JPS58107460A - Mold material for precipitation hardening type continuous casting - Google Patents
Mold material for precipitation hardening type continuous castingInfo
- Publication number
- JPS58107460A JPS58107460A JP20664281A JP20664281A JPS58107460A JP S58107460 A JPS58107460 A JP S58107460A JP 20664281 A JP20664281 A JP 20664281A JP 20664281 A JP20664281 A JP 20664281A JP S58107460 A JPS58107460 A JP S58107460A
- Authority
- JP
- Japan
- Prior art keywords
- mold material
- continuous casting
- electrical conductivity
- treatment
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/04—Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
- B22D11/059—Mould materials or platings
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Continuous Casting (AREA)
- Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
Abstract
Description
【発明の詳細な説明】
本発明祉、電磁攪拌装置を設置した−等の連続鋳造に用
いる鋳型の材料として好適な諸性質を備えた新規な銅合
金材料に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel copper alloy material having various properties suitable as a material for a mold used in continuous casting, such as those equipped with an electromagnetic stirring device.
最近、鋼の連続鋳造法に電磁攪拌法が広く採用されつ−
あり、鋳塊の品質教養及び高級鏑の連続鋳造をも可能に
している。Recently, the electromagnetic stirring method has been widely adopted as a continuous casting method for steel.
This makes it possible to learn about the quality of ingots and to continuously cast high-grade irons.
しかし、従来の鋼部の連続鋳造法に用いる鋳型材は電気
伝導率が100〜80%の高伝導率の鋳型材であるため
、電磁攪拌装置を設置した場合、高電気伝導率により渦
電流損が生じ、このため磁力の減衰が大きく、鋳型内溶
鋼へ作用する攪拌効果が低減される欠点があった。However, the mold material used in the conventional continuous casting method for steel parts has a high electrical conductivity of 100 to 80%, so when an electromagnetic stirring device is installed, the high electrical conductivity causes eddy current loss. This causes a large attenuation of the magnetic force, which has the drawback of reducing the stirring effect on the molten steel in the mold.
このため従来より、電磁攪拌装置を設置した綱等の連続
鋳造において、従来の鋳型材としての要求特性である高
温強度、高温伸びを具備し、しかも使用条件によっては
電気伝導率が70〜15%工AC8の低電気伝導率鋳型
材を要求されることがある。For this reason, in the continuous casting of ropes and the like using electromagnetic stirrers, it has been possible to achieve high-temperature strength and high-temperature elongation, which are the characteristics required for conventional mold materials, and also to have an electrical conductivity of 70 to 15% depending on the usage conditions. A low electrical conductivity molding material of engineering AC8 may be required.
本発明者等は、このような夾情に鑑み、従来より公知の
析出硬化型材料であるクロム−ジルコニウム鋼について
、その高温強度および高温伸びの優れた特性を損うこと
なく電気伝導率t−70〜15%工AC8Ktで低減さ
せることを鋭意研究し、本発明鋳型材料を完成すること
ができたものである。In view of these concerns, the present inventors have developed electrical conductivity t- of chromium-zirconium steel, which is a conventionally known precipitation hardening material, without impairing its excellent properties of high-temperature strength and high-temperature elongation. We conducted intensive research to reduce the mechanical strength by 70 to 15% to 8Kt, and were able to complete the mold material of the present invention.
本発明鋳型材料は、重量比でCr : 0.5〜1.5
%、Zr: 0.05〜0.6%および残部Cuより構
成された銅合金に、AI 、 Fe 、 Si 、 N
i 、 Sn 、 Zn 、 Mnの一種または二種以
上を合計5%以下添加して成る銅合金材料で、この材料
11体化・時効の熱処理を与えて、電気伝導率が70〜
15%工ACSの低電気伝導率でしかも高強度・高温靭
性を具備させたものでおる。The mold material of the present invention has a weight ratio of Cr: 0.5 to 1.5.
%, Zr: 0.05 to 0.6%, and the balance is Cu, with AI, Fe, Si, N
A copper alloy material made by adding one or more of I, Sn, Zn, and Mn in a total amount of 5% or less.This material is heat-treated by aging and heat treatment to have an electrical conductivity of 70 to 70.
