EP0548636A1 - Use of an hardenable copper alloy - Google Patents

Use of an hardenable copper alloy Download PDF

Info

Publication number
EP0548636A1
EP0548636A1 EP92120775A EP92120775A EP0548636A1 EP 0548636 A1 EP0548636 A1 EP 0548636A1 EP 92120775 A EP92120775 A EP 92120775A EP 92120775 A EP92120775 A EP 92120775A EP 0548636 A1 EP0548636 A1 EP 0548636A1
Authority
EP
European Patent Office
Prior art keywords
casting
nickel
copper alloy
beryllium
rest
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92120775A
Other languages
German (de)
French (fr)
Other versions
EP0548636B1 (en
Inventor
Horst Dipl.-Ing. Gravemann
Thomas Dipl.-Ing. Helmenkamp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KM Europa Metal AG
Original Assignee
KM Kabelmetal AG
KM Europa Metal AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KM Kabelmetal AG, KM Europa Metal AG filed Critical KM Kabelmetal AG
Publication of EP0548636A1 publication Critical patent/EP0548636A1/en
Application granted granted Critical
Publication of EP0548636B1 publication Critical patent/EP0548636B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent

Definitions

  • the invention relates to the use of a hardenable copper alloy for the production of casting rolls and casting wheels, which are subject to changing temperature stresses during casting close to the final dimensions.
  • the lower electrical conductivity of a known CuNiBe alloy with an addition of up to 1% niobium also leads to a higher surface temperature compared to a CuCrZr alloy. Since the electrical conductivity is inversely proportional to the thermal conductivity, the surface temperature of a casting roll made of CuNiBe alloy will be about 540 compared to a casting roll made of CuCrZr with a maximum temperature of 400 ° C on the surface and 30 ° C on the back Increase ° C.
  • Ternary CuNiBe or CucoBe alloys generally have a Brinell hardness of over 200 HB, but the electrical conductivity of the standard semi-finished products made from these materials, such as rods for the production of resistance welding electrodes or sheets and strips for the production of springs or Lead frames, at most values in the range from 26 to about 32 m / ⁇ mm2. Under optimal conditions, these standard materials would only achieve a casting roll surface temperature of around 585 ° C.
  • the object of the present invention is to provide a material for the production of casting rolls, casting roll jackets and casting wheels, which is insensitive to changing temperature loads even at casting speeds of over 3.5 m / min, or which has high fatigue resistance at the working temperature which has casting rolls.
  • a hardenable copper alloy made from 1.0 to 2.6% nickel, 0.1 to 0.45% beryllium, the rest of copper including manufacturing-related impurities and usual processing additives, with a Brinell hardness of at least 200 HB and one has proven particularly suitable for this application electrical conductivity over 38 m / ⁇ mm2.
  • a further improvement in the mechanical properties, in particular an increase in the tensile strength, can advantageously be achieved by adding 0.05 to 0.25% zirconium.
  • Copper alloys according to the invention are preferred in which the ratio of the nickel content to the beryllium content with a nickel content of more than 1.2% in the alloy composition is at least 5: 1.
  • alloys to be used according to the invention show how critical the composition is in order to achieve the desired combination of properties.
  • the composition of the example alloys is given in Table 1 in% by weight. The corresponding test results are summarized in Table 2.
  • Table 1 Leg. Ni Be Cu A 1.43 0.54 rest B 1.48 0.40 rest C. 1.83 0.42 rest D 2.12 0.53 rest F 1.48 0.29 rest G 1.86 0.33 rest H 1.95 0.30 rest K 2.26 0.35 rest Leg.
  • Table 2 shows the hardness and conductivity values achieved for alloys with different nickel and beryllium contents - corresponding to different Ni / Be ratios. All of the alloys were melted in a vacuum furnace, hot-formed and, after solution annealing at 925 ° C. for at least one hour and then quenched in water, hardened for 4 to 32 hours at a temperature in the range from 350 to 550 ° C.
  • the desired combination of properties can be achieved if the weight ratio of nickel to beryllium is at least 5: 1.
  • casting rolls or casting roll shells are subjected to an additional cold deformation of about 25% after solution annealing, a further improvement in the electrical conductivity can be achieved.
  • a 32-hour hardening treatment at 480 ° C achieves a conductivity of 43 m / ⁇ mm2 and a Brinell hardness of 225 HB.
  • the properties can be further optimized by increasing the Ni / Be ratio.
  • a copper alloy with 2.26% nickel and a Ni / Be ratio of 6.5 has a Brinell hardness of 230 HB and an electrical conductivity of 40.5 m / ⁇ mm2 after a 32-hour hardening treatment at 480 ° C.
  • a Ni / Be ratio of 7.5 is possible for a nickel content of 2.3% in order to achieve the desired combination of properties.
  • the sample alloy N was selected for the additional investigation of the fatigue behavior, since it has a relatively low electrical conductivity. With alloy N, a maximum surface temperature for a casting roll of around 490 ° C can be achieved. Under the previously known stress of a casting roll when casting steel, the service life of the alloy N to be used according to the invention is then increased by 2 to 3 times compared to a CuCrZr alloy. Due to the high Brinell hardness, there is also no danger that the surface of the casting roll will be damaged by the injection of melt spatter.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Continuous Casting (AREA)
  • Laminated Bodies (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Dental Preparations (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Rolls And Other Rotary Bodies (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Materials For Medical Uses (AREA)
  • Conductive Materials (AREA)
  • Chemically Coating (AREA)

Abstract

For the fabrication of casting rollers, casting roller shells and casting wheels, which, in casting close to the final dimensions, must be insensitive to a cyclically alternating temperature stress, materials of high thermal conductivity and high fatigue strength at the working temperature of the casting moulds are required. According to the invention, a hardenable copper alloy, which contains 1.0 to 2.6% of nickel, 0.1 to 0.45% of beryllium and, if appropriate, also 0.05 to 0.25% of zirconium, is proposed for this application. Preferably, the ratio of the nickel/beryllium contents is at least 5:1 and the nickel content above 1.2%.

