EP3444370A1 - Copper based alloy for the production of metallic solid glasses - Google Patents
Copper based alloy for the production of metallic solid glasses Download PDFInfo
- Publication number
- EP3444370A1 EP3444370A1 EP17186878.9A EP17186878A EP3444370A1 EP 3444370 A1 EP3444370 A1 EP 3444370A1 EP 17186878 A EP17186878 A EP 17186878A EP 3444370 A1 EP3444370 A1 EP 3444370A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- alloy
- glass
- melt
- metallic
- alloys
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 76
- 239000000956 alloy Substances 0.000 title claims abstract description 76
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 239000011521 glass Substances 0.000 title claims description 15
- 239000007787 solid Substances 0.000 title claims description 13
- 229910052802 copper Inorganic materials 0.000 title claims description 12
- 239000010949 copper Substances 0.000 title description 25
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title description 2
- 239000000203 mixture Substances 0.000 claims abstract description 15
- 239000000155 melt Substances 0.000 claims description 16
- 229910052719 titanium Inorganic materials 0.000 claims description 13
- 229910052726 zirconium Inorganic materials 0.000 claims description 13
- 238000009757 thermoplastic moulding Methods 0.000 claims description 12
- 229910052759 nickel Inorganic materials 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 9
- 238000000889 atomisation Methods 0.000 claims description 8
- 239000001301 oxygen Substances 0.000 claims description 8
- 229910052760 oxygen Inorganic materials 0.000 claims description 8
- 229910052718 tin Inorganic materials 0.000 claims description 7
- 239000000654 additive Substances 0.000 claims description 6
- 230000000996 additive effect Effects 0.000 claims description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 22
- 239000005300 metallic glass Substances 0.000 description 16
- 238000002425 crystallisation Methods 0.000 description 11
- 230000008025 crystallization Effects 0.000 description 11
- 239000000843 powder Substances 0.000 description 8
- 238000001816 cooling Methods 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 238000007496 glass forming Methods 0.000 description 6
- 238000000113 differential scanning calorimetry Methods 0.000 description 5
- 230000009477 glass transition Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000005266 casting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 3
- 238000009689 gas atomisation Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- 230000008023 solidification Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052756 noble gas Inorganic materials 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 238000009690 centrifugal atomisation Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000010310 metallurgical process Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000013074 reference sample Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000005368 silicate glass Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
- C22C30/02—Alloys containing less than 50% by weight of each constituent containing copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D21/00—Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
- B22D21/02—Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
- B22D21/025—Casting heavy metals with high melting point, i.e. 1000 - 1600 degrees C, e.g. Co 1490 degrees C, Ni 1450 degrees C, Mn 1240 degrees C, Cu 1083 degrees C
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D25/00—Special casting characterised by the nature of the product
- B22D25/06—Special casting characterised by the nature of the product by its physical properties
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/11—Making amorphous alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
- C22C30/04—Alloys containing less than 50% by weight of each constituent containing tin or lead
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C45/00—Amorphous alloys
- C22C45/001—Amorphous alloys with Cu as the major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
Definitions
- Metallic glasses also called amorphous metals
- amorphous metals have very high strengths. Furthermore, they show no or only a very small change in volume during solidification, so that the possibility of shaping close to final shape without freezing shrinkage opens up.
- metallic glasses with a dimension of at least 1 mm x 1 mm x 1 mm can be produced with an alloy, these glasses are also referred to as solid metallic glasses or metallic solid glass (English: “Bulk Metallic Glasses” (“ BMG ”)).
- metallic glasses especially metallic solid glasses, very interesting construction materials, which are in principle suitable for the production of components in mass production processes such as injection molding, without further processing steps would be mandatory erformlich after molding.
- a measure of the glass-forming ability of an alloy is therefore, for example, the maximum or "critical" diameter up to which a specimen cast from the melt essentially still has an amorphous structure. This is also called critical casting thickness.
- Metallic glasses can not only be formed by melt-metallurgical processes, but can also be shaped by thermoplastic molding at comparatively low temperatures, analogous to thermoplastics or silicate glasses. For this purpose, the metallic glass is first heated above the glass transition point and then behaves like a highly viscous liquid that can be reshaped at relatively low forces. Following deformation, the material is again cooled below the glass transition temperature.
- a metallic glass may, at least temporarily, be exposed to an elevated temperature, which may even be above the glass formation temperature T g .
- the thermoplastic molding also involves heating the metallic glass to a temperature above the gas formation temperature T g .
- the higher this ⁇ T x value the greater the "temperature window" for thermoplastic molding and the lower the risk of unwanted crystallization when the metallic glass is temporarily exposed to a temperature above T g .
- Improved melt-forming ability of an alloy upon cooling from the melt does not automatically result in improved heat resistance (ie, a higher ⁇ T x value) of the metallic glass made from this alloy.
- ⁇ T x value improved heat resistance
- These are usually independent parameters that may even behave in opposite directions.
- care must also be taken that this does not occur at the expense of the glass-forming ability on cooling from the melt.
- the alloys most commonly used today for the production of metallic glasses are Zr-based alloys.
- a disadvantage of these alloys is the rather high material price for zirconium.
- US 5,618,359 describes Zr and Cu based alloys for the production of metallic glasses.
- the alloys contain at least 4 alloying elements.
- One of the Cu-based alloys has the composition Cu 45 Ti 33.8 Zr 11.3 Ni 10 and can be cast to an amorphous specimen having a thickness of 4 mm.
- US 2006/0231169 A1 describes alloys for the production of metallic glasses, which may be Cu based, among others.
- the alloy produced in Example 3 has the composition Cu 47 Ti 33 Zr 7 Ni 8 Si 1 Nb 4 . Starting from the alloy Cu 47 Ti 34 Zr 11 Ni 8 , Ti was substituted by Si and Zr by Nb.
- the alloy prepared in Comparative Example 3 has the composition Cu 47 Ti 33 Zr 11 Ni 8 Si 1 .
- An object of the present invention is to provide an alloy having as high a ⁇ Tx value as possible (ie, a wide temperature window for thermoplastic molding), but not at the expense of glass forming capability, and which is inexpensive to produce.
- the improved thermal stability should not adversely affect other relevant properties such as hardness.
- alloys with the above-defined composition have high ⁇ T x values and thus improved heat resistance with a still good glass-forming capability.
- the alloys according to the invention are thus very well suited eg for thermoplastic molding.
- Si when present in the alloy, its concentration is at most 2 at% (e.g., 0.5 at% ⁇ Si ⁇ 2 at%), provided that the total concentration of Sn and Si is at most 4 at%.
- the values for a and b define the atomic ratio of Ti to Zr.
- the alloy according to the invention contains oxygen, it is present in a concentration of at most 1.7 at%, for example 0.01-1.7 at% or 0.02-1.0 at%.
- the proportion of unavoidable impurities in the alloy is preferably less than 0.5 at%, more preferably less than 0.1 at%, even more preferably less than 0.05 at% or even less than 0.01 at%.
