EP1518000B1 - Al/cu/mg/ag alloy with si, semi-finished product made from such an alloy and method for production of such a semi-finished product - Google Patents

Al/cu/mg/ag alloy with si, semi-finished product made from such an alloy and method for production of such a semi-finished product Download PDF

Info

Publication number
EP1518000B1
EP1518000B1 EP02751094A EP02751094A EP1518000B1 EP 1518000 B1 EP1518000 B1 EP 1518000B1 EP 02751094 A EP02751094 A EP 02751094A EP 02751094 A EP02751094 A EP 02751094A EP 1518000 B1 EP1518000 B1 EP 1518000B1
Authority
EP
European Patent Office
Prior art keywords
alloy
weight
per cent
semi
finished product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02751094A
Other languages
German (de)
French (fr)
Other versions
EP1518000A1 (en
Inventor
Gernot Fischer
Dieter Sauer
Gregor Terlinde
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otto Fuchs KG
Original Assignee
FUCHS FA OTTO
Otto Fuchs KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUCHS FA OTTO, Otto Fuchs KG filed Critical FUCHS FA OTTO
Publication of EP1518000A1 publication Critical patent/EP1518000A1/en
Application granted granted Critical
Publication of EP1518000B1 publication Critical patent/EP1518000B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/14Alloys based on aluminium with copper as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium

Definitions

  • the invention relates to an Al-Cu-Mg-Mn alloy for the production of semi-finished products with high static and dynamic strength properties. Furthermore, the invention relates to a semifinished product from such an alloy with high static and dynamic strength properties and a method for producing such Semi-finished product.
  • Static and dynamically high load aluminum alloys are about the alloys AA 2014, AA 2214. These are made of Al alloys in the hot-hardened state, for example, drop forgings for wheel and braking systems manufactured by aircraft. While the mentioned Strength properties of the produced from such an alloy Semi-finished products, especially at lower temperatures to the semi-finished to own are, so take these properties at temperatures of more than 100 ° C faster than with alloys of group AA 2618. Semi-finished products from such alloys have a higher heat resistance and are used, for example, as compressor wheels for rechargeable diesel engines or for rotors of ultracentrifuges. At temperatures below 100 ° C however, are the aluminum alloys of Group AA 2014 and AA 2214 higher load capacity.
  • the wheel brake system of aircraft is created during braking a considerable heat development. This also leads in the wheels, the typically made of AA 2014 or AA 2214 alloy, to temperature increases. These can be an early aging of this Alloying and associated with a strong limitation of Lifetime of the component.
  • the invention has the object, such an alloy, a manufactured from such an alloy semi-finished with high static and dynamic load capacity, high heat resistance, high fracture toughness and high creep resistance, and a method of manufacturing to provide such a semi-finished product.
  • the claimed alloy has over the prior art alloys AA 2014 and AA 2214 have a higher static and dynamic Heat resistance and improved creep resistance at the same time very good fracture mechanical properties. These will be particular at a copper-magnesium ratio between 5 and 9.5, in particular achieved at a ratio between 6.3 and 9.3.
  • the copper content is preferably between 3.8 and 4.2 wt .-% and the magnesium content between 0.45 and 0.6% by weight.
  • the copper content is clearly under the maximum solubility for copper in the presence of the claimed Magnesium content. This has the consequence that the proportion of insoluble, copper-containing phases also taking into account the rest Alloy and accompanying elements is very low. This results an improvement in terms of dynamic properties and the Fracture toughness of the semi-finished products produced from such an alloy.
  • the manganese content of the claimed alloy is 0.1 to 0.5% by weight. preferably 0.2-0.4% by weight.
  • the manganese content is 0.4 % By weight limited. In principle, however, manganese is one of the microstructural controls required alloying component.
  • Microstructure contains the alloy zirconium between 0.10-0.25% by weight, preferably 0.14-0.20% by weight.
  • the precipitating zirconium aluminides are usually even more finely dispersed than manganese aluminides.
  • the zirconium aluminides for contribute to thermal stability of the alloy.
  • the alloy is 0.05-0.15% by weight, preferably 0.10%. 0.15 wt .-% titanium added.
  • the titanium of the alloy added in the form of an Al-5Ti-1B master alloy, whereby the alloy automatically contains boron. This form finely distributed, not soluble titanium diboride. These contribute to the thermal stability the alloy.
  • the alloy can not exceed 0.15% Iron, preferably 0.10% iron.
  • Table 1 reproduced below gives the chemical composition of four alloys according to the invention (B, C, D, E) and the composition of the comparatively investigated alloys AA 2214 and AA 2618 (data in% by weight) (nb: not determined): alloy Si Fe Cu Mn mg Ni Zn Ti Ag Zr V B 0.47 0.08 4.40 0,200 0.58 0,003 0.048 0.135 0.45 0,150 0,018 C 0.47 0.08 3.64 0.210 0.59 0,003 0,015 0.115 0.52 0,150 0,017 D 0.47 0.08 3.87 0,200 0.61 0,003 0,015 0,117 0.52 0,150 0.019 e 0.52 0.08 4.14 0,200 0.61 0,003 0.02 0.115 0,44 0,150 0,018 AA 2214 0.77 0.17 4.29 0.883 0.57 0,003 0.031 0.024 0,003 0,007 nb AA 2618 0.22 1.1 2.58 0,020 1.53 1,007 0.043 0.059 0,003 0,002 nb
  • the improved strengths of the alloy according to the invention can be clearly seen from Tables 2 and 3. So shows For example, the previously known alloy AA 2214, although good strength values at room temperature, but not at higher temperatures. Moreover, the creep resistance as well as the fracture toughness are not only at room temperature but especially at higher temperatures in the claimed alloy significantly better than in the prior art Alloys. It is also clear from this comparison that the examined prior art alloys in each case only in relation have good properties on individual strength parameters. In none In case these show good properties for all relevant strength values both at room temperature and at elevated temperatures on. As well as the fatigue properties is the creep resistance this prior art alloy unsatisfactory. about All tested strength parameters very good properties are found exclusively in the alloy according to the invention.
  • the step of quenching the solution-annealed Semi-finished product can be used in a temperature range between Room temperature and 100 ° C (boiling) in water. Likewise it is possible to use a water-glycol mixture for quenching, however, its temperature should not exceed 50 ° C.
  • the step of Thermosetting is feasible over a period of 5 to 35 hours, preferably between 10 and 25 hours in a temperature window between 170 ° C and 210 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Forging (AREA)
  • Conductive Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