Description

Die Erfindung betrifft die Verwendung einer aushärtbaren Kupferlegierung zur Herstellung von Gießwalzen und Gießrädern, die beim endabmessungsnahen Gießen einer wechselnden Temperaturbeanspruchung unterliegen.The invention relates to the use of a hardenable copper alloy for the production of casting rolls and casting wheels, which are subject to changing temperature stresses during casting close to the final dimensions.

Das weltweite Ziel, insbesondere der Stahlindustrie, das herzustellende Halbzeug möglichst endabmessungsnah zu gießen, um Warm- und/oder Kaltverformungsschritte einzusparen, hat seit etwa 1980 zu einer Reihe von Entwicklungen, beispielsweise den Ein- und Zweiwalzen-Stranggießverfahren, geführt.The global goal, in particular of the steel industry, to cast the semi-finished product as close to final dimensions as possible in order to save hot and / or cold forming steps has led to a number of developments since about 1980, for example the single and two-roll continuous casting process.

Bei diesen Gießverfahren treten auf den wassergekühlten Walzen oder Rollen beim Gießen von Stahllegierungen, Nickel, Kupfer sowie Legierungen, die sich nur schwer warmwalzen lassen im Eingießbereich der Schmelze sehr hohe Oberflächentemperaturen auf. Diese liegen z. B. beim endabmessungsnahen Gießen einer Stahllegierung, wobei die Gießwalzen aus einem CuCrZr-Werkstoff mit einer elektrischen Leitfähigkeit von 48 m/Ω mm² und einer Wärmeleitfähigkeit von etwa 320 W/mK bestehen, bei 350 bis 450 °C. Werkstoffe auf CuCrZr-Basis wurden bisher vornehmlich für thermisch hochbelastete Stranggießkokillen und Gießräder eingesetzt. Die Oberflächentemperatur fällt bei diesen Werkstoffen durch die Kühlung der Gießwalzen zyklisch bei jeder Umdrehung kurz vor dem Eingießbereich auf etwa 150 bis 200 °C ab. Auf der gekühlten Rückseite der Gießwalzen bleibt sie dagegen während des Umlaufs weitgehend konstant bei etwa 30 bis 40 °C. Der Temperaturgradient zwischen Oberfläche und Rückseite in Kombination mit der zyklischen Änderung der Oberflächentemperatur der Gießwalzen bewirkt erhebliche thermische Spannungen im Oberflächenbereich des Walzenwerkstoffs.With these casting processes, very high surface temperatures occur on the water-cooled rolls or rolls when casting steel alloys, nickel, copper and alloys that are difficult to hot-roll in the pouring area of the melt. These are e.g. B. in the near-dimensional casting of a steel alloy, the casting rolls made of a CuCrZr material with an electrical conductivity of 48 m / Ω mm² and a thermal conductivity of about 320 W / mK, at 350 to 450 ° C. CuCrZr-based materials have so far been used primarily for thermally highly stressed continuous casting molds and casting wheels. With these materials, the surface temperature of these materials drops cyclically to about 150 to 200 ° C with every revolution just before the pouring area. On the cooled back of the casting rolls, however, it remains largely constant at around 30 to 40 ° C during the circulation. The temperature gradient between the surface and the back in combination with the cyclical change in the surface temperature of the casting rolls causes considerable thermal stresses in the surface area of the roll material.

Gemäß Untersuchungen des Ermüdungsverhaltens an dem bisher verwendeten CuCrZr-Werkstoff bei verschiedenen Temperaturen mit einer Dehnungsamplitude von ± 0,3 % und einer Frequenz von 0,5 Hz - diese Parameter entsprechen etwa einer Umdrehungsgeschwindigkeit der Gießwalzen von 30 U/min - ist beispielsweise bei einer maximalen Oberflächentemperatur von 400 °C - entsprechend einer Wanddicke von 25 mm oberhalb der Wasserkühlung - im günstigsten Fall eine Lebensdauer von 3000 Zyklen bis zur Rißbildung zu erwarten. Die Gießwalzen müßten daher bereits nach einer relativ kurzen Betriebszeit von etwa 100 Minuten zwecks Beseitigung von Oberflächenrissen nachgearbeitet werden. Für das Auswechseln der Gießwalzen muß die Gießmaschine angehalten und der Gießvorgang unterbrochen werden.According to investigations of the fatigue behavior of the previously used CuCrZr material at different temperatures with an expansion amplitude of ± 0.3% and a frequency of 0.5 Hz - these parameters correspond approximately to a rotation speed of the casting rolls of 30 rpm - for example at one maximum surface temperature of 400 ° C - corresponding to a wall thickness of 25 mm above the water cooling - in the best case scenario a service life of 3000 cycles can be expected until cracking. The casting rolls would therefore have to be reworked after a relatively short operating time of about 100 minutes in order to remove surface cracks. To change the casting rolls, the casting machine must be stopped and the casting process interrupted.

Ein weiterer Nachteil des bewährten Kokillenwerkstoffs CuCrZr ist die für diesen Anwendungsfall relativ geringe Härte von etwa 110 bis 130 HB. Bei einem Ein- oder Zweiwalzen-Stranggießverfahren ist es nämlich nicht vermeidbar, daß bereits vor dem Eingießbereich Stahlspritzer auf die Walzenoberfläche gelangen. Die erstarrten Stahlpartikel werden dann in die relativ weiche Oberfläche der Gießwalzen eingedrückt, wodurch die Oberflächenqualität der gegossenen Bänder von etwa 1,5 bis 4 mm Dicke erheblich beeinträchtigt wird.Another disadvantage of the proven mold material CuCrZr is the relatively low hardness of around 110 to 130 HB for this application. In the case of a one- or two-roll continuous casting process, it is inevitable that steel splashes get onto the roll surface before the casting area. The solidified steel particles are then pressed into the relatively soft surface of the casting rolls, as a result of which the surface quality of the cast strips of approximately 1.5 to 4 mm thickness is considerably impaired.

