EP0702094A1 - Use of a hardenable copper alloy - Google Patents

Use of a hardenable copper alloy Download PDF

Info

Publication number
EP0702094A1
EP0702094A1 EP95110134A EP95110134A EP0702094A1 EP 0702094 A1 EP0702094 A1 EP 0702094A1 EP 95110134 A EP95110134 A EP 95110134A EP 95110134 A EP95110134 A EP 95110134A EP 0702094 A1 EP0702094 A1 EP 0702094A1
Authority
EP
European Patent Office
Prior art keywords
copper alloy
nickel
hardenable
mold
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95110134A
Other languages
German (de)
French (fr)
Other versions
EP0702094B1 (en
Inventor
Horst Gravemann
Dirk Dr. Rode
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KME Special Products GmbH and Co KG
Original Assignee
KM Europa Metal AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KM Europa Metal AG filed Critical KM Europa Metal AG
Publication of EP0702094A1 publication Critical patent/EP0702094A1/en
Application granted granted Critical
Publication of EP0702094B1 publication Critical patent/EP0702094B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/059Mould materials or platings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/01Alloys based on copper with aluminium as the next major constituent

Definitions

  • the invention relates to the use of a hardenable copper alloy as a material with selectively adjustable electrical conductivity for the production of casting molds, in particular continuous casting molds, in which molten metal is stirred by the action of electromagnetic forces.
  • the liquid metal melt is brought transversely to the strand withdrawal direction during the casting in the stirring device under the action of an electrical rotating field and is set in a circular motion by the resulting induction currents, which is essentially concentric to the longitudinal axis of the strand.
  • the result is a homogeneous cast structure that meets particularly high quality requirements.
  • stirring devices are usually arranged below the mold so that the remaining molten metal in the partially solidified strand can be stirred just below the mold.
  • the mold materials used in the continuous casting of steel generally have high thermal conductivity at the same time as high mechanical strength to ensure optimum heat dissipation and cooling performance.
  • the associated high maximum casting speed increases the economic efficiency of continuous steel casting.
  • the high electrical conductivity of the proven mold materials such as copper-chromium-zirconium alloys, with greater than 85% IACS proves to be disadvantageous.
  • the high electrical conductivity leads to an undesirably high shielding effect of the mold material in relation to the magnetic field generated for stirring. This weakening of the magnetic field results in a lower depth effect of the stirring effect.
  • the stirring effect can be increased by increasing the current intensity, the technical effort required for this increases disproportionately. Overall, therefore, an optimal stirring effect cannot be achieved with mold materials having a high thermal conductivity.
  • Mold materials with lower thermal conductivity are already known. However, these have extremely high strengths, so that they are preferably used at higher temperatures. In addition, the processing of these mold materials is relatively complex due to the extremely high strength. Another disadvantage is that the elongation at break at temperatures above 350 ° C is too low.
  • the known mold materials with lower thermal conductivity are therefore not an economical alternative to the highly conductive mold materials, such as copper-chrome-zirconium alloys, for use in casting plants with electromagnetic stirring devices.
  • the object of the present invention is therefore to provide a hardenable copper material, in particular for use in casting plants with an electromagnetic stirring device, which produces low field damping and which also has favorable strength and elongation at break properties.
  • the solution to this problem consists in the use of a hardenable copper alloy of 0.1 to 2.0% nickel, 0.3 to 1.3% chromium, 0.1 to 0.5% zirconium, up to 0.2% of at least one Elements from the group comprising phosphorus, lithium, calcium, magnesium, silicon and boron, the rest copper including impurities as a material with selectively adjustable electrical conductivity for the production of casting molds, in particular continuous casting molds, in which molten metal is stirred by the action of electromagnetic forces.
  • the alloy to be used according to the invention preferably contains 0.4 to 1.6% nickel, 0.6 to 0.8% chromium, 0.15 to 0.25% zirconium, at least one element from the group 0.005 to 0.02% boron , 0.005 to 0.05% magnesium and 0.005 to 0.03% phosphorus, balance copper including unavoidable impurities.
  • the boron additive can be added to the melt, for example as calcium boride.
  • the copper alloy according to the invention is distinguished by a particularly advantageous combination of mechanical and physical properties. With an electrical conductivity below 80% IACS, this copper alloy also fulfills the essential requirement for low field damping of a mold wall made from this alloy.
  • a low titanium content forms intermetallic compounds with the components nickel and iron in the alloy, which increase strength.
  • composition of nine example alloys is given in Table 1 in% by weight.
  • X denotes the total content of the individual elements boron, magnesium and / or phosphorus, which are added up to a total of 0.05% as deoxidizing agents. Higher levels can also be used to increase the strength of the alloy.
  • Copper alloys with different nickel contents of 0.2 to 2%, about 0.7% chromium, 0.16 to 0.2% zirconium, up to 0.02% boron, magnesium and / or phosphorus, the rest of copper including manufacturing-related impurities were initially melted, cast into rolled ingots and then hot rolled at 950 ° C in several passes with a total degree of forming of 65%. After at least 1 hour solution annealing at 1 030 ° C and a subsequent quenching in water, the rolled plates were at at least 4 hours 475 ° C hardened. After final machining, the mold plates each had the property values summarized in Table 2, depending on the nickel content (0.2 to 2% nickel).
  • the first-mentioned property value is assigned to the copper alloy with 0.2% nickel content to be used according to the invention.
  • the alloys to be used according to the invention have an electrical conductivity which can be set by choosing the nickel concentration within the range of about 35 to 80% IACS, the mechanical properties remaining largely unchanged. With increasing nickel content up to 2.0%, the yield strength and the tensile strength of the material change only slightly in the entire concentration range in the hardened state higher parameters. A small increase also applies to the heat resistance, e.g. B. at 350 ° C. In contrast, the elongation at break is largely independent of the nickel content, which at a temperature of 350 ° C is reduced only to 10% elongation for an alloy with 2.0% nickel.
  • the resistance of the alloy to be used according to the invention was tested both at room temperature and at a temperature of up to 350 ° C. - corresponding to a cyclical temperature load in the casting operation.
  • the fatigue crack formation resulted in a large degree of independence from the nickel content, so that the known favorable behavior of the copper-chromium-zirconium alloys previously used in the casting operation is also given with regard to the long service life.
  • the increasing hardness with increasing nickel content provides an additional improvement in properties, which also results in a more favorable tribological behavior of the mold material.
  • alloy to be used according to the invention is not only limited to the plate mold described in the exemplary embodiments.
  • Corresponding advantages also arise with other molds with which metallic mold strands can be produced in a semi-continuous or fully continuous manner, for example tubular molds, block molds, casting wheels, casting rolls and casting roll shells.

