JPH0860315A - Production of aluminum alloy sheet for forming - Google Patents

Production of aluminum alloy sheet for forming

Info

Publication number
JPH0860315A
JPH0860315A JP6215366A JP21536694A JPH0860315A JP H0860315 A JPH0860315 A JP H0860315A JP 6215366 A JP6215366 A JP 6215366A JP 21536694 A JP21536694 A JP 21536694A JP H0860315 A JPH0860315 A JP H0860315A
Authority
JP
Japan
Prior art keywords
alloy
temperature
range
strength
baking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6215366A
Other languages
Japanese (ja)
Inventor
Iwao Shu
岩 朱
Mamoru Matsuo
守 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sky Aluminium Co Ltd
Original Assignee
Sky Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sky Aluminium Co Ltd filed Critical Sky Aluminium Co Ltd
Priority to JP6215366A priority Critical patent/JPH0860315A/en
Publication of JPH0860315A publication Critical patent/JPH0860315A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To produce an Al alloy sheet for forming, reduced in secular change at room temp. and excellent in formability and baking hardenability. CONSTITUTION: An ingot of an alloy, having a composition consisting of 0.3-1.5% Mg, 0.4-2.0% Si, >0.4-1.4% Cu, one or >=2 kinds among 0.03-1.5% Zn, 0.03-0.4% Mn, 0.03-0.4% Cr, 0.03-0.4% Zr, 0.03-0.4% V, 0.03-0.5% Fe, and 0.005-0.2% Ti, and the balance essentially Al, is used. This ingot is homogenized, hot-rolled, and cold-rolled. The resulting alloy sheet is subjected to solution heat treatment at >=480 deg.C, cooled to 45-75 deg.C at a rate of >=100 deg.C/min, held at the temp. for a time in the range not shorter than 5sec and capable of controlling the proof stress of the alloy to <=105N/mm<2> , and successively subjected to stabilizing treatment at 80-150 deg.C for 0.5-40hr.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、自動車ボディシート
や部品、各種機械器具、家電部品等の素材として、成形
加工および塗装焼付を施して使用されるアルミニウム合
金板の製造方法に関するものであり、特に成形性が良好
であるとともに、塗装焼付後の強度が高く、かつ室温で
の経時変化が少ない成形加工用アルミニウム合金板の製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an aluminum alloy sheet, which is used as a raw material for automobile body sheets, parts, various machines and appliances, home electric appliances, etc. after being subjected to molding and baking. In particular, the present invention relates to a method for producing an aluminum alloy sheet for forming, which has good formability, high strength after coating baking, and little change with time at room temperature.

【0002】[0002]

【従来の技術】自動車のボディシートには、従来は主と
して冷延鋼板を使用することが多かったが、最近では車
体軽量化の観点から、アルミニウム合金圧延板を使用す
ることが進められている。自動車のボディシートはプレ
ス加工を施して使用するところから、成形加工性が優れ
ていること、また成形加工時におけるリューダースマー
クが発生しないことが要求され、また高強度を有するこ
とも必須であって、特に塗装焼付を施すことから、塗装
焼付後に高強度が得られることが要求される。
2. Description of the Related Art Conventionally, cold rolled steel sheets have been mainly used for body sheets of automobiles, but recently, rolled aluminum alloy sheets have been used from the viewpoint of reducing the weight of a vehicle body. Because the body sheet of an automobile is used after being pressed, it must have excellent moldability and not have any Rudermark during molding, and it must have high strength. In particular, since paint baking is performed, it is required that high strength be obtained after paint baking.

【0003】従来このような自動車用ボディシート向け
のアルミニウム合金としては、時効性を有するJIS
6000番系合金、すなわちAl−Mg−Si系合金が
主として使用されている。この時効性Al−Mg−Si
系合金では、塗装焼付前の成形加工時においては比較的
強度が低く、成形性が優れており、一方塗装焼付時の加
熱によって時効されて塗装焼付後の強度が高くなる利点
を有するほか、リューダースマークが発生しない等の利
点を有する。
Conventionally, as such an aluminum alloy for an automobile body sheet, JIS having aging properties is used.
No. 6000 series alloy, that is, Al-Mg-Si based alloy is mainly used. This aging Al-Mg-Si
Based alloys have relatively low strength during molding before baking, and have excellent formability.On the other hand, they have the advantage of being aged by heating during baking to increase strength after baking. It has advantages such as the generation of dozen marks.

【0004】ところで塗装焼付時における時効硬化を期
待したAl−Mg−Si系合金板の製造方法としては、
鋳塊を均質化熱処理した後、熱間圧延および冷間圧延を
行なって所定の板厚とし、かつ必要に応じて熱間圧延と
冷間圧延との間あるいは冷間圧延の中途において中間焼
鈍を行ない、冷間圧延後に溶体化処理を行なって焼入れ
るのが通常である。しかしながらこのような従来の一般
的な製造方法では、最近の自動車用ボディシートに要求
される特性を充分に満足させることは困難である。
By the way, as a method for producing an Al--Mg--Si alloy plate, which is expected to age harden during baking,
After homogenizing and heat-treating the ingot, hot rolling and cold rolling are performed to a predetermined plate thickness, and if necessary, intermediate annealing is performed between hot rolling and cold rolling or in the middle of cold rolling. It is usual to carry out a solution treatment after cold rolling and quenching. However, it is difficult for such a conventional general manufacturing method to sufficiently satisfy the characteristics required for recent automobile body sheets.