It has the low electrical conductivity of 15% ACS, yet has high strength and high temperature toughness.
本発明材料の基本合金は、Or : 03〜1.5%、
Zr:0.0 !1〜0.6%、残部Cuなる組成であ
るが、このうちcrは高温強度の上昇t@的に添加され
、0.3%以下ではその効果が小さく、マた1、5%以
上では添加量の割には高温強度上昇の効果が少なく、逆
に浴湯酸化が激しく鋳造性t−急くしてしまう。The basic alloy of the material of the present invention is Or: 03-1.5%,
Zr:0.0! The composition is 1 to 0.6% Cu, and the balance is Cu. Of these, Cr is added to increase high-temperature strength, and below 0.3%, the effect is small, and above 1.5%, it is added. Considering the amount, the effect of increasing high-temperature strength is small, and on the contrary, the bath water oxidizes violently, resulting in rapid castability.
Zrは再結晶粒の微細化と高温強度の上昇および高温伸
びを改善するために添加されるが、00!1%以下では
その効果が小さく、また0、6%以上では添加量の割に
は効果の向上が少ないうえ、やはり浴湯酸化が激しくな
り鋳造性が著しく愚くなる。Zr is added to refine the recrystallized grains, increase high-temperature strength, and improve high-temperature elongation, but the effect is small below 0.1%, and the effect is small when above 0.6%, considering the amount added. Not only is there little improvement in effectiveness, but the oxidation of the bath water becomes severe and castability becomes extremely poor.
上記組成の基本合金は、優れた高温強度、高温伸びを有
する高靭性の析出硬化・型材料ではあるが、電気伝導率
は80%以上と高いため、電磁攪拌装置を設置した鋼等
の連続鋳造用鋳型材料としては好ましくない。The basic alloy with the above composition is a highly tough precipitation-hardened mold material with excellent high-temperature strength and high-temperature elongation, but its electrical conductivity is as high as 80% or more, so continuous casting of steel etc. using an electromagnetic stirring device is required. It is not preferred as a mold material.
本発明は、上記組成基本合金に対して、Ad、Fe。The present invention uses Ad and Fe for the above-mentioned basic alloy composition.
Si、 Ni、 Sn、 Zn、 Mnの一種または二
種以上を合計5%以下添加することによシ、基本合金の
有する優れた高温強度、高温伸びの特性をさらに向上さ
せると共に、電気伝導率を所望の低さく70〜1596
エAC8)にまで低下させた析出硬化型連続鋳造用鋳型
材料を得ることができたものである。By adding one or more of Si, Ni, Sn, Zn, and Mn in a total amount of 5% or less, the excellent high-temperature strength and high-temperature elongation properties of the basic alloy can be further improved, and the electrical conductivity can be improved. Desired low height 70-1596
It was possible to obtain a precipitation hardening type continuous casting mold material whose air AC was reduced to 8).
第1図は添加元素Aj、 Fe、 Si、 Ni、 S
n、 Zn、Mnの添加量と電気伝導率との関係を示し
友ものである。第1図に示すように、Aj 、 Fe、
Si、 Ni、 Sn。Figure 1 shows additive elements Aj, Fe, Si, Ni, S
This figure shows the relationship between the amount of n, Zn, and Mn added and the electrical conductivity. As shown in Figure 1, Aj, Fe,
Si, Ni, Sn.
Zn 、 Mnはいずれもその添加により電気伝導率が
低下することがわかる。It can be seen that the addition of both Zn and Mn lowers the electrical conductivity.
しかし、AJ 、 Fe、 Ni、 Sn、 Znにお
いては、その添加量が5.0%以上では電気伝導率の低
下がほとんどなくなり小さくなることがなく、かえって
高温脆性を生じ、基本合金の優れた高温特性を害するこ
とになる。また’SL、Mnでは1〜2%の添加量でも
電気伝導率が15%工AC3程度に低くなることがわか
る。However, for AJ, Fe, Ni, Sn, and Zn, if the amount added is 5.0% or more, the electrical conductivity will hardly decrease and will not become small, but instead will cause high-temperature brittleness, and the excellent high-temperature properties of the basic alloy will be reduced. It will damage the characteristics. Furthermore, it can be seen that in the case of 'SL and Mn, the electrical conductivity is as low as about 15% AC3 even when the addition amount is 1 to 2%.