Abstract

Age-hardenable Cu alloys contg. 0.1-2% Ni, 0.3-1.3% Cr, 0.1-0.5% Zr, opt. NOTGREATER 0.2% of at least one of P, Li, Ca, Mg, Si and B, balance Cu and impurities are used as materials with adjustable electrical conductivity to mfr. casting moulds, esp. continuous casting moulds in which molten metal is stirred by electromagnetic forces.

Description

Die Erfindung betrifft die Verwendung einer aushärtbaren Kupferlegierung als Werkstoff mit gezielt einstellbarer elektrischer Leitfähigkeit zur Herstellung von Gießformen, insbesondere Stranggießkokillen, bei denen schmelzflüssiges Metall durch Einwirkung von elektromagnetischen Kräften gerührt wird.The invention relates to the use of a hardenable copper alloy as a material with selectively adjustable electrical conductivity for the production of casting molds, in particular continuous casting molds, in which molten metal is stirred by the action of electromagnetic forces.

Beim Stranggießen von insbesondere Stahl ist es allgemein bekannt, daß eine Qualitätsverbesserung durch elektromagnetisches Rühren der in der gekühlten Stranggießkokille befindlichen Schmelze erreicht werden kann. Mit elektromagnetischen Rühreinrichtungen wird dem flüssigen Kern der Metallschmelze innerhalb der erstarrten Strangschale eine gewünschte Strömung aufgezwungen, die das Gußgefüge des Strangs nachteilig beeinflussende Seigerungen während des Erstarrungsvorgangs verhindert.In the continuous casting of steel in particular, it is generally known that an improvement in quality can be achieved by electromagnetic stirring of the melt located in the cooled continuous casting mold. With electromagnetic stirring devices, a desired flow is forced on the liquid core of the molten metal within the solidified strand shell, which prevents segregations which adversely affect the casting structure of the strand during the solidification process.

Die flüssige Metallschmelze wird während des Gießens in der Rühreinrichtung unter Einwirkung eines elektrischen Drehfeldes quer zur Strangabzugsrichtung gebracht und durch die entstehenden Induktionsströme in eine kreisende Bewegung versetzt, die im wesentlichen konzentrisch zur Stranglängsachse verläuft. Als Ergebnis erhält man ein homogenes Gußgefüge, das besonders hohe Qualitätsansprüche erfüllt. Um den technischen Aufwand möglichst gering zu halten, ordnet man Rühreinrichtungen üblicherweise unterhalb der Kokille an, damit das restliche schmelzflüssige Metall im teilerstarrten Strang dicht unter der Kokille gerührt werden kann. Um aber das Erstarrungsgefüge auch in den zuerst erstarrenden äußeren Randbereichen des Strangs beeinflussen zu können, ist es günstig, die Rühreinrichtung entweder in Höhe der Kokille oder in der Kokille selbst unterzubringen.The liquid metal melt is brought transversely to the strand withdrawal direction during the casting in the stirring device under the action of an electrical rotating field and is set in a circular motion by the resulting induction currents, which is essentially concentric to the longitudinal axis of the strand. The result is a homogeneous cast structure that meets particularly high quality requirements. To the To keep technical expenditure as low as possible, stirring devices are usually arranged below the mold so that the remaining molten metal in the partially solidified strand can be stirred just below the mold. However, in order to be able to influence the solidification structure in the initially solidifying outer edge regions of the strand, it is advantageous to accommodate the stirring device either at the level of the mold or in the mold itself.