An Al/Cu/Mg/Mn alloy for the production of semi-finished products with high static and dynamic strength properties has the following composition: 0.3-0.7 wt % silicon (Si), max. 0.15 wt. % iron (Fe), 3.5-4.5 wt % copper (Cu), 0.1-0.5 wt. % manganese (Mn), 0.3-0.8 wt. % magnesium (Mg), 0.5-0.15 wt % titanium (Ti), 0.1-0.25 wt % zirconium (Zr), 0.3-0.7 wt. % silver (Ag), max. 0.05 wt. % others individually, max 0.15 wt. % others globally, the remaining wt. % aluminum (Al). The invention further relates to a semi-finished product made for such an alloy and a method of production of a semi-finished product made for such an alloy.

Description

Gegenstand der Erfindung ist eine Al-Cu-Mg-Mn-Legierung zur Herstellung von Halbzeugen mit hohen statischen und dynamischen Festigkeitseigenschaften. Ferner betrifft die Erfindung ein Halbzeug hergestellt aus einer solchen Legierung mit hohen statischen und dynamischen Festigkeitseigenschaften sowie ein Verfahren zum Herstellen eines solchen Halbzeuges.The invention relates to an Al-Cu-Mg-Mn alloy for the production of semi-finished products with high static and dynamic strength properties. Furthermore, the invention relates to a semifinished product from such an alloy with high static and dynamic strength properties and a method for producing such Semi-finished product.

Statisch und dynamisch hoch belastbare Aluminiumlegierungen sind etwa die Legierungen AA 2014, AA 2214. Aus diesen Al-Legierungen werden im warmausgehärteten Zustand bspw. Gesenkschmiedestücke für Rad- und Bremssysteme von Flugzeugen hergestellt. Während die genannten Festigkeitseigenschaften der aus einer solchen Legierung hergestellten Halbzeuge insbesondere bei tieferen Temperaturen dem Halbzeug zu eigen sind, so nehmen diese Eigenschaften bei Temperaturen von mehr als 100 °C schneller ab als bei Legierungen der Gruppe AA 2618. Halbzeuge aus solchen Legierungen weisen eine höhere Warmfestigkeit auf und werden eingesetzt bspw. als Verdichterräder für aufladbare Dieselmotoren oder für Rotoren von Ultrazentrifugen. Bei Temperaturen unter 100 °C sind jedoch die Aluminiumlegierungen der Gruppe AA 2014 und AA 2214 höher belastbar.Static and dynamically high load aluminum alloys are about the alloys AA 2014, AA 2214. These are made of Al alloys in the hot-hardened state, for example, drop forgings for wheel and braking systems manufactured by aircraft. While the mentioned Strength properties of the produced from such an alloy Semi-finished products, especially at lower temperatures to the semi-finished to own are, so take these properties at temperatures of more than 100 ° C faster than with alloys of group AA 2618. Semi-finished products from such alloys have a higher heat resistance and are used, for example, as compressor wheels for rechargeable diesel engines or for rotors of ultracentrifuges. At temperatures below 100 ° C however, are the aluminum alloys of Group AA 2014 and AA 2214 higher load capacity.

Das Dokument POLMEAR, I. J. et al., "After Concorde : evaluation of an Al-Cu-Mg-Ag alloy for use in the proposed European supersonic transport", MATERIALS SCIENCE FORUM, Vols. 217-222 (1996), pp. 1759-1764, offenbart eine Legierung, deren Zusammensetzung in Gewichtsprozent:
   Cu 4,5; Fe 0,08; Mg 0,45; Mn 0,30; Si 0,07; Ag 0,41; Ti 0,06; Zr 0,18; Al Rest enthält.
The document POLMEAR, IJ et al., "After Concorde: Evaluation of an Al-Cu-Mg Ag Alloy for Use in the proposed European Supersonic Transport", MATERIALS SCIENCE FORUM, Vols. 217-222 (1996), pp. 1759-1764, discloses an alloy whose composition in weight percent:
Cu 4,5; Fe 0.08; Mg 0.45; Mn 0.30; Si 0.07; Ag 0.41; Ti 0.06; Zr 0.18; Al rest contains.

Beim Rad-Bremse-System von Flugzeugen entsteht beim Bremsvorgang eine beträchtliche Wärmeentwicklung. Diese führt auch in den Rädern, die typischerweise aus einer AA 2014- oder AA 2214-Legierung gefertigt sind, zu Temperaturerhöhungen. Diese können eine frühe Überalterung dieser Legierung hervorrufen und damit verbunden eine starke Begrenzung der Lebensdauer des Bauteils.The wheel brake system of aircraft is created during braking a considerable heat development. This also leads in the wheels, the typically made of AA 2014 or AA 2214 alloy, to temperature increases. These can be an early aging of this Alloying and associated with a strong limitation of Lifetime of the component.

