に
適するが、更に加工性と高強度を必要とする場合には、
上記焼鈍を行った後に冷間圧延を圧下率15〜60%行
い加工歪の導入により強度を上昇させる。そしてこの場
合の効果が顕著になる下限は15%であり、加工性、熱
・電気伝導性が太き(低下しない圧下率50%が上限と
なる。
The present invention is suitable for applications where strength is required as a lead frame, but when further workability and high strength are required,
After performing the above-mentioned annealing, cold rolling is performed at a reduction rate of 15 to 60% to increase the strength by introducing working strain. In this case, the lower limit at which the effect becomes noticeable is 15%, and the upper limit is 50% of the rolling reduction, which increases workability and thermal/electrical conductivity (no reduction occurs).

なお、70MM%以下の銅を含有する場合、または−次
冷間圧延圧下率が50%を超える場合は冷間圧延時の割
れを防止する対策が必要である。
In addition, when containing 70 MM% or less of copper, or when the subsequent cold rolling reduction exceeds 50%, measures are required to prevent cracking during cold rolling.

その方法としては、鋳造後の一定温度域の徐冷および一
旦室温まで冷却後の再加熱が有効である。
Effective methods include slow cooling in a constant temperature range after casting and reheating after cooling to room temperature.

その条件としては鋳造後850〜750℃の温度域を1
0〜100℃/秒の冷却速度で冷却するか、850〜4
50℃の温度域で20分以上60分以下の熱処理を行う
。10℃/未満では充分な割れ防止効果が得られないし
、100℃/秒を超えると粒の粗大化あるいは急冷で得
られた過飽和度の低下などむしろ好ましくないので限定
される。この効果は鋳造後の冷却途中に生じる残留オー
ステナイトまたはマルテンサイトの発生を防止するか、
あるいは焼戻し軟化により鉄・銅組織間の硬度差を減少
させることによる。
The conditions for this are a temperature range of 850 to 750℃ after casting.
Cool at a cooling rate of 0-100°C/sec or 850-4
Heat treatment is performed in a temperature range of 50° C. for 20 minutes or more and 60 minutes or less. If it is less than 10° C./sec, a sufficient crack prevention effect cannot be obtained, and if it exceeds 100° C./sec, the grains become coarser or the degree of supersaturation obtained by rapid cooling is rather unfavorably reduced, so there are limitations. This effect prevents the generation of residual austenite or martensite that occurs during cooling after casting, or
Or by reducing the hardness difference between iron and copper structures through tempering softening.

(実施例) 以下本発明の効果を実施例により説明する。(Example) The effects of the present invention will be explained below using examples.

実施例1 第1表に本発明の成分範囲の合金B−Eと比較の成分範
囲の比較材A、Fの化学成分を示す。
Example 1 Table 1 shows the chemical compositions of alloy BE in the composition range of the present invention and comparative materials A and F in the comparative composition range.

第2表に以下の条件で処理したときの鉄銅合金薄帯の材
質特性を示す。鋳造は双ロール鋳造機を用いて、3.5
X10”/秒の冷却速度で板に2.0鶴に連続鋳造した
。鋳造後は冷却途中で820℃で30分の保定を冷間圧
延時の割れ防止のため行い、ついで圧下率85%で9.
3 mmまで圧延した。
Table 2 shows the material properties of the iron-copper alloy ribbon when treated under the following conditions. Casting is done using a twin roll casting machine, 3.5
A sheet of 2.0 mm was continuously cast at a cooling rate of 9.
It was rolled to 3 mm.

冷間圧延後は490℃で180分の時効処理を行い空冷
した。試料番号工はパラメータX(第1表参照)が下限
以下であり、強度と導電率がともに充分でない例、試料
番号6はパラメータXが酸素量より多く本発明の範囲を
外れている例で延性・導電率が低い。表中にはFe−N
iおよびCu−Fe−5鶴合金の特性も比較に加えた。
After cold rolling, aging treatment was performed at 490° C. for 180 minutes and air cooling was performed. Sample No. 6 has parameter X (see Table 1) below the lower limit, and both strength and conductivity are insufficient. Sample No. 6 has parameter・Low conductivity. In the table, Fe-N
The properties of i and Cu-Fe-5 Tsuru alloys were also included in the comparison.

これからも、本発明材の特性が優れていることは明瞭で
ある。
From this, it is clear that the properties of the material of the present invention are excellent.