Die beim Stranggießen von Stahl eingesetzten Kokillenwerkstoffe weisen in der Regel bei hoher mechanischer Festigkeit gleichzeitig eine hohe Wärmeleitfähigkeit auf, um eine optimale Wärmeabfuhr und Kühlleistung sicherzustellen. Die damit verbundene hohe maximale Gießgeschwindigkeit vergrößert die Wirtschaftlichkeit des Stahlstranggießens. Bei Anordnung einer Induktions-Rühreinrichtung erweist sich die hohe elektrische Leitfähigkeit der bewährten Kokillenwerkstoffe, wie beispielsweise Kupfer-Chrom-Zirkonium-Legierungen, mit größer als 85 % IACS jedoch als nachteilig. Die hohe elektrische Leitfähigkeit führt zu einer unerwünscht hohen Abschirmwirkung des Kokillenwerkstoffs in Bezug auf das zum Rühren erzeugte Magnetfeld. Diese Abschwächung des Magnetfeldes resultiert in einer geringeren Tiefenwirkung des Rühreffekts. Zwar kann die Rührwirkung durch Erhöhung der Stromstärke verstärkt werden, wodurch allerdings der dazu notwendige technische Aufwand überproportional ansteigt. Insgesamt ist also eine optimale Rührwirkung mit eine hohe Wärmeleitfähigkeit aufweisenden Kokillenwerkstoffen nicht erreichbar.The mold materials used in the continuous casting of steel generally have high thermal conductivity at the same time as high mechanical strength to ensure optimum heat dissipation and cooling performance. The associated high maximum casting speed increases the economic efficiency of continuous steel casting. If an induction stirrer is arranged, the high electrical conductivity of the proven mold materials, such as copper-chromium-zirconium alloys, with greater than 85% IACS proves to be disadvantageous. The high electrical conductivity leads to an undesirably high shielding effect of the mold material in relation to the magnetic field generated for stirring. This weakening of the magnetic field results in a lower depth effect of the stirring effect. Although the stirring effect can be increased by increasing the current intensity, the technical effort required for this increases disproportionately. Overall, therefore, an optimal stirring effect cannot be achieved with mold materials having a high thermal conductivity.

Es sind zwar auch schon Kokillenwerkstoffe mit geringerer Wärmeleitfähigkeit bekannt. Diese weisen jedoch extrem hohe Festigkeiten auf, so daß sie vorzugsweise bei höheren Temperaturen eingesetzt werden. Zudem ist die Bearbeitung dieser Kokillenwerkstoffe durch die extrem hohe Festigkeit relativ aufwendig. Als weiterer Nachteil kommt hinzu, daß die Bruchdehnung bei Temperaturen oberhalb von 350 °C zu gering ist.Mold materials with lower thermal conductivity are already known. However, these have extremely high strengths, so that they are preferably used at higher temperatures. In addition, the processing of these mold materials is relatively complex due to the extremely high strength. Another disadvantage is that the elongation at break at temperatures above 350 ° C is too low.

Die bekannten Kokillenwerkstoffe geringerer Wärmeleitfähigkeit stellen somit keine wirtschaftliche Alternative zu den hochleitfähigen Kokillenwerkstoffen, wie beispielsweise Kupfer-Chrom-Zirkonium-Legierungen, für den Einsatz in Gießanlagen mit elektromagnetischer Rühreinrichtung dar.The known mold materials with lower thermal conductivity are therefore not an economical alternative to the highly conductive mold materials, such as copper-chrome-zirconium alloys, for use in casting plants with electromagnetic stirring devices.

Aufgabe der vorliegenden Erfindung ist es daher, einen aushärtbaren Kupferwerkstoff, insbesondere für den Einsatz in Gießanlagen mit einer elektromagnetischen Rührvorrichtung, bereitzustellen, der eine geringe Felddämpfung hervorruft und der weiterhin günstige Festigkeits- und Bruchdehnungseigenschaften besitzt.The object of the present invention is therefore to provide a hardenable copper material, in particular for use in casting plants with an electromagnetic stirring device, which produces low field damping and which also has favorable strength and elongation at break properties.

Die Lösung dieser Aufgabe besteht in der Verwendung einer aushärtbaren Kupferlegierung aus 0,1 bis 2,0 % Nickel, 0,3 bis 1,3 % Chrom, 0,1 bis 0,5 % Zirkonium, bis zu 0,2 % mindestens eines Elements aus der Phosphor, Lithium, Kalzium, Magnesium, Silizium und Bor umfassenden Gruppe, Rest Kupfer einschließlich Verunreinigungen als Werkstoff mit gezielt einstellbarer elektrischer Leitfähigkeit für die Herstellung von Gießformen, insbesondere Stranggießkokillen, bei denen schmelzflüssiges Metall durch Einwirkung elektromagnetischer Kräfte gerührt wird.The solution to this problem consists in the use of a hardenable copper alloy of 0.1 to 2.0% nickel, 0.3 to 1.3% chromium, 0.1 to 0.5% zirconium, up to 0.2% of at least one Elements from the group comprising phosphorus, lithium, calcium, magnesium, silicon and boron, the rest copper including impurities as a material with selectively adjustable electrical conductivity for the production of casting molds, in particular continuous casting molds, in which molten metal is stirred by the action of electromagnetic forces.

