JPH0428837A - Continuous casting mold material made of high strength cu alloy having high cooling capacity and its manufacture - Google Patents

Continuous casting mold material made of high strength cu alloy having high cooling capacity and its manufacture

Info

Publication number
JPH0428837A
JPH0428837A JP13661590A JP13661590A JPH0428837A JP H0428837 A JPH0428837 A JP H0428837A JP 13661590 A JP13661590 A JP 13661590A JP 13661590 A JP13661590 A JP 13661590A JP H0428837 A JPH0428837 A JP H0428837A
Authority
JP
Japan
Prior art keywords
alloy
continuous casting
casting mold
strength
mold material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13661590A
Other languages
Japanese (ja)
Other versions
JP2738130B2 (en
Inventor
Masao Kobayashi
正男 小林
Takuro Iwamura
岩村 卓郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP13661590A priority Critical patent/JP2738130B2/en
Publication of JPH0428837A publication Critical patent/JPH0428837A/en
Application granted granted Critical
Publication of JP2738130B2 publication Critical patent/JP2738130B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a continuous casting mold material with high cooling capacity while it combines high temp. strength and high temp. elongation, required for a continuous casting mold, by subjecting Cu alloy stock having a specified compsn. to soln. treatment, cold rolling and two stage aging treatment under specified conditions. CONSTITUTION:A Cu alloy constituted of, by weight, 0.1 to 1.5% Cr, 0.01 to 0.2% Zr, 0.005 to 0.7% Ti, 0.003 to 0.1% Si, 0.005 to 1.5% of one or more kinds among Fe, Ni and Co and the balance Cu with inevitable impurities is used as stock. This alloy is subjected to ordinary soln. treatment and is thereafter cold-rolled at 5 to 30% draft. Next, the alloy is subjected to primary aging treatment at 425 to 475 deg.C and is furthermore subjected to secondary aging treatment at 525 to 575 deg.C to sufficiently precipitate fine precipitates as well as to reduce the content of the alloy components entering into solid soln. in the matrix. In this way, the continuous casting mold material provided with >=55kg/mm<2> cold tensile strength, >=33kg/mm<2> high temp. tensile strength (500 deg.C) and >=73% electrical conductivity by IACS% can be manufactured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、高強度と高熱伝導性を有するCu合金で構
成され、したがって薄肉化を可能とすると共に、この薄
肉化と高熱伝導性と合まってすぐれた冷却能を発揮し、
速い速度での鋳造を可能ならしめる連続鋳造鋳型材、お
よびその製造法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention is composed of a Cu alloy that has high strength and high thermal conductivity, and therefore enables thinning of the wall, and combines this thinning and high thermal conductivity. Demonstrates excellent cooling ability,
The present invention relates to a continuous casting mold material that enables high-speed casting, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

同一8願人は、先に特願昭81−271103号(特開
昭63−125632号)として、連続鋳造鋳型材の製
造に用いられるCu合金を出願した。
The same applicant had previously filed a patent application No. 81-271103 (Japanese Unexamined Patent Publication No. 63-125632) for a Cu alloy used in the production of continuous casting mold materials.

この従来Cu合金で構成される連続鋳造鋳型材は、まず
、重量%で(以下、成分組成に関する%は重量%を示す
)、 Cr : 0.1〜2.5%、 Z r : 0.01
〜0.5%、Ti:0.01〜0.7%、 S i  
: 0.003〜0,1%、Fe、Ni、およびCoの
うちの1種または2種以上二0.1〜1,2%、 を含有し、残りがCuと不可避不純物からなる組成を有
するCu合金溶湯を調製し、金型鋳造し、熱間鍛造や熱
間圧延などの熱間加工を施してCu合金素材とし、つい
でこのCu合金素材に、950〜1050℃の範囲内の
所定温度に所定時間保持の通常の条件で溶体化処理を施
した後、450〜550℃の範囲内の所定温度に所定時
間保持の通常の条件で1回の時効処理を施して、素地中
に析出物を析出させて強度向上をはかることにより製造
されている。
This conventional continuous casting mold material composed of a Cu alloy has the following content in weight% (hereinafter, % in terms of composition indicates weight%): Cr: 0.1 to 2.5%, Zr: 0.01
~0.5%, Ti:0.01~0.7%, Si
: Contains 0.003 to 0.1%, one or more of Fe, Ni, and Co20.1 to 1.2%, with the remainder consisting of Cu and unavoidable impurities. A molten Cu alloy is prepared, cast in a mold, and subjected to hot processing such as hot forging or hot rolling to obtain a Cu alloy material.Then, this Cu alloy material is heated to a predetermined temperature within the range of 950 to 1050°C. After solution treatment under normal conditions of holding for a predetermined time, aging treatment is carried out once under normal conditions of holding at a predetermined temperature in the range of 450 to 550°C for a predetermined time to eliminate precipitates in the matrix. It is manufactured by precipitation to improve strength.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

一方、近年、鉄鋼の連続鋳造技術における生産性の向上
はめざましく、1〜2m/winの鋳造速度であったも
のが、3〜4m/sinへと大幅に高速化しており、こ
れに伴ない溶湯と接触する鋳型内面の表面温度も上昇し
、鋳造条件によっては500℃以上に達する場合がある
On the other hand, in recent years, there has been a remarkable improvement in productivity in continuous steel casting technology, with casting speeds from 1 to 2 m/win to 3 to 4 m/sin, and with this The surface temperature of the inner surface of the mold that comes into contact with the mold also increases, and depending on the casting conditions, it may reach 500°C or more.