また本発明の場合、An 、 Fe 、 Si 、 N
i 、 Sn 、 Zn 。Further, in the case of the present invention, An, Fe, Si, N
i, Sn, Zn.
Mnの一種または二種以上を材料中に共存させる1様で
添加することもできる。共存させる場合は第1図からも
明らかなように合計添加量が5%以下であることが好ま
しい。It is also possible to add one kind or two or more kinds of Mn coexisting in the material. When they are allowed to coexist, it is preferable that the total amount added is 5% or less, as is clear from FIG.
このように本発明銅合金材料は、上記基本合金4CAj
、Fe、81.N1.Sn、Zn、Mnの一種または二
種以上を合計5%以下添加して成るものであるが、この
材料を鍜造後K1体化処珈および時効処理したものは、
上記基本合金の優れた高温特性を損なうことなくしかも
高強度・高温靭性を備え、かつ70〜15%工AC8の
低い電気伝導率を示した。In this way, the copper alloy material of the present invention has the basic alloy 4CAj
, Fe, 81. N1. This material is made by adding one or more of Sn, Zn, and Mn in a total amount of 5% or less, and this material is subjected to K1 conversion treatment and aging treatment after forging.
It had high strength and high temperature toughness without impairing the excellent high temperature properties of the above basic alloy, and exhibited a low electrical conductivity of 70 to 15% engineering AC8.
この材料は、電磁攪拌装置を設置した鋼等の連続鋳造用
鋳型材料としては最も適しているものである。This material is most suitable as a mold material for continuous casting of steel or the like equipped with an electromagnetic stirring device.
次に、従来の析出硬化型材料であるクロム−ジルコニウ
ム鋼合金の一例(Or 0.80%−Zr 0.20%
−Cu残部)を比較例として挙げ、この比較例を五本合
金とした本発明の組成をもつ銅合金材料の実施例1ない
し16を挙げ、それぞれを同一条件下で鍛造後、触体化
処理し、時効処理したものの電気伝導率(%IAC8)
について試験した。その結果は表に示す通りであった。Next, we will introduce an example of a chromium-zirconium steel alloy (Or 0.80%-Zr 0.20%), which is a conventional precipitation hardening material.
Examples 1 to 16 of copper alloy materials having the composition of the present invention, in which the comparative example was made into a five-piece alloy, were forged under the same conditions, and then subjected to catalytic treatment. Electric conductivity (%IAC8) of the aged treated product
was tested. The results were as shown in the table.
表 化学組成と電気伝導率
また、上記比較例および実施例1ないし16の常温から
500°Cにおける高温引張強さ、高m O,2%耐力
、高温伸び、高温硬さの試験結果は、第2図ないし第5
図に示す通りであった。Table Chemical composition and electrical conductivity Also, the test results of high temperature tensile strength, high mO, 2% yield strength, high temperature elongation, and high temperature hardness from room temperature to 500 °C of the above comparative examples and Examples 1 to 16 are shown in Table 1. Figures 2 to 5
It was as shown in the figure.
上記表および第2図ないし第5図から明らかなように、
本発明合金材料は、従来のクロム−ジルコニウム鋼合金
(比較例)に比べ、電気伝導率が70〜15%工AC8
に低下すると共に、常温からson℃までの高温でさら
に強度が大きくかつ高い伸びを備えており、しかも基本
合金の特性を充分に生かした高靭性の高い材料であるこ
とが分かる。As is clear from the above table and Figures 2 to 5,
The alloy material of the present invention has an electrical conductivity of 70 to 15% compared to a conventional chromium-zirconium steel alloy (comparative example).
