JPS6241301B2 - - Google Patents

Info

Publication number
JPS6241301B2
JPS6241301B2 JP56206641A JP20664181A JPS6241301B2 JP S6241301 B2 JPS6241301 B2 JP S6241301B2 JP 56206641 A JP56206641 A JP 56206641A JP 20664181 A JP20664181 A JP 20664181A JP S6241301 B2 JPS6241301 B2 JP S6241301B2
Authority
JP
Japan
Prior art keywords
electrical conductivity
temperature
iacs
continuous casting
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56206641A
Other languages
Japanese (ja)
Other versions
JPS58107459A (en
Inventor
Hiroshi Hirao
Kunio Hata
Masao Hosoda
Ryoichi Ishigane
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuetsu Metal Works Co Ltd
Original Assignee
Chuetsu Metal Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuetsu Metal Works Co Ltd filed Critical Chuetsu Metal Works Co Ltd
Priority to JP20664181A priority Critical patent/JPS58107459A/en
Publication of JPS58107459A publication Critical patent/JPS58107459A/en
Publication of JPS6241301B2 publication Critical patent/JPS6241301B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、電磁撹拌装置を設置した鋼等の連続
鋳造に用いる鋳型の材料として好適な諸性質を備
えた新規な銅合金材料に関する。 最近、鋼の連続鋳造法に電磁撹拌法が広く採用
されつつあり、鋳塊の品質改善及び高級鋼の連続
鋳造をも可能にしている。 しかし、従来の鋼等の連続鋳造法に用いる鋳型
材は電気伝導率が100〜80%の高伝導率の鋳型材
であるため、電磁撹拌装置を設置した場合、高電
気伝導率により渦電流損が生じ、このため磁力の
減衰が大きく、鋳型内溶鋼へ作用する撹拌効果が
低減される欠点があつた。 このため従来より、電磁撹拌装置を設置した鋼
等の連続鋳造において、従来の鋳型材としての要
求特性である高温強度、高温伸びを具備し、しか
も使用条件によつては電気伝導率が70〜15%
IACSの低電気伝導率鋳型材を要求されることが
ある。 本発明者は、このような実情に鑑み、従来より
公知の析出硬化型材料であるクロム−ジルコニウ
ム銅について、その高温強度および高温伸びの優
れた特性を損なうことなく電気伝導率を70〜15%
IACSにまで低減させることを鋭意研究し、本発
明鋳型材料を完成することができたものである。 本発明鋳型材料は、重量比でCr:0.3〜1.5%、
Zr:0.03〜0.6%および残部Cuより構成された銅
合金に、Fe:0.01〜1.0%、またはAl:2.1〜5.0
%およびFe:0.0〜1.0%を添加した銅合金材料
で、この材料に溶体化・時効の熱処理を与えて、
電気伝導率が70〜15%IACSの低電気伝導率でし
かも高強度・高温靭性を具備させたものである。 本発明材料の基本合金は、Cr:0.3〜1.5%、
Zr:0.03〜0.6%、残部Cuよりなる組成である
が、このうちCrは高温強度の上昇を目的に添加
され、0.3%以下ではその効果が小さく、また1.5
%以上では添加量の割には高温強度上昇の効果が
少なく、逆に溶湯酸化が激しく鋳造性を悪くして
しまう。 Zrは再結晶粒の微細化と高温強度の上昇および
高温伸びを改善するために添加されるが、0.03%
以下ではその効果が小さく、また0.6%以上では
添加量の割には効果の向上が少ないうえ、やはり
溶湯酸化が激しくなり鋳造性が著しく悪くなる。 上記組成の基本合金は、優れた高温強度、高温
伸びを有する高靭性の析出硬化型材料ではある
が、電気伝導率は80%以上と高いため、電磁撹拌
装置を設置した鋼等の連続鋳造用鋳型材料として
は好ましくない。 本発明は、上記組成基本合金に対して、Fe、
またはAlおよびFeを、それぞれ所定量添加する
ことにより、基本合金の有する優れた高温強度、
高温伸びの特性をさらに向上させると共に、電気
伝導率を所望の低さ(70〜15%IACS)にまで低
下させた析出硬化型連続鋳造用鋳型材料を得るこ
とができたものである。 第1図は添加元素AlおよびFeの添加量と電気
伝導率との関係を示したものである。第1図に示
すように、AlおよびFeはいずれもその添加によ
り電気伝導率が低下することがわかる。 しかし、Alとしての添加量は、5.0%以上では
電気伝導率は15%IACSより小さくなることがな
く、かえつて高温脆性を生じ、基本合金の優れた
高温特性を害することになる。 一方、Feとしての添加量は0.01〜1.0%が好ま
しく、1%より多い添加量では硬度を著しく低下
させ、基本合金の持つ優れた特性を害することに
なる。なお、Feが0.01%より小さい添加量で
は、本発明の充分な効果が得られない。 また本発明の場合、AlとFeとを材料中に共存
させる態様で添加することもできる。共存させる
場合は、合計添加量が5%以下であることが好ま
しい。 このように本発明銅合金材料は、上記基本合金
に、Fe、またはAlとFeを、上記添加量に従つて
添加して成るものであるが、この材料を鍛造後
に、960±20℃×0.5Hr水冷で溶体化処理、およ
び500±50℃×2Hr空冷で時効処理したものは、
上記基本合金の優れた高温特性を損なうことなく
しかも高強度・高温靭性を備え、かつ70〜15%
IACSの低い電気伝導率を示した。 この材料は、電磁撹拌装置を設置した鋼等の連
続鋳造用鋳型材料としては最も適しているもので
ある。 次に、従来の析出硬化型材料であるクロム−ジ
ルコニウム銅合金の一例(Cr0.80%−Zr0.20%−
Cu残部)を比較例として挙げ、この比較例を基
本合金とした本発明の組成をもつ銅合金材料の実
施例1ないし7を挙げ、それぞれについて900℃
で鍛造後、960℃×0.5Hr水冷で溶体化処理し、
500℃×2Hr空冷で時効処理したものの電気伝導
率(%IACS)および硬さ(HB)について試験
し、その結果を次の表に示す。
The present invention relates to a novel copper alloy material having various properties suitable as a material for a mold used in continuous casting of steel or the like equipped with an electromagnetic stirring device. In recent years, the electromagnetic stirring method has been widely adopted as a continuous casting method for steel, making it possible to improve the quality of ingots and to continuously cast high-grade steel. However, the mold material used in the conventional continuous casting method for steel etc. has a high electrical conductivity of 100% to 80%, so when an electromagnetic stirring device is installed, the high electrical conductivity causes eddy current loss. This resulted in a large attenuation of the magnetic force, resulting in a drawback that the stirring effect acting on the molten steel in the mold was reduced. For this reason, in the continuous casting of steel and other materials equipped with electromagnetic stirring devices, it has been possible to achieve high-temperature strength and high-temperature elongation, which are the characteristics required for conventional mold materials, and, depending on the usage conditions, to have an electrical conductivity of 70 to 70. 15%
