JPS6214021B2 - - Google Patents

Info

Publication number
JPS6214021B2
JPS6214021B2 JP20663981A JP20663981A JPS6214021B2 JP S6214021 B2 JPS6214021 B2 JP S6214021B2 JP 20663981 A JP20663981 A JP 20663981A JP 20663981 A JP20663981 A JP 20663981A JP S6214021 B2 JPS6214021 B2 JP S6214021B2
Authority
JP
Japan
Prior art keywords
electrical conductivity
temperature
copper alloy
iacs
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20663981A
Other languages
Japanese (ja)
Other versions
JPS58107463A (en
Inventor
Hiroshi Hirao
Kunio Hata
Masao Hosoda
Ryoichi Ishikane
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuetsu Metal Works Co Ltd
Original Assignee
Chuetsu Metal Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuetsu Metal Works Co Ltd filed Critical Chuetsu Metal Works Co Ltd
Priority to JP20663981A priority Critical patent/JPS58107463A/en
Publication of JPS58107463A publication Critical patent/JPS58107463A/en
Publication of JPS6214021B2 publication Critical patent/JPS6214021B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、電磁撹拌装置を設置した鋼等の連続
鋳造に用いる鋳型の材料として好適な諸性質を備
えた新規な銅合金材料に関する。 最近、鋼の連続鋳造法に電磁撹拌法が広く採用
されつゝあり、鋳塊の品質改善及び高級鋼の連続
鋳造をも可能にしている。 しかし、従来の鋼等の連続鋳造法に用いる鋳型
材は電気伝導率が100〜80%の高伝導率の鋳型材
であるため、電磁撹拌装置を設置した場合、高電
気伝導率により渦電流損が生じ、このため磁力の
減衰が大きく、鋳型内溶鋼へ作用する撹拌効果が
低減される欠点があつた。 このため従来より、電磁撹拌装置を設置した鋼
等の連続鋳造において、従来の鋳型材としての要
求特性である高温強度、高温伸びを具備し、しか
も使用条件によつては電気伝導率が60〜30%
IACSの低電気伝導率鋳型材を要求されることが
ある。 本発明者等は、このような実情に鑑み、電気伝
導率を60〜30%IACSの低さに特定すると共に、
従来の析出硬化型材料であるクロム銅と比較して
も、優れた高温強度および高温伸びを有する高靭
性の鋳型材料を開発すべく鋭意研究し、本発明を
完成することができたものである。 本発明鋳型材料は、重量比でCr:0.3〜1.5%,
Zr:0.03〜0.6%,Al:0.01〜2.0%,Fe:0.1〜
1.0%、および残部Cuより構成された銅合金材料
であつて、この銅合金材料に溶体化および時効の
熱処理を与えて、電気伝導率が60〜30%IACS低
電気伝導率でしかも従来の析出硬化型材料である
クロム銅と比較して、優れた高温強度・高温伸び
を有する高靭性を具備させたものである。 本発明材料の組成成分のうち、Crは高温強度
の上昇を目的に添加され、0.3%以下ではその効
果が小さく、また1.5%以上では添加量の割には
高温強度上昇の効果が少なく、逆に溶湯酸化が激
しく鋳造性を悪くしてしまう。 Zrは再結晶粒の微細化と高温強度の上昇および
高温伸びを改善するために添加されるが、0.03%
以下ではその効果が小さく、また0.6%以上では
添加量の割には効果の向上が少ないうえ、やはり
溶湯酸化が激しくなり、鋳造性が著しく悪くな
る。 Alは電気伝導率を小さくすることを目的とし
てまた高温伸びを改善する目的で添加されるが、
電気伝導率を所望する60〜30%IACSにするため
には添加量が0.01%以下ではその効果が小さく、
また2.0%以上の添加量では電気伝導率が所望す
る下限の30%IACS以下となつてしまうため好ま
しくない。 Feは高温伸びの改善、結晶粒の微細化並びに
電気伝導率の低下を目的として添加されるが、そ
の添加量が0.1%以下では上記効果が小さく、ま
た1.0%以上の添加量では硬度を著しく低下させ
ることになるので好ましくない。 上記組成の銅合金材料を鍛造後に、960±20℃
×0.5Hr水冷で溶体化処理、および500±50℃×
2Hr空冷で時効処理したものは、60〜30%IACS
の低い電気伝導率を示し、さらに従来のクロム銅
よりも優れた高強度・高温靭性を示した。 従つて本発明材料は、電磁撹拌装置を設置した
鋼等の連続鋳造用鋳型材料としては最も適してい
るものである。 次に、本発明の組成をもつ銅合金材料の実施例
を挙げ、同時に従来の析出硬化型材料であるクロ
ム銅を比較例として挙げ、それぞれについて900
℃で鍛造後、960℃×0.5Hr水冷で溶体化処理
し、500℃×2Hr空冷で時効処理したものの電気
伝導率(%IACS)について試験した。その結果
は次の表に示す通りである。
The present invention relates to a novel copper alloy material having various properties suitable as a material for a mold used in continuous casting of steel or the like equipped with an electromagnetic stirring device. In recent years, the electromagnetic stirring method has been widely adopted as a continuous casting method for steel, making it possible to improve the quality of ingots and to continuously cast high-grade steel. However, the mold material used in the conventional continuous casting method for steel etc. has a high electrical conductivity of 100% to 80%, so when an electromagnetic stirring device is installed, the high electrical conductivity causes eddy current loss. This resulted in a large attenuation of the magnetic force, resulting in a drawback that the stirring effect acting on the molten steel in the mold was reduced. For this reason, in the continuous casting of steel and other materials using electromagnetic stirring equipment, it has been possible to achieve high-temperature strength and high-temperature elongation, which are the characteristics required for conventional mold materials, and also to have an electrical conductivity of 60~60 depending on the usage conditions. 30%
IACS low electrical conductivity mold material may be required. In view of these circumstances, the present inventors specified the electrical conductivity to be as low as 60 to 30% IACS, and
We conducted intensive research to develop a mold material with high toughness that has superior high-temperature strength and high-temperature elongation compared to chromium copper, a conventional precipitation-hardening material, and were able to complete the present invention. . The mold material of the present invention has a weight ratio of Cr: 0.3 to 1.5%,
Zr: 0.03~0.6%, Al: 0.01~2.0%, Fe: 0.1~
This is a copper alloy material composed of 1.0% Cu, and the balance is Cu, and this copper alloy material is subjected to solution heat treatment and aging heat treatment to achieve an electrical conductivity of 60 to 30%. Compared to chromium copper, which is a hardening material, it has high toughness and excellent high temperature strength and elongation. Among the compositional components of the material of the present invention, Cr is added for the purpose of increasing high-temperature strength, and if it is less than 0.3%, the effect is small, and if it is more than 1.5%, the effect of increasing high-temperature strength is small, and vice versa. The molten metal oxidizes violently and deteriorates castability. Zr is added to refine recrystallized grains, increase high-temperature strength, and improve high-temperature elongation, but 0.03%
If it is less than 0.6%, the effect will be small, and if it is more than 0.6%, the effect will not improve much compared to the amount added, and the oxidation of the molten metal will become severe, resulting in significantly poor castability. Al is added for the purpose of reducing electrical conductivity and improving high temperature elongation, but
In order to achieve the desired electrical conductivity of 60 to 30% IACS, the effect will be small if the amount added is less than 0.01%.
Further, if the amount added is 2.0% or more, the electrical conductivity will be less than the desired lower limit of 30% IACS, which is not preferable. Fe is added for the purpose of improving high-temperature elongation, refining grains, and lowering electrical conductivity, but if the amount added is less than 0.1%, the above effects will be small, and if the amount added is more than 1.0%, the hardness will be significantly reduced. This is not preferable as it will cause a decrease in After forging the copper alloy material with the above composition, 960±20℃
×0.5Hr water cooling solution treatment and 500±50℃×
60-30% IACS for those aged with 2Hr air cooling
It exhibited low electrical conductivity, as well as high strength and high temperature toughness superior to conventional chromium copper. Therefore, the material of the present invention is most suitable as a mold material for continuous casting of steel or the like equipped with an electromagnetic stirring device. Next, examples of copper alloy materials having the composition of the present invention are listed, and at the same time, chromium copper, which is a conventional precipitation hardening type material, is listed as a comparative example.
After forging at ℃, solution treatment was performed by water cooling at 960℃ for 0.5 hours, and aging treatment was performed at 500℃ for air cooling for 2 hours, and the electrical conductivity (%IACS) was tested. The results are shown in the table below.