Auch die geringere elektrische Leitfähigkeit einer bekannten CuNiBe-Legierung mit einem Zusatz von bis zu 1 % Niob führt im Vergleich zu einer CuCrZr-Legierung zu einer höheren Oberflächentemperatur. Da sich die elektrische Leitfähigkeit umgekehrt proportional zur Wärmeleitfähigkeit verhält, wird sich die Oberflächentemperatur einer Gießwalze aus der CuNiBe-Legierung im Vergleich zu einer Gießwalze aus CuCrZr mit einer maximalen Temperatur von 400 °C an der Oberfläche und 30 °C auf der Rückseite auf etwa 540 °C erhöhen.The lower electrical conductivity of a known CuNiBe alloy with an addition of up to 1% niobium also leads to a higher surface temperature compared to a CuCrZr alloy. Since the electrical conductivity is inversely proportional to the thermal conductivity, the surface temperature of a casting roll made of CuNiBe alloy will be about 540 compared to a casting roll made of CuCrZr with a maximum temperature of 400 ° C on the surface and 30 ° C on the back Increase ° C.

Ternäre CuNiBe- bzw. CucoBe-Legierungen weisen zwar grundsätzlich eine Brinellhärte von über 200 HB auf, jedoch erreicht die elektrische Leitfähigkeit der aus diesen Werkstoffen hergestellten Standard-Halbzeugarten, wie beispielsweise Stangen zur Herstellung von Widerstandsschweißelektroden bzw. Blechen und Bändern zur Herstellung von Federn oder Leadframes, allenfalls im Bereich von 26 bis etwa 32 m/Ω mm² liegende Werte. Unter optimalen Bedingungen wäre mit diesen Standardwerkstoffen lediglich eine Oberflächentemperatur der Gießwalze von etwa 585 °C zu erreichen.Ternary CuNiBe or CucoBe alloys generally have a Brinell hardness of over 200 HB, but the electrical conductivity of the standard semi-finished products made from these materials, such as rods for the production of resistance welding electrodes or sheets and strips for the production of springs or Lead frames, at most values in the range from 26 to about 32 m / Ω mm². Under optimal conditions, these standard materials would only achieve a casting roll surface temperature of around 585 ° C.

Schließlich ergeben sich auch für die aus dem US-Patent 4 179 314 grundsätzlich bekannten CuCoBeZr- bzw. CuNiBeZr-Legierungen keine Hinweise, daß bei gezielter Auswahl der Legierungskomponenten Leitfähigkeitswerte von > 38 m/Ω mm² in Verbindung mit einer Mindesthärte von 200 HB erreichbar sind.Finally, for the CuCoBeZr or CuNiBeZr alloys known in principle from US Pat. No. 4,179,314, there are no indications that conductivity values of> 38 m / Ω mm² in conjunction with a minimum hardness of 200 HB can be achieved if the alloy components are specifically selected .

Aufgabe der vorliegenden Erfindung ist es, einen Werkstoff für die Herstellung von Gießwalzen, Gießwalzenmänteln und Gießrädern zur Verfügung zu stellen, der auch bei Gießgeschwindigkeiten von über 3,5 m/min gegenüber wechselnder Temperaturbeanspruchung unempfindlich ist, bzw. der eine hohe Ermüdungsbeständigkeit bei der Arbeitstemperatur der Gießwalzen aufweist.The object of the present invention is to provide a material for the production of casting rolls, casting roll jackets and casting wheels, which is insensitive to changing temperature loads even at casting speeds of over 3.5 m / min, or which has high fatigue resistance at the working temperature which has casting rolls.

Als besonders geeignet für diesen Anwendungsfall hat sich eine aushärtbare Kupferlegierung aus 1,0 bis 2,6 % Nickel, 0,1 bis 0,45 % Beryllium, Rest Kupfer einschließlich herstellungsbedingter Verunreinigungen und üblicher Verarbeitungszusätze, mit einer Brinellhärte von mindestens 200 HB und einer elektrischen Leitfähigkeit über 38 m/Ω mm² erwiesen.A hardenable copper alloy made from 1.0 to 2.6% nickel, 0.1 to 0.45% beryllium, the rest of copper including manufacturing-related impurities and usual processing additives, with a Brinell hardness of at least 200 HB and one has proven particularly suitable for this application electrical conductivity over 38 m / Ω mm².

Eine weitere Verbesserung der mechanischen Eigenschaften insbesondere eine Erhöhung der Zugfestigkeit kann vorteilhaft durch einen Zusatz von 0,05 bis 0,25 % Zirkonium erreicht werden.A further improvement in the mechanical properties, in particular an increase in the tensile strength, can advantageously be achieved by adding 0.05 to 0.25% zirconium.

Bevorzugt sind erfindungsgemäße Kupferlegierungen, bei denen das Verhältnis des Nickelgehalts zum Berylliumgehalt bei einem Nickelgehalt von über 1,2 % in der Legierungszusammensetzung mindestens 5:1 beträgt.Copper alloys according to the invention are preferred in which the ratio of the nickel content to the beryllium content with a nickel content of more than 1.2% in the alloy composition is at least 5: 1.

Weitere Verbesserungen der mechanischen Eigenschaften können erreicht werden, wenn der erfindungsgemäß zu verwendenden Legierung bis zu insgesamt maximal 0,15 % mindestens eines Elements aus der Gruppe, Niob, Tantal, Vanadium, Titan, Chrom, Cer und Hafnium zugegeben wird.Further improvements in the mechanical properties can be achieved if up to a total of at most 0.15% of at least one element from the group consisting of niobium, tantalum, vanadium, titanium, chromium, cerium and hafnium is added to the alloy to be used according to the invention.

Überraschenderweise wurden bei Untersuchungen der beispielsweise in ASTM und DIN genormten Legierungen gefunden, daß es bei Gehalten von 1,1 bis 2,6 % Nickel möglich ist, die für Gießwalzen für das endabmessungsnahe Gießen benötigten Eigenschaften - d. h. eine Brinellhärte von > 200 HB und eine elektrische Leitfähigkeit von mindestens 38 m/Ω mm² - und daher auch hohe Ermüdungsfestigkeit zu erreichen, wenn der Nickelgehalt zum Berylliumgehalt in einem definierten Verhältnis steht und eine angepaßte thermische bzw. thermomechanische Behandlung durchgeführt wird.Surprisingly, tests on the alloys standardized in ASTM and DIN, for example, found that at levels of 1.1 to 2.6% nickel it is possible to obtain the properties required for casting rolls for near-dimensional casting - i.e. H. a Brinell hardness of> 200 HB and an electrical conductivity of at least 38 m / Ω mm² - and therefore also high fatigue strength if the nickel content is in a defined ratio to the beryllium content and an adapted thermal or thermomechanical treatment is carried out.