- the composition of the alloy can be determined by inductively coupled plasma optical emission spectrometry (ICP-OEC).
- the glass transition temperature T g and the crystallization temperature T x are determined by DSC (Differential Scanning Calorimetry). In each case the onset temperature is used. The cooling and heating rates are 20 ° C / min. The DSC measurement is carried out under an argon atmosphere in an alumina crucible.
- the alloy is an amorphous alloy.
- the alloy of the invention has a crystallinity of less than 50%, more preferably less than 25%, or is even completely amorphous.
- a completely amorphous material shows no diffraction reflections in X-ray diffraction.
- the crystalline fraction is determined by DSC as a ratio of maximum crystallization enthalpy (determined by crystallization of a fully amorphous reference sample) and the actual enthalpy of crystallization in the sample.
- the invention further relates to a method for producing the alloy described above, wherein the alloy is obtained from a melt containing Cu, Ti, Zr, Ni, Sn and optionally Si.
- the melt is preferably kept under an inert gas atmosphere (e.g., a noble gas atmosphere).
- an inert gas atmosphere e.g., a noble gas atmosphere
- the constituents of the alloy may each be incorporated into the melt in their elemental form (e.g., elemental Cu, etc.). Alternatively, it is also possible that two or more of these metals are pre-alloyed in a starting alloy and then this starting alloy is introduced into the melt.
- the alloy By cooling and solidification of the melt, the alloy is obtained as a solid or solid.
- the melt can, for example, be poured into a mold or subjected to atomization.
- the alloy can be obtained in the form of a powder whose particles have a substantially spherical shape.
- Suitable atomization methods are known to the person skilled in the art, for example gas atomization (for example using nitrogen or a noble gas such as argon or helium as atomizing gas), plasma atomization, centrifugal atomization or atomized atomization (eg a "rotating electrode” process (REP). designated method, in particular a "Plasma Rotating Electrode” process (PREP)).
- EIGA Electrode Induction Melting Gas Atomization
- inductive melting of the starting material and then gas atomization.
- the powder obtained via the atomization can then be used in an additive manufacturing process or subjected to a thermoplastic molding.
- the present invention relates to a metallic solid glass containing or even consisting of the alloy described above.
- the metallic solid glass preferably has a dimension of at least 1 mm ⁇ 1 mm ⁇ 1 mm.
- the metallic solid glass has a crystallinity of less than 50%, more preferably less than 25%, or is even completely amorphous.
- the preparation of the metallic solid glass can be carried out by methods which are known to the person skilled in the art.
- the alloy described above is subjected to additive manufacturing or thermoplastic molding or cast as a melt into a mold.
- the alloy may be used in the form of a powder (for example, a powder obtained via atomization).
- Additive manufacturing refers to a process in which a component is built up layer by layer on the basis of digital 3D design data by depositing material. Usually, a thin layer of the powder is first applied to the build platform. Over a sufficiently high energy input, for example in the form of a laser or electron beam, the powder is at least partially melted at the locations that specify the computer-generated design data. Thereafter, the building platform is lowered and there is another powder application.
- a sufficiently high energy input for example in the form of a laser or electron beam
- the further powder layer is at least partially melted again and combines at the defined locations with the underlying layer. These steps are repeated until the component is in its final form.
- thermoplastic molding is usually carried out at a temperature which is between T g and T x of the alloy.
- Inventive alloys E1-E8 were prepared, the respective composition of which is given in Table 1 below. In the comparative examples, the production of the alloys CE1-CE5 was carried out.
- the ⁇ T x value (ie the distance between crystallization temperature T x and glass formation temperature T g ) and the critical casting thickness D c of the alloys are given in Table 1.
- the determination of the glass transition temperature T g and the crystallization temperature T x was carried out by DSC on the basis of the onset temperatures and with cooling and heating rates of 20 ° C / min.
- the alloys were produced in an electric arc furnace made of pure elements by melting and melting to form a compact body, which was melted again and poured into a Cu mold.
- Table 1 Composition of the alloys and their ⁇ T ⁇ sub> x ⁇ / sub> and D ⁇ c> values Cu [at%] Ti [at%] Zr [at%] Ni [at%] Sn [at%] Si [at%] ⁇ T x [° C] Dc [mm]
- the alloy of Comparative Example CE1 has the composition Cu 47 Ti 34 Zr 11 Ni 8 . If a small amount of copper is substituted by Sn, there is a significant increase in the ⁇ T x value and also the D c value increases very clearly, see Example E1. Even with a change in the relative proportions of Ti and Zr, this improvement in the ⁇ T x value compared to the starting alloy, see Examples E2 and E3.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Powder Metallurgy (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
Die vorliegende Erfindung betrifft eine Legierung, die folgende Zusammensetzung aufweist: Cu 47at%-(x+y+z) (Ti a Zr b ) c Ni 7at%+x Sn 1at%+y Si z wobei c = 43 - 47 at%, a = 0.65-0.85, b=0.15-0.35, wobei a+b=1.00; x = 0-7 at%; y = 0-3 at%, z = 0-3 at%, wobei y+z ¤ 4 at%.The present invention relates to an alloy which has the following composition: €ƒ€ƒ€ƒ€ƒ€ƒ€ƒ€ƒ€ƒ Cu 47at%-(x+y+z) (Ti a Zr b ) c Ni 7at%+x Sn 1at%+y Si z whereby c = 43 - 47 at%, a = 0.65-0.85, b=0.15-0.35, where a+b=1.00; x = 0-7 at%; y = 0-3 at%, z = 0-3 at%, where y+z ‰¤ 4 at%.
Description
Metallische Gläser (auch als amorphe Metalle bezeichnet) weisen sehr hohe Festigkeiten auf. Weiterhin zeigen sie bei der Erstarrung keine oder nur eine sehr geringe Volumenänderung, so dass sich die Möglichkeit einer endformnahen Formgebung ohne Erstarrungsschwindung eröffnet.Metallic glasses (also called amorphous metals) have very high strengths. Furthermore, they show no or only a very small change in volume during solidification, so that the possibility of shaping close to final shape without freezing shrinkage opens up.
Lassen sich mit einer Legierung metallische Gläser mit einer Abmessung von mindestens 1 mm x 1 mm x 1mm herstellen, so werden diese Gläser auch als massive metallische Gläser bzw. metallische Massivgläser bezeichnet (englisch: "Bulk Metallic Glasses" ("BMG")).If metallic glasses with a dimension of at least 1 mm x 1 mm x 1 mm can be produced with an alloy, these glasses are also referred to as solid metallic glasses or metallic solid glass (English: "Bulk Metallic Glasses" (" BMG ")).
Aufgrund ihrer vorteilhaften Eigenschaften wie z.B. einer hohen Festigkeit und dem Ausbleiben einer Erstarrungsschwindung sind metallische Gläser, insbesondere metallische Massivgläser, sehr interessante Konstruktionswerkstoffe, die sich prinzipiell für die Herstellung von Bauteilen in Serienfertigungsverfahren wie dem Spritzguss eignen, ohne dass weitere Bearbeitungsschritte nach erfolgter Formgebung zwingend erfoderlich wären.Due to their advantageous properties, e.g. A high strength and the absence of a solidification shrinkage are metallic glasses, especially metallic solid glasses, very interesting construction materials, which are in principle suitable for the production of components in mass production processes such as injection molding, without further processing steps would be mandatory erformlich after molding.