しかし、上記の従来Cu合金製連続鋳造鋳型材はじめ、
その他多くのCu合金製連続鋳造鋳型材は、例えば50
0℃での高温引張試験で、引張強さ:約20〜30kg
/−1伸び:約20〜30%を示すCu合金で構成され
ているので、大きな熱応力に耐える高温強度と苛酷な熱
疲労環境に耐える高温伸びを有するものの、熱伝導性が
十分でなく、電気伝導度で40〜60%(IAC8%)
程度を示すにすぎず、このため上記のような高速鋳造で
は、鋳型に変形や割れが生じ易く、比較的短時間で使用
寿命に至るのが現状である。
However, including the conventional continuous casting mold material made of Cu alloy,
Many other continuous casting mold materials made of Cu alloys, such as 50
Tensile strength: approx. 20-30 kg in high temperature tensile test at 0℃
/-1 elongation: Since it is composed of a Cu alloy that exhibits approximately 20 to 30%, it has high temperature strength that can withstand large thermal stress and high temperature elongation that can withstand severe thermal fatigue environments, but it does not have sufficient thermal conductivity. 40-60% in electrical conductivity (IAC 8%)
Therefore, in high-speed casting as described above, the mold is easily deformed and cracked, and the service life is reached in a relatively short period of time.

〔課題を解決するための手段〕[Means to solve the problem]

そこで、本発明者等は、上述のような観点から、連続鋳
造鋳型に要求される高温強度と高温伸びを具備した状態
で、熱伝導性の良好な、すなわち高冷却能を有するCu
合金製連続鋳造鋳型材を開発すべく研究を行なった結果
、 Cr : 0.1〜1.5%、 Z r : 0.01
〜0.2%、Ti  :0.005〜0.7%、S j
: 0.003〜0.1%、Fe、Ni、およびCo(
以下鉄族金属という)のうちの1種または2種以上: 
0.005〜1.5%、を含有し、残りがCuと不可避
不純物からなる組成を有するCu合金て構成されたスラ
ブに通常の条件で熱間鍛造や熱間圧延などの熱間加工を
施してCu合金素材を調製し、 このCu合金素材に、通常の条件で溶体化処理を施した
後、 5〜30%の圧下率で冷間圧延を行なった状態で、42
5〜475℃の範囲内の所定温度での1次時効処理と、 525〜575℃の範囲内の所定温度での2次時効処理
を施すことにより、Cu合金製連続鋳造鋳型材を製造す
ると、 上記の1次時効処理では、素地中に固溶したCrおよび
Zrか主としてCrおよびcu s Z rの形の素地
中に微細に析出し、 また、上記の2次時効処理では、同じく主としてTiお
よび鉄族金属が(Fe、Ni、Co)  T iy の形で素地中に微細に析出し、 この場合、時効処理に先だって施された圧下率:5〜3
0%の冷間圧延によってCu合金素材中には多量の加工
歪や転位が形成された状態になっており、これらの加工
歪や転位は、次工程の時効処理で上記析出物の析出を著
しく促進すると共に、析出物を一段と微細化するように
作用することから、この結果のCu合金製連続鋳造鋳型
材は、常温および高温伸びを高い値に保持した状態で、
素地中に微細均一に、かつ多量に析出した析出物によっ
て高い常温および高温強度、すなわち55kg/mm2
以上の常温引張強さ、および33kg/mm2以上の高
温引張強さ(500℃)を有するようになり、かつ上記
の溶体化処理後の冷間圧延および2回の時効処理で素地
中に固溶する合金成分含有量か低減して、素地は実質的
にCuて構成されるようになることから、電気伝導度で
73%(IAC3%)以上のすくれた熱伝導性をもつよ
うになり、実用に際しては強度向上による薄肉化を可能
とするので、この薄肉化と高い熱伝導性と含まってすぐ
れた冷却能を示すという研究結果を得たのである。
Therefore, from the above-mentioned viewpoints, the present inventors developed Cu that has good thermal conductivity, that is, high cooling ability, while having the high-temperature strength and high-temperature elongation required for continuous casting molds.
As a result of research to develop alloy continuous casting mold material, Cr: 0.1-1.5%, Zr: 0.01
~0.2%, Ti: 0.005~0.7%, S j
: 0.003-0.1%, Fe, Ni, and Co(
One or more of the following (hereinafter referred to as iron group metals):
A slab made of a Cu alloy with a composition of 0.005 to 1.5% and the remainder consisting of Cu and unavoidable impurities is subjected to hot working such as hot forging and hot rolling under normal conditions. After preparing a Cu alloy material, this Cu alloy material was subjected to solution treatment under normal conditions, and then cold rolled at a reduction rate of 5 to 30%.
When a continuous casting mold material made of Cu alloy is manufactured by performing a primary aging treatment at a predetermined temperature within the range of 5 to 475 °C and a secondary aging treatment at a predetermined temperature within the range of 525 to 575 °C, In the above primary aging treatment, Cr and Zr dissolved in the matrix are finely precipitated in the matrix mainly in the form of Cr and CuSZr, and in the secondary aging treatment, Cr and Zr are also precipitated finely in the matrix. Iron group metals are finely precipitated in the form of (Fe, Ni, Co) Tiy, and in this case, the rolling reduction applied prior to aging treatment is 5 to 3.
A large amount of working strain and dislocations are formed in the Cu alloy material due to 0% cold rolling, and these working strains and dislocations significantly inhibit the precipitation of the above precipitates during the aging treatment in the next process. The resultant Cu alloy continuous casting mold material maintains high elongation at room temperature and high temperature.
High room temperature and high temperature strength, i.e. 55 kg/mm
It has a room temperature tensile strength of 33 kg/mm2 or more and a high temperature tensile strength (500°C) of 33 kg/mm2 or more, and is solid-solved in the base material by cold rolling after the above solution treatment and two aging treatments. The content of the alloying components is reduced, and the base material becomes substantially composed of Cu, so it has a low thermal conductivity of more than 73% (IAC 3%) in terms of electrical conductivity. In practical use, it is possible to make the wall thinner due to improved strength, and the research results showed that this thinner wall and high thermal conductivity combined with excellent cooling performance.