Anhand von einigen Ausführungsbeispielen wird die Erfindung im folgenden noch näher erläutert. An vier erfindungsgemäß zu verwendenden Legierungen (Legierung F bis K) und vier Vergleichslegierungen (Legierungen A bis D) wird gezeigt, wie kritisch die Zusammensetzung ist, um die angestrebte Eigenschaftskombination zu erreichen. Die Zusammensetzung der Beispiellegierungen ist in Tabelle 1 jeweils in Gew.% angegeben. Die entsprechenden Untersuchungsergebnisse sind in Tabelle 2 zusammengefaßt. Tabelle 1 Leg. Ni Be Cu A 1,43 0,54 Rest B 1,48 0,40 Rest C 1,83 0,42 Rest D 2,12 0,53 Rest F 1,48 0,29 Rest G 1,86 0,33 Rest H 1,95 0,30 Rest K 2,26 0,35 Rest Tabelle 2 Leg. Ni/Be HB (2,5/187,5) Leitf. m/Ω mm² A 2,6 193 30,9 B 3,7 224 36,1 C 4,4 235 37,0 D 4,0 229 33,9 F 5,1 249 39,4 G 5,6 247 38,5 H 6,5 249 39,8 K 6,5 249 39,8 The invention is explained in more detail below with the aid of a few exemplary embodiments. Four alloys to be used according to the invention (alloy F to K) and four comparative alloys (alloys A to D) show how critical the composition is in order to achieve the desired combination of properties. The composition of the example alloys is given in Table 1 in% by weight. The corresponding test results are summarized in Table 2. Table 1 Leg. Ni Be Cu A 1.43 0.54 rest B 1.48 0.40 rest C. 1.83 0.42 rest D 2.12 0.53 rest F 1.48 0.29 rest G 1.86 0.33 rest H 1.95 0.30 rest K 2.26 0.35 rest Leg. Ni / Be HB (2.5 / 187.5) Guide m / Ω mm² A 2.6 193 30.9 B 3.7 224 36.1 C. 4.4 235 37.0 D 4.0 229 33.9 F 5.1 249 39.4 G 5.6 247 38.5 H 6.5 249 39.8 K 6.5 249 39.8

In Tabelle 2 sind für Legierungen mit verschiedenen Nickel- und Berylliumgehalten - entsprechend verschiedenen Ni/Be-Verhältnissen - die erreichten Härte- und Leitfähigkeitswerte angegeben. Sämtliche Legierungen wurden in einem Vakuumofen erschmolzen, warmumgeformt und nach einer mindestens einstündigen Lösungsglühung bei 925 °C und nachfolgendem Abschrecken in Wasser 4 bis 32 Stunden bei einer im Bereich von 350 bis 550 °C liegenden Temperatur ausgehärtet.Table 2 shows the hardness and conductivity values achieved for alloys with different nickel and beryllium contents - corresponding to different Ni / Be ratios. All of the alloys were melted in a vacuum furnace, hot-formed and, after solution annealing at 925 ° C. for at least one hour and then quenched in water, hardened for 4 to 32 hours at a temperature in the range from 350 to 550 ° C.

Wie bei den erfindungsgemäß zu verwendenden Legierungen F, G, H und K zu erkennen ist, ist die angestrebte Eigenschaftskombination zu erreichen, wenn das Gewichtsverhältnis Nickel zu Beryllium mindestens 5 : 1 beträgt.As can be seen in the alloys F, G, H and K to be used according to the invention, the desired combination of properties can be achieved if the weight ratio of nickel to beryllium is at least 5: 1.

Wenn die Gießwalzen bzw. Gießwalzenmäntel nach dem Lösungsglühen einer zusätzlichen Kaltverformung um etwa 25 % unterzogen werden, läßt sich eine weitere Verbesserung der elektrischen Leitfähigkeit erreichen.If the casting rolls or casting roll shells are subjected to an additional cold deformation of about 25% after solution annealing, a further improvement in the electrical conductivity can be achieved.

So wird beispielsweise bei einer Legierung mit 1,48 Nickel und einem Ni/Be-Verhältnis von mindestens 5,1 durch eine 32-stündige Aushärtungsbehandlung bei 480 °C eine Leitfähigkeit von 43 m/Ω mm² und eine Brinellhärte von 225 HB erreicht. Mit steigendem Nickelgehalt ist eine weitere Optimierung der Eigenschaften durch Erhöhung des Ni/Be-Verhältnisses möglich. Eine Kupferlegierung mit 2,26 % Nickel und einem Ni/Be-Verhältnis von 6,5 weist nach einer 32-stündigen Aushärtungsbehandlung bei 480 °C eine Brinellhärte von 230 HB und eine elektrische Leitfähigkeit von 40,5 m/Ω mm² auf. Als obere Grenze ist beispielsweise für einen Nickelgehalt von 2,3 % ein Ni/Be-Verhältnis von 7,5 möglich, um die angestrebte Eigenschaftskombination zu erreichen.For example, for an alloy with 1.48 nickel and a Ni / Be ratio of at least 5.1, a 32-hour hardening treatment at 480 ° C achieves a conductivity of 43 m / Ω mm² and a Brinell hardness of 225 HB. As the nickel content increases, the properties can be further optimized by increasing the Ni / Be ratio. A copper alloy with 2.26% nickel and a Ni / Be ratio of 6.5 has a Brinell hardness of 230 HB and an electrical conductivity of 40.5 m / Ω mm² after a 32-hour hardening treatment at 480 ° C. As an upper limit, for example, a Ni / Be ratio of 7.5 is possible for a nickel content of 2.3% in order to achieve the desired combination of properties.