Um beim Abkühlen aus der Schmelze eine Kristallisation der Legierung zu verhindern, muss eine kritische Abkühlgeschwindigkeit überschritten werden. Je größer jedoch das Volumen der Schmelze ist, desto langsamer (bei ansonsten unveränderten Bedingungen) kühlt die Schmelze ab. Wird eine bestimmte Probendicke überschritten, kommt es zu einer Kristallisation, bevor die Legierung amorph erstarren kann.To prevent crystallization of the alloy during cooling from the melt, a critical cooling rate must be exceeded. However, the larger the volume of the melt, the slower (with otherwise unchanged conditions) the melt cools down. Becomes a specific one Sample thickness exceeded, it comes to a crystallization before the alloy can solidify amorphous.
Ein Maß für die Glasbildungsfähigkeit einer Legierung ist daher beispielsweise der maximale bzw. "kritische" Durchmesser, bis zu dem ein aus der Schmelze gegossener Probenkörper im Wesentlichen noch eine amorphe Struktur aufweist. Dies wird auch als kritische Abgussdicke bezeichnet. Je größer der Durchmesser des noch amorph erstarrenden Probenkörpers, desto größer ist die Glasbildungsfähigkeit der Legierung.A measure of the glass-forming ability of an alloy is therefore, for example, the maximum or "critical" diameter up to which a specimen cast from the melt essentially still has an amorphous structure. This is also called critical casting thickness. The larger the diameter of the still amorphous solidifying sample body, the greater the glass forming ability of the alloy.
Neben den hervorragenden mechanischen Eigenschaften metallischer Gläser ergeben sich aus dem Glaszustand auch einzigartige Prozessierungsmöglichkeiten. So lassen sich metallische Gläser nicht nur durch schmelzmetallurgische Verfahren formen, sondern auch über ein thermoplastisches Formen bei vergleichsweise niedrigen Temperaturen analog zu thermoplastischen Kunststoffen oder Silikatgläsern formgebend verarbeiten. Hierzu wird das metallische Glas zunächst über den Glasübergangspunkt erwärmt und verhält sich dann wie eine hochviskose Flüssigkeit, die bei relativ niedrigen Kräften umgeformt werden kann. Im Anschluss an die Verformung wird das Material wieder unter die Glasübergangtemperatur abgekühlt.In addition to the excellent mechanical properties of metallic glasses, glass processing also provides unique processing options. Metallic glasses can not only be formed by melt-metallurgical processes, but can also be shaped by thermoplastic molding at comparatively low temperatures, analogous to thermoplastics or silicate glasses. For this purpose, the metallic glass is first heated above the glass transition point and then behaves like a highly viscous liquid that can be reshaped at relatively low forces. Following deformation, the material is again cooled below the glass transition temperature.
Ein metallisches Glas kann in Abhängigkeit von der Anwendung zumindest zeitweilig einer erhöhten Temperatur ausgesetzt sein, die unter Umständen sogar oberhalb der Glasbildungstemperatur Tg liegt. Wie oben bereits erwähnt, beinhaltet auch das thermoplastische Formen eine Erwärmung des metallischen Glases auf eine Temperatur oberhalb der Gasbildungstemperatur Tg. In diesen Fällen ist erwünscht, dass ein möglichst großer Abstand zwischen Glasbildungstemperatur Tg und Kristallisationstemperatur Tx (d.h. ein möglichst hoher Wert für ΔTx=Tx-Tg) vorliegt. Je höher dieser ΔTx-Wert, umso größer ist beispielsweise das "Temperaturfenster" für das thermoplastische Formen und umso geringer ist das Risiko einer unerwünschten Kristallisation, wenn das metallische Glas zeitweilig einer Temperatur oberhalb von Tg ausgesetzt ist.Depending on the application, a metallic glass may, at least temporarily, be exposed to an elevated temperature, which may even be above the glass formation temperature T g . As already mentioned above, the thermoplastic molding also involves heating the metallic glass to a temperature above the gas formation temperature T g . In these cases, it is desirable to have the greatest possible distance between the glass formation temperature T g and the crystallization temperature T x (ie the highest possible value for ΔT x = T x -T g ). For example, the higher this ΔT x value, the greater the "temperature window" for thermoplastic molding and the lower the risk of unwanted crystallization when the metallic glass is temporarily exposed to a temperature above T g .
Eine verbesserte Glasbildungsfähigkeit einer Legierung beim Abkühlen aus der Schmelze führt nicht automatisch zu einer verbesserten Wärmebeständigkeit (d.h. einem höheren ΔTx-Wert) des aus dieser Legierung bestehenden metallischen Glases. Es handelt sich üblicherweise um voneinander unabhängige Parameter, die sich sogar gegenläufig verhalten können. Wenn also beabsichtigt ist, eine Legierung mit möglichst hohem ΔTx-Wert bereit zu stellen, muss auch darauf geachtet werden, dass dies nicht auf Kosten der Glasbildungsfähigkeit beim Abkühlen aus der Schmelze erfolgt.Improved melt-forming ability of an alloy upon cooling from the melt does not automatically result in improved heat resistance (ie, a higher ΔT x value) of the metallic glass made from this alloy. These are usually independent parameters that may even behave in opposite directions. Thus, if it is intended to provide an alloy with as high a ΔT x value as possible, care must also be taken that this does not occur at the expense of the glass-forming ability on cooling from the melt.
Es sind inzwischen viele Legierungssysteme wie z.B. Edelmetall-, Zr-, Cu- oder Febasierte Legierungen bekannt, die metallische Gläser bilden können. Eine Übersicht findet sich z.B. bei
Die derzeit am häufigsten für die Herstellung metallischer Gläser verwendeten Legierungen sind Zr-basierte Legierungen. Nachteilig an diesen Legierungen ist der recht hohe Materialpreis für Zirconium.The alloys most commonly used today for the production of metallic glasses are Zr-based alloys. A disadvantage of these alloys is the rather high material price for zirconium.
Eine Augabe der vorliegenden Erfindung liegt in der Bereitstellung einer Legierung, die einen möglichst hohen ΔTx-Wert (d.h. ein breites Temperaturfenster für das thermoplastische Formen) aufweist, dies jedoch nicht auf Kosten der Glasbildungsfähigkeit erzielt, und die kostengünstig herstellbar ist. Bevorzugt sollte die verbesserte Wärmebestandigkeit auch andere relevante Eigenschaften wie die Härte nicht nachteilig beeinflussen.An object of the present invention is to provide an alloy having as high a ΔTx value as possible (ie, a wide temperature window for thermoplastic molding), but not at the expense of glass forming capability, and which is inexpensive to produce. Preferably, the improved thermal stability should not adversely affect other relevant properties such as hardness.