Bei Verdichterrädem ist man dazu übergegangen, Titanlegierungen einzusetzen, damit den daraus hergestellten Verdichterrädem auch bei höheren Temperaturen die notwendigen statischen und dynamischen Festigkeitseigenschaften zuteil werden. Der Einsatz von Titan ist jedoch teuer
und insbesondere auch aus diesem Grund zur Herstellung von Flugzeugrädern nicht geeignet. Ferner ist Titan aufgrund seiner begrenzten Wärmeleitfähigkeit als Räderwerkstoff weniger gut geeignet.
In the case of compressor wheels, one has begun to use titanium alloys, so that the compressor wheels made therefrom are given the necessary static and dynamic strength properties even at relatively high temperatures. The use of titanium is expensive
and especially for this reason not suitable for the production of aircraft wheels. Furthermore, titanium is less well suited as a wheel material due to its limited thermal conductivity.

Die oben aufgezeigte Problematik ist nicht neu. Es besteht daher seit vielen Jahren der Wunsch nach einer Al-Legierung, die die hohen Festigkeitseigenschaften der Legierungen AA 2014 bzw. AA 2214 bei Raumtemperatur und die thermische Stabilität der Legierungen AA 2618 bzw. 2618 A in sich vereint.The above-mentioned problem is not new. It therefore exists for many Years of desire for an Al alloy that has the high strength properties alloys AA 2014 and AA 2214 at room temperature and the thermal stability of the alloys AA 2618 or 2618 A united in itself.

Daher liegt der Erfindung die Aufgabe zugrunde, eine solche Legierung, ein aus einer solchen Legierung hergestelltes Halbzeug mit hoher statischer und dynamischer Belastbarkeit, hoher Warmfestigkeit, hoher Bruchzähigkeit und hoher Kriechbeständigkeit sowie ein Verfahren zum Herstellen eines solchen Halbzeuges bereitzustellen.Therefore, the invention has the object, such an alloy, a manufactured from such an alloy semi-finished with high static and dynamic load capacity, high heat resistance, high fracture toughness and high creep resistance, and a method of manufacturing to provide such a semi-finished product.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass die Legierung folgende Zusammensetzung aufweist:

  • 0,3 - 0,7 Gew.-% Silizium (Si)
  • max. 0,15 Gew.-% Eisen (Fe)
  • 3,5 - 4,5 Gew.-% Kupfer (Cu)
  • 0,1 - 0,5 Gew.-% Mangan (Mn)
  • 0,3 - 0,8 Gew.-% Magnesium (Mg)
  • 0,05 - 0,15 Gew.-% Titan (Ti)
  • 0,1 - 0,25 Gew.-% Zirkon (Zr)
  • 0,3 - 0,7 Gew.-% Silber (Ag)
  • max. 0,05 Gew.-% andere, einzeln
  • max. 0,15 Gew.-% andere, insgesamt
  • Rest Gew.-% Aluminium (Al).
  • This object is achieved according to the invention in that the alloy has the following composition:
  • 0.3-0.7% by weight of silicon (Si)
  • Max. 0.15% by weight of iron (Fe)
  • 3.5-4.5% by weight of copper (Cu)
  • 0.1-0.5% by weight of manganese (Mn)
  • 0.3-0.8% by weight of magnesium (Mg)
  • 0.05-0.15% by weight of titanium (Ti)
  • 0.1-0.25 wt% zircon (Zr)
  • 0.3-0.7% by weight of silver (Ag)
  • Max. 0.05% by weight of others, individually
  • Max. 0.15% by weight other, total
  • Balance wt .-% aluminum (Al).
  • Die beanspruchte Legierung weist gegenüber den vorbekannten Legierungen AA 2014 und AA 2214 eine höhere statische und dynamische Warmfestigkeit und eine verbesserte Kriechbeständigkeit bei gleichzeitig sehr guten bruchmechanischen Eigenschaften auf. Diese werden insbesondere bei einem Kupfer-Magnesium-Verhältnis zwischen 5 und 9,5, insbesondere bei einem Verhältnis zwischen 6,3 und 9,3 erreicht. Der Kupfergehalt liegt bevorzugt zwischen 3,8 und 4,2 Gew.-% und der Magnesiumgehalt zwischen 0,45 und 0,6 Gew.-%. Der Kupfergehalt liegt deutlich unter der maximalen Löslichkeit für Kupfer in Gegenwart des beanspruchten Magnesiumgehaltes. Dies hat zur Folge, dass der Anteil an unlöslichen, kupferhaltigen Phasen auch unter Berücksichtigung der übrigen Legierungs- und Begleitelemente sehr gering ist. Dadurch ergibt sich eine Verbesserung hinsichtlich der dynamischen Eigenschaften und der Bruchzähigkeit der aus eine solchen Legierung hergestellten Halbzeuge.The claimed alloy has over the prior art alloys AA 2014 and AA 2214 have a higher static and dynamic Heat resistance and improved creep resistance at the same time very good fracture mechanical properties. These will be particular at a copper-magnesium ratio between 5 and 9.5, in particular achieved at a ratio between 6.3 and 9.3. The copper content is preferably between 3.8 and 4.2 wt .-% and the magnesium content between 0.45 and 0.6% by weight. The copper content is clearly under the maximum solubility for copper in the presence of the claimed Magnesium content. This has the consequence that the proportion of insoluble, copper-containing phases also taking into account the rest Alloy and accompanying elements is very low. This results an improvement in terms of dynamic properties and the Fracture toughness of the semi-finished products produced from such an alloy.

