EP1718778B1 - Material based on an aluminum alloy, method for the production thereof and its use - Google Patents

Material based on an aluminum alloy, method for the production thereof and its use Download PDF

Info

Publication number
EP1718778B1
EP1718778B1 EP05714972.6A EP05714972A EP1718778B1 EP 1718778 B1 EP1718778 B1 EP 1718778B1 EP 05714972 A EP05714972 A EP 05714972A EP 1718778 B1 EP1718778 B1 EP 1718778B1
Authority
EP
European Patent Office
Prior art keywords
mass
base alloy
magnesium
aluminium
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP05714972.6A
Other languages
German (de)
French (fr)
Other versions
EP1718778A1 (en
Inventor
Ulrich Bischofberger
Peter Krug
Gero Sinha
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle GmbH
Peak Werkstoff GmbH
Original Assignee
Mahle GmbH
Peak Werkstoff GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahle GmbH, Peak Werkstoff GmbH filed Critical Mahle GmbH
Publication of EP1718778A1 publication Critical patent/EP1718778A1/en
Application granted granted Critical
Publication of EP1718778B1 publication Critical patent/EP1718778B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/0084Pistons  the pistons being constructed from specific materials

Definitions

  • the present invention relates to a method for producing an aluminum alloy-based material, a material obtainable by this method, and a use of this material.
  • pistons are usually made from aluminum-silicon casting alloys. Because of the good casting properties, pistons based on aluminum-silicon alloys can be produced relatively inexpensively and simply by means of the chill casting process.
  • These materials are typically with silicon contents between 12 and 18 wt .-%, in some cases up to 24 wt .-%, and with admixtures of magnesium between 1 to 1.5 wt .-%, copper between 1 and 3 wt. % and often nickel between 1 to 3 wt .-% alloyed.
  • z. B. according to the US Pat. No. 6,419,769 A1 It is recommended to adjust the copper content between 5.6 and 8.0% by weight.
  • FR 2 690 957 A1 The strength of such an alloy is additionally increased by the addition of the elements titanium, zirconium and vanadium. However, the alloying of these strength-increasing elements increases the density of the material.
  • a heat resistant alloy of reduced specific gravity is disclosed in the patent DE 747 355 described as particularly advantageous for pistons.
  • This material is characterized by a magnesium content between 4 and 12 wt .-% and a silicon content between 0.5 and 5 wt .-%, wherein the silicon content should always be less than half of the magnesium content.
  • a magnesium content between 4 and 12 wt .-% and a silicon content between 0.5 and 5 wt .-%, wherein the silicon content should always be less than half of the magnesium content.
  • between 0.2 and 5 wt .-% copper and / or nickel alloyed.
  • This material is also to be distinguished by an improved heat resistance, even without the approval of strength-increasing components.
  • US-B1-6 419 769 describes a method for the production of cast materials from an aluminum base alloy, which contains, in addition to aluminum, among others, silicon, magnesium and copper.
  • the silicon-magnesium ratio is given as 10 to 25 and the ratio of copper to magnesium as 4 to 15. Based on the total weight of the aluminum alloy, the proportion of silicon is 11.0 to 14.0% by weight, of copper 5.6 to 8.0% by weight and of magnesium 0.5 to 1.5% by weight.
  • US-A-5 520 754 discloses an aluminum-lithium alloy containing inter alia copper and magnesium as well as their preparation.
  • the magnesium is thus added depending on the particular desired silicon content according to the above formula.
  • Part of the magnesium (1.73xSF content) reacts directly with silicon to form the magnesium silicide, the remaining 1.5 to 6.0% by weight of magnesium dissolve in the aluminum mixed crystal and, after suitable heat treatment, together with copper cause an increase in the strength of the material.
  • the material may contain the usual impurities in aluminum alloys.
  • the alloying of further alloying elements might seem sensible.
  • the strength-increasing effect of small addition amounts (0.05 to 0.2% of titanium, zirconium or vanadium ( FR 2 690 957 A1 ), also known is the effect of 0.1 to 0.5% silver which has a positive effect on the heat resistance properties of AlCu alloys.
  • the material obtainable by the process according to the invention is distinguished not only by its low density but also by excellent strength properties, which prove to be superior even at elevated temperatures compared to today's conventional piston alloys.
  • the base alloy can be treated with all known hot forming processes, for example extrusion, hot rolling or forging. Hot forming should be carried out with a degree of deformation greater than 5 times.
  • the aluminum or the base alloy used should contain foreign elements only in a small proportion, not more than 1% by mass per foreign element.
  • a heat treatment is advantageously carried out after the hot forming. This can be done in a conventional manner by solution annealing, quenching and aging.
  • the material according to the invention is suitable for the production of components of all kinds, in particular of pistons for internal combustion engines.
  • Beryllium is added to reduce the tendency of the melt to oxidize. Iron was analyzed as an impurity.
  • magnesium phosphate is the grain refining of the primary solidifying magnesium silicide. Iron was analyzed as an impurity.
  • magnesium phosphate is the grain refining of the primary solidifying magnesium silicide. Iron was analyzed as an impurity.
  • the finished material exhibits the following properties: Leg. A Leg. B Leg. C 2618 AlSi12Cu6MgTiZrV Density (g / cm 3 ) 2.50 2.60 2.46 2.77 2.75 Therm. Coefficient of expansion [1 / K] 23 ⁇ 10 -6 23.5 ⁇ 10 -6 22.5 ⁇ 10 -6 24 ⁇ 10 -6 ./. Modulus of elasticity [GPa] 79.3 78 82 72 ./. Tensile strength [N / mm 2 ] 390 390 390 420 270 Yield strength [N / mm 2 ] 335 335 335 350 235 Elongation at break [%] 2.4 1.5 1.1 7.0 ./. Fatigue strength [N / mm 2 ] room temperature 255 255 250 200 131 200 ° C 140 135 135 115 97 250 ° C 100 100 100 95 76
  • the material according to the invention is distinguished from the British aluminum standard 2618 by a lower density and an increased modulus of elasticity.
  • the achieved static strength properties reach down to the high-strength wrought alloy 2618.
  • the determined fatigue strength clearly exceeds the values achieved with the wrought alloy 2618.
  • the material according to the invention is superior in both static and dynamic testing. It is due to this combination of properties in a special way for the production of pistons for internal combustion engines.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Extrusion Of Metal (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Forging (AREA)