Vorzugsweise enthält die erfindungsgemäß zu verwendende Legierung 0,4 bis 1,6 % Nickel, 0,6 bis 0,8 % Chrom, 0,15 bis 0,25 % Zirkonium, mindestens ein Element aus der Gruppe 0,005 bis 0,02 % Bor, 0,005 bis 0,05 % Magnesium und 0,005 bis 0,03 % Phosphor, Rest Kupfer einschließlich unvermeidbarer Verunreinigungen. Der Borzusatz kann der Schmelze beispielsweise als Kalziumborid zugegeben werden.The alloy to be used according to the invention preferably contains 0.4 to 1.6% nickel, 0.6 to 0.8% chromium, 0.15 to 0.25% zirconium, at least one element from the group 0.005 to 0.02% boron , 0.005 to 0.05% magnesium and 0.005 to 0.03% phosphorus, balance copper including unavoidable impurities. The boron additive can be added to the melt, for example as calcium boride.

Überraschenderweise zeichnet sich die erfindungsgemäße Kupferlegierung durch eine besonders vorteilhafte Kombination von mechanischen und physikalischen Eigenschaften aus. Mit einer unterhalb 80 % IACS liegenden elektrischen Leitfähigkeit erfüllt diese Kupferlegierung auch die wesentliche Anforderung an eine geringe Felddämpfung einer aus dieser Legierung hergestellten Kokillenwand.Surprisingly, the copper alloy according to the invention is distinguished by a particularly advantageous combination of mechanical and physical properties. With an electrical conductivity below 80% IACS, this copper alloy also fulfills the essential requirement for low field damping of a mold wall made from this alloy.

Zur weiteren gezielten Erhöhung der Festigkeit ist es vorteilhaft, der Legierung noch bis zu 0,2 % Titan und/oder 0,4 % Eisen zuzusetzen. Ein geringer Titangehalt bildet mit den in der Legierung vorhandenen Komponenten Nickel und Eisen intermetallische Verbindungen, die festigkeitssteigernd wirken.To further increase the strength in a targeted manner, it is advantageous to add up to 0.2% titanium and / or 0.4% iron to the alloy. A low titanium content forms intermetallic compounds with the components nickel and iron in the alloy, which increase strength.

Bis zu jeweils 0,8 % Aluminium und/oder Mangan bewirken ebenfalls eine Festigkeitssteigerung, die sich bei nur geringer Beeinflussung der niedrigen elektrischen Leitfähigkeit vorteilhaft nutzen läßt.Up to 0.8% aluminum and / or manganese each also result in an increase in strength, which can be used advantageously with little influence on the low electrical conductivity.

Die Erfindung wird anhand einiger Ausführungsbeispiele im folgenden noch näher erläutert.The invention is explained in more detail below with the aid of a few exemplary embodiments.

Die Zusammmensetzung von neun Beispiellegierungen ist in Tabelle 1 jeweils in Gew.-% angegeben. Mit X ist der Gesamtgehalt der Einzelelemente Bor, Magnesium und/oder Phosphor zu verstehen, die bis zu insgesamt 0,05 % als Desoxidationsmittel zugesetzt werden. Höhere Gehalte können ebenfalls zur Festigkeitssteigerung der Legierung eingesetzt werden. Tabelle 1 Leg. Ni Cr Zr X Ti Fe Al Mn Cu 1 0,20 0,70 0,18 0,015 Rest 2 0,38 0,65 0,16 0,016 Rest 3 0,65 0,60 0,20 0,012 0,41 0,25 Rest 4 0,81 0,68 0,16 0,014 Rest 5 0,81 0,66 0,17 0,014 0,10 0,22 Rest 6 1,25 0,70 0,15 0,015 Rest 7 1,60 0,66 0,18 0,016 Rest 8 1,68 0,72 0,17 0,016 Rest 9 2,0 0,73 0,16 0,013 Rest The composition of nine example alloys is given in Table 1 in% by weight. X denotes the total content of the individual elements boron, magnesium and / or phosphorus, which are added up to a total of 0.05% as deoxidizing agents. Higher levels can also be used to increase the strength of the alloy. Table 1 Leg. Ni Cr Zr X Ti Fe Al Mn Cu 1 0.20 0.70 0.18 0.015 rest 2nd 0.38 0.65 0.16 0.016 rest 3rd 0.65 0.60 0.20 0.012 0.41 0.25 rest 4th 0.81 0.68 0.16 0.014 rest 5 0.81 0.66 0.17 0.014 0.10 0.22 rest 6 1.25 0.70 0.15 0.015 rest 7 1.60 0.66 0.18 0.016 rest 8th 1.68 0.72 0.17 0.016 rest 9 2.0 0.73 0.16 0.013 rest