    Im Gegensatz zu den vorbekannten AA-Legierungen 2014, 2214 und 2219 ist Teil der beanspruchten Legierung Silber mit Gehalten zwischen 0,3 und 0,7 Gew.-%, bevorzugt 0,45 und 0,6 Gew.-%. Im Zusammenspiel mit Silizium (0,3 - 0,7 Gew.-%, bevorzugt 0,4 - 0,6 Gew.- %) erfolgt eine Aushärtung über die gleichen Mechanismen wie in silberfreien Al-Cu-Mg-Legierungen. Es hat sich jedoch gezeigt, dass bei kleineren Siliziumgehalten durch die Silberzugabe der Ausscheidungsverlauf anders ist. Die aus einer solchen Legierung hergestellten Halbzeuge weisen zwar gute Warmfestigkeiten und Kriechbeständigkeiten bei kühleren Bedingungen auf; sie entsprechen jedoch noch nicht den gewünschten Anforderungen. Erst Siliziumgehalte über 0,3 Gew.% unterdrücken die ansonsten typische Änderung des Ausscheidungsverhaltens von Al-Cu-Mg-Ag-Legierungen, so dass überraschender Weise höhere Festigkeitswerte ohne Einbuße der Warmbeständigkeit und der Kriechbeständigkeit bei den erfindungsgemäßen Cu- und Mg-Gehalten erzielbar sind.In contrast to the previously known AA alloys 2014, 2214 and 2219 is part of the claimed alloy silver with contents between 0.3 and 0.7 wt .-%, preferably 0.45 and 0.6 wt .-%. In interaction with silicon (0.3 to 0.7 wt .-%, preferably 0.4 to 0.6% by weight) is carried out a Curing by the same mechanisms as in silver-free Al-Cu-Mg alloys. However, it has been shown that at smaller silicon contents by the addition of silver the elimination process is different. The Although semi-finished products produced from such an alloy have good properties Hot and creep resistance in cooler conditions on; however, they do not yet meet the desired requirements. Only silicon contents above 0.3 wt.% Suppress the otherwise typical Change of the precipitation behavior of Al-Cu-Mg-Ag alloys, so that surprisingly higher strength values without Loss of heat resistance and creep resistance in the Cu- and Mg contents according to the invention can be achieved.

    Der Mangangehalt der beanspruchten Legierung beträgt 0,1 bis 0,5 Gew.-% bevorzugt 0,2 - 0,4 Gew.%. Bei Legierungen mit höheren Mangan-Gehalten wurden bei einer Langzeit-Hochtemperaturbeanspruchung unerwünschte Ausscheidungsvorgänge gefunden, die zu einer Verringerung der Festigkeit führten. Aus diesem Grunde ist der Mangangehalt auf 0,4 Gew.-% begrenzt. Grundsätzlich ist Mangan jedoch ein für die Gefügekontrolle benötigter Legierungsbestandteil.The manganese content of the claimed alloy is 0.1 to 0.5% by weight. preferably 0.2-0.4% by weight. For alloys with higher manganese contents were undesirable in a long-term high temperature stress Elimination processes found that led to a reduction the strength led. For this reason, the manganese content is 0.4 % By weight limited. In principle, however, manganese is one of the microstructural controls required alloying component.

    Zum Ausgleich der reduzierten Wirkung des Mangans hinsichtlich der Gefügekontrolle enthält die Legierung Zirkon zwischen 0,10 - 0,25 Gew.-%, bevorzugt 0,14 - 0,20 Gew.-%. Die sich ausscheidenden Zirkon-Aluminide sind in der Regel sogar feindisperser ausgebildet sind als Mangan-Aluminide. Überdies hat sich gezeigt, dass die Zirkon-Aluminide zur thermischen Stabilität der Legierung beitragen.To compensate for the reduced effect of manganese in terms of Microstructure contains the alloy zirconium between 0.10-0.25% by weight, preferably 0.14-0.20% by weight. The precipitating zirconium aluminides are usually even more finely dispersed than manganese aluminides. Moreover, it has been shown that the zirconium aluminides for contribute to thermal stability of the alloy.

    Zur Kornfeinung ist der Legierung 0,05 - 0,15 Gew.-%, bevorzugt 0,10 - 0,15 Gew.-% Titan zugefügt. Zweckmäßigerweise wird das Titan der Legierung in Form einer Al-5Ti-1B-Vorlegierung zugesetzt, wodurch die Legierung automatisch Bor enthält. Daraus bilden sich fein verteilte, nicht lösliche Titandiboride. Diese leisten einen Beitrag zur thermischen Stabilität der Legierung.For grain refining, the alloy is 0.05-0.15% by weight, preferably 0.10%. 0.15 wt .-% titanium added. Conveniently, the titanium of the alloy added in the form of an Al-5Ti-1B master alloy, whereby the alloy automatically contains boron. This form finely distributed, not soluble titanium diboride. These contribute to the thermal stability the alloy.

    Als unvermeidbare Verunreinigung kann die Legierung maximal 0,15 % Eisen, bevorzugt 0,10 % Eisen aufweisen.As an unavoidable impurity, the alloy can not exceed 0.15% Iron, preferably 0.10% iron.