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines Werkstoffs auf der Basis einer Aluminium-Legierung einen mit diesem Verfahren erhältlichen Werkstoff sowie eine Verwendung dieses Werkstoffs.The present invention relates to a method for producing an aluminum alloy-based material, a material obtainable by this method, and a use of this material.

In den letzten Jahren ist bei Verbrennungsmotoren für Kraftfahrzeuge verstärkt ein Trend hin zu noch leichteren und kompakteren Aggregaten mit gesteigerten spezifischen Leistungen zu beobachten. Dies führt unter anderem auch zu einer immer stärkeren Belastung der hierfür eingesetzten Kolben. Diesem Trend kann sowohl durch geänderte Konstruktionen, aber auch vor allem durch die Entwicklung neuer geeigneter Werkstoffe Rechnung getragen werden. Im Vordergrund steht dabei der Wunsch nach hoch warmfesten und spezifisch leichten Materialien.In recent years, with internal combustion engines for motor vehicles, a trend towards even lighter and more compact units with increased specific power is increasingly observed. Among other things, this leads to an ever increasing load on the pistons used for this purpose. This trend can be taken into account both by modified constructions and, above all, by the development of new suitable materials. The focus is on the desire for highly heat-resistant and specifically lightweight materials.

Bis jetzt werden Kolben üblicherweise aus Aluminium-Silizium-Gusslegierungen hergestellt. Wegen der guten Gießeigenschaften lassen sich Kolben auf der Basis von Aluminium-Silizium-Legierungen relativ preisgünstig und einfach im Kokillengussverfahren herstellen.Up to now, pistons are usually made from aluminum-silicon casting alloys. Because of the good casting properties, pistons based on aluminum-silicon alloys can be produced relatively inexpensively and simply by means of the chill casting process.

Diese Werkstoffe werden typischerweise mit Siliziumgehalten zwischen 12 und 18 Gew.-%, in Einzelfällen auch bis zu 24 Gew.-%, sowie mit Beimengungen von Magnesium zwischen 1 bis 1,5 Gew.-%, Kupfer zwischen 1 und 3 Gew.-% und häufig auch Nickel zwischen 1 bis 3 Gew.-% legiert. Um die Warmfestigkeit einer solchen Legierung zu verbessern, wird z. B. gemäß der US 6 419 769 A1 empfohlen, den Kupfergehalt zwischen 5,6 und 8,0 Gew.-% einzustellen. Nach der FR 2 690 957 A1 wird die Festigkeit einer derartigen Legierung durch Zugabe der Elemente Titan, Zirkonium und Vanadium zusätzlich gesteigert. Allerdings wird durch das Zulegieren dieser festigkeitssteigernden Elemente die Dichte des Werkstoffs erhöht.These materials are typically with silicon contents between 12 and 18 wt .-%, in some cases up to 24 wt .-%, and with admixtures of magnesium between 1 to 1.5 wt .-%, copper between 1 and 3 wt. % and often nickel between 1 to 3 wt .-% alloyed. To improve the heat resistance of such an alloy, z. B. according to the US Pat. No. 6,419,769 A1 It is recommended to adjust the copper content between 5.6 and 8.0% by weight. After FR 2 690 957 A1 The strength of such an alloy is additionally increased by the addition of the elements titanium, zirconium and vanadium. However, the alloying of these strength-increasing elements increases the density of the material.

Eine warmfeste Legierung mit reduziertem spezifischem Gewicht wird in der Patentschrift DE 747 355 als für Kolben besonders vorteilhaft beschrieben. Dieser Werkstoff zeichnet sich durch einen Magnesiumgehalt zwischen 4 und 12 Gew.-% und einen Siliziumgehalt zwischen 0,5 und 5 Gew.-% aus, wobei der Siliziumgehalt stets geringer als die Hälfte des Magnesiumgehalts sein soll. Ferner sind zwischen 0,2 und 5 Gew.-% Kupfer und/oder Nickel zulegiert. Dieser Werkstoff soll sich auch bei Verzicht auf die Zulegierung festigkeitssteigernder Komponenten durch eine verbesserte Warmfestigkeit auszeichnen.A heat resistant alloy of reduced specific gravity is disclosed in the patent DE 747 355 described as particularly advantageous for pistons. This material is characterized by a magnesium content between 4 and 12 wt .-% and a silicon content between 0.5 and 5 wt .-%, wherein the silicon content should always be less than half of the magnesium content. Furthermore, between 0.2 and 5 wt .-% copper and / or nickel alloyed. This material is also to be distinguished by an improved heat resistance, even without the approval of strength-increasing components.