Die Zusammensetzung und die technologischen Eigenschaften von sieben weiteren erfindungsgemäß zu verwendenden Legierungen sind in Tabellen 3 und 4 aufgeführt. Sämtliche Legierungen wurden bei 925 °C lösungsgeglüht, dann 25 % kaltumgeformt und anschließend einer 16-stündigen Aushärtungsbehandlung bei 480 °C unterzogen. Tabelle 3 Leg. Ni Be Zr Cu L 1,49 0,24 Rest M 2,26 0,35 Rest N 2,07 0,32 0,18 Rest O 1,51 0,28 0,19 Rest P 1,51 0,21 0,17 Rest R 1,40 0,21 0,21 Rest S 1,78 0,28 0,21 Rest Tabelle 4 Leg. Ni/Be Dehngrenze N/mm² Rm N/mm² Dehnung % Härte HB 2,5/1,87,5 Leitf. m/Ω mm² L 6,2 681 726 19 244 40,2 M 6,5 711 756 18 255 40,1 N 6,5 682 792 18 220 38,6 O 5,4 234 39,0 P 7,2 211 40,9 R 6,3 626 680 15 217 41,1 S 6,3 662 712 13 223 40,8 The composition and the technological properties of seven further alloys to be used according to the invention are listed in Tables 3 and 4. All alloys were solution annealed at 925 ° C, then cold worked 25% and then subjected to a 16 hour hardening treatment at 480 ° C. Table 3 Leg. Ni Be Zr Cu L 1.49 0.24 rest M 2.26 0.35 rest N 2.07 0.32 0.18 rest O 1.51 0.28 0.19 rest P 1.51 0.21 0.17 rest R 1.40 0.21 0.21 rest S 1.78 0.28 0.21 rest Leg. Ni / Be Yield strength N / mm² R m N / mm² Strain % Hardness HB 2.5 / 1.87.5 Guide m / Ω mm² L 6.2 681 726 19th 244 40.2 M 6.5 711 756 18th 255 40.1 N 6.5 682 792 18th 220 38.6 O 5.4 234 39.0 P 7.2 211 40.9 R 6.3 626 680 15 217 41.1 S 6.3 662 712 13 223 40.8

Aus diesen Untersuchungsergebnissen läßt sich ferner feststellen, daß sich auch bei CuNiBe-Legierungen mit einem Zirkoniumzusatz bei Einhaltung des Ni/Be-Verhältnisses von 5 bis 7,5 hohe Leitfähigkeitswerke in Verbindung mit hohen Brinellhärtewerten erreichen lassen. Mit einem Zusatz von bis zu 0,25 % Zirkonium wird die Leitfähigkeit gegenüber einer zirkoniumfreien CuNiBe-Legierung überraschenderweise nur geringfügig erniedrigt, wobei ein Mindestwert von 38 m/Ω mm² gewährleistet ist. Andererseits bietet der Zirkoniumzusatz bei der Verarbeitung Vorteile und verbessert die Warmplastizität.From these test results, it can also be found that even with CuNiBe alloys with a zirconium additive, maintaining the Ni / Be ratio of 5 to 7.5, high conductivity works can be achieved in conjunction with high Brinell hardness values. With the addition of up to 0.25% zirconium, the conductivity is surprisingly only slightly reduced compared to a zirconium-free CuNiBe alloy, with a minimum value of 38 m / Ω mm² ensuring is. On the other hand, the addition of zirconium offers advantages during processing and improves the warm plasticity.

Für die ergänzende Untersuchung des Ermüdungsverhaltens wurde die Beispiellegierung N ausgewählt, da diese eine relativ niedrige elektrische Leitfähigkeit aufweist. Mit der Legierung N ist eine maximale Oberflächentemperatur für eine Gießwalze von etwa 490 °C erreichbar. Unter der bisher bekannten Beanspruchung einer Gießwalze beim Gießen von Stahl vergrößert sich danach bei der erfindungsgemäß zu verwendenden Legierung N die Lebensdauer gegenüber einer CuCrZr-Legierung um das 2- bis 3-fache. Aufgrund der hohen Brinellhärte besteht ferner keine Gefahr, daß die Oberfläche der Gießwalze durch Eindrücken von Schmelzspritzern beschädigt wird.The sample alloy N was selected for the additional investigation of the fatigue behavior, since it has a relatively low electrical conductivity. With alloy N, a maximum surface temperature for a casting roll of around 490 ° C can be achieved. Under the previously known stress of a casting roll when casting steel, the service life of the alloy N to be used according to the invention is then increased by 2 to 3 times compared to a CuCrZr alloy. Due to the high Brinell hardness, there is also no danger that the surface of the casting roll will be damaged by the injection of melt spatter.

Ähnliche kritische thermische Wechselbeanspruchungen treten auch in Gießrädern beim kontinuierlichen Gießen von Drahtknüppeln mit den bekannten Southwire- und Properzi-Gießwalzanlagen auf. Auch für diese Verfahren steht mit der erfindungsgemäß zu verwendenden CuNiBe(Zr)-Legierung nunmehr ein besonders geeigneter Werkstoff zur Herstellung der Gießräder zur Verfügung. Diese Gießverfahren haben sich aufgrund des ungenügenden Verhaltens der für die Gießräder verwendeten Werkstoffe bisher für das Gießen von Stahl nicht durchsetzen können.Similar critical thermal alternating stresses also occur in casting wheels during the continuous casting of wire billets with the known Southwire and Properzi casting and rolling systems. The CuNiBe (Zr) alloy to be used according to the invention now also provides a particularly suitable material for the production of the casting wheels for these processes. These casting methods have so far not been able to establish themselves for the casting of steel due to the insufficient behavior of the materials used for the casting wheels.

Schließlich sind in den letzten drei Jahren weitere Verfahren zum endabmessungsnahen Gießen von Stahl entwickelt worden, bei denen die Kupferkokillen aufgrund der extrem hohen Gießgeschwindigkeit von 3,5 bis zu etwa 7 m/min auch extreme Oberflächentemperaturen bis zu 500 °C erreichen. Um die Reibung zwischen Kokille und Stahlstrang möglichst gering zu halten, ist es ferner erforderlich, hohe Oszillationsfrequenzen von 400 Hüben/min und mehr an der Kokille einzustellen. Der periodisch schwankende Badspiegel führt dabei ebenfalls zu einer erheblichen Ermüdungsbeanspruchung der Kokille im Meniskusbereich mit der Folge einer nicht befriedigenden Lebensdauer derartiger Kokillen. Beim Einsatz der erfindungsgemäßen CuNiBe(Zr)-Legierungen mit ihrer hohen Ermüdungsbeständigkeit kann auch für diese Anwendung eine wesentliche Erhöhung der Lebensdauer erreicht werden.Finally, in the last three years, further processes for the near-dimensional casting of steel have been developed, in which the copper molds reach extreme surface temperatures of up to 500 ° C due to the extremely high casting speed of 3.5 to about 7 m / min. In order to keep the friction between the mold and the steel strand as low as possible, it is also necessary to have high oscillation frequencies of 400 strokes / min and more on the mold. The periodically fluctuating bath level likewise leads to considerable fatigue stress on the mold in the meniscus area, with the result that the life of such molds is unsatisfactory. When using the CuNiBe (Zr) alloys according to the invention with their high fatigue resistance, a significant increase in the service life can also be achieved for this application.