【0005】すなわち、最近ではコストの一層の低減の
ためにさらに薄肉化することが強く要求されており、そ
のため薄肉でも充分な強度が得られるように、一層の高
強度化が求められているが、この点で従来の一般的な製
造方法によって得られたAl−Mg−Si系合金板では
不充分であった。
That is, recently, there has been a strong demand for a further reduction in thickness in order to further reduce the cost. For this reason, a further increase in strength has been required so that sufficient strength can be obtained even with a thin wall. In this respect, the Al-Mg-Si alloy plate obtained by the conventional general manufacturing method is insufficient.

【0006】また塗装焼付については、省エネルギおよ
び生産性の向上、さらには高温に曝されることが好まし
くない樹脂等の材料との併用などの点から、従来よりも
焼付温度を低温化し、また焼付時間も短時間化する傾向
が強まっている。そのため従来の一般的な製法により得
られたAl−Mg−Si系合金板では、塗装焼付時の硬
化(焼付硬化)が不足し、塗装焼付後に充分な高強度が
得難くなる問題が生じていた。また従来のAl−Mg−
Si系合金板では、塗装焼付後に高強度を得るために焼
付硬化性を高めようとすれば、板製造後に室温に放置し
た場合に自然時効により硬化が生じやすくなり、そのた
め成形性が阻害され勝ちであるという問題もある。
Regarding coating baking, in order to save energy and improve productivity, and in combination with a material such as a resin which is not preferably exposed to a high temperature, the baking temperature is made lower than before, and There is an increasing tendency to shorten the baking time. Therefore, in the Al-Mg-Si alloy plate obtained by the conventional general manufacturing method, the curing at the time of baking the coating (baking hardening) is insufficient, and there is a problem that it becomes difficult to obtain sufficient high strength after baking the coating. . In addition, conventional Al-Mg-
In Si-based alloy sheets, if the bake hardenability is to be increased in order to obtain high strength after painting and baking, hardening tends to occur due to natural aging when left at room temperature after the sheet is manufactured, which tends to hinder the formability. There is also the problem that

【0007】[0007]

【発明が解決しようとする課題】この発明は以上の事情
を背景としてなされたもので、良好な成形加工性を有す
ると同時に、焼付硬化性が優れていて、塗装焼付時にお
ける強度上昇が高く、しかも板製造後の室温での経時的
な変化が少なく、長期間放置した場合でも自然時効によ
る硬化に起因する成形性の低下が少ない成形加工用アル
ミニウム合金板の製造方法を提供することを目的とする
ものである。
SUMMARY OF THE INVENTION The present invention has been made under the circumstances described above, and it has good moldability and at the same time has excellent bake hardenability, resulting in high strength increase during coating baking. Moreover, there is little change over time at room temperature after plate production, and it is an object of the present invention to provide a method for producing an aluminum alloy plate for forming process in which there is little deterioration in formability due to hardening due to natural aging even when left for a long time. To do.

【0008】[0008]

【課題を解決するための手段】前述のような課題を解決
するべく本発明者等が実験・検討を重ねた結果、Al−
Mg−Si系合金の成分組成を適切に選択すると同時
に、板製造プロセス中において、溶体化処理後に適切な
熱処理を行なうことによって、前述の課題を解決し得る
ことを見出し、この発明をなすに至った。
Means for Solving the Problems As a result of repeated experiments and studies by the present inventors in order to solve the above problems, Al-
The inventors have found that the above-mentioned problems can be solved by appropriately selecting the component composition of the Mg-Si alloy and at the same time performing an appropriate heat treatment after the solution treatment during the plate manufacturing process, and have completed the present invention. It was

【0009】具体的には、この発明のアルミニウム合金
板の製造方法は、Mg0.3〜1.5%、Si0.4〜
2.0%、Cu0.4%を越え1.4%以下を含有し、
かつZn0.03〜1.5%、Mn0.03〜0.4
%、Cr0.03〜0.4%、Zr0.03〜0.4
%、V0.03〜0.4%、Fe0.03〜0.5%、
Ti0.005〜0.2%のうちから選ばれた1種また
は2種以上を含有し、残部がAlおよび不可避的不純物
よりなる合金を素材とし、鋳塊に均質化処理、熱間圧延
および冷間圧延を行なって所要の板厚の圧延板とし、そ
の圧延板に対し、480℃以上の温度で溶体化処理を行
なってから100℃/min以上の冷却速度で45〜7
5℃の温度域まで冷却して、この温度域内で5秒以上の
保持を行ない、かつその保持時間の上限を、合金の耐力
(σ0.2 )が105N/mm2 以下になるように規制
し、続いて80〜150℃の範囲内の温度に加熱して、
この温度範囲で0.5〜40時間保持する安定化処理を
行なうことを特徴とするものである。
Specifically, the method for producing an aluminum alloy plate according to the present invention uses Mg 0.3 to 1.5% and Si 0.4 to
2.0%, containing more than Cu 0.4% and 1.4% or less,
And Zn 0.03 to 1.5%, Mn 0.03 to 0.4
%, Cr 0.03 to 0.4%, Zr 0.03 to 0.4
%, V0.03-0.4%, Fe0.03-0.5%,
An alloy containing one or more selected from 0.005 to 0.2% Ti and the balance being Al and unavoidable impurities is used as a raw material, and the ingot is homogenized, hot-rolled and cooled. Hot rolling to a rolled plate having a required plate thickness, the solution rolling treatment is performed on the rolled plate at a temperature of 480 ° C. or higher, and then 45 to 7 at a cooling rate of 100 ° C./min or higher.
After cooling to a temperature range of 5 ° C, holding for 5 seconds or more within this temperature range, and limiting the upper limit of the holding time so that the proof stress (σ 0.2 ) of the alloy is 105 N / mm 2 or less, Then heat to a temperature in the range of 80-150 ° C,
It is characterized in that a stabilizing treatment is carried out for holding in this temperature range for 0.5 to 40 hours.