In der DE 38 42 812 A1 wird ein Gussleichtwerkstoff auf Basis einer Aluminiumlegierung mit 5 bis 25 Masse-% Magnesiumsilizid beschrieben. Neben Magnesiumsilizid wird außerdem als vorteilhaft sowohl ein Überschuß von Silizium (bis 12 Masse%) als auch von Magnesium (bis 15 Masse%) betrachtet. Ferner können bis zu 5 Masse-% Kupfer, Nickel, Mangan und Kobalt zulegiert sein. In Unteranspruch 5 wird zusätzlich die Liquidustemperatur von <700°C im Dreistoffsystem Al-Si-Mg als begrenzendes Limit genannt. Vorteile bzw. Nachteile bei den mechanischen Eigenschaften, welche sich aus einem Überschuß von Magnesium bzw. Siliziums ergeben könnten werden nicht explizit erwähnt.In the DE 38 42 812 A1 describes a cast lightweight material based on an aluminum alloy with 5 to 25 mass% of magnesium silicide. In addition to magnesium silicide, both an excess of silicon (up to 12% by weight) and of magnesium (up to 15% by weight) are considered advantageous. Furthermore, up to 5 mass% of copper, nickel, manganese and cobalt can be alloyed. In dependent claim 5, the liquidus temperature of <700 ° C in the ternary system Al-Si-Mg is additionally mentioned as a limiting limit. Advantages and disadvantages of the mechanical properties, which could result from an excess of magnesium or silicon are not explicitly mentioned.

Diese bekannten Werkstoffe sind ausnahmslos Gusswerkstoffe. Es besteht allerdings auch ein Bedarf an Werkstoffen mit noch geringerer Dichte und noch höherer Festigkeit, die durch die ausschließliche Verwendung eines Gießverfahrens bisher nicht herstellbar sind.These known materials are without exception cast materials. However, there is also a need for materials with even lower density and even higher strength, which can not be produced by the exclusive use of a casting process.

US-B1-6 419 769 beschreibt ein Verfahren zur Herstellung von gegossenen Werkstoffen aus einer Aluminium-Basislegierung, die neben Aluminium unter anderem Silizium, Magnesium und Kupfer enthält. Das Silizium-Magnesium-Verhältnis wird mit 10 bis 25 und das Verhältnis Kupfer zu Magnesium mit 4 bis 15 angegeben. Bezogen auf das Gesamtgewicht der Aluminiumlegierung beträgt der Anteil an Silizium 11,0 bis 14,0 Gew.-%, an Kupfer 5,6 bis 8,0 Gew.-% und an Magnesium 0,5 bis 1,5 Gew.-%. Es wird ein erster Verfahrensschritt beschrieben, der bei umgerechnet 204 bis 260 °C stattfindet, weitere Schritte sind ein Lösungsglühen (482 bis 538 °C), ein Abschrecken (49 bis 149 °C) und ein Altern (218 bis 252 °C). US-B1-6 419 769 describes a method for the production of cast materials from an aluminum base alloy, which contains, in addition to aluminum, among others, silicon, magnesium and copper. The silicon-magnesium ratio is given as 10 to 25 and the ratio of copper to magnesium as 4 to 15. Based on the total weight of the aluminum alloy, the proportion of silicon is 11.0 to 14.0% by weight, of copper 5.6 to 8.0% by weight and of magnesium 0.5 to 1.5% by weight. , It describes a first process step, which takes place at the equivalent of 204 to 260 ° C, further steps are solution heat treatment (482 to 538 ° C), quenching (49 to 149 ° C) and aging (218 to 252 ° C).

US-A-5 520 754 offenbart eine Aluminium-Lithium-Legierung, die unter anderem auch Kupfer und Magnesium enthält, sowie ihre Herstellung. US-A-5 520 754 discloses an aluminum-lithium alloy containing inter alia copper and magnesium as well as their preparation.

Es ist die Aufgabe der Erfindung, einen verbessertes Verfahren zur Herstellung eines Werkstoffs auf der Basis einer Aluminium-Legierung, einen mit diesem Verfahren erhältlichen verbesserten Werkstoff, eine Verwendung dieses Werkstoffs sowie ein Bauteil aus diesem Werkstoff anzugeben.It is the object of the invention to provide an improved process for the production of an aluminum alloy based material, an improved material obtainable by this process, a use of this material and a component of this material.

Diese Aufgabe wird erfindungsgemäß gelöst durch die in den Ansprüchen 1, 11, 12 und 13 angegebene Merkmalskombination gelöst.This object is achieved by the feature combination specified in claims 1, 11, 12 and 13.