Kupferlegierungen mit unterschiedlichen Nickelgehalten von 0,2 bis 2 %, etwa 0,7 % Chrom, 0,16 bis 0,2 % Zirkonium, bis zu 0,02 % Bor, Magnesium und/oder Phosphor, Rest Kupfer einschließlich herstellungsbedingter Verunreinigungen wurden zunächst geschmolzen, zu Walzbarren vergossen und dann bei 950 °C in mehreren Stichen mit einem Gesamtumformgrad von 65 % warmgewalzt. Nach einer mindestens einstündigen Lösungsglühung bei 1 030 °C und einem nachfolgenden Abschrecken in Wasser wurden die gewalzten Platten mindestens 4 Stunden bei 475 °C ausgehärtet. Nach abschließender spanender Bearbeitung wiesen die Kokillenplatten jeweils abhängig vom Nickelanteil (0,2 bis 2 % Nickel) die in Tabelle 2 zusammengefaßten Eigenschaftswerte auf. Wird ein Bereich angegeben, so ist der zuerst genannte Eigenschaftswert der erfindungsgemäß zu verwendenden Kupferlegierung mit 0,2 % Nickelgehalt zugeordnet. Tabelle 2 Elektrische Leitfähigkeit 80 bis 35 % IACS Erweichungstemperatur (10 % Abfall der Festigkeit bei R.T. nach 1 h Glühdauer) 525 °C Härte HB 2,5/62 130 bis 150 Zugfestigkeit 430 bis 450 N/mm² Dehngrenze 325 bis 340 N/mm² Bruchdehnung 28 bis 22 % Warmfestigkeit bei 350 °C 340 bis 355 N/mm² Dehngrenze bei 350 °C 270 bis 290 N/mm² Bruchdehnung bei 350 °C 22 bis 10 % Copper alloys with different nickel contents of 0.2 to 2%, about 0.7% chromium, 0.16 to 0.2% zirconium, up to 0.02% boron, magnesium and / or phosphorus, the rest of copper including manufacturing-related impurities were initially melted, cast into rolled ingots and then hot rolled at 950 ° C in several passes with a total degree of forming of 65%. After at least 1 hour solution annealing at 1 030 ° C and a subsequent quenching in water, the rolled plates were at at least 4 hours 475 ° C hardened. After final machining, the mold plates each had the property values summarized in Table 2, depending on the nickel content (0.2 to 2% nickel). If a range is specified, the first-mentioned property value is assigned to the copper alloy with 0.2% nickel content to be used according to the invention. Table 2 Electric conductivity 80 to 35% IACS Softening temperature (10% drop in strength at RT after 1 h of annealing) 525 ° C Hardness HB 2.5 / 62 130 to 150 tensile strenght 430 to 450 N / mm² Proof stress 325 to 340 N / mm² Elongation at break 28 to 22% Heat resistance at 350 ° C 340 to 355 N / mm² Yield strength at 350 ° C 270 to 290 N / mm² Elongation at break at 350 ° C 22 to 10%

Die erfindungsgemäß zu verwendenden Legierungen besitzen eine elektrische Leitfähigkeit, die durch Wahl der Nickelkonzentration innerhalb des angegebenen Bereichs von etwa 35 bis 80 % IACS eingestellt werden kann, wobei die mechanischen Eigenschaften weitgehend unverändert bleiben. Mit zunehmendem Nickelgehalt bis 2,0 % verändert sich im gesamten Konzentrationsbereich die Dehngrenze und die Zugfestigkeit des Werkstoffs im ausgehärteten Zustand nur geringfügig zu höheren Kennwerten. Ein geringer Anstieg gilt auch für die Warmfestigkeit, z. B. bei 350 °C. Demgegenüber erhält man auch für die Bruchdehnung einen vom Nickelgehalt weitgehend unabhängigen Wert, der sich bei einer Temperatur von 350 °C nur bis auf 10 % Dehnung bei einer Legierung mit 2,0 % Nickelanteil reduziert.The alloys to be used according to the invention have an electrical conductivity which can be set by choosing the nickel concentration within the range of about 35 to 80% IACS, the mechanical properties remaining largely unchanged. With increasing nickel content up to 2.0%, the yield strength and the tensile strength of the material change only slightly in the entire concentration range in the hardened state higher parameters. A small increase also applies to the heat resistance, e.g. B. at 350 ° C. In contrast, the elongation at break is largely independent of the nickel content, which at a temperature of 350 ° C is reduced only to 10% elongation for an alloy with 2.0% nickel.

In ergänzenden dehnungsgeregelten Ermüdungsversuchen wurde die Beständigkeit der erfindungsgemäß zu verwendenden Legierung sowohl bei Raumtemperatur als auch bei einer Temperatur bis zu 350 °C - entsprechend einer zyklischen Temperaturbeanspruchung im Gießbetrieb - geprüft. Die Ermüdungsrißbildung ergab dabei eine weitgehende Unabhängigkeit vom Nickelgehalt, so daß das bekannt günstige Verhalten der im Gießbetrieb bisher eingesetzten Kupfer-Chrom-Zirkonium-Legierungen auch bezüglich auf die hohe Lebensdauer gegeben ist. Die mit steigendem Nickelgehalt zunehmende Härte liefert eine zusätzliche Eigenschaftsverbesserung, aus der auch ein günstigeres tribologisches Verhalten des Kokillenwerkstoffs resultiert.In additional strain-controlled fatigue tests, the resistance of the alloy to be used according to the invention was tested both at room temperature and at a temperature of up to 350 ° C. - corresponding to a cyclical temperature load in the casting operation. The fatigue crack formation resulted in a large degree of independence from the nickel content, so that the known favorable behavior of the copper-chromium-zirconium alloys previously used in the casting operation is also given with regard to the long service life. The increasing hardness with increasing nickel content provides an additional improvement in properties, which also results in a more favorable tribological behavior of the mold material.