It can be seen that it is a material with high strength and high elongation at high temperatures from room temperature to 10° C., and has high toughness that fully takes advantage of the characteristics of the basic alloy.
第1図は添加元素の添加量と電気伝導率との関係を示す
図。
第2図ないし第5図はそれぞれ比較例と実施例1〜16
の常温から500℃における高温引張強さ。
高温0.2%耐力、高温伸び、高温硬さの試験結果を示
す図。
:呑 力Ot (’/り
纂1圓
訊駁温度(°υ
誘馳温/l (’C)
第40
試験温度(C)FIG. 1 is a diagram showing the relationship between the amount of additive elements added and electrical conductivity. Figures 2 to 5 are comparative examples and examples 1 to 16, respectively.
High temperature tensile strength from room temperature to 500℃. A diagram showing the test results of high temperature 0.2% yield strength, high temperature elongation, and high temperature hardness. : Drinking force Ot ('/Ri纂1 round test temperature (°υ Temperature / l ('C) 40th test temperature (C)
Claims (1)
−O5〜Q−6%および残部Cuより構成された基本合
金にAj + Fe * S1+ N1+Sn、Zn、
Mnの一種または二種以上を合計5%以下添加して成る
銅合金材料であって、この鋼合金材料に溶体化・時効の
熱処理を与えて、電気伝導率が70〜15%工AC8の
低電気伝導率でかつ高強度・高温靭性を具備させた析出
硬化型連続鋳造用鋳型材料。Weight ratio: Cr: 0.5-1.3% TZr: 0
Aj + Fe * S1 + N1 + Sn, Zn,
A copper alloy material made by adding one or more types of Mn in a total amount of 5% or less, and this steel alloy material is subjected to solution heat treatment and aging to achieve an electrical conductivity as low as 70 to 15% and AC8. A precipitation hardening continuous casting mold material with high electrical conductivity, high strength, and high temperature toughness.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20664281A JPS58107460A (en) | 1981-12-21 | 1981-12-21 | Mold material for precipitation hardening type continuous casting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20664281A JPS58107460A (en) | 1981-12-21 | 1981-12-21 | Mold material for precipitation hardening type continuous casting |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58107460A true JPS58107460A (en) | 1983-06-27 |
JPS6241302B2 JPS6241302B2 (en) | 1987-09-02 |
Family
ID=16526728
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20664281A Granted JPS58107460A (en) | 1981-12-21 | 1981-12-21 | Mold material for precipitation hardening type continuous casting |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58107460A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58212839A (en) * | 1982-06-03 | 1983-12-10 | Mitsubishi Metal Corp | Cu alloy for continuous casting mold |
JPS5961544A (en) * | 1982-10-01 | 1984-04-07 | Hitachi Metals Ltd | Prehardened mold material for casting high melting metal |
JPS59229261A (en) * | 1983-05-23 | 1984-12-22 | Mitsubishi Metal Corp | Mold panel for continuous casting |
JPS62182239A (en) * | 1986-02-06 | 1987-08-10 | Mitsubishi Metal Corp | Cu alloy for continuous casting mold |
EP0702094A1 (en) * | 1994-08-06 | 1996-03-20 | KM Europa Metal Aktiengesellschaft | Use of a hardenable copper alloy |
CN108465787A (en) * | 2018-03-02 | 2018-08-31 | 陕西斯瑞新材料股份有限公司 | A kind of manufacturing process of asynchronous traction motor rotor chromium-bronze conducting bar |
WO2019102716A1 (en) | 2017-11-21 | 2019-05-31 | 三菱マテリアル株式会社 | Mold material for casting and copper alloy material |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5884641A (en) * | 1981-11-16 | 1983-05-20 | Nippon Kokan Kk <Nkk> | Mold material for continuous casting |
-
1981