【0010】[0010]

【作用】先ずこの発明の製造方法で用いる合金の成分組
成限定理由について説明する。
First, the reasons for limiting the composition of the alloy used in the manufacturing method of the present invention will be described.

【0011】Mg:Mgはこの発明で対象としている系
の合金で基本となる合金元素であって、Siと共同して
強度向上に寄与する。Mg量が0.3%未満では塗装焼
付時に析出硬化によって強度向上に寄与するMg2 Si
の生成量が少なくなるため、充分な強度向上が得られ
ず、一方1.5%を越えれば成形性が低下するから、M
g量は0.3〜1.5%の範囲内とした。
Mg: Mg is a basic alloying element in the alloy of the system targeted by the present invention, and contributes to the strength improvement in cooperation with Si. When the amount of Mg is less than 0.3%, Mg 2 Si contributes to strength improvement by precipitation hardening at the time of coating baking.
Since the amount of M produced is small, sufficient improvement in strength cannot be obtained. On the other hand, if it exceeds 1.5%, the formability is deteriorated.
The amount of g was set within the range of 0.3 to 1.5%.

【0012】Si:Siもこの発明の系の合金で基本と
なる合金元素であって、Mgと共同して強度向上に寄与
する。またSiは、鋳造時に金属Siの晶出物として生
成され、その金属Si粒子の周囲が加工によって変形さ
れて、溶体化処理の際に再結晶核の生成サイトとなるた
め、再結晶組織の微細化にも寄与する。Siが0.4%
未満では上記の効果が充分に得られず、一方2.0%を
越えれば粗大Siが生じて合金の靭性低下を招く。した
がってSiは0.4〜2.0%の範囲内とした。
Si: Si is also a basic alloying element in the alloy of the present invention, and contributes to improvement in strength in cooperation with Mg. Further, Si is generated as a crystallized product of metallic Si during casting, and the periphery of the metallic Si particles is deformed by processing to become a recrystallization nucleus generation site during solution treatment, so that the fine recrystallization structure is fine. Also contributes to Si is 0.4%
If it is less than 2.0%, the above effect cannot be sufficiently obtained, while if it exceeds 2.0%, coarse Si is generated and the toughness of the alloy is lowered. Therefore, Si is set within the range of 0.4 to 2.0%.

【0013】Cu:Cuは時効硬化を促進し、合金の強
度を高めるに有効な元素である。Cu量が0.4%以下
ではその効果が充分に得られず、一方1.4%を越えれ
ば耐食性が低下するから、Cuは0.4%を越え1.4
%以下の範囲内とした。
Cu: Cu is an element effective in promoting age hardening and increasing the strength of the alloy. If the Cu content is 0.4% or less, the effect is not sufficiently obtained, while if it exceeds 1.4%, the corrosion resistance decreases, so that Cu exceeds 0.4% and 1.4
It was set within the range of% or less.

【0014】Zn,Mn,Cr,Zr,V,Ti,F
e:これらは強度向上や結晶粒微細化のために1種また
は2種以上添加される。これらのうち、Znは合金の時
効性の向上を通じて強度向上に寄与する元素であり、そ
の含有量が0.3%未満では上記の効果が不充分であ
り、一方1.5%を越えれば成形性および耐食性が低下
するから、Znを添加する場合のZn量は0.03〜
1.5%の範囲内とした。さらにMn,Cr,Zr,V
はいずれも強度向上と結晶粒の微細化および組織の安定
化に効果がある元素であり、いずれも含有量が0.03
%未満では上記の効果が充分に得られず、一方それぞれ
0.4%を越えれば上記の効果が飽和するばかりでな
く、巨大金属間化合物が生成されて成形性に悪影響を及
ぼすおそれがあり、したがってMn,Cr,Zr,Vは
いずれも0.03〜0.4%の範囲内とした。またTi
も強度向上と鋳塊組織の微細化に有効な元素であり、そ
の含有量が0.005%未満では充分な効果が得られ
ず、一方0.2%を越えればTi添加の効果が飽和する
ばかりでなく、巨大晶出物が生じるおそれがあるから、
Tiは0.005〜0.2%の範囲内とした。そしてま
たFeも強度向上と結晶粒微細化に有効な元素であり、
その含有量が0.03%未満では充分な効果が得られ
ず、一方0.5%を越えれば成形性が低下するおそれが
あり、したがってFeは0.03〜0.5%の範囲内と
した。なおこれらのZn,Mn,Cr,Zr,V,T
i,Feの範囲は、積極的な添加元素としてこれらの元
素を含む場合について示したものであり、いずれもその
下限値よりも少ない量を不純物として含有していること
は特に支障ない。特に、0.03%未満のFeは、通常
のアルミ地金を用いれば不可避的に含有されるのが通常
である。
Zn, Mn, Cr, Zr, V, Ti, F
e: These are added in one kind or two or more kinds in order to improve the strength and refine the crystal grains. Of these, Zn is an element that contributes to the strength improvement through the improvement of the aging property of the alloy, and if the content thereof is less than 0.3%, the above effect is insufficient, while if it exceeds 1.5%, it is formed. Since the corrosion resistance and the corrosion resistance decrease, the Zn content in the case of adding Zn is 0.03 to
It was set within the range of 1.5%. Furthermore, Mn, Cr, Zr, V
Is an element effective in improving the strength, refining the crystal grains and stabilizing the structure.
If it is less than 0.1%, the above effect cannot be sufficiently obtained, while if it exceeds 0.4%, not only the above effect is saturated, but also a huge intermetallic compound may be formed, which may adversely affect the formability. Therefore, Mn, Cr, Zr, and V are all within the range of 0.03 to 0.4%. Also Ti
Is an element effective in improving strength and refining the ingot structure. If the content is less than 0.005%, a sufficient effect cannot be obtained, while if it exceeds 0.2%, the effect of Ti addition is saturated. Not only that, but there is a possibility that huge crystallized substances may occur,
Ti was made into the range of 0.005-0.2%. And Fe is also an element effective in improving strength and refining crystal grains,
If the content is less than 0.03%, a sufficient effect cannot be obtained, while if it exceeds 0.5%, the formability may be deteriorated. Therefore, Fe is in the range of 0.03 to 0.5%. did. These Zn, Mn, Cr, Zr, V, T
The ranges of i and Fe are shown for the case where these elements are included as positively added elements, and it is not a particular problem that both of them contain less than the lower limit value thereof as impurities. In particular, Fe of less than 0.03% is usually unavoidably contained by using a normal aluminum base metal.