    Nachfolgend werden Untersuchungsergebnisse unter Bezugnahme auf die beigefügten Figuren beschrieben. Diese zeigen:

    Fig. 1:
    Ein Diagramm, darstellend die 0,2 %-Dehngrenze und die Zugfestigkeit der erfindungsgemäßen Legierung im Zustand T6 im Vergleich zu vorbekannten Legierungen in Abhängigkeit von der Prüftemperatur,
    Fig. 2:
    ein Diagramm, darstellend die Zeitstandfestigkeit der erfindungsgemäßen Legierung im Zustand T6 im Vergleich zu vorbekannten Legierungen,
    Fig. 3:
    ein Diagramm, darstellend die 0,2 %-Dehngrenze und die Zugfestigkeit von aus der erfindungsgemäßen Legierung hergestellten Flugzeugrädern im Vergleich zu solchen, hergestellt aus vorbekannten Legierungen, und
    Fig. 4a, 4b:
    Diagramme, darstellend die Ermüdungsfestigkeit der erfindungsgemäßen Legierung im Vergleich zu einer vorbekannten Legierung im Zustand T6 bei Raumtemperatur und bei einer Temperatur von 200°C.
    In the following, test results will be described with reference to the attached figures. These show:
    Fig. 1 :
    A diagram showing the 0.2% proof strength and the tensile strength of the alloy according to the invention in the condition T6 compared to prior art alloys as a function of the test temperature,
    Fig. 2:
    a diagram showing the creep strength of the alloy according to the invention in the state T6 compared to prior art alloys,
    3:
    a diagram showing the 0.2% proof strength and the tensile strength of aircraft wheels made of the alloy according to the invention in comparison with those made of prior art alloys, and
    4a, 4b:
    Diagrams showing the fatigue strength of the alloy according to the invention compared to a prior art alloy in state T6 at room temperature and at a temperature of 200 ° C.

    Die nachfolgend wiedergegebene Tabelle 1 gibt die chemische Zusammensetzung von vier erfindungsgemäßen Legierungen (B, C, D, E) sowie die Zusammensetzung der vergleichsweise untersuchten Legierungen AA 2214 und AA 2618 wieder (Angaben in Gew.-%)(n.b.: nicht bestimmt): Legierung Si Fe Cu Mn Mg Ni Zn Ti Ag Zr V B 0,47 0,08 4,40 0,200 0,58 0,003 0,048 0,135 0,45 0,150 0,018 C 0,47 0,08 3,64 0,210 0,59 0,003 0,015 0,115 0,52 0,150 0,017 D 0,47 0,08 3,87 0,200 0,61 0,003 0,015 0,117 0,52 0,150 0,019 E 0,52 0,08 4,14 0,200 0,61 0,003 0,02 0,115 0,44 0,150 0,018 AA 2214 0,77 0,17 4,29 0,883 0,57 0,003 0,031 0,024 0,003 0,007 n. b. AA 2618 0,22 1,1 2,58 0,020 1,53 1,007 0,043 0,059 0,003 0,002 n. b. Table 1 reproduced below gives the chemical composition of four alloys according to the invention (B, C, D, E) and the composition of the comparatively investigated alloys AA 2214 and AA 2618 (data in% by weight) (nb: not determined): alloy Si Fe Cu Mn mg Ni Zn Ti Ag Zr V B 0.47 0.08 4.40 0,200 0.58 0,003 0.048 0.135 0.45 0,150 0,018 C 0.47 0.08 3.64 0.210 0.59 0,003 0,015 0.115 0.52 0,150 0,017 D 0.47 0.08 3.87 0,200 0.61 0,003 0,015 0,117 0.52 0,150 0.019 e 0.52 0.08 4.14 0,200 0.61 0,003 0.02 0.115 0,44 0,150 0,018 AA 2214 0.77 0.17 4.29 0.883 0.57 0,003 0.031 0.024 0,003 0,007 nb AA 2618 0.22 1.1 2.58 0,020 1.53 1,007 0.043 0.059 0,003 0,002 nb

    Aus diesen Legierungen sind Halbzeuge durch die nachfolgend wiedergegebenen Verfahrensschritte hergestellt worden:

  • a) Gießen eines Barrens aus einer Legierung,
  • b) Homogenisieren des gegossenen Barrens bei einer Temperatur, die möglichst dicht unter der Anschmelztemperatur der Legierung liegt für eine Zeit, die ausreichend lang bemessen ist, um eine möglichst gleichmäßige Verteilung der Legierungselemente im Gussgefüge zu erreichen,
  • c) Warmumformen des homogenisierten Barrens durch Schmieden bei einer Blocktemperatur von etwa 420 °C,
  • d) Lösungsglühen des durch Schmieden umgeformten Halbzeuges bei Temperaturen, die ausreichend hoch sind, um die für die Aushärtung notwendigen Legierungselemente gleichmäßig im Gefüge verteilt in Lösung zu bringen, wobei das Lösungsglühen in einem Temperaturbereich bei 505 °C über einen Zeitraum von 3 Stunden erfolgt,
  • e) Abschrecken des lösungsgeglühten Halbzeuges in Wasser bei Raumtemperatur,
  • f) Kaltumformen der abgeschreckten Halbzeuge durch Kaltstauchen um 1 bis 2 % und
  • g) Warmaushärten des abgeschreckten Halbzeuges bei Temperaturen bei 170 °C über einen Zeitraum von 20 - 25 Stunden.
  • From these alloys, semi-finished products have been produced by the following process steps:
  • a) casting a billet of an alloy,
  • b) homogenizing the cast ingot at a temperature as close as possible to the melting temperature of the alloy for a time sufficiently long to achieve as uniform a distribution of the alloying elements in the cast as possible,
  • c) hot working the homogenized billet by forging at a block temperature of about 420 ° C,
  • d) solution heat treatment of the semi-finished product formed by forging at temperatures sufficiently high to uniformly dissolve the alloying elements necessary for curing, the solution annealing being carried out in a temperature range at 505 ° C. over a period of 3 hours,
  • e) quenching the solution-annealed semifinished product in water at room temperature,
  • f) Cold forming of the quenched semi-finished products by cold heading by 1 to 2% and
  • g) thermosetting the quenched semi-finished product at temperatures of 170 ° C over a period of 20-25 hours.
  • Die auf diese Art und Weise hergestellten Freiformschmiedestücke sind anschließend auf ihre Eigenschaften im warm ausgehärteten Zustand T6 untersucht werden. Die Festigkeitswerte sind in den nachfolgenden Tabellen 2 und 3 wiedergegeben: Festigkeitswerte bei RT Bruchzähigkeit bei RT Legierung Probenrichtung Rp02 (MPa) Rm (MPa) A5 (%) Probenrichtung KIC (MPa√m) C L 448 485 11,2 T - L 31,3 LT 427 471 7,2 S - L 29,5 ST 417 479 6,3 S - T 32,2 D L 456 495 10,7 T - L 28,3 LT 434 478 8,0 S - L 29,1 ST 429 484 5,5 S - T 29,6 E L 454 494 9,9 T - L 26,1 LT 446 493 6,4 S - L 25,5 ST 438 494 4,9 S - T 26,9 AA 2214 L 444 489 9,7 T - L 24,2 LT 439 483 6,4 S - L 25,9 ST 429 480 5,8 S - T 27,3 AA 2219 L 286 408 16,7 T - L 31,1 LT 288 403 8,4 S - L 34,4 ST 366 455 5,0 S - T 32,3 AA 2618 L 389 443 5,1 T - L 19,2 LT 383 437 4,7 S - L 16,7 ST 376 427 4,1 S - T 19,3 Legierung E AA 2214 AA 2618 TPrüf tHalt Rp02 Rm A5 Rp02 Rm A5 Rp02 Rm A5 (°C) (h) (MPa) (MPa) (%) (MPa) (MPa) (%) (MPa) (Mpa) (%) 20 1 454 494 9,9 444 489 9,6 380 434 6,5 50 1 453 493 12,6 443 485 9,8 382 433 6,1 100 1 449 474 13,0 425 458 11,0 374 423 6,5 150 1 404 417 14,3 403 424 13,6 366 404 7,6 170 1 403 416 16,3 382 400 13,6 382 389 9,6 200 1 355 372 18,0 348 368 13,8 340 359 12,2 220 1 340 351 18,0 324 344 14,2 301 332 12,4 250 1 268 282 19,0 250 268 16,1 282 300 14,7 Definition Probenrichtungen:
    L = Längsrichtung: parallel zur Hauptformänderungsrichtung
    LT = Lange Querrichtung: parallel zur Breitenrichtung
    ST = Kurze Querrichtung: parallel zur Dickenrichtung.
    The open-die forgings produced in this way are then to be tested for their properties in the thermoset state T6. The strength values are shown in Tables 2 and 3 below: Strength values at RT Fracture toughness at RT alloy samples direction Rp02 (MPa) R m (MPa) A 5 (%) samples direction K IC (MPa√m) C L 448 485 11.2 T - L 31.3 LT 427 471 7.2 S - L 29.5 ST 417 479 6.3 S - T 32.2 D L 456 495 10.7 T - L 28.3 LT 434 478 8.0 S - L 29.1 ST 429 484 5.5 S - T 29.6 e L 454 494 9.9 T - L 26.1 LT 446 493 6.4 S - L 25.5 ST 438 494 4.9 S - T 26.9 AA 2214 L 444 489 9.7 T - L 24.2 LT 439 483 6.4 S - L 25.9 ST 429 480 5.8 S - T 27.3 AA 2219 L 286 408 16.7 T - L 31.1 LT 288 403 8.4 S - L 34.4 ST 366 455 5.0 S - T 32.3 AA 2618 L 389 443 5.1 T - L 19.2 LT 383 437 4.7 S - L 16.7 ST 376 427 4.1 S - T 19.3 alloy e AA 2214 AA 2618 T test Stop R p02 R m A 5 R p02 R m A 5 R p02 R m A 5 (° C) (H) (MPa) (MPa) (%) (MPa) (MPa) (%) (MPa) (Mpa) (%) 20 1 454 494 9.9 444 489 9.6 380 434 6.5 50 1 453 493 12.6 443 485 9.8 382 433 6.1 100 1 449 474 13.0 425 458 11.0 374 423 6.5 150 1 404 417 14.3 403 424 13.6 366 404 7.6 170 1 403 416 16.3 382 400 13.6 382 389 9.6 200 1 355 372 18.0 348 368 13.8 340 359 12.2 220 1 340 351 18.0 324 344 14,2 301 332 12.4 250 1 268 282 19.0 250 268 16.1 282 300 14.7 Definition of sample directions:
    L = longitudinal direction: parallel to the main deformation direction
    LT = long transverse direction: parallel to the width direction
    ST = short transverse direction: parallel to the thickness direction.