この発明は、上記研究結果にもとづいてなされたもので
あって、 (a)  Cr:0.1〜1.5%、 Zr:0.01
〜0.2%、Tj二〇、005〜0,7%、Si:0.
003〜0.1%、Fe、Ni、およびCoのうちの1
種または2種以上:0.005〜1,5%、 を含有し、残りがCuと不可避不純物からなる組成を有
するCu合金で構成されたCu合金素材に、通常の条件
で溶体化処理を施した後、 5〜30%の圧下率で冷間圧延を施し、ツイテ425〜
475℃の範囲内の所定温度での1次時効処理と、 525〜575℃の範囲内の所定温度での2次時効処理
を施して、 微細な析出物の十分な析出をはがる一方、素地中に固溶
する合金成分の含有量低減をはかることにより強度と熱
伝導性を向上させることからなる高冷却能を存する高強
度Cu合金製連続鋳造鋳型材の製造法。
This invention was made based on the above research results, and includes (a) Cr: 0.1 to 1.5%, Zr: 0.01
~0.2%, Tj20, 005~0.7%, Si:0.
003-0.1%, one of Fe, Ni, and Co
A Cu alloy material containing one or more species: 0.005 to 1.5%, with the remainder consisting of Cu and unavoidable impurities, is subjected to solution treatment under normal conditions. After that, it is cold rolled at a reduction rate of 5 to 30%, and
A primary aging treatment at a predetermined temperature within the range of 475°C and a secondary aging treatment at a predetermined temperature within the range of 525 to 575°C are performed to remove sufficient precipitation of fine precipitates. A method for manufacturing a continuous casting mold material made of a high-strength Cu alloy that has high cooling ability and improves strength and thermal conductivity by reducing the content of alloy components dissolved in solid solution in the base material.

(b)  Cr:0.1−1.5%、 Zr:O,0I
−0,2%、Ti:0.005〜0.7%、S i:0
.003〜0.1%、Fe、Nj、およびCoのうちの
1種または2種以上:0.005〜1.5%、 を含をし、残りがCuと不可避不純物からなる組成を有
するCu合金て構成され、 素地に微細均一に分散する多量の析出物と実質的にCu
からなる素地にて、 常温引張強さ:55kg/m通以上、 高温引張強さ(500℃)  : 33kg/mJ以上
、電気伝導度ニア3%(IAC3%)以上、を具備せし
めてなる高冷却能を有する高強度Cu合金製連続鋳造鋳
型材。
(b) Cr: 0.1-1.5%, Zr: O, 0I
-0.2%, Ti: 0.005-0.7%, Si: 0
.. 003 to 0.1%, one or more of Fe, Nj, and Co: 0.005 to 1.5%, and the remainder is Cu and inevitable impurities. It is composed of a large amount of precipitates that are finely and uniformly dispersed in the substrate and substantially Cu.
A highly cooled material with a tensile strength at room temperature of 55 kg/m or more, a tensile strength at high temperature (500°C) of 33 kg/mJ or more, and an electrical conductivity of near 3% (IAC 3%) or more. Continuous casting mold material made of high-strength Cu alloy.

に特徴を有するものである。It has the following characteristics.