【0015】以上の各元素のほかは、基本的にはAlお
よび不可避的不純物とすれば良い。但し、一般にMgを
含有する系の合金においては溶湯の酸化防止のために微
量のBeを添加することがあり、この発明の合金の場合
も0.0001〜0.01%程度のBeの添加は許容さ
れる。また一般に結晶粒微細化のために前述のTiと同
時にBを添加することもあり、この発明の場合もTiと
ともに500ppm以下のBを添加することは許容され
る。
In addition to the above elements, basically Al and unavoidable impurities may be used. However, in general, a small amount of Be may be added to a Mg-containing alloy in order to prevent oxidation of the molten metal. In the case of the alloy according to the present invention, addition of about 0.0001 to 0.01% of Be is also required. Permissible. Further, in general, B may be added at the same time as Ti described above for refining the crystal grains, and in the case of the present invention as well, it is permissible to add B in an amount of 500 ppm or less together with Ti.

【0016】次にこの発明の方法における製造プロセス
について説明する。
Next, the manufacturing process in the method of the present invention will be described.

【0017】溶体化処理前までの工程すなわち所要の製
品板厚の圧延板とするまでの工程は、従来の一般的なJ
IS 6000番系のAl−Mg−Si系合金と同様で
あれば良い。すなわち、DC鋳造法等によって鋳造した
後、常法により均質化処理を施し、熱間圧延および冷間
圧延を行なって所要の板厚とすれば良く、また熱間圧延
と冷間圧延との間、あるいは冷間圧延の中途において必
要に応じて中間焼鈍を行なっても良い。
The process up to the solution treatment, that is, the process for forming a rolled plate having a required product plate thickness, is the same as in the conventional J.
It may be the same as the IS 6000 series Al-Mg-Si series alloy. That is, after casting by a DC casting method or the like, homogenization treatment may be performed by an ordinary method, and hot rolling and cold rolling may be performed to obtain a required sheet thickness. In addition, hot rolling and cold rolling may be performed. Alternatively, intermediate annealing may be performed as needed in the middle of cold rolling.

【0018】上述のようにして所要の製品板厚とした
後、480℃以上の温度で溶体化処理を行なう。この溶
体化処理は、Mg2 Si等をマトリックスに固溶させ、
これにより焼付硬化性を付与して塗装焼付後の強度向上
を図るために必要な工程であり、また再結晶させて良好
な成形性を得るための工程でもある。溶体化処理温度が
480℃未満ではMg2 Siの固溶量が少なく、充分な
焼付硬化性が得られない。溶体化処理温度の上限は特に
規定しないが、共晶融解の発生のおそれや再結晶粒粗大
化等を考慮して、通常は580℃以下とすることが望ま
しい。また溶体化処理の時間も特に限定しないが、通常
は120分以内とする。
After the required product plate thickness is obtained as described above, solution treatment is performed at a temperature of 480 ° C. or higher. In this solution treatment, Mg 2 Si or the like is solid-dissolved in the matrix,
This is a step necessary for imparting bake hardenability and improving the strength after baking for coating, and is also a step for recrystallizing to obtain good formability. If the solution treatment temperature is lower than 480 ° C., the solid solution amount of Mg 2 Si is small and sufficient bake hardenability cannot be obtained. Although the upper limit of the solution treatment temperature is not particularly defined, it is usually desirable to be 580 ° C. or less in consideration of the possibility of eutectic melting and coarsening of recrystallized grains. The time for the solution treatment is not particularly limited, but is usually 120 minutes or less.

【0019】溶体化処理後には、100℃/min以上
の冷却速度で、45〜75℃の温度域まで冷却(焼入
れ)する。ここで、溶体化処理後の冷却速度が100℃
/min未満では、冷却中にMg2 Siが多量に析出し
てしまい、成形性が低下すると同時に、焼付硬化性が低
下して塗装焼付時の充分な強度向上が望めなくなる。
After the solution treatment, the material is cooled (quenched) to a temperature range of 45 to 75 ° C. at a cooling rate of 100 ° C./min or more. Here, the cooling rate after the solution treatment is 100 ° C.
If it is less than / min, a large amount of Mg 2 Si will be precipitated during cooling, and the formability will decrease, and at the same time, the bake hardenability will decrease, making it impossible to expect a sufficient improvement in strength during baking of the coating.