IACS low electrical conductivity mold material may be required. In view of these circumstances, the inventor of the present invention aimed to increase the electrical conductivity of chromium-zirconium copper, which is a conventionally known precipitation hardening material, by 70 to 15% without sacrificing its excellent properties of high-temperature strength and high-temperature elongation.
Through intensive research into reducing the IACS, we were able to complete the mold material of the present invention. The mold material of the present invention has a weight ratio of Cr: 0.3 to 1.5%,
Copper alloy composed of Zr: 0.03-0.6% and balance Cu, Fe: 0.01-1.0%, or Al: 2.1-5.0
% and Fe: 0.0 to 1.0% is added to this material, and this material is subjected to solution heat treatment and aging.
It has a low electrical conductivity of 70 to 15% IACS, and has high strength and high temperature toughness. The basic alloy of the material of the present invention is Cr: 0.3-1.5%,
The composition consists of Zr: 0.03 to 0.6% and the balance Cu, of which Cr is added for the purpose of increasing high-temperature strength, and if it is less than 0.3%, the effect is small;
% or more, the effect of increasing high-temperature strength is small relative to the amount added, and on the contrary, the molten metal oxidizes violently, impairing castability. Zr is added to refine recrystallized grains, increase high-temperature strength, and improve high-temperature elongation, but 0.03%
If it is less than 0.6%, the effect will be small, and if it is more than 0.6%, the effect will not improve much compared to the amount added, and the oxidation of the molten metal will become intense, resulting in significantly poor castability. The basic alloy with the above composition is a high-toughness precipitation-hardening material with excellent high-temperature strength and high-temperature elongation, but its electrical conductivity is high at over 80%, so it is suitable for continuous casting of steel etc. equipped with an electromagnetic stirring device. Not preferred as a mold material. The present invention provides Fe,
Alternatively, by adding predetermined amounts of Al and Fe, the excellent high-temperature strength of the basic alloy can be improved.
It was possible to obtain a precipitation hardening type continuous casting mold material that further improved the high temperature elongation properties and lowered the electrical conductivity to the desired low level (70 to 15% IACS). FIG. 1 shows the relationship between the amounts of the additive elements Al and Fe and the electrical conductivity. As shown in FIG. 1, it can be seen that the electrical conductivity of both Al and Fe decreases with their addition. However, if the amount of Al added is 5.0% or more, the electrical conductivity will not become lower than 15% IACS, and instead will cause high-temperature brittleness, which will impair the excellent high-temperature properties of the basic alloy. On the other hand, the amount of Fe added is preferably 0.01 to 1.0%, and if the amount is more than 1%, the hardness will be significantly reduced and the excellent properties of the basic alloy will be impaired. Note that if the amount of Fe added is less than 0.01%, sufficient effects of the present invention cannot be obtained. Further, in the case of the present invention, Al and Fe can be added in such a manner that they coexist in the material. When they are allowed to coexist, the total amount added is preferably 5% or less. As described above, the copper alloy material of the present invention is made by adding Fe or Al and Fe to the above-mentioned basic alloy according to the above-mentioned addition amounts, and after forging this material, 960±20℃×0.5 Solution treatment with Hr water cooling and aging treatment with 500±50℃ x 2Hr air cooling.
It has high strength and high temperature toughness without sacrificing the excellent high temperature properties of the above basic alloys, and has 70 to 15%
IACS showed low electrical conductivity. This material is most suitable as a mold material for continuous casting of steel or the like equipped with an electromagnetic stirring device. Next, an example of a chromium-zirconium copper alloy (Cr0.80%-Zr0.20%-
Examples 1 to 7 of copper alloy materials having the composition of the present invention using this comparative example as a basic alloy are listed as comparative examples.
After forging with
The electrical conductivity (%IACS) and hardness (HB) of the samples aged at 500°C x 2 hours were tested, and the results are shown in the table below.