第   2   表 実施例2 第3表は本発明成分範囲の供試材Bの双ロール鋳造機で
鋳造時の冷却速度が本発明の範囲外の低い場合を本発明
の場合と比較した。ここで鋳造後の処理条件は実施例1
と同じである。これから鋳造時の冷却速度の効果が大き
いことは明らかである。
Table 2 Example 2 Table 3 compares the case where sample material B having the composition range of the present invention was cast using a twin roll casting machine and the cooling rate was low, which was outside the range of the present invention, with the case of the present invention. Here, the processing conditions after casting are as shown in Example 1.
is the same as It is clear from this that the cooling rate during casting has a large effect.

第   3   表 実施例3 第4表は本発明成分範囲の供試材Cの冷間圧延後の時効
処理前の焼鈍の効果を行わない本発明の場合と比較した
。これから時効処理前の焼鈍を付加すると延性・導電率
が向上する効果が大きいことは明らかである。
Table 3 Example 3 Table 4 compares sample material C having the composition range of the present invention with the case of the present invention in which the effect of annealing before aging treatment after cold rolling is not performed. It is clear from this that adding annealing before aging treatment has a significant effect of improving ductility and electrical conductivity.

第   4   表 実施例4 第5表は本発明成分範囲の供試材りに冷間圧延後700
℃×30分の焼鈍および490℃180分の時効処理を
行い、さらに25%の最終冷間圧延を行った場合の材質
を示す。これから、最終冷間圧延は導電率を余り損なわ
ないで強度を上昇させ得る有効な手段であることが明ら
かである。
Table 4 Example 4 Table 5 shows the test materials containing the composition range of the present invention after cold rolling.
The material is shown after annealing at 30 minutes at 490 degrees Celsius and aging at 490 degrees Celsius for 180 minutes, followed by final cold rolling at 25%. It is clear from this that final cold rolling is an effective means of increasing strength without significantly impairing electrical conductivity.

第   5   表 実施例5 第6表は本発明成分範囲の供試材Eを双ロール鋳造機を
用いて、2.5X103/秒の冷却速度で板厚Q、3 
amに連続鋳造し、鋳造後は直接圧下率48%で0.4
2 mlまで圧延、冷間圧延後は490℃で180分の
時効処理を行い空冷し、さらに30%の最終冷延を行っ
たものの材質を、鋳造後冷却途中で820℃で30分の
保定を冷間圧延時の割れ防止のため行い、ついで圧下率
85%で0、3 amまで圧延し冷間圧延後は490℃
で180分の時効処理を行い空冷した材料と比較して示
す。
Table 5 Example 5 Table 6 shows that sample material E having the composition range of the present invention was prepared using a twin roll casting machine at a cooling rate of 2.5 x 103/sec to a plate thickness Q of 3.
Continuously cast to am, and after casting, the direct reduction rate is 48% and it is 0.4
After rolling to 2 ml and cold rolling, it was aged at 490°C for 180 minutes, air cooled, and then final cold rolled by 30%. After casting, the material was held at 820°C for 30 minutes during cooling. This was done to prevent cracking during cold rolling, then rolled to 0.3 am at a reduction rate of 85%, and then heated to 490°C after cold rolling.
A comparison is shown with a material that was aged for 180 minutes and cooled in air.

これから、いずれの方法によっても優れた特性を有する
リードフレーム用鉄銅合金薄帯が製造できることがわか
る。
It can be seen from this that an iron-copper alloy ribbon for lead frames having excellent properties can be produced by either method.

第   6   表 (発明の効果) 本発明は高強度リードフレーム用鉄銅合金薄帯の製造に
連続鋳造薄鋳片を利用して強度と熱・電気伝導性ともに
優れた材料を得ることを可能にする方法であって、従来
のFe−Ni合金および高強度リードフレーム用銅合金
に代替し得る材料を経済的に製造し得る工業的に価値の
ある発明である。
Table 6 (Effects of the Invention) The present invention makes it possible to obtain a material with excellent strength and thermal and electrical conductivity by using continuously cast thin slabs in the production of iron-copper alloy ribbons for high-strength lead frames. It is an industrially valuable invention that can economically produce a material that can replace conventional Fe-Ni alloys and copper alloys for high-strength lead frames.