Gelöst wird die Aufgabe durch eine Legierung, die folgende Zusammensetzung aufweist:
Cu47at%-(x+y+z)(TiaZrb)cNi7at%+xSn1at%+ySiz
wobei
- c = 43 - 47 at%, a = 0.65-0.85, b=0.15-0.35, wobei a+b=1.00;
- x = 0-7 at%;
- y = 0-3 at%, z = 0-3 at%, wobei y+z ≤ 4 at%;
Cu 47at% - (x + y + z) (Ti a Zr b ) c Ni 7at% + x Sn 1at% + y Si z
in which
- c = 43-47 at%, a = 0.65-0.85, b = 0.15-0.35, where a + b = 1.00;
- x = 0-7 at%;
- y = 0-3 at%, z = 0-3 at%, where y + z ≤ 4 at%;
Im Rahmen der vorliegenden Erfindung wurde erkannt, dass Legierungen mit der oben definierten Zusammensetzung hohe ΔTx-Werte und somit eine verbesserte Wärmebeständigkeit bei nach wie vor guter Glasbildungsfähigkeit aufweisen. Die erfindungsgemäßen Legierungen sind also z.B. sehr gut für ein thermoplastisches Formen geeignet.In the context of the present invention, it has been recognized that alloys with the above-defined composition have high ΔT x values and thus improved heat resistance with a still good glass-forming capability. The alloys according to the invention are thus very well suited eg for thermoplastic molding.
Bevorzugt sind y = 0-2 at% und z = 0-2 at%. Wenn also Si in der Legierung vorliegt, beträgt dessen Konzentration maximal 2 at% (z.B. 0,5 at% ≤ Si ≤ 2 at%), unter der Maßgabe, dass die Gesamtkonzentration an Sn und Si maximal 4 at% beträgt.Preferably, y = 0-2 at% and z = 0-2 at%. Thus, when Si is present in the alloy, its concentration is at most 2 at% (e.g., 0.5 at% ≦ Si ≦ 2 at%), provided that the total concentration of Sn and Si is at most 4 at%.
In einer bevorzugten Ausführungsform sind x = 5-7 at% und y+z ≤ 4. Besonders bevorzugt sind x = 5-7 at%, y = 0-2 at% und z = 0 at%; oder x = 5-7 at%, y = 0-2 at% und 0 < z ≤ 2 at% (bevorzugter 0,5 < z ≤ 2 at%).In a preferred embodiment, x = 5-7 at% and y + z ≦ 4. Particularly preferred are x = 5-7 at%, y = 0-2 at% and z = 0 at%; or x = 5-7 at%, y = 0-2 at% and 0 <z ≦ 2 at% (more preferably 0.5 <z ≦ 2 at%).
Alternativ kann es auch bevorzugt sein, dass x = 0 - <5 at% (bevorzugter x = 0-3 at%), y = 0-2 at% und z = 0 at%; oder x = 0 - <5 at% (bevorzugter x = 0-3 at%), y = 0-2 at% und 0 < z ≤ 2 at% (bevorzugter 0,5 < z ≤ 2 at%) sind, wobei in beiden Fällen bevorzugt gilt, dass y+z ≤ 4.Alternatively, it may also be preferred that x = 0 - <5 at% (more preferably x = 0-3 at%), y = 0-2 at% and z = 0 at%; or x = 0 - <5 at% (more preferably x = 0-3 at%), y = 0-2 at% and 0 <z ≦ 2 at% (more preferably 0.5 <z ≦ 2 at%), wherein in both cases it is preferred that y + z ≤ 4.
Bevorzugt sind a = 0.70-0.80 und b=0.20-0.30. Mit den Werten für a und b wird das atomare Verhältnis von Ti zu Zr definiert.Preferably, a = 0.70-0.80 and b = 0.20-0.30. The values for a and b define the atomic ratio of Ti to Zr.
Sofern die erfindungsgemäße Legierung Sauerstoff enthält, liegt dieser in einer Konzentration von maximal 1,7 at% vor, beispielsweise 0,01-1,7 at% oder 0,02-1,0 at%.If the alloy according to the invention contains oxygen, it is present in a concentration of at most 1.7 at%, for example 0.01-1.7 at% or 0.02-1.0 at%.
Der Anteil unvermeidlicher Verunreinigungen in der Legierung beträgt bevorzugt weniger als 0,5 at%, bevorzugter weniger als 0,1 at%, noch bevorzugter weniger als 0,05 at% oder sogar weniger als 0,01 at%.The proportion of unavoidable impurities in the alloy is preferably less than 0.5 at%, more preferably less than 0.1 at%, even more preferably less than 0.05 at% or even less than 0.01 at%.
In einer beispielhaften Ausführungsform weist die erfindungsgemäße Legierung folgende Zusammensetzung auf:
- 42-46 at% Cu;
- 28-40 at% Ti, bevorzugter 30 - 38 at% Ti, und 7-15 at% Zr, wobei Ti und Zr gemeinsam in einer Konzentration im Bereich von 43-47 at% vorliegen;
- 7-11 at% Ni (bevorzugter 7-9 at% Ni),
- 1-3 at% Sn und optional ≤ 2 at%Si (z.B. 0,5 at% ≤ Si ≤ 2 at%), wobei, sofern Si vorhanden ist, die Gesamtkonzentration von Sn + Si maximal 4 at% beträgt,
- 42-46 at% Cu;
- 28-40 at% Ti, more preferably 30-38 at% Ti, and 7-15 at% Zr, wherein Ti and Zr are present together at a concentration in the range of 43-47at%;
- 7-11 at% Ni (more preferably 7-9 at% Ni),
- 1-3 at% Sn and optionally ≤ 2 at% Si (eg 0.5 at% ≤ Si ≤ 2 at%), where, if Si is present, the total concentration of Sn + Si is at most 4 at%,
In einer weiteren beispielhaften Ausführungsform weist die erfindungsgemäße Legierung folgende Zusammensetzung auf:
- 36-42 at% Cu, bevorzugter 37-41 at% Cu;
- 28-40 at% Ti, bevorzugter 30 - 38 at% Ti, und 7-15 at% Zr, wobei Ti und Zr gemeinsam in einer Konzentration im Bereich von 43-47 at% vorliegen;
- 11-15 at% Ni,
- 1-3 at% Sn und optional ≤ 2 at%Si (z.B. 0,5 at% ≤ Si < 2 at%), wobei, sofern Si vorhanden ist, die Gesamtkonzentration von Sn + Si maximal 4 at% beträgt,
- 36-42 at% Cu, more preferably 37-41 at% Cu;
- 28-40 at% Ti, more preferably 30-38 at% Ti, and 7-15 at% Zr, wherein Ti and Zr are present together at a concentration in the range of 43-47at%;
- 11-15 at% Ni,
- 1-3 at% Sn and optionally ≤ 2 at% Si (eg 0.5 at% ≤ Si <2 at%), where, if Si is present, the total concentration of Sn + Si is at most 4 at%,
Die Zusammensetzung der Legierung kann durch optische Emissionsspektrometrie mittels induktiv gekoppeltem Plasma (ICP-OEC) bestimmt werden.The composition of the alloy can be determined by inductively coupled plasma optical emission spectrometry (ICP-OEC).