【表】 また、上記比較例および実施例および実施例
の常温から500℃における高温引張強さ、高温
0.2%耐力、高温伸び、高温硬さの試験結果は、
第2図ないし第5図に示す通りであつた。 上記表および第2図ないし第5図から明らかな
ように、本発明銅合金材料は、従来のクロム−ジ
ルコニウム銅合金(比較例)に比べ、電気伝導率
が70〜15%IACSに低下すると共に、常温から500
℃までの高温でさらに強度が大きくかつ高い伸び
を備えており、しかも基本合金の特性を充分に生
かした靭性の高い材料であることがわかる。
[Table] Also, the high-temperature tensile strength from room temperature to 500℃ of the above comparative examples, examples, and examples,
The test results of 0.2% yield strength, high temperature elongation, and high temperature hardness are as follows.
It was as shown in Figures 2 to 5. As is clear from the above table and FIGS. 2 to 5, the electrical conductivity of the copper alloy material of the present invention is reduced to 70 to 15% IACS compared to the conventional chromium-zirconium copper alloy (comparative example). , from room temperature to 500
It can be seen that it has even greater strength and elongation at high temperatures up to ℃, and is a highly tough material that takes full advantage of the characteristics of the basic alloy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は添加元素AlおよびFeの添加量と電気
伝導率との関係を示す図。第2図ないし第5図は
それぞれ比較例と実施例および実施例の常温
から500℃における高温引張強さ、高温0.2%耐
力、高温伸び、高温硬さの試験結果を示す図。
FIG. 1 is a diagram showing the relationship between the amounts of additive elements Al and Fe and electrical conductivity. Figures 2 to 5 are diagrams showing test results of high temperature tensile strength, high temperature 0.2% proof stress, high temperature elongation, and high temperature hardness from room temperature to 500°C of Comparative Examples, Examples, and Examples, respectively.