つぎに、この発明の連続鋳造鋳型材およびその製造法に
おいて、これを構成するCu合金の成分組成、冷間圧延
の圧下率、および時効処理温度を上記の通りに限定した
理由を説明する。
Next, in the continuous casting mold material and the manufacturing method thereof of the present invention, the reason why the composition of the Cu alloy constituting the continuous casting mold material, the reduction ratio of cold rolling, and the aging treatment temperature are limited as described above will be explained.

A、Cu合金の成分組成 (a)  Cr 溶体化処理で素地中に固溶したCrは、そのほとんどか
1次時効処理で素地の結晶粒内に活発に、かつ微細に析
出して結晶粒内強度を高め、この結果として常温および
高温強度が向上するようになるか、その含有量か0.1
%未満では常温引張強さ’T:55kg/mJu上、高
温引張強さ(501)℃) テ33kg/m4以上の高
強度を確保することができす、一方その含有量か15%
を越えると、時効処理で素地中に固溶するCrを十分に
析出させることができなくなり、残留固溶Crによって
熱伝導性の向上が抑制され、739a(I ACS9δ
)以上の電気伝導度を確保するのか困難になることがら
、その含有量を0.1〜1.59.6と定めた。
A. Composition of Cu alloy (a) Cr Most of the Cr dissolved in the base material during solution treatment is actively and finely precipitated within the crystal grains of the base material during the primary aging treatment. If the content is 0.1
If the content is less than 15%, it is possible to secure a high strength of room temperature tensile strength (T: 55 kg/mJu) and high temperature tensile strength (501) °C (T) of 33 kg/m4 or more, while the content is 15% or more.
If it exceeds 739a (I ACS9δ
) Since it would be difficult to ensure an electrical conductivity of 0.1 to 1.59.6, the content was set at 0.1 to 1.59.6.

(b)  Zr 同しく溶体化処理で素地中に固溶したZrは、そのほと
んどか1次時効処理で素地の結晶粒界にCu3Zrの金
属間化合物の形で、微細に析出し、これによって高温に
おける粒界のすべりが抑制されるようになることから、
粒界強度が向上し、この結果高温における粒界破断にょ
る脆化(延性低下)か阻止され、耐熱疲労性が向上する
ようになるが、その含有量が0.01%未満ては前記の
作用に所望の効果が得られず、一方その含有量が0,2
%を越えると、Crと同様に素地中に固溶する割合か多
くなって所望の高い電気伝導度を確保するのか困難にな
ることがら、その含有量を□01−0.2%と定めた。
(b) Zr Similarly, most of the Zr dissolved in the matrix during the solution treatment precipitates finely in the form of an intermetallic compound of Cu3Zr at the grain boundaries of the matrix during the primary aging treatment, and as a result, Since the grain boundary slip in is suppressed,
Grain boundary strength is improved, and as a result, embrittlement (decrease in ductility) due to grain boundary fracture at high temperatures is prevented, and thermal fatigue resistance is improved, but if the content is less than 0.01%, the above-mentioned The desired effect cannot be obtained in the action, and on the other hand, if the content is 0.2
%, like Cr, the proportion of solid solution in the matrix increases and it becomes difficult to secure the desired high electrical conductivity, so the content was set at □01-0.2%. .

(c)  Tiおよび鉄族金属 同様に、これらの成分も溶体化処理で素地に固溶し、1
次時効処理ではほとんど析出せず、2次時効処理で(F
 e、N i、Co)  T is主としてy (Fe、Ni、Co)2Tiの金属間化合物の形で素地
の結晶粒内に微細に、かつ活発に析出し、上記の微細な
Cr析出物と含まって常温および高温強度を著しく向上
させるほか、結晶粒界に析出した上記Cu 3Z rと
の共存において高温強度と高温伸びを向上させるが、そ
の含有量が、T1および鉄族金属とも0.005%未満
では前記の作用に所望の向上効果か得られず、一方その
含有量が、TIにあっては0.7%を越え、また鉄族金
属では1.5%を越えると、CrおよびZr成分の場合
と同様に素地中に固溶する割合か増加するようになって
73%(IAC3%)以上の電気伝導度を確保するのは
困難になることから、その含有量を、それぞれT i:
0.005〜0.7%、鉄族金属:0.005〜1.5
%と定めた。
(c) Like Ti and iron group metals, these components are dissolved in the base material by solution treatment, and 1
In the second aging treatment, almost no precipitation occurred, and in the second aging treatment (F
e, Ni, Co) Ti is precipitated finely and actively within the crystal grains of the base material mainly in the form of an intermetallic compound of (Fe, Ni, Co)2Ti, and is mixed with the above-mentioned fine Cr precipitates. In addition to significantly improving room temperature and high temperature strength, it also improves high temperature strength and high temperature elongation in coexistence with the Cu 3Z r precipitated at grain boundaries, but the content is 0.005 for both T1 and iron group metals. %, the desired effect of improving the above-mentioned action cannot be obtained; on the other hand, when the content exceeds 0.7% for TI, and 1.5% for iron group metals, Cr and Zr As with the case of the components, the proportion of solid solution in the matrix increases and it becomes difficult to secure electrical conductivity of 73% (IAC 3%) or more, so the content is determined as Ti :
0.005-0.7%, iron group metal: 0.005-1.5
%.