Bevorzugt weist die erfindungsgemäße Legierung eine Kristallisationstemperatur Tx und eine Glasübergangstemperatur Tg auf, die der folgenden Bedingung genügen:
Die Glasübergangstemperatur Tg und die Kristallisationstemperatur Tx werden durch DSC (dynamische Differenzkalorimetrie) bestimmt. Es wird jeweils die Onset-Temperatur herangezogen. Die Abkühl- und Aufheizgeschwindigkeiten betragen 20 °C/min. Die DSC-Messung erfolgt unter Argonatmosphäre in einem Aluminiumoxidtiegel.The glass transition temperature T g and the crystallization temperature T x are determined by DSC (Differential Scanning Calorimetry). In each case the onset temperature is used. The cooling and heating rates are 20 ° C / min. The DSC measurement is carried out under an argon atmosphere in an alumina crucible.
Bevorzugt ist die Legierung eine amorphe Legierung. In einer bevorzugten Ausführungsform weist die erfindungsgemäße Legierung eine Kristallinität von weniger als 50%, bevorzugter weniger als 25% auf oder ist sogar vollständig amorph. Ein vollständig amorphes Material zeigt bei einer Röntgenbeugung keine Beugungsreflexe.
Der kristalline Anteil wird bestimmt über DSC als ein Verhältnis von maximaler Kristallisationsenthalpie (bestimmt durch Kristallisation einer vollständig amorphen Referenzprobe) und der tatsächlichen Kristallisationsenthalpie in der Probe.Preferably, the alloy is an amorphous alloy. In a preferred embodiment, the alloy of the invention has a crystallinity of less than 50%, more preferably less than 25%, or is even completely amorphous. A completely amorphous material shows no diffraction reflections in X-ray diffraction.
The crystalline fraction is determined by DSC as a ratio of maximum crystallization enthalpy (determined by crystallization of a fully amorphous reference sample) and the actual enthalpy of crystallization in the sample.
Die Erfindung betrifft weiterhin ein Verfahren zur Herstellung der oben beschriebenen Legierung, wobei die Legierung aus einer Schmelze, die Cu, Ti, Zr, Ni, Sn und optional Si enthält, erhalten wird.The invention further relates to a method for producing the alloy described above, wherein the alloy is obtained from a melt containing Cu, Ti, Zr, Ni, Sn and optionally Si.
Die Schmelze wird bevorzugt unter einer inerten Gasatmosphäre (z.B. einer Edelgasatmosphäre) gehalten.The melt is preferably kept under an inert gas atmosphere (e.g., a noble gas atmosphere).
Die Bestandteile der Legierung können jeweils in ihrer elementaren Form (z.B. elementares Cu etc.) in die Schmelze eingebracht werden. Alternativ ist es auch möglich, dass zwei oder mehr dieser Metalle in einer Ausgangslegierung vorlegiert werden und diese Ausgangslegierung dann in die Schmelze eingebracht wird.The constituents of the alloy may each be incorporated into the melt in their elemental form (e.g., elemental Cu, etc.). Alternatively, it is also possible that two or more of these metals are pre-alloyed in a starting alloy and then this starting alloy is introduced into the melt.
Durch Abkühlen und Erstarren der Schmelze erhält man die Legierung als Feststoff bzw. Festkörper.By cooling and solidification of the melt, the alloy is obtained as a solid or solid.
Die Schmelze kann beispielsweise in eine Form gegossen oder einer Verdüsung unterzogen werden. Über eine Verdüsung kann die Legierung in Form eines Pulvers, dessen Partikel im Wesentlichen eine sphärische Form aufweisen, erhalten werden. Geeignete Verdüsungsverfahren sind dem Fachmann bekannt, beispielsweise eine Gasverdüsung (z.B. unter Verwendung von Stickstoff oder einem Edelgas wie Argon oder Helium als Verdüsungsgas), eine Plasmaverdüsung, eine Zentrifugalverdüsung oder eine tiegellosen Verdüsung (z.B. einem als "Rotating-Electrode"-Prozess (REP) bezeichneten Verfahren, insbesondere ein "Plasma-Rotating-Electrode"-Prozess (PREP)). Ein weiteres beispielhaftes Verfahren ist das EIGA-Verfahren ("Electrode Induction-Melting Gas Atomisation"), induktives Aufschmelzen des Ausgangsmaterials und anschließend Gasverdüsung. Das über die Verdüsung erhaltene Pulver kann anschließend in einem additiven Fertigungsverfahren eingesetzt oder auch einem thermoplastischen Formen unterzogen werden.The melt can, for example, be poured into a mold or subjected to atomization. By atomization, the alloy can be obtained in the form of a powder whose particles have a substantially spherical shape. Suitable atomization methods are known to the person skilled in the art, for example gas atomization (for example using nitrogen or a noble gas such as argon or helium as atomizing gas), plasma atomization, centrifugal atomization or atomized atomization (eg a "rotating electrode" process (REP). designated method, in particular a "Plasma Rotating Electrode" process (PREP)). Another exemplary method is the EIGA method ("Electrode Induction Melting Gas Atomization"), inductive melting of the starting material and then gas atomization. The powder obtained via the atomization can then be used in an additive manufacturing process or subjected to a thermoplastic molding.
Aufgrund der sehr guten Glasbildungsfähigkeit der erfindungsgemäßen Legierung kann diese ohne weiteres in Form einer amorphen Legierung erhalten werden.Due to the very good glass-forming ability of the alloy according to the invention, this can readily be obtained in the form of an amorphous alloy.
Weiterhin betrifft die vorliegende Erfindung ein metallisches Massivglas, das die oben beschriebene Legierung enthält oder sogar aus dieser besteht.Furthermore, the present invention relates to a metallic solid glass containing or even consisting of the alloy described above.
Bevorzugt weist das metallische Massivglas eine Abmessung von mindestens 1 mm x 1mm x 1mm auf.The metallic solid glass preferably has a dimension of at least 1 mm × 1 mm × 1 mm.
Bevorzugt weist das metallische Massivglas eine Kristallinität von weniger als 50%, bevorzugter weniger als 25% auf oder ist sogar vollständig amorph.Preferably, the metallic solid glass has a crystallinity of less than 50%, more preferably less than 25%, or is even completely amorphous.
Die Herstellung des metallischen Massivglases kann über Verfahren erfolgen, die dem Fachmann bekannt sind. Beispielsweise wird die oben beschriebene Legierung einem additiven Fertigungsverfahren oder einem thermoplastischen Formen unterzogen oder als Schmelze in eine Form gegossen.The preparation of the metallic solid glass can be carried out by methods which are known to the person skilled in the art. For example, the alloy described above is subjected to additive manufacturing or thermoplastic molding or cast as a melt into a mold.