Claims (1)

【特許請求の範囲】 1 重量比でCr:0.3〜1.5%、Zr:0.03〜0.6%、
Fe:0.01〜1.0%および残部Cuより成る銅合金材
料であつて、電気伝導率が70〜15%IACSの低電
気伝導率でかつ高強度・高温靭性を具備させた析
出硬化型連続鋳造用鋳型材料。 2 重量比でCr:0.3〜1.5%、Zr:0.03〜0.6%、
Al:2.1〜5.0%およびFe:0.01〜1.0%、残部Cu
より成る銅合金材料であつて、電気伝導率が70〜
15%IACSの低電気伝導率でかつ高強度・高温靭
性を具備させた析出硬化型連続鋳造用鋳型材料。
[Claims] 1. Cr: 0.3 to 1.5%, Zr: 0.03 to 0.6% by weight,
A precipitation hardening continuous casting mold made of a copper alloy material consisting of 0.01 to 1.0% Fe and the balance Cu, with a low electrical conductivity of 70 to 15% IACS, high strength and high temperature toughness. material. 2 Cr: 0.3-1.5%, Zr: 0.03-0.6%, weight ratio
Al: 2.1~5.0% and Fe: 0.01~1.0%, balance Cu
A copper alloy material with an electrical conductivity of 70~
Precipitation hardening continuous casting mold material with low electrical conductivity of 15% IACS, high strength and high temperature toughness.
JP20664181A 1981-12-21 1981-12-21 Mold material for precipitation hardening type continuous casting Granted JPS58107459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20664181A JPS58107459A (en) 1981-12-21 1981-12-21 Mold material for precipitation hardening type continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20664181A JPS58107459A (en) 1981-12-21 1981-12-21 Mold material for precipitation hardening type continuous casting

Publications (2)

Publication Number Publication Date
JPS58107459A JPS58107459A (en) 1983-06-27
JPS6241301B2 true JPS6241301B2 (en) 1987-09-02

Family

ID=16526713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20664181A Granted JPS58107459A (en) 1981-12-21 1981-12-21 Mold material for precipitation hardening type continuous casting

Country Status (1)

Country Link
JP (1) JPS58107459A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58212839A (en) * 1982-06-03 1983-12-10 Mitsubishi Metal Corp Cu alloy for continuous casting mold
JPS59229261A (en) * 1983-05-23 1984-12-22 Mitsubishi Metal Corp Mold panel for continuous casting
JP6693078B2 (en) * 2015-10-15 2020-05-13 三菱マテリアル株式会社 Molding material for casting
JP6693092B2 (en) * 2015-11-09 2020-05-13 三菱マテリアル株式会社 Copper alloy material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884641A (en) * 1981-11-16 1983-05-20 Nippon Kokan Kk <Nkk> Mold material for continuous casting

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884641A (en) * 1981-11-16 1983-05-20 Nippon Kokan Kk <Nkk> Mold material for continuous casting

Also Published As

Publication number Publication date
JPS58107459A (en) 1983-06-27

Similar Documents

Publication Publication Date Title
US4786340A (en) Solution heat-treated high strength aluminum alloy
US3824135A (en) Copper base alloys
CA1038205A (en) Low expansion iron-nickel based alloys
JPS6241302B2 (en)
JPS6241301B2 (en)
JPS6158541B2 (en)
JP2002206143A (en) High strength low thermal expansion casting steel and ring-shaped parts for blade ring of gas turbine and for seal ring holding ring consisting of the high strength low thermal expansion casting steel
US2908566A (en) Aluminum base alloy
US3772094A (en) Copper base alloys
EP0263879A1 (en) Corrosion-resistant copper alloy
JPS6214020B2 (en)
JPS6214021B2 (en)
GB2023655A (en) Aluminium base electrical conductor alloys with misch metal
US3297435A (en) Production of heat-treatable aluminum casting alloy
US3772095A (en) Copper base alloys
JPS6214022B2 (en)
US4071359A (en) Copper base alloys
US3370945A (en) Magnesium-base alloy
JPS634620B2 (en)
JPH0112825B2 (en)
JPS6047898B2 (en) Aluminum alloy for casting with excellent heat resistance
JPS641539B2 (en)
JPS641538B2 (en)
JPH07113133B2 (en) Cu alloy for continuous casting mold
US3823041A (en) Treatment of aluminum alloys