【表】 また、上記実施例および比較例の常温から500
℃における高温引張強さ、高温耐力、高温伸びの
試験結果は、第1図ないし第3図に示す通りであ
つた。 上記表および第1図ないし第3図から明らかな
ように、本発明銅合金材料は従来のクロム銅に比
べ、電気伝導率が所望する低電気伝導率60〜30%
IACSにまで小さくなるのみならず、常温から500
℃までの高温でクロム銅よりもさらに強度が大き
くかつ高い伸びを備えた靭性の高い材料であるこ
とがわかる。
[Table] Also, 500% from normal temperature in the above examples and comparative examples.
The test results of high-temperature tensile strength, high-temperature yield strength, and high-temperature elongation at °C were as shown in Figures 1 to 3. As is clear from the above table and FIGS. 1 to 3, the copper alloy material of the present invention has a desired low electrical conductivity of 60 to 30% compared to conventional chromium copper.
Not only is it smaller than IACS, but it is also
It can be seen that it is a highly tough material with greater strength and elongation than chromium copper at high temperatures up to ℃.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図はそれぞれ実施例と比較例
の常温から500℃における高温引張強さ、高温耐
力、高温伸びの試験結果を示す図。
Figures 1 to 3 are diagrams showing the test results of high temperature tensile strength, high temperature yield strength, and high temperature elongation from room temperature to 500°C of Examples and Comparative Examples, respectively.