【0020】前述のようにして480℃以上の温度での
溶体化処理の後、100℃/min以上の冷却速度で4
5〜75℃の温度域内で冷却(焼入)し、その45〜7
5℃の温度域内で時間Tだけ保持する。この保持時間T
は下限を5秒とし、上限(Tmax )は合金の耐力が10
5N/mm2 以下になるように調整する。そしてこのよ
うに45〜75℃の温度域での5秒〜Tmax の保持の
後、改めて80〜150℃の範囲内の温度に加熱して、
この温度範囲内で0.5〜40時間保持する安定化処理
を行なう。
After the solution heat treatment at a temperature of 480 ° C. or higher as described above, the solution is cooled at a cooling rate of 100 ° C./min or higher.
Cooling (quenching) in the temperature range of 5 to 75 ° C, and then 45 to 7
Hold for a time T within a temperature range of 5 ° C. This holding time T
Has a lower limit of 5 seconds and an upper limit (T max ) of which the proof stress of the alloy is 10
Adjust so that it is 5 N / mm 2 or less. Then, after holding for 5 seconds to T max in the temperature range of 45 to 75 ° C in this way, it is heated again to a temperature in the range of 80 to 150 ° C,
Stabilization treatment is carried out by maintaining the temperature within this temperature range for 0.5 to 40 hours.

【0021】上述のように溶体化処理後に45〜75℃
まで冷却して5秒〜Tmax の保持を行なう理由は次の通
りである。すなわち、溶体化処理後、特に100℃/m
in以上の冷却速度で45℃未満の室温に冷却した場合
には、室温クラスターが生成される。この室温クラスタ
ーは強度に寄与するG.P.ゾーンに移行しにくいた
め、室温クラスターが生成された組織は塗装焼付硬化性
に不利となる。一方、溶体化処理後に75℃を越える温
度まで冷却してそのまま保持した場合には、高温クラス
ターあるいはG.P.ゾーンが生成され、塗装焼付硬化
性に対しては有利となるが、安定化処理後の室温時効に
よる経時変化が大きく、成形性に悪影響を与える。した
がって成形性と塗装焼付硬化性とのバランスの観点か
ら、溶体化処理後には45〜75℃の温度域内に焼入す
る必要がある。すなわち、溶体化処理後には、45〜7
5℃の温度域内に冷却することによって、成形性と塗装
焼付硬化性との両者を満たすことができるのである。
After solution treatment as described above, 45 to 75 ° C.
The reason for cooling to 5 seconds to hold T max for 5 seconds is as follows. That is, after the solution treatment, especially 100 ° C./m
When cooled to a room temperature of less than 45 ° C. at a cooling rate of in or more, room temperature clusters are generated. This room temperature cluster contributes to the strength of G. P. Since it is difficult to move to the zone, the structure in which the room temperature cluster is formed is disadvantageous in the paint bake hardenability. On the other hand, when the solution is cooled to a temperature exceeding 75 ° C. and kept as it is after the solution treatment, high temperature clusters or G. P. Although a zone is formed and it is advantageous for the bake hardenability of the coating, it has a large change over time due to room temperature aging after the stabilization treatment, which adversely affects the formability. Therefore, from the viewpoint of the balance between formability and paint bake hardenability, it is necessary to quench within the temperature range of 45 to 75 ° C after the solution treatment. That is, 45 to 7 after solution treatment
By cooling within the temperature range of 5 ° C., both moldability and paint bake hardenability can be satisfied.

【0022】溶体化処理後に45〜75℃の温度域内に
冷却した後のその温度域での保持時間Tが5秒以下で
は、上述の効果、特に室温時効の抑制の効果が得られな
い。一方、45〜75℃の温度域内での保持時間Tが長
時間にわたれば、室温クラスターに近い構造と性質を有
するクラスターあるいはG.P.ゾーンが多量に生成さ
れて、その後の塗装焼付硬化性が低下してしまう。この
ように長時間保持した場合の保持時間Tの影響は、溶体
化処理までの合金成分、溶体化温度などによって変わる
から、保持時間Tの上限は一律に定めることはできない
が、合金の耐力を指標として定めることができる。すな
わち、45〜75℃での保持時間が長くなってその温度
域でのクラスターが多量に生成されれば合金の耐力も高
くなるから、その保持時の耐力を指標として保持時間T
の上限Tmax を定めることができ、本発明者等の実験に
よれば、耐力が105N/mm2 以下の範囲内となるよ
うに保持時間Tの上限Tmax を規制することが有効であ
ることが判明した。なおこの耐力は、溶体化処理後、1
00℃/min以上の冷却速度で45〜75℃の温度域
に冷却し、その温度域で保持した状態での耐力を意味す
る。したがって実際の操業にあたっては、この耐力が1
05N/mm2 以下となるような保持時間Tの上限T
max の具体値を、合金成分や溶体化処理温度などの実際
の具体的条件に応じて予備実験を行なうことにより求め
ておけば良い。
If the holding time T in the temperature range after cooling in the temperature range of 45 to 75 ° C. after the solution treatment is 5 seconds or less, the above effects, particularly the effect of suppressing room temperature aging, cannot be obtained. On the other hand, when the holding time T in the temperature range of 45 to 75 ° C. is long, a cluster having a structure and properties close to a room temperature cluster or G. P. A large number of zones are generated, and the subsequent paint bake hardenability deteriorates. Since the influence of the holding time T when holding for a long time depends on the alloy components until the solution heat treatment, the solution temperature, etc., the upper limit of the holding time T cannot be uniformly set, but the yield strength of the alloy is It can be set as an index. That is, if the holding time at 45 to 75 ° C. becomes long and a large amount of clusters are generated in that temperature range, the yield strength of the alloy also becomes high.
Of can define the upper limit T max, according to the experiments of the present inventors, it proof stress is effective to restrict the upper limit T max of the retention time T so as to be in the range of 105N / mm 2 or less There was found. The yield strength is 1 after solution treatment.
It means the proof stress in a state of being cooled to a temperature range of 45 to 75 ° C. at a cooling rate of 00 ° C./min or more and being kept in that temperature range. Therefore, in actual operation, this proof stress is 1
The upper limit T of the holding time T such that it becomes less than or equal to 05 N / mm 2.
The specific value of max may be obtained by conducting a preliminary experiment according to actual specific conditions such as alloy composition and solution treatment temperature.