Demgemäß ist Gegenstand der vorliegenden Erfindung ein Verfahren zur Herstellung eines Werkstoffs, wobei eine Aluminium-Basislegierung mit einem Gehalt zwischen
5,5 und 13,0 Masse-% Silizium, zusätzlich einem Gehalt an Magnesium gemäß der Formel Mg [Masse-%] = 1,73 × Si [Masse-%] + m

  • mit m = 1,5 bis 6,0 Masse-% Magnesium
sowie Kupfer mit einem Gehalt zwischen 1,0 und 4,0 Gew.% (Rest Aluminium) - erschmolzen, gegossen oder durch Sprühkompaktieren vorverdichtet und die Basislegierung anschließen zumindest einmal warmumgeformt wird, sowie nachfolgend einer Wärmebehandlung bestehend aus Lösungsglühen, Abschrecken und Warmauslagern unterzogen wird.Accordingly, the subject of the present invention is a method for producing a material, wherein an aluminum-based alloy with a content between
5.5 and 13.0 mass% silicon, in addition to a content of magnesium according to the formula Mg [mass%] = 1.73 × Si [mass%] + m
  • with m = 1.5 to 6.0% by weight of magnesium
and copper having a content of 1.0 to 4.0 wt.% (balance aluminum) - melted, poured or pre-compressed by spray compacting and connecting the base alloy is at least once hot-formed, and then subjected to a heat treatment consisting of solution heat treatment, quenching and heat aging ,

Das Magnesium wird also in Abhängigkeit vom jeweils gewünschten Siliziumgehalt gemäß der oben genannten Formel zugesetzt. Dabei reagiert ein Teil des Magnesiums (1,73xSFGehalt) direkt mit Silizium zur Magnesiumsilizid, die restlichen 1,5 bis 6,0 Masse-% Magnesium lösen sich im Aluminiummischkristall und bewirken nach geeigneter Wärmebehandlung zusammen mit Kupfer eine Festigkeitssteigerung des Werkstoffs. Der Werkstoff kann die in Aluminiumlegierungen üblichen Verunreinigungen enthalten. Zusätzlich könnte zum Zwecke einer weiteren Festigkeitssteigerung das Zulegieren weiterer Legierungselemente sinnvoll erscheinen. Bekannt ist z.B. die festigkeitssteigernde Wirkung kleiner Zugabemengen (0,05 bis 0,2% von Titan, Zirkon oder Vanadin ( FR 2 690 957 A1 ), ebenso bekannt ist die Wirkung von 0,1 bis 0,5% Silber welches bei AlCu-Legierungen sich positiv auf die Warmfestigkeitseigenschaften auswirkt. Ohne Nachteite für die mechanischen Eigenschaften wirkt sich die Zugabe von kleinen Gehalten (0,2 bis 2%) weiterer, der für viele Aluminium-Kupfer-Magnesiumlegierungen zusätzlich Verwendung findender Legierungselemente z.B. Nickel, Kobalt oder Mangan oder Eisen aus. Durch die Zugabe vorgenannter Elemente, wird jedoch zumeist die Dichte des beanspruchten Leichtbauwerkstoffes erhöht.The magnesium is thus added depending on the particular desired silicon content according to the above formula. Part of the magnesium (1.73xSF content) reacts directly with silicon to form the magnesium silicide, the remaining 1.5 to 6.0% by weight of magnesium dissolve in the aluminum mixed crystal and, after suitable heat treatment, together with copper cause an increase in the strength of the material. The material may contain the usual impurities in aluminum alloys. In addition, for the purpose of a further increase in strength, the alloying of further alloying elements might seem sensible. For example, the strength-increasing effect of small addition amounts (0.05 to 0.2% of titanium, zirconium or vanadium ( FR 2 690 957 A1 ), also known is the effect of 0.1 to 0.5% silver which has a positive effect on the heat resistance properties of AlCu alloys. Without Nachteite for the mechanical properties, the addition of small amounts (0.2 to 2%) of further, the addition of many aluminum-copper-magnesium alloys using alloying elements such as nickel, cobalt or manganese or iron affects. By adding the aforementioned elements, however, usually the density of the claimed lightweight material is increased.

Der nach dem erfindungsgemäßen Verfahren erhältliche Werkstoff zeichnet sich neben seiner geringen Dichte durch ausgezeichnete Festigkeitseigenschaften aus, die sich auch bei erhöhten Temperaturen gegenüber den heutigen gebräuchlichen Kolbenlegierungen als überlegen zeigen.The material obtainable by the process according to the invention is distinguished not only by its low density but also by excellent strength properties, which prove to be superior even at elevated temperatures compared to today's conventional piston alloys.

Vorteilhafte Weiterbildungen ergeben sich aus den Unteransprüchen.Advantageous developments emerge from the subclaims.

Die Basislegierung kann mit allen bekannten Warmumformverfahren, bspw. Strangpressen, Warmwalzen oder Schmieden behandelt werden. Das Warmumformen sollte mit einem Umformgrad größer als 5-fach durchgeführt werden.The base alloy can be treated with all known hot forming processes, for example extrusion, hot rolling or forging. Hot forming should be carried out with a degree of deformation greater than 5 times.

Um die Qualität des Werkstoffs nicht zu beeinträchtigen, sollte das verwendete Aluminium bzw. die Basislegierung Fremdelemente nur in einem geringen Anteil, und zwar nicht mehr als jeweils 1 Masse-% pro Fremdelement, enthalten.In order not to impair the quality of the material, the aluminum or the base alloy used should contain foreign elements only in a small proportion, not more than 1% by mass per foreign element.

Zur Erzielung maximaler Festigkeitseigenschaften wird vorteilhaft nach der Warmformgebung eine Wärmebehandlung durchgeführt. Diese kann auf an sich bekannte Weise durch Lösungsglühen, Abschrecken und Warmauslagern erfolgen.To achieve maximum strength properties, a heat treatment is advantageously carried out after the hot forming. This can be done in a conventional manner by solution annealing, quenching and aging.