Der Einsatz der erfindungsgemäß zu verwendenden Legierung ist nicht nur auf die in den Ausführungsbeispielen beschriebene Plattenkokille beschränkt. Entsprechende Vorteile ergeben sich auch bei anderen Kokillen, mit denen sich in halb- oder vollkontinuierlicher Weise metallische Formstränge herstellen lassen, zum Beispiel Rohrkokillen, Blockkokillen, Gießräder, Gießwalzen und Gießwalzenmäntel.The use of the alloy to be used according to the invention is not only limited to the plate mold described in the exemplary embodiments. Corresponding advantages also arise with other molds with which metallic mold strands can be produced in a semi-continuous or fully continuous manner, for example tubular molds, block molds, casting wheels, casting rolls and casting roll shells.

Claims (4)

Verwendung einer aushärtbaren Kupferlegierung aus 0,1 bis 2 % Nickel, 0,3 bis 1,3 % Chrom, 0,1 bis 0,5 % Zirkonium, gegebenenfalls bis zu 0,2 % mindestens eines Elements aus der Phosphor, Lithium, Kalzium, Magnesium, Silizium und Bor umfassenden Gruppe, Rest Kupfer einschließlich herstellungsbedingter Verunreinigungen als Werkstoff mit gezielt einstellbarer elektrischer Leitfähigkeit zur Herstellung von Gießformen, insbesondere Stranggießkokillen, bei denen schmelzflüssiges Metall durch Einwirkung von elektromagnetischen Kräften gerührt wird.Use of a hardenable copper alloy of 0.1 to 2% nickel, 0.3 to 1.3% chromium, 0.1 to 0.5% zirconium, optionally up to 0.2% of at least one element from the phosphorus, lithium, calcium , Magnesium, silicon and boron group, the rest of copper including manufacturing-related impurities as a material with selectively adjustable electrical conductivity for the production of casting molds, in particular continuous casting molds, in which molten metal is stirred by the action of electromagnetic forces. Verwendung einer aushärtbaren Kupferlegierung nach Anspruch 1, die 0,4 bis 1,6 % Nickel, 0,6 bis 0,8 % Chrom, 0,15 bis 0,25 % Zirkonium, mindestens ein Element aus der Gruppe 0,005 bis 0,02 % Bor, 0,005 bis 0,05 % Magnesium und 0,005 bis 0,03 % Phosphor, Rest Kupfer einschließlich herstellungsbedingter Verunreinigungen für den in Anspruch 1 genannten Zweck.Use of a hardenable copper alloy according to claim 1, the 0.4 to 1.6% nickel, 0.6 to 0.8% chromium, 0.15 to 0.25% zirconium, at least one element from the group 0.005 to 0.02 % Boron, 0.005 to 0.05% magnesium and 0.005 to 0.03% phosphorus, balance copper including manufacturing-related impurities for the purpose mentioned in claim 1. Verwendung einer aushärtbaren Kupferlegierung nach Anspruch 1 oder 2, die außerdem noch bis zu 0,2 % Titan und/oder bis zu 0,4 % Eisen enthält.Use of a hardenable copper alloy according to claim 1 or 2, which also contains up to 0.2% titanium and / or up to 0.4% iron. Verwendung einer aushärtbaren Kupferlegierung nach einem der Ansprüche 1 bis 3, die außerdem noch bis zu 0,8 % Aluminium und/oder bis zu 0,8 % Mangan enthält.Use of a hardenable copper alloy according to one of claims 1 to 3, which also contains up to 0.8% aluminum and / or up to 0.8% manganese.
EP95110134A 1994-08-06 1995-06-29 Use of a hardenable copper alloy Expired - Lifetime EP0702094B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4427939A DE4427939A1 (en) 1994-08-06 1994-08-06 Use of a hardenable copper alloy
DE4427939 1994-08-06

Publications (2)

Publication Number Publication Date
EP0702094A1 true EP0702094A1 (en) 1996-03-20
EP0702094B1 EP0702094B1 (en) 1999-10-27

Family

ID=6525121

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95110134A Expired - Lifetime EP0702094B1 (en) 1994-08-06 1995-06-29 Use of a hardenable copper alloy

Country Status (12)

Country Link
US (1) US6565681B1 (en)
EP (1) EP0702094B1 (en)
JP (1) JPH08104928A (en)
KR (1) KR100374051B1 (en)
CN (1) CN1058532C (en)
AT (1) ATE186076T1 (en)
DE (2) DE4427939A1 (en)
ES (1) ES2139780T3 (en)
FI (1) FI112669B (en)
PL (1) PL177973B1 (en)
RU (1) RU2160648C2 (en)
ZA (1) ZA956181B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004074526A2 (en) * 2003-02-19 2004-09-02 Sms Demag Aktiengesellschaft Copper alloy and use thereof for cast moulding

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19840094C2 (en) * 1998-09-03 2002-09-19 Waermetechnik Heimsoth Gmbh & Use of copper alloys for cooling press plates in facilities for the heat treatment of steel parts
DE10032627A1 (en) * 2000-07-07 2002-01-17 Km Europa Metal Ag Use of a copper-nickel alloy
JP3731600B2 (en) * 2003-09-19 2006-01-05 住友金属工業株式会社 Copper alloy and manufacturing method thereof
DE102008015096A1 (en) * 2008-03-19 2009-09-24 Kme Germany Ag & Co. Kg Process for producing molded parts and molded parts produced by the process
KR101364542B1 (en) * 2011-08-11 2014-02-18 주식회사 풍산 Copper alloy material for continuous casting mold and process of production same
CN102392154B (en) * 2011-11-25 2014-04-02 汕头华兴冶金设备股份有限公司 High-strength and high-conductivity copper alloy material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3109438A1 (en) * 1981-03-12 1982-09-30 Kabel- und Metallwerke Gutehoffnungshütte AG, 3000 Hannover "METHOD FOR THE PRODUCTION OF TUBULAR, STRAIGHT OR CURVED CONTINUOUS CASTING CHILLS WITH PARALLELS OR CONICAL INTERIOR CONTOURS FROM CURABLE copper ALLOYS"
JPS58107460A (en) * 1981-12-21 1983-06-27 Chuetsu Gokin Chuko Kk Mold material for precipitation hardening type continuous casting
JPS58212839A (en) * 1982-06-03 1983-12-10 Mitsubishi Metal Corp Cu alloy for continuous casting mold
JPH01188642A (en) * 1988-01-22 1989-07-27 Kobe Steel Ltd Mold material for continuous casting with built-in electro-magnetic mixer
JPH0428837A (en) * 1990-05-25 1992-01-31 Mitsubishi Materials Corp Continuous casting mold material made of high strength cu alloy having high cooling capacity and its manufacture
EP0548636A1 (en) * 1991-12-24 1993-06-30 KM Europa Metal Aktiengesellschaft Use of an hardenable copper alloy

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4421570A (en) 1982-03-12 1983-12-20 Kabel Und Metallwerke Gutehoffnungshutte Ag Making molds for continuous casting
US4749548A (en) * 1985-09-13 1988-06-07 Mitsubishi Kinzoku Kabushiki Kaisha Copper alloy lead material for use in semiconductor device
JP2632818B2 (en) * 1986-11-14 1997-07-23 三菱マテリアル株式会社 High-strength copper alloy with excellent thermal fatigue resistance
JPS63303020A (en) * 1987-06-03 1988-12-09 Nippon Mining Co Ltd Copper alloy for sleeve material
AU5428090A (en) * 1989-03-20 1990-10-22 Olin Corporation In-mold electromagnetic stirring of molten metal during casting
JPH03191034A (en) * 1989-12-21 1991-08-21 Nippon Mining Co Ltd Copper alloy for lead material of semiconductor device excellent in adhesion for oxidized film
JPH04210438A (en) * 1990-12-13 1992-07-31 Mitsubishi Materials Corp Continuous casting mold material made of high strength cu alloy

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3109438A1 (en) * 1981-03-12 1982-09-30 Kabel- und Metallwerke Gutehoffnungshütte AG, 3000 Hannover "METHOD FOR THE PRODUCTION OF TUBULAR, STRAIGHT OR CURVED CONTINUOUS CASTING CHILLS WITH PARALLELS OR CONICAL INTERIOR CONTOURS FROM CURABLE copper ALLOYS"
JPS58107460A (en) * 1981-12-21 1983-06-27 Chuetsu Gokin Chuko Kk Mold material for precipitation hardening type continuous casting
JPS58212839A (en) * 1982-06-03 1983-12-10 Mitsubishi Metal Corp Cu alloy for continuous casting mold
JPH01188642A (en) * 1988-01-22 1989-07-27 Kobe Steel Ltd Mold material for continuous casting with built-in electro-magnetic mixer
JPH0428837A (en) * 1990-05-25 1992-01-31 Mitsubishi Materials Corp Continuous casting mold material made of high strength cu alloy having high cooling capacity and its manufacture
EP0548636A1 (en) * 1991-12-24 1993-06-30 KM Europa Metal Aktiengesellschaft Use of an hardenable copper alloy

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 8331, Derwent World Patents Index; Class M22, AN 83-726261 *
DATABASE WPI Section Ch Week 8404, Derwent World Patents Index; Class M22, AN 84-021111 *
DATABASE WPI Section Ch Week 8936, Derwent World Patents Index; Class M26, AN 89-259908 *
DATABASE WPI Section Ch Week 9211, Derwent World Patents Index; Class M22, AN 92-085397 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004074526A2 (en) * 2003-02-19 2004-09-02 Sms Demag Aktiengesellschaft Copper alloy and use thereof for cast moulding
WO2004074526A3 (en) * 2003-02-19 2004-09-23 Sms Demag Ag Copper alloy and use thereof for cast moulding

Also Published As

Publication number Publication date
DE59507131D1 (en) 1999-12-02
PL309841A1 (en) 1996-02-19
US6565681B1 (en) 2003-05-20
JPH08104928A (en) 1996-04-23
FI953730A (en) 1996-02-07
KR100374051B1 (en) 2003-05-09
KR960007802A (en) 1996-03-22
DE4427939A1 (en) 1996-02-08
CN1122837A (en) 1996-05-22
FI953730A0 (en) 1995-08-04
FI112669B (en) 2003-12-31
RU2160648C2 (en) 2000-12-20
ZA956181B (en) 1996-03-08
ATE186076T1 (en) 1999-11-15
EP0702094B1 (en) 1999-10-27
PL177973B1 (en) 2000-02-29
ES2139780T3 (en) 2000-02-16
CN1058532C (en) 2000-11-15