【0023】上述のような45〜75℃の温度域での保
持の後には、室温まで冷却することなく、改めて80〜
150℃の範囲内の温度に加熱して安定化処理を行な
う。この安定化処理は、最終的にクラスターあるいは
G.P.ゾーンの安定性を向上させ、板製造後の経時変
化を抑制して、充分な焼付硬化性を確保するとともに良
好な成形加工性を得るために必要な工程であり、この安
定化処理は、80〜150℃の範囲内の温度に0.5〜
40時間保持の条件とする必要がある。安定化処理の温
度が80℃未満では上記の効果が充分に得られず、一方
150℃を越えれば高温時効によって素材強度が高くな
り、成形性が低下してしまう。また安定化処理における
80〜150℃の範囲内の温度での保持時間が0.5時
間未満では、その後の室温での経時変化が速くなって成
形性と焼付硬化性が悪くなり、一方40時間を越えれ
ば、時効によって素材強度が高くなり、成形性が低下し
てしまうとともに、生産性も阻害される。
After holding in the temperature range of 45 to 75.degree. C. as described above, the temperature of 80 to 80.degree.
Stabilization is performed by heating to a temperature in the range of 150 ° C. This stabilization process is finally performed on the cluster or G. P. This stabilization treatment is a step necessary for improving the stability of the zone, suppressing the change with time after plate production, ensuring sufficient bake hardenability and obtaining good moldability. ~ 0.5 to a temperature in the range of ~ 150 ℃
It is necessary to set the condition for holding for 40 hours. If the stabilization treatment temperature is lower than 80 ° C, the above effects cannot be sufficiently obtained, while if it exceeds 150 ° C, the material strength becomes high due to high temperature aging, and the formability deteriorates. Further, when the holding time at a temperature in the range of 80 to 150 ° C. in the stabilization treatment is less than 0.5 hours, the subsequent change with time at room temperature becomes fast and the moldability and bake hardenability deteriorate, while 40 hours If it exceeds, the material strength will increase due to aging, the moldability will decrease, and the productivity will be impaired.

【0024】以上のようにこの発明の製造方法では、合
金の成分組成を適切に調整するとともに、製造プロセス
中において、480℃以上の温度での溶体化処理、およ
び45〜75℃の温度域への冷却(焼入れ)とその温度
域での適切な保持の後に改めて80〜150℃の条件で
安定化処理を施すことにより、板製造後の室温での経時
変化、すなわち室温での自然時効の進行を阻止すること
が可能となり、その結果、板製造後に長期間放置されて
から成形加工、塗装焼付を施す場合でも、良好な成形
性、優れた焼付硬化性を充分に確保することが可能とな
ったのである。
As described above, in the production method of the present invention, the composition of the alloy components is appropriately adjusted, and during the production process, the solution treatment is performed at a temperature of 480 ° C. or higher, and the temperature range is set to 45 to 75 ° C. After cooling (quenching) and appropriate holding in that temperature range, the stabilizing treatment is performed again under the condition of 80 to 150 ° C. to change with time at room temperature after plate production, that is, the progress of natural aging at room temperature. As a result, it is possible to sufficiently secure good moldability and excellent bake hardenability even when the plate is left for a long period of time and then subjected to molding and coating baking. It was.

【0025】[0025]

【実施例】表1に示す本発明成分組成範囲内の合金記号
A1〜A3の合金、および本発明成分組成範囲外の合金
記号B1〜B2の合金について、それぞれ常法に従って
DC鋳造法により鋳造し、得られた鋳塊に530℃×5
hの均質化処理を施してから、熱間圧延を開始し、続い
て冷間圧延を行なって厚さ1mmの圧延板とした。次い
で各圧延板に対し、520℃×10secの溶体化処理
を行なってから、100℃/min以上の冷却速度で種
々の温度まで焼入れして、その焼入温度で保持し、さら
に80〜150℃で安定化処理を行なった。詳細な条件
を表2中に示す。
EXAMPLES Alloys of alloy symbols A1 to A3 within the compositional range of the present invention shown in Table 1 and alloys of alloy symbols B1 to B2 outside the compositional range of the present invention were cast by a DC casting method according to a conventional method. , 530 ℃ × 5 to the obtained ingot
After carrying out the homogenizing treatment of h, hot rolling was started, and then cold rolling was carried out to obtain a rolled plate having a thickness of 1 mm. Next, each rolled plate is subjected to a solution treatment at 520 ° C. for 10 seconds, then quenched at various temperatures at a cooling rate of 100 ° C./min or more, and held at the quenching temperature, and further 80 to 150 ° C. Stabilization was performed at. Detailed conditions are shown in Table 2.