Der erfindungsgemäße Werkstoff eignet sich zur Herstellung von Bauteilen aller Art, insbesondere von Kolben für Verbrennungsmotoren.The material according to the invention is suitable for the production of components of all kinds, in particular of pistons for internal combustion engines.

Ausführungsbeispiel 1:Embodiment 1

Eine Legierung A der folgenden Zusammensetzung:

  • 8,1 Masse-% Silizium
  • 17,2 Masse-% Magnesium
  • 1,7 Masse-% Kupfer
  • 0,3 Masse-% Eisen
  • 50 ppm Beryllium
  • Rest Aluminium
wird hergestellt, indem die einzelnen Elemente nach den üblichen Verfahren legiert und mittels dem Verfahren des Sprühkompaktierens zu einem zylindrischen Block vergossen werden. Das resultierende Vormaterial wird auf 400 bis 500°C vorgewärmt und durch Strangpressen 10-fach umgeformt und anschließend gehärtet. Dazu wird eine Wärmebehandlung, umfassend Lösungsglühen bei 500°C für 2 Stunden, Abschrecken in Wasser und 10 Stunden Anlassen bei 210°C durchgeführt.An alloy A of the following composition:
  • 8.1% by mass of silicon
  • 17.2 mass% of magnesium
  • 1.7% by mass of copper
  • 0.3 mass% iron
  • 50 ppm beryllium
  • Rest aluminum
is prepared by alloying the individual elements according to the usual methods and potted by the method of spray compacting into a cylindrical block. The resulting starting material is preheated to 400 to 500 ° C. and 10-fold formed by extrusion and then cured. For this purpose, a heat treatment comprising solution heat treatment at 500 ° C for 2 hours, quenching in water and 10 hours tempering at 210 ° C is performed.

Beryllium wird zugegeben, um die Oxidationsneigung der Schmelze zu mindern. Eisen wurde als Verunreinigung analysiert.Beryllium is added to reduce the tendency of the melt to oxidize. Iron was analyzed as an impurity.

Ausführungsbeispiel 2:Embodiment 2:

Eine Legierung B der folgenden Zusammensetzung:

  • 6,0 Masse-% Silizium
  • 12,5 Masse-% Magnesium
  • 2,1 Masse-% Kupfer
  • 0,2 Masse-% Eisen
  • 50 ppm Beryllium
  • 1,0 Gew.-% Magnesiumphosphat
  • Rest Aluminium
wird hergestellt, indem die einzelnen Elemente nach den üblichen Verfahren legiert und mittels Stranggießen zu einem zylindrischen Block vergossen werden. Das resultierende Vormaterial wird auf 400 bis 500°C vorgewärmt und durch Strangpressen 10-fach umgeformt und anschließend gehärtet. Dazu wird eine Wärmebehandlung, umfassend Lösungsglühen bei 500°C für 2 Stunden, Abschrecken in Wasser und 10 Stunden Anlassen bei 210°C durchgeführt.An alloy B of the following composition:
  • 6.0% by mass of silicon
  • 12.5% by weight of magnesium
  • 2.1% by mass of copper
  • 0.2% by mass of iron
  • 50 ppm beryllium
  • 1.0% by weight magnesium phosphate
  • Rest aluminum
is prepared by alloying the individual elements by the usual methods and cast by means of continuous casting into a cylindrical block. The resulting starting material is preheated to 400 to 500 ° C and formed by extrusion 10-fold and then cured. For this purpose, a heat treatment comprising solution heat treatment at 500 ° C for 2 hours, quenching in water and 10 hours tempering at 210 ° C is performed.

Beryllium wird zugegeben, um die Oxidationsneigung der Schmelze zu mindern, Magnesiumphosphat dient der Kornfeinung des primär erstarrenden Magnesiumsilizids. Eisen wurde als Verunreinigung analysiert.Beryllium is added to reduce the oxidation tendency of the melt, magnesium phosphate is the grain refining of the primary solidifying magnesium silicide. Iron was analyzed as an impurity.

Ausführungsbeispiel 3:Embodiment 3

Eine Legierung C der folgenden Zusammensetzung:

  • 12,9 Masse-% Silizium
  • 25,1 Masse-% Magnesium
  • 1,9 Masse-% Kupfer
  • 0,15 Masse-% Eisen
  • 50 ppm Beryllium
  • 0,9 Gew.-% Magnesiumphosphat
  • Rest Aluminium
wird hergestellt, indem die einzelnen Elemente nach den üblichen Verfahren legiert und mittels Stranggießen zu einem zylindrischen Block vergossen werden. Das resultierende Vormaterial wird auf 400 bis 500°C vorgewärmt und durch Strangpressen 10-fach umgeformt und anschließend gehärtet. Dazu wird eine Wärmebehandlung, umfassend Lösungsglühen bei 500°C für 2 Stunden, Abschrecken in Wasser und 10 Stunden Anlassen bei 210°C durchgeführt.An alloy C of the following composition:
  • 12.9% by mass of silicon
  • 25.1% by mass of magnesium
  • 1.9% by mass of copper
  • 0.15 mass% iron
  • 50 ppm beryllium
  • 0.9% by weight magnesium phosphate
  • Rest aluminum
is prepared by alloying the individual elements by the usual methods and cast by means of continuous casting into a cylindrical block. The resulting starting material is preheated to 400 to 500 ° C and formed by extrusion 10-fold and then cured. For this purpose, a heat treatment comprising solution heat treatment at 500 ° C for 2 hours, quenching in water and 10 hours tempering at 210 ° C is performed.