Für das additive Fertigungsverfahren oder das thermoplastische Formen kann die Legierung beispielsweise in Form eines Pulvers (z.B. ein über eine Verdüsung erhaltenes Pulver) eingesetzt werden.For the additive manufacturing method or the thermoplastic molding, for example, the alloy may be used in the form of a powder (for example, a powder obtained via atomization).
Über additive Fertigungsverfahren lassen sich Bauteile mit komplexer dreidimensionaler Geometrie direkt herstellen. Die Additive Fertigung bezeichnet einen Prozess, bei dem auf der Basis von digitalen 3D-Konstruktionsdaten durch das Ablagern von Material schichtweise ein Bauteil aufgebaut wird. Üblicherweise wird dabei zunächst eine dünne Schicht des Pulvers auf die Bauplattform aufgetragen. Über einen ausreichend hohen Energieeintrag, beispielsweise in Form eines Laser- oder Elektronenstrahls, wird das Pulver an den Stellen zumindest teilweise aufgeschmolzen, die die Computer-generierten Konstruktionsdaten vorgeben. Danach wird die Bauplattform abgesenkt und es erfolgt ein weiterer Pulverauftrag.Using additive manufacturing processes, components with complex three-dimensional geometry can be produced directly. Additive manufacturing refers to a process in which a component is built up layer by layer on the basis of digital 3D design data by depositing material. Usually, a thin layer of the powder is first applied to the build platform. Over a sufficiently high energy input, for example in the form of a laser or electron beam, the powder is at least partially melted at the locations that specify the computer-generated design data. Thereafter, the building platform is lowered and there is another powder application.
Die weitere Pulverschicht wird erneut zumindest teilweise aufgeschmolzen und verbindet sich an den definierten Stellen mit der darunterliegenden Schicht. Diese Schritte werden so häufig wiederholt, bis das Bauteil in seiner finalen Form vorliegt.The further powder layer is at least partially melted again and combines at the defined locations with the underlying layer. These steps are repeated until the component is in its final form.
Das thermoplastische Formen erfolgt üblicherweise bei einer Temperatur, die zwischen Tg und Tx der Legierung liegt.The thermoplastic molding is usually carried out at a temperature which is between T g and T x of the alloy.
Die Erfindung wird anhand der nachfolgenden Beispiele eingehender erläutert.The invention will be explained in more detail with reference to the following examples.
Es wurden erfindungsgemäße Legierungen E1-E8 hergestellt, deren jeweilige Zusammensetzung in der nachfolgenden Tabelle 1 angegeben ist. In den Vergleichsbeispielen erfolgte die Herstellung der Legierungen CE1-CE5.Inventive alloys E1-E8 were prepared, the respective composition of which is given in Table 1 below. In the comparative examples, the production of the alloys CE1-CE5 was carried out.
Die Herstellungsbedingungen waren in allen Beispielen identisch, lediglich die Zusammensetzung wurde variiert.The production conditions were identical in all examples, only the composition was varied.
Die ΔTx-Wert (also der Abstand zwischen Kristallisationstemperatur Tx und Glasbildungstemperatur Tg) sowie die kritische Abgussdicke Dc der Legierungen sind in Tabelle 1 angegeben.The ΔT x value (ie the distance between crystallization temperature T x and glass formation temperature T g ) and the critical casting thickness D c of the alloys are given in Table 1.
Wie oben bereits erwähnt, erfolgte die Bestimmung der Glasübergangstemperatur Tg sowie der Kristallisationstemperatur Tx durch DSC auf Basis der Onset-Temperaturen und mit Abkühl- und Aufheizgeschwindigkeiten von 20 °C/min.As already mentioned above, the determination of the glass transition temperature T g and the crystallization temperature T x was carried out by DSC on the basis of the onset temperatures and with cooling and heating rates of 20 ° C / min.
Die kritische Abgussdicke Dc wurde folgendermaßen bestimmt:
- Es wird ein Zylinder 50mm Länge und einem bestimmten Durchmesser gegossen. Die Bestimmung von Dc erfolgt durch Trennen der Probe in etwas 10-15mm von der Angussstelle entfern (um die Wärmeeinflusszone auszuschließen) und XRD Messung an der Trennstelle über den gesamten Querschnitt.
- It will cast a cylinder 50mm in length and a certain diameter. The determination of D c is carried out by separating the sample in about 10-15mm from the Remove the gate (to exclude the heat affected zone) and XRD measurement at the point of separation over the entire cross section.
Die Herstellung der Legierungen erfolgte in einem Lichtbogenofen aus reinen Elementen durch Ein- und Umschmelzen zu einem kompakten Körper, der wieder aufgeschmolzen und in eine Cu-Kokille abgegossen wurde.
Die Legierung des Vergleichsbeispiels CE1 weist die Zusammensetzung Cu47Ti34Zr11Ni8 auf. Wird eine geringe Menge des Kupfers durch Sn substituiert, so kommt es zu einer signifikanten Erhöhung des ΔTx-Werts und auch der Dc-Wert steigt sehr deutlich an, siehe Beispiel E1. Auch bei einer Veränderung der relativen Anteile von Ti und Zr zeigt sich diese Verbesserung des ΔTx-Werts gegenüber der Ausgangslegierung, siehe Beispiele E2 und E3.The alloy of Comparative Example CE1 has the composition Cu 47 Ti 34 Zr 11 Ni 8 . If a small amount of copper is substituted by Sn, there is a significant increase in the ΔT x value and also the D c value increases very clearly, see Example E1. Even with a change in the relative proportions of Ti and Zr, this improvement in the ΔT x value compared to the starting alloy, see Examples E2 and E3.
Eine Erhöhung der Ni-Konzentration (siehe Beispiele E4 und E5) führt zu einer weiteren Verbesserung des ΔTx-Werts und auch der Dc-Wert kann auf einem relativ hohen Niveau gehalten werden. Eine zu hohe Nickelkonzentration führt zu einer signifikanten Abnahme des Dc-Werts (siehe Vergleichsbeispiel CE2), während eine zu niedrige Ni-Konzentration zu einer deutlichen Abnahme des ΔTx-Werts führt (siehe Vergleichsbeispiele CE3 und CE4).An increase in the Ni concentration (see Examples E4 and E5) leads to a further improvement in the ΔT x value and also the D c value can be maintained at a relatively high level. Too high a nickel concentration leads to a significant decrease in the D c value (see Comparative Example CE2), while a too low Ni concentration leads to a significant decrease in the ΔT x value (see Comparative Examples CE3 and CE4).