【0026】以上のように安定化処理を行なって得られ
た板を、さらに室温に1日もしくは40日放置した各板
について、それぞれ180℃×60分の加熱の塗装焼付
処理を施し、かつその焼付前の機械的特性および成形性
と、焼付後の機械的特性を調べた。その結果を表3に示
す。
The plate obtained by subjecting the plate to the stabilization treatment as described above is further left to stand at room temperature for 1 day or 40 days, and each plate is subjected to coating baking treatment by heating at 180 ° C. × 60 minutes, and The mechanical properties and formability before baking and the mechanical properties after baking were examined. Table 3 shows the results.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】[0029]

【表3】 [Table 3]

【0030】製造番号1〜3は、いずれも合金の成分組
成がこの発明で規定する範囲内でかつ製造条件もこの発
明で規定する条件を満たしたものであるが、これらの場
合は、いずれも塗装焼付前の伸びおよびエリクセン値が
充分に高くて成形性が優れ、かつ焼付硬化性が高くて塗
装焼付時に大きな強度上昇が生じており、特に板製造後
40日室温に放置した場合においても、伸びおよびエリ
クセン値の低下が少なくて成形性が低下せず、かつ充分
な焼付硬化性を示した。
Production Nos. 1 to 3 are those in which the composition of the alloy is within the range specified by the present invention and the manufacturing conditions also satisfy the conditions specified by the present invention. The elongation before coating baking and the Erichsen value are sufficiently high, the moldability is excellent, and the bake hardenability is high, and a large increase in strength occurs during coating baking, and even when left at room temperature for 40 days after plate production, The elongation and Erichsen value did not decrease so much that the moldability did not decrease, and sufficient bake hardenability was exhibited.

【0031】これに対し製造番号4〜7は、合金の成分
組成はこの発明で規定す範囲内であるが、製造条件がこ
の発明で規定する条件を満たさなかったものである。そ
して製造番号4(合金記号A1)は、溶体化処理後室温
(25℃)まで冷却したものであるが、この場合には同
じ合金(合金記号A1)を用いた本発明例(製造番号
1)と比較して、焼付硬化性が劣った。また製造番号5
(合金記号A2)は、溶体化処理−冷却後55℃での保
持時間が長過ぎたため、保持時の合金の耐力が105N
/mm2 を越え、この場合には同じ合金(合金記号A
2)を用いた本発明例(製造番号2)と比較して焼付硬
化性が劣った。また製造番号6(合金記号A3)は、焼
入温度が高過ぎたため、本発明例(製造番号3)と比較
して、製造後の室温時効による経時変化が大きく、40
日後は充分な焼付硬化性が得られなかった。さらに製造
番号7(合金記号A2)は、安定化処理の温度が高過ぎ
てかつその安定化処理の保持時間が短か過ぎたものであ
るが、この場合は本発明例(製造番号2)と比較して室
温時効による経時変化が大きく、充分な焼付硬化性が得
られなかった。
On the other hand, in Production Nos. 4 to 7, the alloy composition was within the range specified by the present invention, but the production conditions did not satisfy the conditions specified by the present invention. And manufacturing number 4 (alloy code A1) is what was cooled to room temperature (25 ° C.) after solution treatment, but in this case, the same alloy (alloy code A1) was used as an example of the present invention (manufacturing number 1). Bake hardenability was inferior compared with. Serial number 5
(Alloy symbol A2) has a proof stress of 105 N at the time of holding because the holding time at 55 ° C. after solution treatment-cooling was too long.
/ Mm 2 and in this case the same alloy (alloy code A
The bake hardenability was inferior to the invention example (Production No. 2) using 2). Further, in the production number 6 (alloy symbol A3), since the quenching temperature was too high, the change with time due to room temperature aging after the production was large as compared with the invention example (production number 3).
After the day, sufficient bake hardenability was not obtained. Further, in the production number 7 (alloy symbol A2), the temperature of the stabilization treatment was too high and the holding time of the stabilization treatment was too short. In this case, the invention example (production number 2) was used. In comparison, the secular change due to aging at room temperature was large, and sufficient bake hardenability was not obtained.

【0032】一方製造番号8,9はいずれも成分組成が
この発明で規定する範囲を外れた合金について、この発
明で規定する範囲内の条件のプロセスを適用したもので
あるが、この場合にはいずれも素材強度が低いばかりで
なく、焼付硬化性も低く、塗装焼付後の強度も充分に得
られなかった。
On the other hand, the production numbers 8 and 9 are applied to the alloys whose component compositions are out of the range specified by the present invention, and the processes under the conditions specified by the present invention are applied. In this case, Not only was the material strength low in all cases, but also the bake hardenability was low, and the strength after baking was not sufficiently obtained.

【0033】[0033]