Beryllium wird zugegeben, um die Oxidationsneigung der Schmelze zu mindern, Magnesiumphosphat dient der Kornfeinung des primär erstarrenden Magnesiumsilizids. Eisen wurde als Verunreinigung analysiert.Beryllium is added to reduce the oxidation tendency of the melt, magnesium phosphate is the grain refining of the primary solidifying magnesium silicide. Iron was analyzed as an impurity.

Der fertige Werkstoff zeigt die folgenden Eigenschaften: Leg. A Leg. B Leg. C 2618 AlSi12Cu6MgTiZrV Dichte (g/cm3) 2,50 2,60 2,46 2,77 2,75 Therm. Ausdehnungskoeffizient [1/K] 23 × 10-6 23,5 × 10-6 22,5 × 10-6 24 × 10-6 ./. E-Modul [GPa] 79,3 78 82 72 ./. Zugfestigkeit [N/mm2] 390 390 390 420 270 Dehngrenze [N/mm2] 335 335 335 350 235 Bruchdehnung [%] 2,4 1,5 1,1 7,0 ./. Ermüdungsfestigkeit [N/mm2] Raumtemperatur 255 255 250 200 131 200°C 140 135 135 115 97 250°C 100 100 100 95 76 The finished material exhibits the following properties: Leg. A Leg. B Leg. C 2618 AlSi12Cu6MgTiZrV Density (g / cm 3 ) 2.50 2.60 2.46 2.77 2.75 Therm. Coefficient of expansion [1 / K] 23 × 10 -6 23.5 × 10 -6 22.5 × 10 -6 24 × 10 -6 ./. Modulus of elasticity [GPa] 79.3 78 82 72 ./. Tensile strength [N / mm 2 ] 390 390 390 420 270 Yield strength [N / mm 2 ] 335 335 335 350 235 Elongation at break [%] 2.4 1.5 1.1 7.0 ./. Fatigue strength [N / mm 2 ] room temperature 255 255 250 200 131 200 ° C 140 135 135 115 97 250 ° C 100 100 100 95 76

Der erfindungsgemäße Werkstoff zeichnet sich gegenüber dem britischen Aluminium-Standard 2618 durch eine niedrigere Dichte und einem erhöhten E-Modul aus. Die erzielten statischen Festigkeitseigenschaften reichen an die hochfeste Knetlegierung 2618 heran. Die ermittelte Ermüdungsfestigkeit übertrifft die mit der Knetlegierung 2618 erzielten Werte deutlich. Gegenüber der Gusslegierung aus der US 6 419 769 A ist der erfindungsgemäße Werkstoff sowohl bei statischer als auch bei dynamischer Prüfung überlegen. Er eignet sich aufgrund dieser Eigenschaftskombination in besonderer Weise zur Herstellung von Kolben für Verbrennungsmotoren.The material according to the invention is distinguished from the British aluminum standard 2618 by a lower density and an increased modulus of elasticity. The achieved static strength properties reach down to the high-strength wrought alloy 2618. The determined fatigue strength clearly exceeds the values achieved with the wrought alloy 2618. Compared to the casting alloy from the US Pat. No. 6,419,769 A the material according to the invention is superior in both static and dynamic testing. It is due to this combination of properties in a special way for the production of pistons for internal combustion engines.

Claims (13)

  1. Method for the production of a material, wherein an aluminium-base alloy is produced having a content of
    5.5 to 13.0 mass-% silicon,
    11.015 to 28.49 mass-% magnesium,
    1.0 to 4.0 mass-% copper,
    remainder aluminium,
    the base alloy being subsequently hot-shaped at least once and subsequently subjected to a heat-treatment consisting of solution heat treatment, quenching and artificial aging,
    wherein the mass-ratio magnesium:silicon is
    content of magnesium = 1.73 * silicon content + 1.5 to 6.0 mass-%.
  2. Method according to claim 1, characterized in that the base alloy is produced by means of spray compacting.
  3. Method according to claim 1, characterized in that the base alloy is produced by means of the method of continuous casting.
  4. Method according to claim 1, characterized in that the base alloy is produced by means of the method of chill casting.
  5. Method according to claim 3 or 4, characterized in that the base alloy contains 0.5 to 1.5 wt.-% magnesium phosphate for the purpose of increasing the grain refinement of the forming primary magnesium silicide.
  6. Method according to one of the previous claims, characterized in that the base alloy is hot-shaped by means of extrusion, hot rolling or forging.
  7. Method according to claim 3, characterized in that the hot-shaping is carried out with a degree of deformation greater than 5 times.
  8. Method according to one of the previous claims, characterized in that 1,5 to 3.0 mass-% copper are alloyed in.
  9. Method according to one of the previous claims, characterized in that usual impurities may be contained in the aluminium-base alloy, wherein the aluminium-base alloy does not contain more than 1 mass-% impurities, in relation to the mass of the aluminium contained in the aluminium-base alloy.
  10. Method according to claim 1, characterized in that the material is heated through at 500 °C. for 2h, quenched in water, and subsequently annealed at 210 C. for 10h.
  11. Material on the basis of an aluminium alloy, which can be obtained by means of a method according to one of claims 1 to 10.
  12. Use of the material according to claim 11 for the production of components.
  13. Component according to claim 12, namely piston for internal combustion engines.
EP05714972.6A 2004-02-16 2005-02-15 Material based on an aluminum alloy, method for the production thereof and its use Expired - Fee Related EP1718778B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004007704A DE102004007704A1 (en) 2004-02-16 2004-02-16 Production of a material based on an aluminum alloy used for producing motor vehicle engine components comprises forming an aluminum base alloy containing silicon and magnesium, hot deforming and heat treating
PCT/DE2005/000254 WO2005078147A1 (en) 2004-02-16 2005-02-15 Material based on an aluminum alloy, method for the production thereof and its use