(cl)Si St成分には、上記の(Fe、Ni、Co)  T i
y の金属間化合物を微細化した状態で析出させ、もってこ
の金属間化合物による析出強化作用を一層促進させる作
用があるか、その含有量が0.003%未満では前記作
用に所望の効果が得られず、方0.1%を越えると、鋳
造時にStの粗大晶子が現われるようになり、これは溶
体化処理でも消失することなく、高温強度および高温伸
びを低下させることから、その含有量をo、ooa〜口
、1%と定めた。
The (cl)Si St component includes the above (Fe, Ni, Co) Ti
If the content of y is less than 0.003%, the desired effect may not be obtained. However, if it exceeds 0.1%, coarse crystallites of St will appear during casting, and these will not disappear even in solution treatment, reducing high temperature strength and elongation. o, ooa~mouth, was set as 1%.

B、製造条件 (a)  冷間圧延の圧下率 上記の通り、冷間圧延は、溶体化処理のCu合金素材中
に、次工程の時効処理での析出物の析出を促進し、かつ
析出物を微細化するように作用する加工歪や転位を多量
に形成させる目的で施されるか、その圧下率が5%未満
では前記作用に所望の効果が得られず、一方その圧下率
が30%を越えると、常温および高温伸びが低下するよ
うになることから、その圧下率を5〜30%と定めた。
B. Manufacturing conditions (a) Reduction rate of cold rolling As mentioned above, cold rolling promotes the precipitation of precipitates in the solution-treated Cu alloy material in the aging treatment of the next step, and If the reduction rate is less than 5%, the desired effect will not be obtained; on the other hand, if the reduction rate is less than 5%, If it exceeds this, the elongation at room temperature and high temperature will decrease, so the rolling reduction ratio was set at 5 to 30%.

(b)  時効処理温度 この発明は、上記の通り溶体化処理で合金成分を完全に
固溶させ、冷間圧延にて加工歪や転位を多量に形成させ
た状態で、次工程の時効処理で素地中に固溶する合金成
分をできるたけ多く析出させ、この析出によって常温引
張強さで55kg/md以上、高温引張強さ(5(10
℃)で33kg/mm2以上の高強度を確保し、−刃金
金成分の固溶が著しく低く、実質的にCuからなる素地
によって73%(IAC5%)以上の高い電気伝導度を
確保するものである。すなわち、一般に電気伝導度は合
金素地によって決まることが知られており、素地中の固
溶成分が低ければ低いほど高い電気伝導度を示すように
なるものであり、したがって時効処理での析出を十分に
行なえば、高い電気伝導度と高強度が得られるようにな
る。
(b) Aging treatment temperature In this invention, as mentioned above, the alloy components are completely dissolved in solid solution by solution treatment, and a large amount of work strain and dislocations are formed by cold rolling, and then the aging treatment is performed in the next step. By precipitating as much of the alloy component as solid solution in the base material as possible, this precipitation increases the tensile strength at room temperature to 55 kg/md or more and the tensile strength at high temperature (5 (10
℃), ensuring high strength of 33 kg/mm2 or more, - The solid solution of blade metal components is extremely low, and ensuring high electrical conductivity of 73% (IAC 5%) or more due to the base material consisting essentially of Cu. It is. In other words, it is generally known that electrical conductivity is determined by the alloy matrix, and the lower the solid solution components in the matrix, the higher the electrical conductivity. If done properly, high electrical conductivity and high strength can be obtained.

かかる点から、この発明の上記組成のCu合金についで
、析出物の種類およびそれの析出し易い温度を調べたと
ころ、析出物はCr、Cu 3Z r、および(Fe、
Ni、Co)  T i  がほとんどを占め、y CrおよびCu a Z rは425〜475℃の温度
範囲で、また(Fe、Ni、Co)  T i  は5
25〜575℃x     y の温度範囲でそれぞれ活発に析出することが判明したも
のであり、したかってそれぞれの時効処理温度が前記の
範囲から低い方に外れても、また高い方に外れても十分
な析出を行なうことかできない。
From this point of view, when we investigated the types of precipitates and the temperature at which they tend to precipitate in the Cu alloy of the present invention having the above composition, we found that the precipitates were Cr, Cu3Zr, and (Fe,
Ni, Co) Ti accounts for most, y Cr and Cu a Z r in the temperature range of 425-475 °C, and (Fe, Ni, Co) Ti accounts for 5
It has been found that each aging process actively precipitates in the temperature range of 25 to 575°C x y, so even if the aging treatment temperature deviates from the above range to the lower or higher range, it is sufficient It is not possible to carry out such precipitation.