【発明の効果】この発明の成形加工用アルミニウム合金
板の製造方法によれば、成形性が優れるとともに、焼付
硬化性が優れていて、塗装焼付後の強度が著しく高く、
しかも室温での経時変化が少なくて、板製造後に室温で
長期間放置した場合にも成形性の低下が少ないとともに
焼付硬化性の変化も少ない、安定な成形加工用アルミニ
ウム合金板を得ることができ、したがって自動車用ボデ
ィシート、家電部品、各種機械器具部品、そのほか成形
加工および塗装焼付を施して用いる用途のアルミニウム
合金の製造に最適である。
EFFECTS OF THE INVENTION According to the method for producing an aluminum alloy sheet for forming of the present invention, the formability is excellent, the bake hardenability is excellent, and the strength after baking is extremely high.
Moreover, it is possible to obtain a stable aluminum alloy sheet for forming, which has little change with time at room temperature, has little deterioration in formability even after being left at room temperature for a long time after production, and has little change in bake hardenability. Therefore, it is most suitable for the production of aluminum sheet for automobile body sheets, home electric appliance parts, various machine / equipment parts, and other applications for which molding and painting are applied.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Mg0.3〜1.5%(重量%、以下同
じ)、Si0.4〜2.0%、Cu0.4%を越え1.
4%以下を含有し、かつZn0.03〜1.5%、Mn
0.03〜0.4%、Cr0.03〜0.4%、Zr
0.03〜0.4%、V0.03〜0.4%、Fe0.
03〜0.5%、Ti0.005〜0.2%のうちから
選ばれた1種または2種以上を含有し、残部がAlおよ
び不可避的不純物よりなる合金を素材とし、鋳塊に均質
化処理、熱間圧延および冷間圧延を行なって所要の板厚
の圧延板とし、その圧延板に対し、480℃以上の温度
で溶体化処理を行なってから100℃/min以上の冷
却速度で45〜75℃の温度域まで冷却して、この温度
域内で5秒以上の保持を行ない、かつその保持時間の上
限を、合金の耐力(σ0.2 )が105N/mm2 以下に
なるように規制し、続いて80〜150℃の範囲内の温
度に加熱して、この温度範囲で0.5〜40時間保持す
る安定化処理を行なうことを特徴とする、室温での経時
変化が少なくかつ成形性および焼付硬化性に優れた成形
加工用アルミニウム合金板の製造方法。
1. Mg 0.3 to 1.5% (weight%, the same applies hereinafter), Si 0.4 to 2.0%, Cu 0.4% and more than 1.
4% or less, and Zn 0.03 to 1.5%, Mn
0.03-0.4%, Cr 0.03-0.4%, Zr
0.03-0.4%, V0.03-0.4%, Fe0.
An alloy containing one or more selected from 03 to 0.5% and Ti 0.005 to 0.2%, with the balance being Al and unavoidable impurities, and homogenized into an ingot. Processing, hot rolling and cold rolling to obtain a rolled plate having a required plate thickness, and the rolled plate is subjected to solution treatment at a temperature of 480 ° C. or higher and then cooled at a cooling rate of 100 ° C./min or higher to 45 It is cooled to a temperature range of up to 75 ° C and held for 5 seconds or longer within this temperature range, and the upper limit of the holding time is regulated so that the yield strength (σ 0.2 ) of the alloy is 105 N / mm 2 or less. Then, the composition is heated to a temperature in the range of 80 to 150 ° C. and then subjected to a stabilizing treatment in which the temperature is maintained in this temperature range for 0.5 to 40 hours. And aluminum for molding with excellent bake hardenability Method of manufacturing a gold plate.
JP6215366A 1994-08-17 1994-08-17 Production of aluminum alloy sheet for forming Pending JPH0860315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6215366A JPH0860315A (en) 1994-08-17 1994-08-17 Production of aluminum alloy sheet for forming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6215366A JPH0860315A (en) 1994-08-17 1994-08-17 Production of aluminum alloy sheet for forming

Publications (1)

Publication Number Publication Date
JPH0860315A true JPH0860315A (en) 1996-03-05

Family

ID=16671109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6215366A Pending JPH0860315A (en) 1994-08-17 1994-08-17 Production of aluminum alloy sheet for forming

Country Status (1)

Country Link
JP (1) JPH0860315A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0881744A (en) * 1994-09-13 1996-03-26 Sky Alum Co Ltd Method and equipment for manufacturing aluminum alloy sheet excellent in formability and baking hardenability
JP2007131881A (en) * 2005-11-08 2007-05-31 Furukawa Sky Kk Method of producing aluminum alloy sheet for forming and aluminum alloy sheet for forming

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0881744A (en) * 1994-09-13 1996-03-26 Sky Alum Co Ltd Method and equipment for manufacturing aluminum alloy sheet excellent in formability and baking hardenability
JP2007131881A (en) * 2005-11-08 2007-05-31 Furukawa Sky Kk Method of producing aluminum alloy sheet for forming and aluminum alloy sheet for forming

Similar Documents

Publication Publication Date Title
JPH0617208A (en) Manufacture of aluminum alloy for forming excellent in shape freezability and coating/baking hardenability
JP2015040340A (en) Molding aluminum alloy sheet and method for manufacturing the same
JPH06240424A (en) Production of aluminum alloy sheet excellent in formability and baking hardenability
JP4086350B2 (en) Method for producing aluminum alloy sheet for forming
JP3845312B2 (en) Aluminum alloy plate for forming and method for producing the same
JP3849095B2 (en) Aluminum alloy plate for forming and method for producing the same
JPH08176764A (en) Production of aluminum alloy sheet for forming
JP2626958B2 (en) Method for producing aluminum alloy sheet excellent in formability and bake hardenability
JPH0874014A (en) Production of aluminum alloy sheet having high formability and good baking hardenability
JP2000160310A (en) Production of aluminum alloy sheet suppressed in cold aging property
JP3686146B2 (en) Method for producing aluminum alloy sheet for forming
JP2599861B2 (en) Manufacturing method of aluminum alloy material for forming process excellent in paint bake hardenability, formability and shape freezing property
JP2004124175A (en) Method for manufacturing 6000 system alloy plate for forming excellent in formability, baking hardenability, and springback characteristic
JPH0138866B2 (en)
JP3359428B2 (en) Manufacturing method of aluminum alloy sheet for forming
JPH0547615B2 (en)
JPH07228957A (en) Production of aluminum alloy sheet having excellent formability and quench-hardenability
JPH04365834A (en) Aluminum alloy sheet for press forming excellent in hardenability by low temperature baking and its production
JPH05112839A (en) Aluminum alloy sheet for forming excellent in low temperature baking hardenability and its manufacture
JPH0860315A (en) Production of aluminum alloy sheet for forming
JPH073409A (en) Heat treatment for extruded billet of al-mg-si based aluminum alloy
JPH0788558B2 (en) Method for producing aluminum alloy sheet excellent in formability and bake hardenability
JPH0860314A (en) Production of aluminum alloy sheet for forming
JP2007239005A (en) Method for producing 6000 series aluminum alloy sheet having excellent room temperature non-aging property, formability and coating/baking hardenability
JPH04263034A (en) Aluminum alloy sheet for press forming excellent in baking hardenability and its production