Claims (6)

Verwendung einer aushärtbaren Kupferlegierung aus 1,0 bis 2,6 % Nickel, 0,1 bis 0,45 % Beryllium, Rest Kupfer einschließlich herstellungsbedingter Verunreinigungen und üblicher Verarbeitungszusätze, mit einer Brinellhärte von mindestens 200 HB und einer elektrischen Leitfähigkeit über 38 m/Ω mm² als Werkstoff zur Herstellung von Gießwalzen und Gießrädern, die beim endabmessungsnahen Gießen einer wechselnden Temperaturbeanspruchung unterliegen.Use of a hardenable copper alloy made of 1.0 to 2.6% nickel, 0.1 to 0.45% beryllium, the rest copper including manufacturing-related impurities and usual processing additives, with a Brinell hardness of at least 200 HB and an electrical conductivity over 38 m / Ω mm² as a material for the production of casting rolls and casting wheels, which are subject to changing temperature stresses when casting is close to final dimensions. Verwendung einer aushärtbaren Kupferlegierung nach Anspruch 1, die außerdem noch 0,05 bis 0,25 % Zirkonium enthält, für den in Anspruch 1 genannten Zweck.Use of a hardenable copper alloy according to claim 1, which also contains 0.05 to 0.25% zirconium, for the purpose mentioned in claim 1. Verwendung einer aushärtbaren Kupferlegierung nach Anspruch 1 und 2, die 1,4 bis 2,2 % Nickel, 0,2 bis 0,35 % Beryllium, 0,15 bis 0,2 % Zirkonium, Rest Kupfer einschließlich herstellungsbedingter Verunreinigungen und üblicher Verarbeitungszusätze enthält, für den in Anspruch 1 genannten Zweck.Use of a hardenable copper alloy according to Claims 1 and 2, which contains 1.4 to 2.2% nickel, 0.2 to 0.35% beryllium, 0.15 to 0.2% zirconium, the rest copper including production-related impurities and conventional processing additives , for the purpose mentioned in claim 1. Verwendung einer aushärtbaren Kupferlegierung nach einem der Ansprüche 1 oder 3, bei der das Verhältnis von Nickel zu Beryllium (Ni/Be) bei einem Nickelgehalt oberhalb von 1,2 % mindestens 5 beträgt, für den in Anspruch 1 genannten Zweck.Use of a hardenable copper alloy according to one of claims 1 or 3, in which the ratio of nickel to beryllium (Ni / Be) at a nickel content above 1.2% is at least 5, for the purpose mentioned in claim 1. Verwendung einer aushärtbaren Kupferlegierung nach Anspruch 4, bei der das Verhältnis von Nickel zu Beryllium im Bereich von 5,5 bis 7,5 liegt, für den in Anspruch 1 genannten Zweck.Use of a hardenable copper alloy according to Claim 4, in which the ratio of nickel to beryllium is in the range from 5.5 to 7.5, for the purpose mentioned in Claim 1. Verwendung einer aushärtbaren Kupferlegierung nach mindestens einem der Ansprüche 1 bis 5, bei der der Nickelgehalt ganz oder teilweise durch Kobalt ersetzt ist, für den in Anspruch 1 genannten Zweck.Use of a hardenable copper alloy according to at least one of Claims 1 to 5, in which the nickel content is replaced in whole or in part by cobalt, for the purpose stated in Claim 1.
EP92120775A 1991-12-24 1992-12-05 Use of an hardenable copper alloy Expired - Lifetime EP0548636B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4142941A DE4142941A1 (en) 1991-12-24 1991-12-24 USE OF A CURABLE copper alloy
DE4142941 1991-12-24

Publications (2)

Publication Number Publication Date
EP0548636A1 true EP0548636A1 (en) 1993-06-30
EP0548636B1 EP0548636B1 (en) 1997-10-01

Family

ID=6448112

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92120775A Expired - Lifetime EP0548636B1 (en) 1991-12-24 1992-12-05 Use of an hardenable copper alloy

Country Status (21)