- 1981-12-21 JP JP20664281A patent/JPS58107460A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5884641A (en) * | 1981-11-16 | 1983-05-20 | Nippon Kokan Kk <Nkk> | Mold material for continuous casting |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58212839A (en) * | 1982-06-03 | 1983-12-10 | Mitsubishi Metal Corp | Cu alloy for continuous casting mold |
JPS6141973B2 (en) * | 1982-06-03 | 1986-09-18 | Mitsubishi Metal Corp | |
JPS639575B2 (en) * | 1982-10-01 | 1988-02-29 | Hitachi Metals Ltd | |
JPS5961544A (en) * | 1982-10-01 | 1984-04-07 | Hitachi Metals Ltd | Prehardened mold material for casting high melting metal |
JPS6344461B2 (en) * | 1983-05-23 | 1988-09-05 | Mitsubishi Metal Corp | |
JPS59229261A (en) * | 1983-05-23 | 1984-12-22 | Mitsubishi Metal Corp | Mold panel for continuous casting |
JPS62182239A (en) * | 1986-02-06 | 1987-08-10 | Mitsubishi Metal Corp | Cu alloy for continuous casting mold |
EP0702094A1 (en) * | 1994-08-06 | 1996-03-20 | KM Europa Metal Aktiengesellschaft | Use of a hardenable copper alloy |
CN1058532C (en) * | 1994-08-06 | 2000-11-15 | 金属导线股份公司 | Application of quenchable copper alloy |
KR100374051B1 (en) * | 1994-08-06 | 2003-05-09 | 카엠-카벨메탈아크티엔게젤샤프트 | How to Use Curable Copper Alloy |
US6565681B1 (en) | 1994-08-06 | 2003-05-20 | Km-Kabelmetal Aktiengesellschaft | Age-hardenable copper alloy casting molds |
WO2019102716A1 (en) | 2017-11-21 | 2019-05-31 | 三菱マテリアル株式会社 | Mold material for casting and copper alloy material |
KR20200087123A (en) | 2017-11-21 | 2020-07-20 | 미쓰비시 마테리알 가부시키가이샤 | Mold material for casting, and copper alloy material |
CN108465787A (en) * | 2018-03-02 | 2018-08-31 | 陕西斯瑞新材料股份有限公司 | A kind of manufacturing process of asynchronous traction motor rotor chromium-bronze conducting bar |
CN108465787B (en) * | 2018-03-02 | 2020-05-12 | 陕西斯瑞新材料股份有限公司 | Manufacturing process of chromium bronze conducting bar of asynchronous traction motor rotor |
Also Published As
Publication number | Publication date |
---|---|
JPS6241302B2 (en) | 1987-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4786340A (en) | Solution heat-treated high strength aluminum alloy | |
US3923558A (en) | Copper base alloy | |
US3824135A (en) | Copper base alloys | |
JPS60215734A (en) | Al-base alloy and production of product therefrom | |
JPS59159961A (en) | Superplastic al alloy | |
JPS58107460A (en) | Mold material for precipitation hardening type continuous casting | |
US3357824A (en) | Copper alloy | |
US4086107A (en) | Heat treatment process of high-carbon chromium-nickel heat-resistant stainless steels | |
JPS61119660A (en) | Manufacture of copper alloy having high strength and electric conductivity | |
US3930894A (en) | Method of preparing copper base alloys | |
US2885285A (en) | Alloyed nodular iron | |
JPS6214020B2 (en) | ||
JPS58107459A (en) | Mold material for precipitation hardening type continuous casting | |
JPS6214021B2 (en) | ||
JPS6214022B2 (en) | ||
JPS58107461A (en) | Mold material for precipitation hardening type continuous casting | |
US2871117A (en) | Low alloy ferritic steel for high temperature application | |
JPS60152648A (en) | Aluminum alloy for molding foundry | |
JPS63145733A (en) | Precipitation hardening material for casting mold for continuous casting | |
JPS6047898B2 (en) | Aluminum alloy for casting with excellent heat resistance | |
JPS5924177B2 (en) | Square hysteresis magnetic alloy | |
US3823041A (en) | Treatment of aluminum alloys | |
JP3225604B2 (en) | Method for producing intermetallic compound precipitation-strengthened Ni-Cr-Mo-based alloy cast member having excellent corrosion resistance | |
JPS641538B2 (en) | ||
JPS641539B2 (en) |