〔実 施 例〕〔Example〕

つぎに、この発明を実施例により具体的に説明する。 Next, the present invention will be specifically explained using examples.

通常の真空溶解炉を用い、黒鉛るつぼ中でそれぞれ第1
表に示される成分組成をもったCu合金溶湯をそれぞれ
5kg溶製し、金型鋳造し、面側した後、通常の条件で
熱間鍛造と熱間圧延を施して幅:lOOmmX厚さ=5
11I11の熱延板材とし、ついでこれより所定長さに
切出したCu合金素材に、温度;980に30分間保持
後、水焼入れの溶体化処理を施し、引続いて第1表に示
される圧下率ての冷間圧延、並びに同じく第1表に示さ
れる温度にいすれも1時間保持の条件での1次および2
次時効処理を行なうことにより本発明法1〜29および
比較法1〜25をそれぞれ行ない、本発明連続鋳造鋳型
材1〜29および比較連続鋳造鋳型材1〜25を製造し
た。
Using a normal vacuum melting furnace, each first
5 kg of each Cu alloy molten metal having the chemical composition shown in the table was melted, cast in a mold, and after facing, hot forged and hot rolled under normal conditions. Width: lOOmm x Thickness = 5
A hot rolled plate material of 11I11 was made, and then a Cu alloy material cut into a predetermined length from this was held at a temperature of 980 for 30 minutes, then subjected to solution treatment of water quenching, and then subjected to a rolling reduction rate shown in Table 1. cold rolling, as well as primary and secondary rolling under the conditions of holding for 1 hour at the temperatures shown in Table 1.
Methods 1 to 29 of the present invention and comparative methods 1 to 25 were carried out by performing a subsequent aging treatment to produce continuous casting mold materials 1 to 29 of the present invention and comparative continuous casting mold materials 1 to 25.

なお、比較法1〜25は、いずれもこの発明の構成要件
のうちのいずれかの要件(第1表に※印を付す)かこの
発明の範囲から外れたものである。
In addition, Comparative Methods 1 to 25 all meet one of the constituent requirements of this invention (marked with * in Table 1) or are outside the scope of this invention.

また、比較の目的で、溶体化処理後の冷間圧延を行なわ
す、Cu合金素材の成分組成および1回たけ施される時
効処理を第1表に示される条件とする以外は同一の条件
で従来法1〜3を行ない、従来連続鋳造鋳型材1〜3を
製造した。
For comparison purposes, the same conditions were used except that the composition of the Cu alloy material subjected to cold rolling after solution treatment and the aging treatment applied once were as shown in Table 1. Conventional methods 1 to 3 were carried out to produce conventional continuous casting mold materials 1 to 3.

ついで、この結果得られた各種の連続鋳造鋳型材につい
で、電気伝導度を測定すると共に、これを常温および高
温引張試験、並びに耐熱試験に供した。
Next, the electrical conductivity of the various continuous casting mold materials obtained as a result was measured, and the materials were subjected to room temperature and high temperature tensile tests, and heat resistance tests.

高温引張試験では、500℃に10分間保持後の弓張特
性を測定し、また耐熱試験は、鋳型材を450℃+nl
O℃(n:0〜15の整数)の各種温度にそれぞれ1時
間保持後空冷の条件で加熱し、この加熱後の鋳型材の硬
さをそれぞれ測定し、加熱前の硬さの90%に相当する
硬さを示した加熱温度をもって耐熱温度とした。これら
の結果を第2表に示した。
In the high temperature tensile test, the bow tensile properties were measured after being held at 500°C for 10 minutes, and in the heat resistance test, the mold material was heated at 450°C + nl.
After being held at various temperatures of 0°C (n: an integer from 0 to 15) for 1 hour, the mold materials were heated under air cooling conditions, and the hardness of each mold material after heating was measured, and the hardness was 90% of the hardness before heating. The heating temperature at which the corresponding hardness was obtained was defined as the heat-resistant temperature. These results are shown in Table 2.

〔発明の効果〕〔Effect of the invention〕

第1表および第2表に示される結果から、本発明法1〜
29で製造された本発明連続鋳造鋳型材1〜29は、い
ずれも従来法1〜3で製造された従来連続鋳造鋳型材1
〜3に比して一段とすぐれた常温および高温引張強度を
示し、かつこれより一段と高いいずれも73%(IAC
5%)以上の電気伝導度を示すのに対して、比較法1〜
25で製造された比較連続鋳造鋳型材1〜25に見られ
るように、Cu合金の成分組成、圧下率、および時効処
理温度のうちのいずれかがこの発明の範囲から外れても
上記の特性のうちの少なくともいずれかの特性が劣った
ものになることが明らかである。
From the results shown in Tables 1 and 2, it can be seen that methods 1 to 1 of the present invention
Continuous casting mold materials 1 to 29 of the present invention manufactured in Step 29 are all conventional continuous casting mold materials 1 manufactured by Conventional methods 1 to 3.
It shows much better tensile strength at room temperature and high temperature than No. 3, and is much higher than that at 73% (IAC
5%) or more, whereas Comparative Methods 1~
As seen in Comparative Continuous Casting Mold Materials 1 to 25 manufactured in No. 25, even if any of the composition, rolling reduction, and aging temperature of the Cu alloy deviates from the scope of the present invention, the above characteristics cannot be achieved. It is clear that at least one of the characteristics will be inferior.