Publications (2)

Publication Number Publication Date
EP1718778A1 EP1718778A1 (en) 2006-11-08
EP1718778B1 true EP1718778B1 (en) 2017-04-19

Family

ID=34801930

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05714972.6A Expired - Fee Related EP1718778B1 (en) 2004-02-16 2005-02-15 Material based on an aluminum alloy, method for the production thereof and its use

Country Status (8)

Country Link
US (1) US7892482B2 (en)
EP (1) EP1718778B1 (en)
JP (1) JP4914225B2 (en)
KR (1) KR101220577B1 (en)
CN (1) CN100503857C (en)
BR (1) BRPI0507719B1 (en)
DE (1) DE102004007704A1 (en)
WO (1) WO2005078147A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007035115A1 (en) 2007-07-27 2009-01-29 FNE Forschungsinstitut für Nichteisen-Metalle GmbH Aluminum-matrix material for building contains concentration gradient of magnesium silicide
DE102007035124A1 (en) 2007-07-27 2009-01-29 FNE Forschungsinstitut für Nichteisen-Metalle GmbH Lightweight construction material with dense, pore-free structure, comprises magnesium silicide reinforcing material in aluminum matrix and is obtained by squeeze-casting
DE102008056511B4 (en) * 2008-11-08 2011-01-20 Audi Ag Process for producing thin-walled metal components from an Al-SiMg alloy, in particular components of a motor vehicle
CN101985706A (en) * 2010-11-18 2011-03-16 江苏万里活塞轴瓦有限公司 Aluminum alloy material for hot precision forging connection rod and preparation method thereof
CN103282531B (en) * 2010-12-22 2015-07-29 昭和电工株式会社 The manufacture method of brake piston blank
CN102335704B (en) * 2011-09-22 2013-08-28 哈尔滨哈飞工业有限责任公司 Method for forging and forming structural parts of wheel chair rack
CN103394538A (en) * 2013-08-06 2013-11-20 浙江瑞金铜铝型材有限公司 Molding and aging technology of 7A04 superhard aluminum alloy section bar
WO2015027030A1 (en) * 2013-08-21 2015-02-26 Taheri Mitra Lenore Selective grain boundary engineering
CN104451286A (en) * 2014-12-02 2015-03-25 绥阳县耐环铝业有限公司 Magnesium-aluminum alloy and processing technique thereof
CN104668300B (en) * 2015-01-30 2018-04-27 深圳市江为五金螺丝有限公司 Aluminum alloy extrusion processing technology
CN104741873A (en) * 2015-01-30 2015-07-01 深圳市江为五金螺丝有限公司 Numerical control extrusion process
MX2018001765A (en) 2015-08-13 2018-11-22 Alcoa Usa Corp Improved 3xx aluminum casting alloys, and methods for making the same.
CN105648290A (en) * 2016-03-15 2016-06-08 昆明理工大学 High-strength aluminum alloy and preparation method thereof
KR20170124963A (en) * 2016-05-03 2017-11-13 손희식 Corrosion resistant aluminium alloy for casting
US20180155811A1 (en) * 2016-12-02 2018-06-07 Honeywell International Inc. Ecae materials for high strength aluminum alloys
US11649535B2 (en) 2018-10-25 2023-05-16 Honeywell International Inc. ECAE processing for high strength and high hardness aluminum alloys
CN109431152A (en) * 2018-12-07 2019-03-08 福建祥鑫股份有限公司 A kind of folding type aluminum alloy nursing bed and its manufacturing method
CN109988952B (en) * 2019-05-10 2020-05-05 贵州正合可来金科技有限责任公司 Preparation method of aluminum alloy mobile phone shell

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE747355C (en) * 1937-10-30 1944-09-20 Mahle Kg Use of an aluminum alloy for pistons in internal combustion engines
DE1483229C2 (en) * 1965-09-03 1980-04-17 Honsel-Werke Ag, 5778 Meschede Use of AlMgSi-GuB alloy for cylinder heads
JPS508693B1 (en) * 1969-10-09 1975-04-07
JPS508693A (en) 1973-05-22 1975-01-29
US4917739A (en) * 1984-08-10 1990-04-17 Allied-Signal Inc. Rapidly solidified aluminum-transition metal-silicon alloys
US5178686A (en) * 1988-12-20 1993-01-12 Metallgesellschaft Aktiengesellschaft Lightweight cast material
DE3842812A1 (en) * 1988-12-20 1990-06-21 Metallgesellschaft Ag CAST LIGHT MATERIAL
FR2690957B1 (en) 1992-05-06 1994-06-17 Senaux Pierre DEVICE FOR FIXING COLLARS SUPPORTING POSTERS OR FLAGS, WITHOUT ELEVATION MEANS OR FIXING MATERIALS.
US5520754A (en) * 1994-04-25 1996-05-28 Lockheed Missiles & Space Company, Inc. Spray cast Al-Li alloy composition and method of processing
WO1999011834A1 (en) * 1997-08-30 1999-03-11 Honsel Ag Alloy and method for producing objects therefrom
US6419769B1 (en) 1998-09-08 2002-07-16 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Aluminum-silicon alloy having improved properties at elevated temperatures and process for producing cast articles therefrom