Claims (1)

【特許請求の範囲】[Claims] 1 重量比でCr:0.3〜1.5%,Zr:0.03〜0.6%,
Al:0.01〜2.0%,Fe:0.1〜1.0%および残部Cu
より構成された銅合金材料であつて、電気伝導率
が60〜30%IACSの低電気伝導率でかつ高強度・
高温靭性を具備させた析出硬化型連続鋳造用鋳型
材料。
1 Cr: 0.3 to 1.5%, Zr: 0.03 to 0.6% by weight,
Al: 0.01~2.0%, Fe: 0.1~1.0% and balance Cu
It is a copper alloy material composed of a copper alloy material with a low electrical conductivity of 60 to 30% IACS and high strength.
Precipitation hardening type continuous casting mold material with high temperature toughness.
JP20663981A 1981-12-21 1981-12-21 Mold material for precipitation hardening type continuous casting Granted JPS58107463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20663981A JPS58107463A (en) 1981-12-21 1981-12-21 Mold material for precipitation hardening type continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20663981A JPS58107463A (en) 1981-12-21 1981-12-21 Mold material for precipitation hardening type continuous casting

Publications (2)

Publication Number Publication Date
JPS58107463A JPS58107463A (en) 1983-06-27
JPS6214021B2 true JPS6214021B2 (en) 1987-03-31

Family

ID=16526681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20663981A Granted JPS58107463A (en) 1981-12-21 1981-12-21 Mold material for precipitation hardening type continuous casting

Country Status (1)

Country Link
JP (1) JPS58107463A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01244054A (en) * 1988-03-23 1989-09-28 Ohbayashi Corp Tool and method of anchor fibrous reinforcing bar
JPH0616553U (en) * 1992-08-04 1994-03-04 株式会社ピー・エス PC steel fixing body

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59229261A (en) * 1983-05-23 1984-12-22 Mitsubishi Metal Corp Mold panel for continuous casting

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01244054A (en) * 1988-03-23 1989-09-28 Ohbayashi Corp Tool and method of anchor fibrous reinforcing bar
JPH0616553U (en) * 1992-08-04 1994-03-04 株式会社ピー・エス PC steel fixing body

Also Published As

Publication number Publication date
JPS58107463A (en) 1983-06-27

Similar Documents

Publication Publication Date Title
CN113789459B (en) Copper-nickel-tin alloy and preparation method and application thereof
US3923558A (en) Copper base alloy
US3824135A (en) Copper base alloys
JPS62112748A (en) Aluminum forging alloy
JPS63286557A (en) Production of article from al base alloy
US4377424A (en) Mold of precipitation hardenable copper alloy for continuous casting mold
JPS6241302B2 (en)
JPS6214020B2 (en)
JPS6214021B2 (en)
US3639119A (en) Copper base alloy
JPS6241301B2 (en)
JPS6214022B2 (en)
JPH07113133B2 (en) Cu alloy for continuous casting mold
JPS634620B2 (en)
JP4293580B2 (en) Corson alloy for metal mold and manufacturing method thereof
US3772095A (en) Copper base alloys
JPH0112825B2 (en)
JPS641539B2 (en)
JPS641538B2 (en)
US3772093A (en) Copper base alloys
CN114277289B (en) Die-casting aluminum alloy and preparation method thereof, anodic oxidation appearance piece and electronic equipment
JPH0696757B2 (en) Method for producing high-strength, high-conductivity copper alloy with excellent heat resistance and bendability
JPS5818418B2 (en) Manufacturing method of high-strength aluminum alloy for casting with excellent alumite properties
JP2618560B2 (en) Production method of copper alloy
JPH0480978B2 (en)