手続補正書(自発) 昭和62年3月5日Procedural amendment (voluntary) March 5, 1986

Claims (3)

【特許請求の範囲】[Claims] (1)Cuを20重量%以上90重量%以下、Oを0.
03重量%以上0.2重量%以下、Si、Al、Tiの
一種又は二種以上をそれぞれSiを0.012〜0.2
重量%、Alを0.015〜0.25重量%、Tiを0
.02〜0.3重量%の範囲で含みかつ8/7Si+8
/9Al+2/3Tiが0.013重量%以上、(8/
7Si+8/9Al+2/3Ti)/Oが1以下の範囲
で含み、残部が主としてFeからなる組成の鉄銅合金薄
鋳片を100℃/秒以上の冷却速度で連続鋳造し、冷間
圧延後450〜650℃で20分以上500分以下の時
効処理を施すことを特徴とする高強度リードフレーム用
鉄銅合金薄帯の製造方法。
(1) Cu content: 20% by weight or more and 90% by weight or less, O: 0.
03% by weight or more and 0.2% by weight or less, one or more of Si, Al, and Ti, each containing 0.012 to 0.2 of Si
wt%, Al 0.015 to 0.25 wt%, Ti 0
.. Contains in the range of 02 to 0.3% by weight and 8/7Si+8
/9Al+2/3Ti is 0.013% by weight or more, (8/
An iron-copper alloy thin slab having a composition containing 7Si+8/9Al+2/3Ti)/O in a range of 1 or less and the remainder mainly consisting of Fe is continuously cast at a cooling rate of 100°C/second or more, and after cold rolling it has a temperature of 450°C to A method for producing a high-strength iron-copper alloy ribbon for lead frames, which comprises subjecting it to an aging treatment at 650° C. for 20 minutes or more and 500 minutes or less.
(2)Cuを20重量%以上90重量%以下、Oを0.
03重量%以上0.2重量%以下、Si、Al、Tiの
一種又は二種以上をそれぞれSiを0.012〜0.2
重量%、Alを0.015〜0.25重量%、Tiを0
.02〜0.3重量%の範囲で含みかつ8/7Si+8
/9Al+2/3Tiが0.013重量%以上、(8/
7Si+8/9Al+2/3Ti)/Oが1以下の範囲
で含み、残部が主としてFeからなる組成の鉄銅合金薄
鋳片を100℃/秒以上の冷却速度で連続鋳造し、冷間
圧延後650〜1050℃で5分以上60分以下の焼鈍
を行い、450〜650℃で20分以上500分以下の
時効処理を施すことを特徴とする高強度リードフレーム
用鉄銅合金薄帯の製造方法。
(2) Cu content: 20% by weight or more and 90% by weight or less, O: 0.
03% by weight or more and 0.2% by weight or less, one or more of Si, Al, and Ti, each containing 0.012 to 0.2 of Si
wt%, Al 0.015 to 0.25 wt%, Ti 0
.. Contains in the range of 02 to 0.3% by weight and 8/7Si+8
/9Al+2/3Ti is 0.013% by weight or more, (8/
An iron-copper alloy thin slab having a composition containing 7Si+8/9Al+2/3Ti)/O in a range of 1 or less and the remainder mainly consisting of Fe is continuously cast at a cooling rate of 100°C/second or more, and after cold rolling, it has a temperature of 650°C to A method for producing a high-strength iron-copper alloy ribbon for lead frames, which comprises annealing at 1050°C for 5 minutes or more and 60 minutes or less, and aging at 450-650°C for 20 minutes or more and 500 minutes or less.
(3)Cuを20重量%以上90重量%以下、Oを0.
03重量%以上0.2重量%以下、Si、Al、Tiの
一種又は二種以上をそれぞれSiを0.012〜0.2
重量%、Alを0.015〜0.25重量%、Tiを0
.02〜0.3重量%の範囲で含みかつ8/7Si+8
/9Al+2/3Tiが0.013重量%以上、(8/
7Si+8/9Al+2/3Ti)/Oが1以下の範囲
で含み、残部が主としてFeからなる組成の鉄銅合金薄
鋳片を100℃/秒以上の冷却速度で連続鋳造し、冷間
圧延後650〜1050℃で5分以上60分以下の焼鈍
を行い、450〜650℃で20分以上500分以下の
時効処理を施した後、最終冷間圧延を圧下率15〜60
%で行うことを特徴とする高強度リードフレーム用鉄銅
合金薄帯の製造方法。
(3) Cu content of 20% by weight or more and 90% by weight or less, O content of 0.
03% by weight or more and 0.2% by weight or less, one or more of Si, Al, and Ti, each containing 0.012 to 0.2 of Si
wt%, Al 0.015 to 0.25 wt%, Ti 0
.. Contains in the range of 02 to 0.3% by weight and 8/7Si+8
/9Al+2/3Ti is 0.013% by weight or more, (8/
An iron-copper alloy thin slab having a composition containing 7Si+8/9Al+2/3Ti)/O in a range of 1 or less and the remainder mainly consisting of Fe is continuously cast at a cooling rate of 100°C/second or more, and after cold rolling, it has a temperature of 650°C to After annealing at 1050°C for 5 minutes to 60 minutes and aging at 450 to 650°C for 20 minutes to 500 minutes, final cold rolling is performed at a reduction rate of 15 to 60.
%.A method for producing iron-copper alloy ribbon for high-strength lead frames.
JP28383486A 1986-11-28 1986-11-28 Manufacture of high-strength iron-copper alloy foil for lead frame Granted JPS63137148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28383486A JPS63137148A (en) 1986-11-28 1986-11-28 Manufacture of high-strength iron-copper alloy foil for lead frame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28383486A JPS63137148A (en) 1986-11-28 1986-11-28 Manufacture of high-strength iron-copper alloy foil for lead frame