上述のように、この発明の方法によれば、常温引張強さ
で55kg/mm2以上、高温引張強さ(500℃)で
33kg/mm2以上の高強度を有し、かつ電気伝導度
で73%以上(IACS%)のすぐれた熱伝導性を有す
るCu合金製連続鋳造鋳型材を製造することができ、し
たがってこのCu合金製連続鋳造鋳型材の実用にあたっ
ては、前記の高強度によって薄肉化が可能となり、この
薄肉化と前記の高熱伝導性によって著しく高い冷却能を
示すようになるので、鋳造速度の高速化にも十分に対応
することができるなど工業上有用な効果がもたらされる
のである。
As mentioned above, according to the method of the present invention, it has a high strength of 55 kg/mm2 or more in room temperature tensile strength and 33 kg/mm2 or more in high temperature tensile strength (500 ° C.), and has an electrical conductivity of 73%. It is possible to manufacture a Cu alloy continuous casting mold material with excellent thermal conductivity of (IACS%), and therefore, in practical use of this Cu alloy continuous casting mold material, it is possible to reduce the thickness due to the above-mentioned high strength. As a result of this thinner wall thickness and the above-mentioned high thermal conductivity, it exhibits a significantly high cooling capacity, which brings about industrially useful effects such as being able to sufficiently respond to higher casting speeds.

Claims (2)

【特許請求の範囲】[Claims] (1)Cr:0.1〜1.5%、Zr:0.01〜0.
2%、Ti:0.005〜0.7%、Si:0.003
〜0.1%、Fe、Ni、およびCoのうちの1種また
は2種以上:0.005〜1.5%、 を含有し、残りがCuと不可避不純物からなる組成(以
上重量%)を有するCu合金で構成され、素地に微細均
一に分散する多量の析出物と実質的にCuからなる素地
にて、 常温引張強さ:55kg/mm^2以上、 高温引張強さ(500℃):33kg/mm^2以上、
電気伝導度:IACS%で73%以上 を具備せしめてなる高冷却能を有する高強度Cu合金製
連続鋳造鋳型材。
(1) Cr: 0.1-1.5%, Zr: 0.01-0.
2%, Ti: 0.005-0.7%, Si: 0.003
-0.1%, one or more of Fe, Ni, and Co: 0.005 to 1.5%, and the remainder is Cu and unavoidable impurities (wt%). Composed of a Cu alloy with a large amount of precipitates finely and uniformly dispersed in the base material and a base material that is substantially composed of Cu, room temperature tensile strength: 55 kg/mm^2 or more, high temperature tensile strength (500 ° C.): 33kg/mm^2 or more,
A continuous casting mold material made of a high-strength Cu alloy with a high cooling ability and an electrical conductivity of 73% or more in IACS%.
(2)Cr:0.1〜1.5%、Zr:0.01〜0.
2%、Ti:0.005〜0.7%、Si:0.003
〜0.1%、Fe、Ni、およびCoのうちの1種また
は2種以上:0.005〜1.5%、 を含有し、残りがCuと不可避不純物からなる組成(以
上重量%)を有するCu合金で構成されたCu合金素材
に、 通常の条件で溶体化処理を施した後、 5〜30%の圧下率で冷間圧延を施し、 ついで425〜475℃の範囲内の所定温度での1次時
効処理と、 525〜575℃の範囲内の所定温度での2次時効処理
を施して、 微細な析出物の十分な析出をはかる一方、素地中に固溶
する合金成分の含有量低減をはかることにより強度と熱
伝導性を向上させることを特徴とする高冷却能を有する
高強度Cu合金製連続鋳造鋳型材の製造法。
(2) Cr: 0.1-1.5%, Zr: 0.01-0.
2%, Ti: 0.005-0.7%, Si: 0.003
-0.1%, one or more of Fe, Ni, and Co: 0.005 to 1.5%, and the remainder is Cu and unavoidable impurities (wt%). After applying solution treatment under normal conditions to a Cu alloy material composed of a Cu alloy having The first aging treatment is performed at a predetermined temperature within the range of 525 to 575 degrees Celsius to ensure sufficient precipitation of fine precipitates, while reducing the content of alloy components dissolved in the matrix. A method for producing a continuous casting mold material made of a high-strength Cu alloy having a high cooling ability, which is characterized by improving strength and thermal conductivity by reducing the heat conductivity.
JP13661590A 1990-05-25 1990-05-25 High strength Cu alloy continuous casting mold material having high cooling capacity and method for producing the same Expired - Fee Related JP2738130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13661590A JP2738130B2 (en) 1990-05-25 1990-05-25 High strength Cu alloy continuous casting mold material having high cooling capacity and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13661590A JP2738130B2 (en) 1990-05-25 1990-05-25 High strength Cu alloy continuous casting mold material having high cooling capacity and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0428837A true JPH0428837A (en) 1992-01-31
JP2738130B2 JP2738130B2 (en) 1998-04-08