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
KR101220577B1 (en) 2013-01-10
CN100503857C (en) 2009-06-24
BRPI0507719B1 (en) 2013-11-26
WO2005078147A1 (en) 2005-08-25
KR20060127147A (en) 2006-12-11
US7892482B2 (en) 2011-02-22
DE102004007704A1 (en) 2005-08-25
EP1718778A1 (en) 2006-11-08
CN1918311A (en) 2007-02-21
BRPI0507719A (en) 2007-07-03
JP2007522348A (en) 2007-08-09
US20070169861A1 (en) 2007-07-26
JP4914225B2 (en) 2012-04-11

Similar Documents

Publication Publication Date Title
EP1718778B1 (en) Material based on an aluminum alloy, method for the production thereof and its use
EP1683882B1 (en) Aluminium alloy with low quench sensitivity and process for the manufacture of a semi-finished product of this alloy
EP2954081B1 (en) Aluminium casting alloy
DE102007029991B4 (en) Copper-zinc alloy, method of manufacture and use
EP2735621B1 (en) Aluminium die casting alloy
EP2653579B1 (en) Aluminium alloy
DE602004008934T2 (en) AL-SI-CU ALUMINUM ALLOY FORMING HIGH WARM PROOF RESISTANCE
EP2559779B1 (en) High temperature Al-Cu-Mg-Ag alloy and method for producing a semi-finished product or product from such an aluminium alloy
EP2806044B1 (en) Copper-zinc alloy, method for its manufacture and use
DE102007023323B4 (en) Use of an Al-Mn alloy for high-temperature products
EP3176275B1 (en) Aluminium-silicon die casting alloy method for producing a die casting component made of the alloy, and a body component with a die casting component
EP1518000B1 (en) Al/cu/mg/ag alloy with si, semi-finished product made from such an alloy and method for production of such a semi-finished product
DE4103934A1 (en) SUITABLE ALUMINUM ALLOY FOR PISTON
EP3024958B1 (en) High temperature strength aluminium casting alloy and casting for combustion engines cast from said alloy
DE102019205267B3 (en) Die-cast aluminum alloy
EP1017867B1 (en) Aluminium based alloy and method for subjecting it to heat treatment
DE102013002632B4 (en) Aluminum-silicon diecasting alloy and method of making a die cast component
DE102011112005A1 (en) Alloy, preferably aluminum casting alloy, useful e.g. as a sand or die casting alloy, comprises a specified range of silicon, zinc, iron, copper, magnesium, strontium, sodium, antimony and aluminum
EP1802781B1 (en) Aluminium-based alloy and moulded part consisting of said alloy
EP3423606B1 (en) Aluminium casting alloy
DE102006027844B4 (en) Copper alloy based on copper and tin
EP0918096B1 (en) Process of manufacturing a structural element made of a die-cast aluminium alloy
DE102019202676B4 (en) Cast components with high strength and ductility and low tendency to hot crack
EP0517087B1 (en) Method for manufacturing copper alloys
EP0211831B2 (en) Process for the cold extrusion of aluminium or aluminium alloys

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060912

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BISCHOFBERGER, ULRICH

Inventor name: KRUG, PETER

Inventor name: SINHA, GERO

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAHLE GMBH

Owner name: PEAK WERKSTOFF GMBH

17Q First examination report despatched

Effective date: 20110809

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502005015564

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C22C0021000000

Ipc: C22C0021080000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C22F 1/047 20060101ALI20160523BHEP

Ipc: C22C 21/08 20060101AFI20160523BHEP

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

INTG Intention to grant announced

Effective date: 20160614

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160825

INTG Intention to grant announced

Effective date: 20160829

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20161110

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005015564

Country of ref document: DE

Owner name: MAHLE GMBH, DE

Free format text: FORMER OWNER: MAHLE GMBH, 70376 STUTTGART, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005015564

Country of ref document: DE

Owner name: ERBSLOEH ALUMINIUM GMBH, DE

Free format text: FORMER OWNER: MAHLE GMBH, 70376 STUTTGART, DE

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005015564

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005015564

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180122

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005015564

Country of ref document: DE

Representative=s name: BONNEKAMP & SPARING, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005015564

Country of ref document: DE

Owner name: ERBSLOEH ALUMINIUM GMBH, DE

Free format text: FORMER OWNERS: MAHLE GMBH, 70376 STUTTGART, DE; PEAK WERKSTOFF GMBH, 42553 VELBERT, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005015564

Country of ref document: DE

Owner name: MAHLE GMBH, DE

Free format text: FORMER OWNERS: MAHLE GMBH, 70376 STUTTGART, DE; PEAK WERKSTOFF GMBH, 42553 VELBERT, DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180215

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180228

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180215

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210217

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005015564

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220901