    Die verbesserten Festigkeiten der erfindungsgemäßen Legierung (etwa Legierung E) ist aus den Tabellen 2 und 3 deutlich entnehmbar. So zeigt beispielsweise die vorbekannte Legierung AA 2214 zwar gute Festigkeitswerte bei Raumtemperatur, nicht jedoch bei höheren Temperaturen. Überdies sind die Kriechbeständigkeit ebenso wie die Bruchzähigkeit nicht nur bei Raumtemperatur sondern insbesondere auch bei höheren Temperaturen bei der beanspruchten Legierung deutlich besser als bei den vorbekannten Legierungen. Aus dieser Gegenüberstellung wird ferner deutlich, daß die untersuchten vorbekannten Legierungen jeweils nur in Bezug auf einzelne Festigkeitsparameter gute Eigenschaften aufweisen. In keinem Fall weisen diese gute Eigenschaften bei sämtlichen relevanten Festigkeitswerten sowohl bei Raumtemperatur als auch bei erhöhten Temperaturen auf. Ebenso wie die Ermüdungseigenschaften ist die Kriechbeständigkeit dieser vorbekannten Legierung nicht zufriedenstellend. Über sämtliche untersuchten Festigkeitsparameter sehr gute Eigenschaften sind ausschließlich bei der erfindungsgemäßen Legierung festzustellen.The improved strengths of the alloy according to the invention (approx Alloy E) can be clearly seen from Tables 2 and 3. So shows For example, the previously known alloy AA 2214, although good strength values at room temperature, but not at higher temperatures. Moreover, the creep resistance as well as the fracture toughness are not only at room temperature but especially at higher temperatures in the claimed alloy significantly better than in the prior art Alloys. It is also clear from this comparison that the examined prior art alloys in each case only in relation have good properties on individual strength parameters. In none In case these show good properties for all relevant strength values both at room temperature and at elevated temperatures on. As well as the fatigue properties is the creep resistance this prior art alloy unsatisfactory. about All tested strength parameters very good properties are found exclusively in the alloy according to the invention.

    Aus der zugehörigen Darstellung in Figur 1 werden die besseren Festigkeitseigenschaften der erfindungsgemäßen Legierung (Legierung E) gegenüber den vorbekannten Legierungen (AA 2214 sowie AA 2618) auch auf graphische Weise deutlich. Unerwartet war bei den Ergebnissen, dass die Festigkeitswerte der Legierung E auch bei Temperaturen von unter 100 °C besser sind als diejenigen, der vorbekannten Legierung AA 2214, bekannt für ihre besonders hohen Festigkeitswerte in diesem Temperaturbereich.From the corresponding representation in Figure 1, the better strength properties the alloy according to the invention (alloy E) the previously known alloys (AA 2214 and AA 2618) also in a graphic way clearly. Unexpected was in the results that the strength values of the alloy E even at temperatures below 100 ° C are better than those of the previously known alloy AA 2214, known for their particularly high strength values in this temperature range.

    Ferner ist die Kriechbeständigkeit der Halbzeuge untersucht worden. Die nachfolgend wiedergegebene Tabelle 4 zeigt zusammenfassend die Prüfergebnisse (LMP: Larson-Miller-Parameter): Legierung E 2214 2618 TPrüf σPrüf TBruch LMP Tprüf σPrüf tBruch LMP TPrüf σPrüf tBruch LMP (°C) (MPa) (h) (-) (°C) (MPa) (h) (-) (°C) (MPa) (h) (-) 180 185 2513 10,60 205 200 30 10,27 205 183 10 10,04 167 4762 10,82 190 50 10,38 179 50 10,38 181 100 10,52 175 100 10,52 130 500 10,85 163 500 10,85 100 800 10,95 159 1000 11,00 Furthermore, the creep resistance of the semi-finished products has been investigated. The following reproduced Table 4 summarizes the test results (LMP: Larson Miller parameters): alloy e 2214 2618 T test σ test T break LMP T test σ test t break LMP T test σ test t break LMP (° C) (MPa) (H) (-) (° C) (MPa) (H) (-) (° C) (MPa) (H) (-) 180 185 2513 10.60 205 200 30 10.27 205 183 10 10.04 167 4762 10.82 190 50 10.38 179 50 10.38 181 100 10.52 175 100 10.52 130 500 10.85 163 500 10.85 100 800 10,95 159 1000 11.00

    Grafisch aufgetragen wird die deutlich bessere Zeitstandsfestigkeit der Legierung E im T6-Zustand im Vergleich zu den vorbekannten Legierungen AA 2214 und AA 2618 ebenfalls jeweils im T6-Zustand augenscheinlich. Dieses ist in dem Diagramm der Figur 2 als zeitkompensierte Temperaturdarstellung wiedergegeben. Die besonders gute Kriechbeständigkeit der erfindungsgemäßen Legierung war nicht vorhersehbar, so dass dieses Ergebnis überrascht.Graphically applied is the significantly better creep strength of Alloy E in the T6 state compared to the prior art alloys AA 2214 and AA 2618 also apparent in T6 state, respectively. This is in the diagram of Figure 2 as a time-compensated temperature representation played. The particularly good creep resistance The alloy according to the invention was unpredictable, so that this Result surprised.