Country Link
US (1) US6083328A (en)
EP (1) EP0548636B1 (en)
JP (1) JP3504284B2 (en)
KR (1) KR100260058B1 (en)
CN (1) CN1031762C (en)
AT (1) ATE158822T1 (en)
AU (1) AU661529B2 (en)
BR (1) BR9205131A (en)
CA (1) CA2086063C (en)
CZ (1) CZ282842B6 (en)
DE (2) DE4142941A1 (en)
DK (1) DK0548636T3 (en)
ES (1) ES2109302T3 (en)
FI (1) FI97108C (en)
GR (1) GR3025195T3 (en)
MX (1) MX9206426A (en)
PL (1) PL170470B1 (en)
RU (1) RU2102515C1 (en)
SK (1) SK280704B6 (en)
TR (1) TR27606A (en)
ZA (1) ZA929480B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0702094A1 (en) * 1994-08-06 1996-03-20 KM Europa Metal Aktiengesellschaft Use of a hardenable copper alloy
US5651844A (en) * 1995-02-01 1997-07-29 Brush Wellman Inc. Metamorphic processing of alloys and products thereof
WO2001079574A1 (en) * 2000-04-14 2001-10-25 Sms Demag Aktiengesellschaft Use of a hardenable copper alloy for molds
FR2813159A1 (en) 2000-08-31 2002-03-01 Const Agricoles Etmetallurgiqu Seed selector for seed drill with rotating drum with columns of holes comprises two fixed rows of tapering rods mounted close to drum surface, rods in each row being mounted opposite sides of columns of holes
EP1314789A1 (en) * 2001-11-21 2003-05-28 KM Europa Metal Aktiengesellschaft Precipitation hardenable copper alloy for manufacturing moulds
EP1314495A2 (en) * 2001-11-21 2003-05-28 KM Europa Metal Aktiengesellschaft Sleeve for a casting roll of a twin roll continuous caster
EP1340564A2 (en) * 2002-02-15 2003-09-03 KM Europa Metal Aktiengesellschaft Hardenable copper alloy
EP1762630A1 (en) * 2005-09-09 2007-03-14 Ngk Insulators, Ltd. Beryllium nickel copper alloy and method of manufacturing the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10045251A1 (en) * 2000-09-13 2002-03-21 Sms Demag Ag Water-cooled furnace roller for conveying, for example, continuous casting workpieces through a roller hearth furnace
CN102191405B (en) * 2011-05-27 2013-03-27 马鞍山钢铁股份有限公司 Copper alloy applied to clamping and loading tools of strip steel welding equipment and its production method
RU2569286C1 (en) * 2014-07-01 2015-11-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Beryllium bronze and article made thereof
JP2021155837A (en) * 2020-03-30 2021-10-07 日本碍子株式会社 Beryllium copper alloy ring and manufacturing method thereof
CN115233032B (en) * 2022-08-01 2023-06-27 河南云锦空天特导新材料有限公司 Copper alloy wire and preparation method and application thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3196006A (en) * 1963-05-10 1965-07-20 Westinghouse Electric Corp Copper base alloys containing cobalt, beryllium, and zirconium
US4179314A (en) * 1978-12-11 1979-12-18 Kawecki Berylco Industries, Inc. Treatment of beryllium-copper alloy and articles made therefrom
US4377424A (en) * 1980-05-26 1983-03-22 Chuetsu Metal Works Co., Ltd. Mold of precipitation hardenable copper alloy for continuous casting mold
US4657601A (en) * 1983-11-10 1987-04-14 Brush Wellman Inc. Thermomechanical processing of beryllium-copper alloys
EP0271991B1 (en) * 1986-11-13 1991-10-02 Ngk Insulators, Ltd. Production of copper-beryllium alloys
JPH01165736A (en) * 1987-12-21 1989-06-29 Dowa Mining Co Ltd Copper alloy for terminal of wire harness and its manufacture
JPH02111835A (en) * 1988-10-20 1990-04-24 Chuetsu Gokin Chuko Kk Mold material for electromagnetic stirring
JPH083141B2 (en) * 1989-10-27 1996-01-17 日本碍子株式会社 Beryllium copper alloy member manufacturing method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, Band 107, 02. November 1987 Columbus, Ohio, USA K. KISHIDA et al. "Corrosion- -resistant copper alloys for high-strength castings", Seite 349, Spalte 1, Zusammenfassung-Nr. 159 751v & Jpn. Kokai Tokkyo Koho JP 62 37 333 (87 37 333) *
CHEMICAL ABSTRACTS, Band 108, 11. JÛnner 1988 Columbus, Ohio, USA S. ISHIKAWA et al. "High- -strength copper alloys and their processing", Seite 251, Spalte 1, Zusammenfassung-Nr. 10 096y & Jpn. Kokai Tokkyo Koho JP 62 199 743 (87 199 743) *
CHEMICAL ABSTRACTS, Band 96, 31. Mai 1982 Columbus, Ohio, USA NGK INSULATORS LTD "Beryllium-copper alloy sheet", Seite 320, Spalte 2, Zusammenfassung-Nr. 185 965s *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0702094A1 (en) * 1994-08-06 1996-03-20 KM Europa Metal Aktiengesellschaft Use of a hardenable copper alloy
US6565681B1 (en) 1994-08-06 2003-05-20 Km-Kabelmetal Aktiengesellschaft Age-hardenable copper alloy casting molds
US5651844A (en) * 1995-02-01 1997-07-29 Brush Wellman Inc. Metamorphic processing of alloys and products thereof
WO2001079574A1 (en) * 2000-04-14 2001-10-25 Sms Demag Aktiengesellschaft Use of a hardenable copper alloy for molds
FR2813159A1 (en) 2000-08-31 2002-03-01 Const Agricoles Etmetallurgiqu Seed selector for seed drill with rotating drum with columns of holes comprises two fixed rows of tapering rods mounted close to drum surface, rods in each row being mounted opposite sides of columns of holes
EP1314495A3 (en) * 2001-11-21 2003-12-10 KM Europa Metal Aktiengesellschaft Sleeve for a casting roll of a twin roll continuous caster
EP1314495A2 (en) * 2001-11-21 2003-05-28 KM Europa Metal Aktiengesellschaft Sleeve for a casting roll of a twin roll continuous caster
EP1314789A1 (en) * 2001-11-21 2003-05-28 KM Europa Metal Aktiengesellschaft Precipitation hardenable copper alloy for manufacturing moulds
AU2002302077B2 (en) * 2001-11-21 2008-10-02 Kme Germany Gmbh & Co. Kg Temperable Copper Alloy as Material for Producing Casting Moulds
NO337790B1 (en) * 2001-11-21 2016-06-20 Kme Germany Gmbh & Co Kg Casting mold made from a curable copper alloy
NO340437B1 (en) * 2001-11-21 2017-04-24 Kme Germany Gmbh & Co Kg Casting roll for a two-roll casting plant
EP1340564A2 (en) * 2002-02-15 2003-09-03 KM Europa Metal Aktiengesellschaft Hardenable copper alloy
EP1340564A3 (en) * 2002-02-15 2005-04-27 KM Europa Metal Aktiengesellschaft Hardenable copper alloy
KR100967864B1 (en) * 2002-02-15 2010-07-05 카엠이 저머니 아게 Age-hardenable copper alloy
EP1762630A1 (en) * 2005-09-09 2007-03-14 Ngk Insulators, Ltd. Beryllium nickel copper alloy and method of manufacturing the same
US7628873B2 (en) 2005-09-09 2009-12-08 Ngk Insulators, Ltd. Beryllium copper alloy and method of manufacturing beryllium copper alloy