Family

ID=15179447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13661590A Expired - Fee Related JP2738130B2 (en) 1990-05-25 1990-05-25 High strength Cu alloy continuous casting mold material having high cooling capacity and method for producing the same

Country Status (1)

Country Link
JP (1) JP2738130B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0702094A1 (en) * 1994-08-06 1996-03-20 KM Europa Metal Aktiengesellschaft Use of a hardenable copper alloy
JP2011518668A (en) * 2008-03-19 2011-06-30 ケイエムイー・ジャーマニー・アクチエンゲゼルシャフト・ウント・コンパニー・コマンディトゲゼルシャフト Mold member manufacturing method and mold member manufactured by the manufacturing method
KR20170059435A (en) 2014-09-25 2017-05-30 미쓰비시 마테리알 가부시키가이샤 CASTING MOLD MATERIAL AND Cu-Cr-Zr ALLOY MATERIAL
KR20180070545A (en) * 2015-10-15 2018-06-26 미쓰비시 마테리알 가부시키가이샤 Casting mold material and Cu-Cr-Zr-Al alloy material
US10544495B2 (en) 2014-09-25 2020-01-28 Mitsubishi Materials Corporation Casting mold material and Cu—Cr—Zr alloy material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0702094A1 (en) * 1994-08-06 1996-03-20 KM Europa Metal Aktiengesellschaft Use of a hardenable copper alloy
CN1058532C (en) * 1994-08-06 2000-11-15 金属导线股份公司 Application of quenchable copper alloy
US6565681B1 (en) 1994-08-06 2003-05-20 Km-Kabelmetal Aktiengesellschaft Age-hardenable copper alloy casting molds
JP2011518668A (en) * 2008-03-19 2011-06-30 ケイエムイー・ジャーマニー・アクチエンゲゼルシャフト・ウント・コンパニー・コマンディトゲゼルシャフト Mold member manufacturing method and mold member manufactured by the manufacturing method
KR20170059435A (en) 2014-09-25 2017-05-30 미쓰비시 마테리알 가부시키가이샤 CASTING MOLD MATERIAL AND Cu-Cr-Zr ALLOY MATERIAL
US10544495B2 (en) 2014-09-25 2020-01-28 Mitsubishi Materials Corporation Casting mold material and Cu—Cr—Zr alloy material
KR20180070545A (en) * 2015-10-15 2018-06-26 미쓰비시 마테리알 가부시키가이샤 Casting mold material and Cu-Cr-Zr-Al alloy material

Also Published As

Publication number Publication date
JP2738130B2 (en) 1998-04-08

Similar Documents

Publication Publication Date Title
JP2614686B2 (en) Manufacturing method of aluminum alloy for forming process excellent in shape freezing property and paint bake hardenability
TWI789871B (en) Manufacturing method of Wostian iron-based stainless steel strip
EP0480402A1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
CN100482834C (en) Easily-workable magnesium alloy and method for preparing same
JPH0790520A (en) Production of high-strength cu alloy sheet bar
JP4229307B2 (en) Aluminum alloy plate for aircraft stringers having excellent stress corrosion cracking resistance and method for producing the same
JPS61119660A (en) Manufacture of copper alloy having high strength and electric conductivity
JPS61143566A (en) Manufacture of high strength and highly conductive copper base alloy
JPS6050864B2 (en) Aluminum alloy material for forming with excellent bending workability and its manufacturing method
JP2004027253A (en) Aluminum alloy sheet for molding, and method of producing the same
JPH0428837A (en) Continuous casting mold material made of high strength cu alloy having high cooling capacity and its manufacture
JPS6383251A (en) Manufacture of high strength and high elasticity aluminum alloy
JP3763234B2 (en) Method for producing high-strength, high-conductivity, high-heat-resistant copper-based alloy
JPS6022054B2 (en) High-strength Al alloy thin plate with excellent formability and corrosion resistance, and method for producing the same
JPH0138866B2 (en)
JPH0461057B2 (en)
JPH046233A (en) Continuous casting mold material made of cu alloy having high cooling power and its manufacture
JPH0424420B2 (en)
JP4158337B2 (en) Method for producing chromium-zirconium-based copper alloy for continuous casting mold
JP3843021B2 (en) Method for producing thick-walled Al-Mg alloy rolled sheet tempered material excellent in bending workability
JPH05339688A (en) Production of molding material for casting metal
JPS61143564A (en) Manufacture of high strength and highly conductive copper base alloy
JPH09176805A (en) Production of aluminum fin material
JPH04210438A (en) Continuous casting mold material made of high strength cu alloy
KR100366843B1 (en) copper alloy and method of manufacturing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees