EP0702094B1 - Use of a hardenable copper alloy - Google Patents
Use of a hardenable copper alloy Download PDFInfo
- Publication number
- EP0702094B1 EP0702094B1 EP95110134A EP95110134A EP0702094B1 EP 0702094 B1 EP0702094 B1 EP 0702094B1 EP 95110134 A EP95110134 A EP 95110134A EP 95110134 A EP95110134 A EP 95110134A EP 0702094 B1 EP0702094 B1 EP 0702094B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- nickel
- copper alloy
- mold
- zirconium
- copper
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910000881 Cu alloy Inorganic materials 0.000 title claims abstract description 10
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 17
- 239000000463 material Substances 0.000 claims abstract description 15
- 229910052796 boron Inorganic materials 0.000 claims abstract description 8
- 238000009749 continuous casting Methods 0.000 claims abstract description 8
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 7
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 6
- 239000012535 impurity Substances 0.000 claims abstract description 6
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 32
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 8
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 7
- 239000010949 copper Substances 0.000 claims description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 6
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 239000011777 magnesium Substances 0.000 claims description 6
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 5
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 5
- 239000011651 chromium Substances 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 4
- 239000010936 titanium Substances 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 2
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 claims 2
- 229910001338 liquidmetal Inorganic materials 0.000 claims 1
- 238000005266 casting Methods 0.000 abstract description 9
- 229910052751 metal Inorganic materials 0.000 abstract description 6
- 239000002184 metal Substances 0.000 abstract description 6
- 229910052698 phosphorus Inorganic materials 0.000 abstract description 5
- 229910052791 calcium Inorganic materials 0.000 abstract description 2
- 229910052710 silicon Inorganic materials 0.000 abstract description 2
- 238000003756 stirring Methods 0.000 description 12
- 229910045601 alloy Inorganic materials 0.000 description 10
- 239000000956 alloy Substances 0.000 description 10
- 229910001093 Zr alloy Inorganic materials 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 4
- 239000011574 phosphorus Substances 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 230000002349 favourable effect Effects 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229910019580 Cr Zr Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000002730 additional effect Effects 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 238000009661 fatigue test Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/06—Alloys based on copper with nickel or cobalt as the next major constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/04—Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
- B22D11/059—Mould materials or platings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/12—Accessories for subsequent treating or working cast stock in situ
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/01—Alloys based on copper with aluminium as the next major constituent
Definitions
- the invention relates to the use of a curable Copper alloy as a material with specifically adjustable electrical conductivity for the production of Continuous casting molds in which molten Metal through the action of electromagnetic forces is stirred.
- the molten metal is melted during the casting process Stirring device under the influence of an electrical rotating field brought transversely to the strand withdrawal direction and through the emerging induction currents in a circular motion offset, which is essentially concentric to the longitudinal axis of the strand runs.
- the result is a homogeneous casting structure, that meets particularly high quality standards.
- Stirring devices usually below the mold, so that the remaining molten metal solidified in the partially Strand can be stirred just below the mold. But around the solidification structure also in the outer solidifying first It is to be able to influence edge areas of the strand favorable, the stirring device either at the level of the mold or to accommodate in the mold itself.
- the mold materials used in the continuous casting of steel usually have high mechanical strength at the same time a high thermal conductivity to ensure optimal Ensure heat dissipation and cooling performance.
- the one with it associated high maximum casting speed increases the Profitability of continuous steel casting.
- the high electrical Conductivity leads to an undesirably high shielding effect of the mold material in relation to the Stirring generated magnetic field. This weakening of the magnetic field results in a lower depth effect of the Stirring effects.
- the stirring effect can be increased by Amperage are increased, which, however, the necessary technical effort increases disproportionately. Overall, an optimal stirring effect with a high Mold materials with thermal conductivity are not reachable.
- the known mold materials with lower thermal conductivity thus represent no economical alternative to the highly conductive mold materials, such as copper-chrome-zirconium alloys, for use in Casting plants with electromagnetic stirring device.
- Continuous casting molds made of a copper-chrome-zirconium alloy with a Addition of up to 5% of at least one element from the group aluminum, Iron, silicon, nickel, tin, zinc and manganese are from JP-A-58 107 460 known.
- JP-A-58 212 839 is a high temperature resistant copper-chrome-zirconium alloy with 0.05 to 0.8% aluminum and other strength enhancers Additives described for the manufacture of continuous casting molds can be used.
- the object of the present invention is a curable copper material for use in casting plants with an electromagnetic stirring device to provide, which causes a low field loss and which continues has favorable strength and elongation at break properties.
- the solution to this problem is to use a curable Copper alloy made of 0.1 to 2.0% nickel, 0.3 to 1.3% chromium, 0.1 to 0.5% Zirconium, 0.005 to 0.05% of at least one element from the phosphorus, Group comprising magnesium and boron, optionally up to 0.2% titanium, up to to 0.4% iron and up to 0.8% manganese, the rest copper including production-related Impurities as a material with specifically adjustable electrical Conductivity for the manufacture of continuous casting molds in which molten metal stirred by the action of electromagnetic forces becomes.
- the alloy to be used according to the invention preferably contains 0.4 to 1.6% nickel, 0.6 to 0.8% chromium, 0.15 to 0.25% zirconium, at least one Element from the group 0.005 to 0.02% boron, 0.005 to 0.05% magnesium and 0.005 to 0.03% phosphorus, balance copper including unavoidable Impurities.
- the boron additive can be in the melt, for example, as calcium boride be added.
- the copper alloy according to the invention is surprisingly distinguished through a particularly advantageous combination of mechanical and physical Properties. With an electrical below 80% IACS Conductivity, this copper alloy also meets the essential requirement low field damping of a made from this alloy Mold wall.
- the alloy add up to 0.2% titanium and / or 0.4% iron.
- a low titanium content forms nickel and with the components present in the alloy Iron intermetallic compounds that increase strength.
- composition of eight sample alloys is given in Table 1 in% by weight.
- X denotes the total content of the individual elements boron, magnesium and / or phosphorus, which are added up to a total of 0.05% as deoxidizing agents. Higher levels can also be used to increase the strength of the alloy.
- Leg. Ni Cr Zr X Ti Fe Al Mn Cu 1 0.20 0.70 0.18 0.015 rest 2nd 0.38 0.65 0.16 0.016 rest 4th 0.81 0.68 0.16 0.014 rest 5 0.81 0.66 0.17 0.014 0.10 0.22 rest 6 1.25 0.70 0.15 0.015 rest 7 1.60 0.66 0.18 0.016 rest 8th 1.68 0.72 0.17 0.016 rest 9 2.0 0.73 0.16 0.013 rest
- Copper alloys with different nickel contents of 0.2 to 2%, about 0.7% chromium, 0.16 to 0.2% zirconium, up to 0.02% boron, magnesium and / or phosphorus, the rest of copper including manufacturing-related impurities were initially melted, cast into rolled ingots and then hot rolled at 950 ° C in several passes with a total degree of forming of 65%. After solution annealing at 1 030 ° C for at least one hour and subsequent quenching in water, the rolled plates were cured at 475 ° C for at least 4 hours. After final machining, the mold plates each had the property values summarized in Table 2, depending on the nickel content (0.2 to 2% nickel).
- the first-mentioned property value is assigned to the copper alloy with 0.2% nickel content to be used according to the invention.
- Yield strength at 350 ° C 270 to 290 N / mm 2 Elongation at break at 350 ° C 22 to 10%
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Continuous Casting (AREA)
- Conductive Materials (AREA)
- Adornments (AREA)
- Dental Preparations (AREA)
- Macromonomer-Based Addition Polymer (AREA)
- Laminated Bodies (AREA)
- Colloid Chemistry (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
Die Erfindung betrifft die Verwendung einer aushärtbaren Kupferlegierung als Werkstoff mit gezielt einstellbarer elektrischer Leitfähigkeit zur Herstellung von Stranggießkokillen, bei denen schmelzflüssiges Metall durch Einwirkung von elektromagnetischen Kräften gerührt wird.The invention relates to the use of a curable Copper alloy as a material with specifically adjustable electrical conductivity for the production of Continuous casting molds in which molten Metal through the action of electromagnetic forces is stirred.
Beim Stranggießen von insbesondere Stahl ist es allgemein bekannt, daß eine Qualitätsverbesserung durch elektromagnetisches Rühren der in der gekühlten Stranggießkokille befindlichen Schmelze erreicht werden kann. Mit elektromagnetischen Rühreinrichtungen wird dem flüssigen Kern der Metallschmelze innerhalb der erstarrten Strangschale eine gewünschte Strömung aufgezwungen, die das Gußgefüge des Strangs nachteilig beeinflussende Seigerungen während des Erstarrungsvorgangs verhindert.It is common when continuously casting steel in particular known to improve quality through electromagnetic Stir in the cooled continuous casting mold Melt can be achieved. With electromagnetic Stirring devices become the liquid core of the molten metal a desired one within the solidified strand shell Flow imposed on the casting structure of the Segments adversely affecting strand during the Solidification process prevented.
Die flüssige Metallschmelze wird während des Gießens in der Rühreinrichtung unter Einwirkung eines elektrischen Drehfeldes quer zur Strangabzugsrichtung gebracht und durch die entstehenden Induktionsströme in eine kreisende Bewegung versetzt, die im wesentlichen konzentrisch zur Stranglängsachse verläuft. Als Ergebnis erhält man ein homogenes Gußgefüge, das besonders hohe Qualitätsansprüche erfüllt. Um den technischen Aufwand möglichst gering zu halten, ordnet man Rühreinrichtungen üblicherweise unterhalb der Kokille an, damit das restliche schmelzflüssige Metall im teilerstarrten Strang dicht unter der Kokille gerührt werden kann. Um aber das Erstarrungsgefüge auch in den zuerst erstarrenden äußeren Randbereichen des Strangs beeinflussen zu können, ist es günstig, die Rühreinrichtung entweder in Höhe der Kokille oder in der Kokille selbst unterzubringen.The molten metal is melted during the casting process Stirring device under the influence of an electrical rotating field brought transversely to the strand withdrawal direction and through the emerging induction currents in a circular motion offset, which is essentially concentric to the longitudinal axis of the strand runs. The result is a homogeneous casting structure, that meets particularly high quality standards. To the Keeping the technical effort as low as possible is classified Stirring devices usually below the mold, so that the remaining molten metal solidified in the partially Strand can be stirred just below the mold. But around the solidification structure also in the outer solidifying first It is to be able to influence edge areas of the strand favorable, the stirring device either at the level of the mold or to accommodate in the mold itself.
Die beim Stranggießen von Stahl eingesetzten Kokillenwerkstoffe weisen in der Regel bei hoher mechanischer Festigkeit gleichzeitig eine hohe Wärmeleitfähigkeit auf, um eine optimale Wärmeabfuhr und Kühlleistung sicherzustellen. Die damit verbundene hohe maximale Gießgeschwindigkeit vergrößert die Wirtschaftlichkeit des Stahlstranggießens. Bei Anordnung einer Induktions-Rühreinrichtung erweist sich die hohe elektrische Leitfähigkeit der bewährten Kokillenwerkstoffe, wie beispielsweise Kupfer-Chrom-Zirkonium-Legierungen, mit größer als 85 % IACS jedoch als nachteilig. Die hohe elektrische Leitfähigkeit führt zu einer unerwünscht hohen Abschirmwirkung des Kokillenwerkstoffs in Bezug auf das zum Rühren erzeugte Magnetfeld. Diese Abschwächung des Magnetfeldes resultiert in einer geringeren Tiefenwirkung des Rühreffekts. Zwar kann die Rührwirkung durch Erhöhung der Stromstärke verstärkt werden, wodurch allerdings der dazu notwendige technische Aufwand überproportional ansteigt. Insgesamt ist also eine optimale Rührwirkung mit eine hohe Wärmeleitfähigkeit aufweisenden Kokillenwerkstoffen nicht erreichbar. The mold materials used in the continuous casting of steel usually have high mechanical strength at the same time a high thermal conductivity to ensure optimal Ensure heat dissipation and cooling performance. The one with it associated high maximum casting speed increases the Profitability of continuous steel casting. When ordering a Induction stirring device proves to be the high electrical Conductivity of the proven mold materials, such as for example copper-chrome-zirconium alloys, with larger than 85% IACS but disadvantageous. The high electrical Conductivity leads to an undesirably high shielding effect of the mold material in relation to the Stirring generated magnetic field. This weakening of the magnetic field results in a lower depth effect of the Stirring effects. The stirring effect can be increased by Amperage are increased, which, however, the necessary technical effort increases disproportionately. Overall, an optimal stirring effect with a high Mold materials with thermal conductivity are not reachable.
Es sind zwar auch schon Kokillenwerkstoffe mit geringerer Wärmeleitfähigkeit bekannt. Diese weisen jedoch extrem hohe Festigkeiten auf, so daß sie vorzugsweise bei höheren Temperaturen eingesetzt werden. Zudem ist die Bearbeitung dieser Kokillenwerkstoffe durch die extrem hohe Festigkeit relativ aufwendig. Als weiterer Nachteil kommt hinzu, daß die Bruchdehnung bei Temperaturen oberhalb von 350 °C zu gering ist.Although they are also mold materials with lower thermal conductivity known. However, these have extremely high strengths, so that they are preferred can be used at higher temperatures. In addition, the processing These mold materials are relatively expensive due to their extremely high strength. Another disadvantage is that the elongation at break at temperatures is too low above 350 ° C.
Die bekannten Kokillenwerkstoffe geringerer Wärmeleitfähigkeit stellen somit keine wirtschaftliche Alternative zu den hochleitfähigen Kokillenwerkstoffen, wie beispielsweise Kupfer-Chrom-Zirkonium-Legierungen, für den Einsatz in Gießanlagen mit elektromagnetischer Rühreinrichtung dar.The known mold materials with lower thermal conductivity thus represent no economical alternative to the highly conductive mold materials, such as copper-chrome-zirconium alloys, for use in Casting plants with electromagnetic stirring device.
Stranggießkokillen aus einer Kupfer-Chrom-Zirkonium-Legierung mit einem Zusatz von bis zu 5 % mindestens eines Elements aus der Gruppe Aluminium, Eisen, Silizium, Nickel, Zinn, Zink und Mangan sind aus der JP-A-58 107 460 bekannt.Continuous casting molds made of a copper-chrome-zirconium alloy with a Addition of up to 5% of at least one element from the group aluminum, Iron, silicon, nickel, tin, zinc and manganese are from JP-A-58 107 460 known.
Ferner ist in der JP-A-58 212 839 eine hochtemperaturfeste Kupfer-Chrom-Zirkonium-Legierung mit 0,05 bis 0,8 % Aluminium und weiteren festigkeitssteigernden Zusätzen beschrieben, die für die Herstellung von Stranggießkokillen eingesetzt werden kann.Furthermore, in JP-A-58 212 839 is a high temperature resistant copper-chrome-zirconium alloy with 0.05 to 0.8% aluminum and other strength enhancers Additives described for the manufacture of continuous casting molds can be used.
Aufgabe der vorliegenden Erfindung ist es, einen aushärtbaren Kupferwerkstoff für den Einsatz in Gießanlagen mit einer elektromagnetischen Rührvorrichtung bereitzustellen, der eine geringe Felddämpfung hervorruft und der weiterhin günstige Festigkeits- und Bruchdehnungseigenschaften besitzt.The object of the present invention is a curable copper material for use in casting plants with an electromagnetic stirring device to provide, which causes a low field loss and which continues has favorable strength and elongation at break properties.
Die Lösung dieser Aufgabe besteht in der Verwendung einer aushärtbaren Kupferlegierung aus 0,1 bis 2,0 % Nickel, 0,3 bis 1,3 % Chrom, 0,1 bis 0,5 % Zirkonium, 0,005 bis 0,05 % mindestens eines Elements aus der Phosphor, Magnesium und Bor umfassenden Gruppe, wahlweise bis zu 0,2 % Titan, bis zu 0,4 % Eisen und bis zu 0,8 % Mangan, Rest Kupfer einschließlich herstellungsbedingter Verunreinigungen als Werkstoff mit gezielt einstellbarer elektrischer Leitfähigkeit für die Herstellung von Stranggießkokillen, bei denen schmelzflüssiges Metall durch Einwirkung elektromagnetischer Kräfte gerührt wird.The solution to this problem is to use a curable Copper alloy made of 0.1 to 2.0% nickel, 0.3 to 1.3% chromium, 0.1 to 0.5% Zirconium, 0.005 to 0.05% of at least one element from the phosphorus, Group comprising magnesium and boron, optionally up to 0.2% titanium, up to to 0.4% iron and up to 0.8% manganese, the rest copper including production-related Impurities as a material with specifically adjustable electrical Conductivity for the manufacture of continuous casting molds in which molten metal stirred by the action of electromagnetic forces becomes.
Vorzugsweise enthält die erfindungsgemäß zu verwendende Legierung 0,4 bis 1,6 % Nickel, 0,6 bis 0,8 % Chrom, 0,15 bis 0,25 % Zirkonium, mindestens ein Element aus der Gruppe 0,005 bis 0,02 % Bor, 0,005 bis 0,05 % Magnesium und 0,005 bis 0,03 % Phosphor, Rest Kupfer einschließlich unvermeidbarer Verunreinigungen. Der Borzusatz kann der Schmelze beispielsweise als Kalziumborid zugegeben werden.The alloy to be used according to the invention preferably contains 0.4 to 1.6% nickel, 0.6 to 0.8% chromium, 0.15 to 0.25% zirconium, at least one Element from the group 0.005 to 0.02% boron, 0.005 to 0.05% magnesium and 0.005 to 0.03% phosphorus, balance copper including unavoidable Impurities. The boron additive can be in the melt, for example, as calcium boride be added.
Überraschenderweise zeichnet sich die erfindungsgemäße Kupferlegierung durch eine besonders vorteilhafte Kombination von mechanischen und physikalischen Eigenschaften aus. Mit einer unterhalb 80 % IACS liegenden elektrischen Leitfähigkeit erfüllt diese Kupferlegierung auch die wesentliche Anforderung an eine geringe Felddämpfung einer aus dieser Legierung hergestellten Kokillenwand.The copper alloy according to the invention is surprisingly distinguished through a particularly advantageous combination of mechanical and physical Properties. With an electrical below 80% IACS Conductivity, this copper alloy also meets the essential requirement low field damping of a made from this alloy Mold wall.
Zur weiteren gezielten Erhöhung der Festigkeit ist es vorteilhaft, der Legierung noch bis zu 0,2 % Titan und/oder 0,4 % Eisen zuzusetzen. Ein geringer Titangehalt bildet mit den in der Legierung vorhandenen Komponenten Nickel und Eisen intermetallische Verbindungen, die festigkeitssteigernd wirken.For a further targeted increase in strength, it is advantageous to use the alloy add up to 0.2% titanium and / or 0.4% iron. A low titanium content forms nickel and with the components present in the alloy Iron intermetallic compounds that increase strength.
Ein Zusatz von bis zu 0,8 % Mangan bewirkt ebenfalls eine Festigkeitssteigerung, die sich bei nur geringer Beeinflussung der niedrigen elektrischen Leitfähigkeit vorteilhaft nutzen läßt.The addition of up to 0.8% manganese also increases the strength, which is only slightly influenced by the low electrical conductivity can be used advantageously.
Die Erfindung wird anhand einiger Ausführungsbeispiele im folgenden noch näher erläutert. The invention is described below with the aid of a few exemplary embodiments explained in more detail.
Die Zusammmensetzung von acht Beispiellegierungen ist in
Tabelle 1 jeweils in Gew.% angegeben. Mit X ist der Gesamtgehalt
der Einzelelemente Bor, Magnesium und/oder Phosphor
zu verstehen, die bis zu insgesamt 0,05 % als Desoxidationsmittel
zugesetzt werden. Höhere Gehalte können ebenfalls zur
Festigkeitssteigerung der Legierung eingesetzt werden.
Kupferlegierungen mit unterschiedlichen Nickelgehalten von
0,2 bis 2 %, etwa 0,7 % Chrom, 0,16 bis 0,2 % Zirkonium, bis
zu 0,02 % Bor, Magnesium und/oder Phosphor, Rest Kupfer einschließlich
herstellungsbedingter Verunreinigungen wurden
zunächst geschmolzen, zu Walzbarren vergossen und dann bei
950 °C in mehreren Stichen mit einem Gesamtumformgrad von 65
% warmgewalzt. Nach einer mindestens einstündigen Lösungsglühung
bei 1 030 °C und einem nachfolgenden Abschrecken in
Wasser wurden die gewalzten Platten mindestens 4 Stunden bei
475 °C ausgehärtet. Nach abschließender spanender Bearbeitung
wiesen die Kokillenplatten jeweils abhängig vom Nickelanteil
(0,2 bis 2 % Nickel) die in Tabelle 2 zusammengefaßten
Eigenschaftswerte auf. Wird ein Bereich angegeben, so
ist der zuerst genannte Eigenschaftswert der erfindungsgemäß
zu verwendenden Kupferlegierung mit 0,2 % Nickelgehalt
zugeordnet.
Die erfindungsgemäß zu verwendenden Legierungen besitzen eine elektrische Leitfähigkeit, die durch Wahl der Nickelkonzentration innerhalb des angegebenen Bereichs von etwa 35 bis 80 % IACS eingestellt werden kann, wobei die mechanischen Eigenschaften weitgehend unverändert bleiben. Mit zunehmendem Nickelgehalt bis 2,0 % verändert sich im gesamten Konzentrationsbereich die Dehngrenze und die Zugfestigkeit des Werkstoffs im ausgehärteten Zustand nur geringfügig zu höheren Kennwerten. Ein geringer Anstieg gilt auch für die Warmfestigkeit, z. B. bei 350 °C. Demgegenüber erhält man auch für die Bruchdehnung einen vom Nickelgehalt weitgehend unabhängigen Wert, der sich bei einer Temperatur von 350 °C nur bis auf 10 % Dehnung bei einer Legierung mit 2,0 % Nikkelanteil reduziert.Have the alloys to be used according to the invention an electrical conductivity by choosing the nickel concentration within the specified range of about 35 up to 80% IACS can be set, the mechanical Properties remain largely unchanged. With increasing Nickel content up to 2.0% changes overall Concentration range the proof stress and tensile strength of the material in the hardened state only slightly higher parameters. A slight increase also applies to the Heat resistance, e.g. B. at 350 ° C. In contrast, you get also largely for the elongation at break of the nickel content independent value, which is at a temperature of 350 ° C only up to 10% elongation for an alloy with 2.0% nickel content reduced.
In ergänzenden dehnungsgeregelten Ermüdungsversuchen wurde die Beständigkeit der erfindungsgemäß zu verwendenden Legierung sowohl bei Raumtemperatur als auch bei einer Temperatur bis zu 350 °C - entsprechend einer zyklischen Temperaturbeanspruchung im Gießbetrieb - geprüft. Die Ermüdungsrißbildung ergab dabei eine weitgehende Unabhängigkeit vom Nickelgehalt, so daß das bekannt günstige Verhalten der im Gießbetrieb bisher eingesetzten Kupfer-Chrom-Zirkonium-Legierungen auch bezüglich auf die hohe Lebensdauer gegeben ist. Die mit steigendem Nickelgehalt zunehmende Härte liefert eine zusätzliche Eigenschaftsverbesserung, aus der auch ein günstigeres tribologisches Verhalten des Kokillenwerkstoffs resultiert.In additional strain-controlled fatigue tests the resistance of the alloy to be used according to the invention both at room temperature and at one temperature up to 350 ° C - corresponding to a cyclical temperature load in the foundry - checked. Fatigue cracking resulted in a high degree of independence from the nickel content, so that the known favorable behavior of the foundry Copper-chrome-zirconium alloys previously used also regarding the long service life. With increasing nickel content increasing hardness provides an additional Property improvement, from which also a cheaper tribological behavior of the mold material results.
Der Einsatz der erfindungsgemäß zu verwendenden Legierung ist nicht nur auf die in den Ausführungsbeispielen beschriebene Plattenkokille beschränkt. Entsprechende Vorteile ergeben sich auch bei anderen Kokillen, mit denen sich in halb- oder vollkontinuierlicher Weise metallische Formstränge herstellen lassen, zum Beispiel Rohrkokillen.The use of the alloy to be used according to the invention is not only based on that described in the exemplary embodiments Plate mold limited. Corresponding advantages result other molds that are used in semi or fully continuous metallic mold strands Have them manufactured, for example tubular molds.
Claims (2)
- Use of a hardenable copper alloy consisting of 0.1 to 2.0% of nickel, 0.3 to 1.3% of chromium, 0.1 to 0.5% of zirconium, 0.005 to 0.05% of at least one element from the group comprising phosphorous, magnesium and boron, optionally up to 0.2% of titanium, up to 0.4% of iron and up to 0.8% of manganese, with the remainder copper including impurities due to production as a material with a specifically adjustable electrical conductivity for the production of continuous casting chills in which molten liquid metal is stirred through the action of electromagnetic forces.
- Use of a hardenable copper alloy according to claim 1, consisting of 0.4 to 1.6% of nickel, 0.6 to 0.8% of chromium, 0.15 to 0.25% of zirconium, at least one element from the group comprising 0.005 to 0.02% of boron, 0.005 to 0.05% of magnesium and 0.005 to 0.03% of phosphorous, with the remainder copper including impurities due to production for the purpose named in claim 1.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4427939A DE4427939A1 (en) | 1994-08-06 | 1994-08-06 | Use of a hardenable copper alloy |
DE4427939 | 1994-08-06 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0702094A1 EP0702094A1 (en) | 1996-03-20 |
EP0702094B1 true EP0702094B1 (en) | 1999-10-27 |
Family
ID=6525121
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP95110134A Expired - Lifetime EP0702094B1 (en) | 1994-08-06 | 1995-06-29 | Use of a hardenable copper alloy |
Country Status (12)
Country | Link |
---|---|
US (1) | US6565681B1 (en) |
EP (1) | EP0702094B1 (en) |
JP (1) | JPH08104928A (en) |
KR (1) | KR100374051B1 (en) |
CN (1) | CN1058532C (en) |
AT (1) | ATE186076T1 (en) |
DE (2) | DE4427939A1 (en) |
ES (1) | ES2139780T3 (en) |
FI (1) | FI112669B (en) |
PL (1) | PL177973B1 (en) |
RU (1) | RU2160648C2 (en) |
ZA (1) | ZA956181B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19840094C2 (en) * | 1998-09-03 | 2002-09-19 | Waermetechnik Heimsoth Gmbh & | Use of copper alloys for cooling press plates in facilities for the heat treatment of steel parts |
DE10032627A1 (en) * | 2000-07-07 | 2002-01-17 | Km Europa Metal Ag | Use of a copper-nickel alloy |
DE10306819A1 (en) * | 2003-02-19 | 2004-09-02 | Sms Demag Ag | Copper alloy and use of such an alloy for casting molds |
JP3731600B2 (en) * | 2003-09-19 | 2006-01-05 | 住友金属工業株式会社 | Copper alloy and manufacturing method thereof |
DE102008015096A1 (en) * | 2008-03-19 | 2009-09-24 | Kme Germany Ag & Co. Kg | Process for producing molded parts and molded parts produced by the process |
KR101364542B1 (en) | 2011-08-11 | 2014-02-18 | 주식회사 풍산 | Copper alloy material for continuous casting mold and process of production same |
CN102392154B (en) * | 2011-11-25 | 2014-04-02 | 汕头华兴冶金设备股份有限公司 | High-strength and high-conductivity copper alloy material |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3109438A1 (en) * | 1981-03-12 | 1982-09-30 | Kabel- und Metallwerke Gutehoffnungshütte AG, 3000 Hannover | "METHOD FOR THE PRODUCTION OF TUBULAR, STRAIGHT OR CURVED CONTINUOUS CASTING CHILLS WITH PARALLELS OR CONICAL INTERIOR CONTOURS FROM CURABLE copper ALLOYS" |
JPS58107460A (en) * | 1981-12-21 | 1983-06-27 | Chuetsu Gokin Chuko Kk | Mold material for precipitation hardening type continuous casting |
US4421570A (en) | 1982-03-12 | 1983-12-20 | Kabel Und Metallwerke Gutehoffnungshutte Ag | Making molds for continuous casting |
JPS58212839A (en) * | 1982-06-03 | 1983-12-10 | Mitsubishi Metal Corp | Cu alloy for continuous casting mold |
US4749548A (en) * | 1985-09-13 | 1988-06-07 | Mitsubishi Kinzoku Kabushiki Kaisha | Copper alloy lead material for use in semiconductor device |
JP2632818B2 (en) * | 1986-11-14 | 1997-07-23 | 三菱マテリアル株式会社 | High-strength copper alloy with excellent thermal fatigue resistance |
JPS63303020A (en) * | 1987-06-03 | 1988-12-09 | Nippon Mining Co Ltd | Copper alloy for sleeve material |
JPH01188642A (en) * | 1988-01-22 | 1989-07-27 | Kobe Steel Ltd | Mold material for continuous casting with built-in electro-magnetic mixer |
JPH04504228A (en) * | 1989-03-20 | 1992-07-30 | オリン コーポレイション | Molten metal mold during casting - internal stirring |
JPH03191034A (en) * | 1989-12-21 | 1991-08-21 | Nippon Mining Co Ltd | Copper alloy for lead material of semiconductor device excellent in adhesion for oxidized film |
JP2738130B2 (en) * | 1990-05-25 | 1998-04-08 | 三菱マテリアル株式会社 | High strength Cu alloy continuous casting mold material having high cooling capacity and method for producing the same |
JPH04210438A (en) * | 1990-12-13 | 1992-07-31 | Mitsubishi Materials Corp | Continuous casting mold material made of high strength cu alloy |
DE4142941A1 (en) * | 1991-12-24 | 1993-07-01 | Kabelmetal Ag | USE OF A CURABLE copper alloy |
-
1994
- 1994-08-06 DE DE4427939A patent/DE4427939A1/en not_active Withdrawn
-
1995
- 1995-06-29 ES ES95110134T patent/ES2139780T3/en not_active Expired - Lifetime
- 1995-06-29 AT AT95110134T patent/ATE186076T1/en active
- 1995-06-29 DE DE59507131T patent/DE59507131D1/en not_active Expired - Lifetime
- 1995-06-29 EP EP95110134A patent/EP0702094B1/en not_active Expired - Lifetime
- 1995-07-05 KR KR1019950019576A patent/KR100374051B1/en not_active IP Right Cessation
- 1995-07-24 RU RU95113726/02A patent/RU2160648C2/en active
- 1995-07-25 ZA ZA956181A patent/ZA956181B/en unknown
- 1995-07-31 PL PL95309841A patent/PL177973B1/en unknown
- 1995-08-03 CN CN95108676A patent/CN1058532C/en not_active Expired - Lifetime
- 1995-08-04 JP JP7200045A patent/JPH08104928A/en active Pending
- 1995-08-04 FI FI953730A patent/FI112669B/en not_active IP Right Cessation
-
1997
- 1997-07-28 US US08/901,820 patent/US6565681B1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
FI953730A0 (en) | 1995-08-04 |
FI112669B (en) | 2003-12-31 |
ATE186076T1 (en) | 1999-11-15 |
DE59507131D1 (en) | 1999-12-02 |
KR960007802A (en) | 1996-03-22 |
PL177973B1 (en) | 2000-02-29 |
PL309841A1 (en) | 1996-02-19 |
ES2139780T3 (en) | 2000-02-16 |
FI953730A (en) | 1996-02-07 |
KR100374051B1 (en) | 2003-05-09 |
US6565681B1 (en) | 2003-05-20 |
JPH08104928A (en) | 1996-04-23 |
DE4427939A1 (en) | 1996-02-08 |
CN1058532C (en) | 2000-11-15 |
EP0702094A1 (en) | 1996-03-20 |
ZA956181B (en) | 1996-03-08 |
RU2160648C2 (en) | 2000-12-20 |
CN1122837A (en) | 1996-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE10352932B4 (en) | Cast aluminum alloy | |
DE69329243T2 (en) | ROLLS FOR SHAPING METAL | |
EP0091897B1 (en) | Strain hardening austenitic manganese steel and process for the manufacture thereof | |
DE3401805C2 (en) | Nodular cast iron and process for its manufacture | |
CH668269A5 (en) | AL/CU/MG TYPE ALUMINUM ALLOY WITH HIGH STRENGTH IN THE TEMPERATURE RANGE BETWEEN 0 AND 250 C. | |
DE3032153A1 (en) | SHEATH ALLOYING AND METHOD FOR THE PRODUCTION THEREOF | |
DE112018005321T5 (en) | DIE CAST ALUMINUM ALLOY AND FUNCTIONAL COMPONENT USING THIS | |
DE102004025600A1 (en) | Electrode material and process for its manufacture | |
EP2236637A2 (en) | Pressure casting mould made of a hypereutectic aluminium silicon cast alloy and method for producing same | |
DE2635454C2 (en) | Use of a copper alloy | |
EP0702094B1 (en) | Use of a hardenable copper alloy | |
DE1966949A1 (en) | PROCESS FOR THE PRODUCTION OF NICKEL-BASED ALLOYS DIRECTLY PROCESSED INTO HIGHLY TEMPERATURE-RESISTANT CASTINGS | |
EP1645647B1 (en) | Cold age hardenable Al-alloy and process of the manufacture of a cast part | |
EP1340564A2 (en) | Hardenable copper alloy | |
DE3401769A1 (en) | BALL PRAPHITE CAST IRON AND METHOD FOR THE PRODUCTION THEREOF | |
EP0302255B1 (en) | Use of a copper alloy for continuous-casting moulds | |
DE1240671B (en) | The use of a cobalt-based alloy for the manufacture of objects that are resistant to thermal shock | |
DE2652434A1 (en) | KAEFIGLAEUFER OR -LADDER FOR A SHORT-CIRCUIT ANCHORED INDUCTION MOTOR AND PROCESS FOR ITS MANUFACTURING | |
DE102004050484A1 (en) | Alloy based on aluminum and molded part of this alloy | |
EP0042455B1 (en) | Aluminium- and cobalt-containing copper alloys with high wear resistance; process for the manufacture of these alloys | |
DE2007057A1 (en) | Hardenable alloy steel | |
DE2614354C3 (en) | Use of an alloy containing iron and cobalt for the manufacture of objects with high damping capacity | |
EP0249740B1 (en) | Using a copper alloy | |
DE1107943B (en) | Age-hardening copper alloys | |
EP0964070A1 (en) | Lead free Aluminium alloy based on AlCuMg with good machinability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE ES FR GB IT LI PT SE |
|
17P | Request for examination filed |
Effective date: 19960607 |
|
17Q | First examination report despatched |
Effective date: 19970407 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE ES FR GB IT LI PT SE |
|
REF | Corresponds to: |
Ref document number: 186076 Country of ref document: AT Date of ref document: 19991115 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 59507131 Country of ref document: DE Date of ref document: 19991202 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: PA ALDO ROEMPLER |
|
ET | Fr: translation filed | ||
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20000118 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2139780 Country of ref document: ES Kind code of ref document: T3 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 19991029 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: KME GERMANY AG Free format text: KM EUROPA METAL AKTIENGESELLSCHAFT#POSTFACH 3320#D-49023 OSNABRUECK (DE) -TRANSFER TO- KME GERMANY AG#KLOSTERSTRASSE 29#49074 OSNABRUECK (DE) |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PCAR Free format text: ALDO ROEMPLER PATENTANWALT;BRENDENWEG 11 POSTFACH 154;9424 RHEINECK (CH) |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP Ref country code: FR Ref legal event code: CD |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 59507131 Country of ref document: DE Representative=s name: PIETRZYKOWSKI, ANJA, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 59507131 Country of ref document: DE Representative=s name: PIETRZYKOWSKI, ANJA, DE Effective date: 20130122 Ref country code: DE Ref legal event code: R081 Ref document number: 59507131 Country of ref document: DE Owner name: KME GERMANY GMBH & CO. KG, DE Free format text: FORMER OWNER: KME GERMANY AG & CO. KG, 49074 OSNABRUECK, DE Effective date: 20130122 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PUE Owner name: KME GERMANY GMBH AND CO. KG, DE Free format text: FORMER OWNER: KME GERMANY AG, DE |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: PC4A Owner name: KME GERMANY AG & CO. KG, DE Effective date: 20130821 |
|
BECH | Be: change of holder |
Owner name: KME GERMANY G.M.B.H. & CO. K.G. Effective date: 20130829 |
|
BECN | Be: change of holder's name |
Owner name: KME GERMANY G.M.B.H. & CO. K.G. Effective date: 20130829 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: PC2A Owner name: KME GERMANY GMBH & CO. KG Effective date: 20131004 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD Owner name: KME GERMANY GMBH & CO. KG, DE Effective date: 20131029 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: PC Ref document number: 186076 Country of ref document: AT Kind code of ref document: T Owner name: KME GERMANY GMBH & CO. KG, DE Effective date: 20140219 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20140630 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20140626 Year of fee payment: 20 Ref country code: CH Payment date: 20140625 Year of fee payment: 20 Ref country code: AT Payment date: 20140624 Year of fee payment: 20 Ref country code: PT Payment date: 20140605 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20140829 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20140630 Year of fee payment: 20 Ref country code: ES Payment date: 20140724 Year of fee payment: 20 Ref country code: SE Payment date: 20140630 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20140730 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 59507131 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: MM4A Free format text: MAXIMUM VALIDITY LIMIT REACHED Effective date: 20150629 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20150628 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20150628 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK07 Ref document number: 186076 Country of ref document: AT Kind code of ref document: T Effective date: 20150629 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20151006 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20150630 Ref country code: PT Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20150707 |