Publications (2)

Publication Number Publication Date
JPS63137148A true JPS63137148A (en) 1988-06-09
JPH0430465B2 JPH0430465B2 (en) 1992-05-21

Family

ID=17670761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28383486A Granted JPS63137148A (en) 1986-11-28 1986-11-28 Manufacture of high-strength iron-copper alloy foil for lead frame

Country Status (1)

Country Link
JP (1) JPS63137148A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016051864A1 (en) * 2014-10-01 2016-04-07 住友電気工業株式会社 Copper alloy material, connector terminal, and method for producing copper alloy material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016051864A1 (en) * 2014-10-01 2016-04-07 住友電気工業株式会社 Copper alloy material, connector terminal, and method for producing copper alloy material

Also Published As

Publication number Publication date
JPH0430465B2 (en) 1992-05-21

Similar Documents

Publication Publication Date Title
JP7442304B2 (en) Aluminum alloy rolled material with excellent thermal conductivity, electrical conductivity, and strength, and its manufacturing method
JPH0790520A (en) Production of high-strength cu alloy sheet bar
CN115747564B (en) Copper-nickel-silicon-phosphorus alloy and preparation method thereof
JPS6050864B2 (en) Aluminum alloy material for forming with excellent bending workability and its manufacturing method
JPS63293147A (en) Production of iron-copper-chromium alloy strip for high-strength lead frame
JP2738130B2 (en) High strength Cu alloy continuous casting mold material having high cooling capacity and method for producing the same
JPH02111829A (en) Copper alloy for lead frame
JPS63137148A (en) Manufacture of high-strength iron-copper alloy foil for lead frame
JPH0238653B2 (en) PURASUCHITSUKUKANAGATAYODOGOKINOYOBISONOSEIZOHOHO
JPS61143564A (en) Manufacture of high strength and highly conductive copper base alloy
JPS6141751A (en) Manufacture of copper alloy material for lead frame
JPH0418019B2 (en)
JP2697242B2 (en) Continuous casting mold material made of Cu alloy having high cooling ability and method for producing the same
JPH0243811B2 (en) RIIDOFUREEMUYODOGOKINOYOBISONOSEIZOHO
JP3359428B2 (en) Manufacturing method of aluminum alloy sheet for forming
JPH0424419B2 (en)
JPS6270542A (en) Cu-alloy lead material for semiconductor device
JPS60114557A (en) Manufacture of copper alloy plate and bar
JPH04210438A (en) Continuous casting mold material made of high strength cu alloy
JPH0665691A (en) High ni alloy sheet strip excellent in corrosion resistance and its production
JPH02221356A (en) Production of aluminum alloy stock for heat radiation bar
JPS6338413B2 (en)
JPH05171357A (en) Fe-ni alloy having high strength and low thermal expansion and excellent in hot workability
JPS61186441A (en) High strength copper alloy having high heat resistance and its manufacture
JPH0860315A (en) Production of aluminum alloy sheet for forming