Wie die Beispiele E6-E8 zeigen, führt die Anwesenheit von Si zu einer weiteren Steigerung des ΔTx-Werts, so dass Werte von mehr als 70°C (E6 und E7) oder sogar mehr als 80°C (E8) erhalten werden. Die Dc-Werte sind dabei immer noch auf einem ausreichen hohen Level. Aufgrund der sehr hohen ΔTx-Werte sind die Legierungen insbesondere für ein thermoplastisches Formen sehr gut geeignet. Wie Vergleichsbeispiel CE5 zeigt, führt eine zu hohe Gesamtkonzentration an Sn+Si zu einer Verschlechterung der ΔTx- und Dc-Werte.As the examples E6-E8 show, the presence of Si leads to a further increase of the ΔT x value, so that values of more than 70 ° C (E6 and E7) or even more than 80 ° C (E8) are obtained. The D c values are still at a high enough level. Due to the very high ΔT x values, the alloys are particularly well suited for thermoplastic molding. As Comparative Example CE5 shows, an excessively high total concentration of Sn + Si leads to a deterioration of the ΔT x and D c values.
Wie die Daten der Tabelle 1 zeigen, können mit den erfindungsgemäßen Legierungen hohe ΔTx-Werte (d.h. ein breites Temperaturfenster für das thermoplastische Formen aufweist) realisiert werden, während gleichzeitig auch die kritische Abgussdicke Dc auf einem ausreichend hohen Level gehalten werden kann.As shown in the data of Table 1, with the alloys of the present invention, high ΔTx values (i.e., having a wide temperature window for thermoplastic molding) can be realized, while at the same time the critical casting thickness Dc can be maintained at a sufficiently high level.
Für die Legierungen der Beispiele E1, E5 und E6 wurde außerdem die Vickers-Härte bei einer Prüfkraft von 5 Kilopond (HV5) bestimmt.
Die Daten der Tabelle 2 zeigen, dass die erfindungsgemäßen Legierungen auch gute Härte-Werte zeigen.The data in Table 2 show that the alloys according to the invention also show good hardness values.
Claims (10)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17186878.9A EP3444370B1 (en) | 2017-08-18 | 2017-08-18 | Copper based alloy for the production of metallic solid glasses |
CN201880052813.1A CN110997959A (en) | 2017-08-18 | 2018-08-09 | Copper-based alloy for producing bulk metallic glass |
PCT/EP2018/071580 WO2019034506A1 (en) | 2017-08-18 | 2018-08-09 | Copper-based alloy for the production of bulk metallic glasses |
US16/639,236 US11214854B2 (en) | 2017-08-18 | 2018-08-09 | Copper-based alloy for the production of bulk metallic glasses |
JP2020507032A JP6997860B2 (en) | 2017-08-18 | 2018-08-09 | Copper-based alloys for the production of bulk metallic glasses |
KR1020207004348A KR20200031132A (en) | 2017-08-18 | 2018-08-09 | Copper-based alloys for the production of bulk metallic glass |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17186878.9A EP3444370B1 (en) | 2017-08-18 | 2017-08-18 | Copper based alloy for the production of metallic solid glasses |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3444370A1 true EP3444370A1 (en) | 2019-02-20 |
EP3444370B1 EP3444370B1 (en) | 2022-03-09 |
Family
ID=59699507
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17186878.9A Active EP3444370B1 (en) | 2017-08-18 | 2017-08-18 | Copper based alloy for the production of metallic solid glasses |
Country Status (6)
Country | Link |
---|---|
US (1) | US11214854B2 (en) |
EP (1) | EP3444370B1 (en) |
JP (1) | JP6997860B2 (en) |
KR (1) | KR20200031132A (en) |
CN (1) | CN110997959A (en) |
WO (1) | WO2019034506A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3895827A1 (en) | 2020-04-17 | 2021-10-20 | Heraeus Amloy Technologies GmbH | Amorphous metal hollow body |
WO2024046742A1 (en) | 2022-08-29 | 2024-03-07 | Universität des Saarlandes | Alloy for producing bulk metallic glasses and shaped bodies therefrom |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111360276A (en) * | 2020-03-24 | 2020-07-03 | 上海材料研究所 | Method for modifying TC4 high-oxygen powder to be used for 3D printing raw material |
KR20240065910A (en) | 2022-11-07 | 2024-05-14 | 정지원 | Waist guard apparatus that seperates and tows the upper body weight |
CN116441530B (en) * | 2023-04-28 | 2024-08-27 | 郑州机械研究所有限公司 | Preparation method of titanium-based amorphous spherical powder |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5618359A (en) | 1995-02-08 | 1997-04-08 | California Institute Of Technology | Metallic glass alloys of Zr, Ti, Cu and Ni |
US20060231169A1 (en) | 2005-04-19 | 2006-10-19 | Park Eun S | Monolithic metallic glasses with enhanced ductility |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2009254C1 (en) * | 1952-04-01 | 1994-03-15 | Научно-производственное объединение "Гамма" | Amorphous iron based alloy having improved surface state |
EP1545814B1 (en) * | 2002-09-27 | 2012-09-12 | Postech Foundation | Method and apparatus for producing amorphous alloy sheet, and amorphous alloy sheet produced using the same |
CN1219905C (en) | 2002-12-30 | 2005-09-21 | 中国科学院物理研究所 | Copper base lump non-crystalline alloy |
KR100530040B1 (en) | 2003-06-23 | 2005-11-22 | 학교법인연세대학교 | Cu-based Amorphous Alloys |
CN101538690B (en) * | 2008-03-21 | 2011-04-20 | 比亚迪股份有限公司 | Amorphous alloy and preparation method thereof |
JP6002994B2 (en) * | 2011-11-16 | 2016-10-05 | エム・テクニック株式会社 | Solid metal alloy |
CN103866156B (en) * | 2014-04-03 | 2016-08-24 | 东莞台一盈拓科技股份有限公司 | Acid bronze alloy ingot and preparation method thereof and the cu-based amorphous alloys prepared |
KR20150141103A (en) * | 2014-06-09 | 2015-12-17 | 삼성전자주식회사 | metallic glass matrix composite |
CN104117672B (en) * | 2014-07-31 | 2017-01-18 | 华中科技大学 | Method for preparing/forming amorphous alloy and composite material of amorphous alloy |
KR101532409B1 (en) | 2014-09-22 | 2015-06-30 | 서울대학교산학협력단 | Work hardenable metallic glass matrix composite |
WO2016112507A1 (en) | 2015-01-14 | 2016-07-21 | 东莞帕姆蒂昊宇液态金属有限公司 | Watch case of amorphous alloy, watch and manufacturing method therefor |
KR101752976B1 (en) * | 2015-10-07 | 2017-07-11 | 서울대학교산학협력단 | Fabricating method for metallic glass composite with controlling work hardening capacity and composites fabricated by the method |
-
2017
- 2017-08-18 EP EP17186878.9A patent/EP3444370B1/en active Active
-
2018
- 2018-08-09 KR KR1020207004348A patent/KR20200031132A/en not_active Application Discontinuation
- 2018-08-09 US US16/639,236 patent/US11214854B2/en active Active
- 2018-08-09 JP JP2020507032A patent/JP6997860B2/en active Active
- 2018-08-09 WO PCT/EP2018/071580 patent/WO2019034506A1/en active Application Filing
- 2018-08-09 CN CN201880052813.1A patent/CN110997959A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5618359A (en) | 1995-02-08 | 1997-04-08 | California Institute Of Technology | Metallic glass alloys of Zr, Ti, Cu and Ni |
US20060231169A1 (en) | 2005-04-19 | 2006-10-19 | Park Eun S | Monolithic metallic glasses with enhanced ductility |
Non-Patent Citations (6)
Title |
---|
C.H. SHEK ET AL., MATERIALS SCIENCE AND ENGINEERING, R, vol. 44, 2004, pages 45 - 89 |
CALIN MARIANA ET AL: "Formation, thermal stability and deformation behavior of high-strength Cu-based bulk glassy and nanostructured alloys", vol. 7, no. 10, 31 December 2005 (2005-12-31), pages 960 - 965, XP009503185, ISSN: 1438-1656, Retrieved from the Internet <URL:https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2Fadem.200500114> [retrieved on 20180503], DOI: 10.1002/ADEM.200500114 * |
G.R. GARRETT ET AL., APPL. PHYS. LETT., vol. 101, 2012, pages 241913 |