Also Published As

Publication number Publication date
PL297032A1 (en) 1993-11-02
KR930013179A (en) 1993-07-21
CN1075755A (en) 1993-09-01
AU3037292A (en) 1993-07-01
CZ282842B6 (en) 1997-10-15
GR3025195T3 (en) 1998-02-27
CA2086063C (en) 1999-12-14
KR100260058B1 (en) 2000-07-01
RU2102515C1 (en) 1998-01-20
JPH05247565A (en) 1993-09-24
CA2086063A1 (en) 1993-06-25
SK369692A3 (en) 2000-06-12
US6083328A (en) 2000-07-04
SK280704B6 (en) 2000-06-12
BR9205131A (en) 1993-06-29
MX9206426A (en) 1993-06-01
JP3504284B2 (en) 2004-03-08
DE4142941A1 (en) 1993-07-01
CN1031762C (en) 1996-05-08
ATE158822T1 (en) 1997-10-15
FI925597A (en) 1993-06-25
FI97108B (en) 1996-07-15
ZA929480B (en) 1993-06-10
FI925597A0 (en) 1992-12-09
DE59208945D1 (en) 1997-11-06
PL170470B1 (en) 1996-12-31
DK0548636T3 (en) 1998-05-18
ES2109302T3 (en) 1998-01-16
TR27606A (en) 1995-06-13
EP0548636B1 (en) 1997-10-01
FI97108C (en) 1996-10-25
CZ369692A3 (en) 1993-07-14
AU661529B2 (en) 1995-07-27

Similar Documents

Publication Publication Date Title
EP1718778B1 (en) Material based on an aluminum alloy, method for the production thereof and its use
EP1888798B1 (en) Aluminium plain bearing alloy
EP0548636B1 (en) Use of an hardenable copper alloy
DE69213322T2 (en) Pre-alloyed vanadium-rich cold work tool steel particles and process for their production
EP2829624A1 (en) Aluminium material with improved precipitation hardening
EP2067871B1 (en) Aluminium strip for lithographic pressure plate carriers and its manufacture
EP1314789B1 (en) Mould made of a precipitation hardenable copper alloy
DE69118455T2 (en) Wear-resistant cast iron material for a work roll and compound roll
EP3444370A1 (en) Copper based alloy for the production of metallic solid glasses
DE2900334A1 (en) WEAR RESISTANT AND CORROSION RESISTANT STEEL WITH SUPERIOR ROLLING CONTACT ENERGY RESISTANCE AND A LOW CONTENT OF RETAINED AUSTENITE
EP1340564B1 (en) Use of a hardenable copper alloy
DE1921359A1 (en) Casting alloys
DE2421680A1 (en) NICKEL-COBALT-IRON CAST ALLOY WITH LOW COEFFICIENT OF EXTENSION AND HIGH YIELD LIMIT
DE2809561A1 (en) COPPER ALLOY WITH GOOD ELECTRICAL CONDUCTIVITY AND GOOD MECHANICAL PROPERTIES
DE69802742T2 (en) Tool for the formation of glass and a method for producing this tool
DE2948916C2 (en) Copper-tin alloy, process for their manufacture and use
EP0346645B1 (en) Use of an age-hardenable copper-based alloy
EP1255873B9 (en) Maraging type spring steel
DE3309365C1 (en) Use of a hardenable copper-nickel-manganese alloy as a material for the manufacture of spectacle parts
DE3525905C2 (en)
DE3875565T2 (en) WATER COOLED TURN ROLLER DEVICE FOR FAST SETTING UP.
EP3850116B1 (en) Use of a copper alloy
EP1314495B1 (en) Sleeve for a casting roll of a twin roll continuous caster
EP0702094A1 (en) Use of a hardenable copper alloy
EP1063310B1 (en) Use of a tin rich copper-tin-iron alloy

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

17P Request for examination filed

Effective date: 19931214

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KM EUROPA METAL AKTIENGESELLSCHAFT

17Q First examination report despatched

Effective date: 19960401

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

REF Corresponds to:

Ref document number: 158822

Country of ref document: AT

Date of ref document: 19971015

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59208945

Country of ref document: DE

Date of ref document: 19971106

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19971027

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATENTANWAELTE GEORG ROEMPLER UND ALDO ROEMPLER

ITF It: translation for a ep patent filed
ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2109302

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3025195

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 19971204

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: KME GERMANY AG

Free format text: KM EUROPA METAL AKTIENGESELLSCHAFT#POSTFACH 3320#D-49023 OSNABRUECK (DE) -TRANSFER TO- KME GERMANY AG#KLOSTERSTRASSE 29#49074 OSNABRUECK (DE)

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: ALDO ROEMPLER PATENTANWALT;BRENDENWEG 11 POSTFACH 154;9424 RHEINECK (CH)

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20101231

Year of fee payment: 19

Ref country code: DK

Payment date: 20101223

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20101228

Year of fee payment: 19

Ref country code: IT

Payment date: 20101222

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20111229

Year of fee payment: 20

Ref country code: FR

Payment date: 20120105

Year of fee payment: 20

Ref country code: CH

Payment date: 20111230

Year of fee payment: 20

Ref country code: PT

Payment date: 20111109

Year of fee payment: 20

Ref country code: LU

Payment date: 20111228

Year of fee payment: 20

Ref country code: IE

Payment date: 20111220

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120229

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120103

Year of fee payment: 20

Ref country code: BE

Payment date: 20120126

Year of fee payment: 20

Ref country code: SE

Payment date: 20111231

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59208945

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59208945

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20121205

Ref country code: PT

Ref legal event code: MM4A

Free format text: MAXIMUM VALIDITY LIMIT REACHED

Effective date: 20121205

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DK

Ref legal event code: EUP

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20121204

BE20 Be: patent expired

Owner name: *KM EUROPA METAL A.G.

Effective date: 20121205

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 158822

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121205

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20121204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20121212

REG Reference to a national code

Ref country code: GR

Ref legal event code: MA

Ref document number: 970402830

Country of ref document: GR

Effective date: 20121206

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120130

Year of fee payment: 20

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20130715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20121206

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20121205