Similar Documents

Publication Publication Date Title
DE10352932B4 (en) Cast aluminum alloy
EP0224016B1 (en) Wrought aluminium alloy of the type al-cu-mg having a high strength in the temperature range between 0 and 250o c
EP0918095B1 (en) Process of manufacturing a structural element made of a die-cast aluminium alloy
DE3401805C2 (en) Nodular cast iron and process for its manufacture
DE3032153A1 (en) SHEATH ALLOYING AND METHOD FOR THE PRODUCTION THEREOF
DE102004025600A1 (en) Electrode material and process for its manufacture
EP1314789B1 (en) Mould made of a precipitation hardenable copper alloy
EP2236637A2 (en) Pressure casting mould made of a hypereutectic aluminium silicon cast alloy and method for producing same
DE2635454A1 (en) USE OF A COPPER ALLOY
DE60114281T2 (en) Cast and forged product using a copper-based alloy
EP0548636B1 (en) Use of an hardenable copper alloy
EP0702094B1 (en) Use of a hardenable copper alloy
EP1340564B1 (en) Use of a hardenable copper alloy
EP0346645B1 (en) Use of an age-hardenable copper-based alloy
EP0302255B1 (en) Use of a copper alloy for continuous-casting moulds
EP0908527A1 (en) Aluminium casting alloy
DE1240671B (en) The use of a cobalt-based alloy for the manufacture of objects that are resistant to thermal shock
DE2652434A1 (en) KAEFIGLAEUFER OR -LADDER FOR A SHORT-CIRCUIT ANCHORED INDUCTION MOTOR AND PROCESS FOR ITS MANUFACTURING
DE102004050484A1 (en) Alloy based on aluminum and molded part of this alloy
DE19928330C2 (en) Use of a tin-rich copper-tin-iron wrought alloy
EP0249740B1 (en) Using a copper alloy
DE102022112492A1 (en) ALUMINUM ALLOY FOR CASTING OF HIGH STRENGTH AND HIGH ELECTRICAL CONDUCTIVITY COMPONENTS
DE4100908C2 (en) mold material
EP0779372A1 (en) Overhead contact wire for high speed electrical railways and process for manufacturing the same
DE102022200302A1 (en) aluminum alloy

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI PT SE

17P Request for examination filed

Effective date: 19960607

17Q First examination report despatched

Effective date: 19970407

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI PT SE

REF Corresponds to:

Ref document number: 186076

Country of ref document: AT

Date of ref document: 19991115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59507131

Country of ref document: DE

Date of ref document: 19991202

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PA ALDO ROEMPLER

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO TORTA S.R.L.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000118

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2139780

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 19991029

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: KME GERMANY AG

Free format text: KM EUROPA METAL AKTIENGESELLSCHAFT#POSTFACH 3320#D-49023 OSNABRUECK (DE) -TRANSFER TO- KME GERMANY AG#KLOSTERSTRASSE 29#49074 OSNABRUECK (DE)

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: ALDO ROEMPLER PATENTANWALT;BRENDENWEG 11 POSTFACH 154;9424 RHEINECK (CH)

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59507131

Country of ref document: DE

Representative=s name: PIETRZYKOWSKI, ANJA, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59507131

Country of ref document: DE

Representative=s name: PIETRZYKOWSKI, ANJA, DE

Effective date: 20130122

Ref country code: DE

Ref legal event code: R081

Ref document number: 59507131

Country of ref document: DE

Owner name: KME GERMANY GMBH & CO. KG, DE

Free format text: FORMER OWNER: KME GERMANY AG & CO. KG, 49074 OSNABRUECK, DE

Effective date: 20130122

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: KME GERMANY GMBH AND CO. KG, DE

Free format text: FORMER OWNER: KME GERMANY AG, DE

REG Reference to a national code

Ref country code: PT

Ref legal event code: PC4A

Owner name: KME GERMANY AG & CO. KG, DE

Effective date: 20130821

BECH Be: change of holder

Owner name: KME GERMANY G.M.B.H. & CO. K.G.

Effective date: 20130829

BECN Be: change of holder's name

Owner name: KME GERMANY G.M.B.H. & CO. K.G.

Effective date: 20130829

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: KME GERMANY GMBH & CO. KG

Effective date: 20131004

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: KME GERMANY GMBH & CO. KG, DE

Effective date: 20131029

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 186076

Country of ref document: AT

Kind code of ref document: T

Owner name: KME GERMANY GMBH & CO. KG, DE

Effective date: 20140219

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140630

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140626

Year of fee payment: 20

Ref country code: CH

Payment date: 20140625

Year of fee payment: 20

Ref country code: AT

Payment date: 20140624

Year of fee payment: 20

Ref country code: PT

Payment date: 20140605

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140829

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140630

Year of fee payment: 20

Ref country code: ES

Payment date: 20140724

Year of fee payment: 20

Ref country code: SE

Payment date: 20140630

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20140730

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59507131

Country of ref document: DE

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: MAXIMUM VALIDITY LIMIT REACHED

Effective date: 20150629

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20150628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20150628

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 186076

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150629

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20151006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20150630

Ref country code: PT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20150707