LI C ET AL: "Effect of Sn addition on the glass-forming ability in (Cu"4"0Ti"3"0Ni"1"5Zr"1"0)"("1"0"0"-"x")"/"9"5Sn"x (x = 0, 2, 4, 6 and 8) alloys", SCRIPTA MATERIA, ELSEVIER, AMSTERDAM, NL, vol. 42, no. 10, 28 April 2000 (2000-04-28), pages 923 - 927, XP004326039, ISSN: 1359-6462, DOI: 10.1016/S1359-6462(00)00330-4 * |
MEDHAT AWAD EL-HADEK ET AL: "Failure behavior of Cu-Ti-Zr-based bulk metallic glass alloys", JOURNAL OF MATERIALS SCIENCE, KLUWER ACADEMIC PUBLISHERS, BO, vol. 44, no. 4, 22 January 2009 (2009-01-22), pages 1127 - 1136, XP019679559, ISSN: 1573-4803 * |
W.L. JOHNSON ET AL., J. APPL. PHYS., vol. 78, no. 11, December 1995 (1995-12-01), pages 6514 - 6519 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3895827A1 (en) | 2020-04-17 | 2021-10-20 | Heraeus Amloy Technologies GmbH | Amorphous metal hollow body |
WO2021209280A1 (en) | 2020-04-17 | 2021-10-21 | Heraeus Amloy Technologies Gmbh | Hollow article made of amorphous metal |
CN115397580A (en) * | 2020-04-17 | 2022-11-25 | 贺利氏非晶态金属科技有限公司 | Hollow articles made of amorphous metals |
US12030113B2 (en) | 2020-04-17 | 2024-07-09 | Heraeus Amloy Technologies Gmbh | Hollow article made of amorphous metal |
WO2024046742A1 (en) | 2022-08-29 | 2024-03-07 | Universität des Saarlandes | Alloy for producing bulk metallic glasses and shaped bodies therefrom |
Also Published As
Publication number | Publication date |
---|---|
CN110997959A (en) | 2020-04-10 |
US20200208243A1 (en) | 2020-07-02 |
EP3444370B1 (en) | 2022-03-09 |
KR20200031132A (en) | 2020-03-23 |
JP6997860B2 (en) | 2022-02-04 |
JP2020531683A (en) | 2020-11-05 |
WO2019034506A1 (en) | 2019-02-21 |
US11214854B2 (en) | 2022-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3444370B1 (en) | Copper based alloy for the production of metallic solid glasses | |
DE69620998T2 (en) | OXIDATION RESISTANT MOLYBENE ALLOY | |
EP2944401B1 (en) | Method for producing a component from a metallic alloy containing an amorphous phase | |
EP1978120B1 (en) | Aluminium-silicon alloy and method for production of same | |
DE69025295T2 (en) | Amorphous alloys with increased machinability | |
EP1718777B1 (en) | Method for the production of a molybdenum alloy | |
DE69223194T2 (en) | Process for the production of composite alloy powder with aluminum matrix | |
DE69508319T2 (en) | High-strength and highly ductile aluminum alloy and process for its production | |
EP2974812B1 (en) | Method for the manufacture of a component from a metal alloy with an amorphous phase | |
DE3043503A1 (en) | CRYSTALINE METAL ALLOY | |
DE3035433C2 (en) | Use of a vitreous alloy | |
EP2829624A1 (en) | Aluminium material with improved precipitation hardening | |
DE2445462B2 (en) | Use of a nickel alloy | |
DE4016340C1 (en) | Process for the treatment of chrome and niobium-modified titanium-aluminum alloys | |
DE1935329B2 (en) | Process for the production of workpieces from dispersion-reinforced metals or alloys | |
DE69105805T2 (en) | Copper alloy and process for its manufacture. | |
DE69122678T2 (en) | Starting powder for producing a sintered aluminum alloy, process for producing sintered shaped bodies and sintered aluminum alloy | |
US4440572A (en) | Metal modified dispersion strengthened copper | |
DE2049546C3 (en) | Process for the powder-metallurgical production of a dispersion-strengthened alloy body | |
DE2450361A1 (en) | HEAT-RESISTANT METAL CONTAINING BODY AND METHOD OF MANUFACTURING IT | |
EP0548636A1 (en) | Use of an hardenable copper alloy | |
DE69417003T2 (en) | Titanium-free, nickel-containing, martensitic-hardenable steel for stamping blocks and a method for the production thereof | |
DE69912119T2 (en) | TANTAL-SILICON ALLOYS, THEIR PRODUCTS AND METHOD FOR THEIR PRODUCTION | |
DE69422981T2 (en) | DUCTILE, LIGHTWEIGHT, HIGH-STRENGTH BERYLLIUM-ALUMINUM COMPOSITE CAST ALLOY | |
DE102019217654A1 (en) | Spherical powder for the production of three-dimensional objects |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190819 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20200304 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B22D 25/06 20060101ALI20211007BHEP Ipc: B22D 21/02 20060101ALI20211007BHEP Ipc: C22C 1/00 20060101ALI20211007BHEP Ipc: C22C 45/00 20060101ALI20211007BHEP Ipc: C22C 30/04 20060101ALI20211007BHEP Ipc: C22C 1/02 20060101ALI20211007BHEP Ipc: C22C 9/00 20060101ALI20211007BHEP Ipc: C22C 30/02 20060101AFI20211007BHEP |
|
INTG | Intention to grant announced |
Effective date: 20211102 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1474217 Country of ref document: AT Kind code of ref document: T Effective date: 20220315 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502017012730 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20220309 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220309 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220309 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220609 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220309 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220309 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220609 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220309 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220610 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220309 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220309 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220309 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220309 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220309 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220711 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220309 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220309 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220309 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220309 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220709 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220309 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502017012730 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220309 |
|
26N | No opposition filed |
Effective date: 20221212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220309 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220309 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20220818 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220818 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220831 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220831 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20220831 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230527 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220309 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220818 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220831 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1474217 Country of ref document: AT Kind code of ref document: T Effective date: 20220818 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220818 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220818 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20170818 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220309 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220309 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220309 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240821 Year of fee payment: 8 |