    Im Rahmen der Erprobung der Verfahrensschritte zum Herstellen dieser Halbzeuge ist festgestellt worden, daß vergleichbare Materialeigenschaften des hergestellten Halbzeuges erreicht werden können, wenn der Schritt des Warmumformens bei einer Blocktemperatur zwischen 320 °C bis 460 °C durchgeführt wird. Der Schritt des Abschreckens des lösungsgeglühten Halbzeuges kann in einem Temperaturbereich zwischen Raumtemperatur und 100 °C (kochend) in Wasser erfolgen. Gleichfalls ist es möglich, zum Abschrecken ein Wasser-Glykol-Gemisch einzusetzen, dessen Temperatur jedoch 50 °C nicht überschreiten soll. Anstelle des zuvor beschriebenen Schrittes der Kaltumformung durch Kaltstauchen beim Schmieden kann als Kaltumformschritt auch ein Recken um 1 % bis 5 % zur Reduzierung der abschreckbedingten Eigenspannungen bei Strangpress- oder Walzprodukten durchgeführt werden. Der Schritt des Warmaushärtens ist durchführbar über einen Zeitraum von 5 bis 35 Stunden, bevorzugt zwischen 10 und 25 Stunden in einem Temperaturfenster zwischen 170 °C und 210 °C. As part of the testing of the process steps for producing this Semi-finished products have been found to have comparable material properties of the semi-finished product can be achieved when the Hot forming step at a block temperature between 320 ° C to 460 ° C is performed. The step of quenching the solution-annealed Semi-finished product can be used in a temperature range between Room temperature and 100 ° C (boiling) in water. Likewise it is possible to use a water-glycol mixture for quenching, however, its temperature should not exceed 50 ° C. Instead of previously described step of cold forming by cold heading When forging can be as cold forming step also stretching by 1% to 5% to reduce the deterrent residual stresses Extruded or rolled products are performed. The step of Thermosetting is feasible over a period of 5 to 35 hours, preferably between 10 and 25 hours in a temperature window between 170 ° C and 210 ° C.

    Bei weiteren Untersuchungen wurden Stranggussbarren, wie oben beschrieben, hergestellt und Flugzeugräder durch Gesenkschmieden im Vor- und Fertiggesenk bei einer Temperatur von 410 bis 430 °C gefertigt. Diese Räder wurden anschließend bei 505 °C lösungsgeglüht, in einem Wasser-Glykol-Gemisch von Raumtemperatur abgeschreckt und 20 Stunden bei 170 °C warm ausgelagert. Zum Vergleich wurden serienmäßig hergestellte Flugzeugräder aus der Legierung AA 2214 verwendet. An über den Umfang verteilten Stellen sind den Rädern aus der beanspruchten Legierung und der herkömmlichen Legierung Proben entnommen und auf ihre Zugfestigkeit hin untersucht worden. Das Ergebnis ist in Figur 3 grafisch wiedergegeben. Deutlich erkennbar ist, dass die erfindungsgemäße Legierung E gegenüber der vorbekannten Legierung AA 2214 bessere Werte erzielt.In further investigations continuous casting ingots were used, as described above, manufactured and aircraft wheels by drop forging in the Precast and finished dies manufactured at a temperature of 410 to 430 ° C. These wheels were then solution-annealed at 505 ° C, in one Water-glycol mixture quenched from room temperature and 20 hours outsourced at 170 ° C. For comparison were standard manufactured aircraft wheels made of alloy AA 2214 used. At Circumferentially distributed points are the wheels of the claimed Alloy and the conventional alloy samples taken and tested for tensile strength. The result is in Figure 3 graphically reproduced. It can be clearly seen that the invention Alloy E over the previously known alloy AA 2214 achieved better values.

    Ermüdungsversuche bei vergleichbaren Proben der beiden genannten Legierungen zeigen ebenfalls, dass die aus der beanspruchten Legierung hergestellten Räder deutlich bessere Werte erzielen, als die aus den mit der AA 2214-Legierung hergestellten Rädern. Dies trifft zu für bei Raumtemperatur durchgeführte Ermüdungsversuche (vgl. Figur 4a) sowie für Ermüdungsversuche, die bei einer Prüftemperatur von 200°C durchgeführt worden sind (vgl. Figur 4b).Fatigue tests on comparable samples of the two mentioned Alloys also show that from the claimed alloy produced wheels achieve significantly better values than those with the AA 2214 alloy wheels. This is true for at room temperature carried out fatigue tests (see Figure 4a) and for Fatigue tests conducted at a test temperature of 200 ° C have been (see Figure 4b).

    Die Beschreibung der beanspruchten Erfindung macht deutlich, dass diese überraschend nicht nur hohe dynamische und statische Festigkeitswerte aufweist, sondern dass diese insbesondere auch eine besonders gute Warmfestigkeit, Bruchzähigkeit und Kriechbeständigkeit aufweist. Daher eignet sich diese Legierung insbesondere zum Herstellen von Halbzeugen, die genau diesen Ansprüchen zu genügen haben, wie beispielsweise Flugzeugräder oder Verdichter.The description of the claimed invention makes it clear that these surprisingly not only high dynamic and static strength values but that in particular also a particular has good heat resistance, fracture toughness and creep resistance. Therefore, this alloy is particularly suitable for the production of Semi-finished products that have to meet exactly these requirements, such as Aircraft wheels or compressors.

    Claims (14)

    1. Al-Cu-Mg-Mn alloy for producing semi-finished products with high static and dynamic strength properties, characterised in that the alloy has the following composition:
      0.3 - 0.7 per cent by weight silicon (Si)
      max. 0.15 per cent by weight iron (Fe)
      3.5 - 4.5 per cent by weight copper (Cu)
      0.1 - 0.5 per cent by weight manganese (Mn)
      0.3 - 0.8 per cent by weight magnesium (Mg)
      0.05 - 0.15 per cent by weight titanium (Ti)
      0.1 - 0.25 per cent by weight zirconium (Zr)
      0.3 - 0.7 per cent by weight silver (Ag)
      max. 0.05 per cent by weight other, individually
      max. 0.15 per cent by weight other, overall
      Residual per cent by weight aluminium (Al).
    2. Alloy according to claim 1, characterised in that the copper/magnesium ratio is between 5 and 9.5.
    3. Alloy according to claim 2, characterised in that the copper content is between 3.8 and 4.2 per cent by weight and the magnesium content is between 0.45 and 0.6 per cent by weight and the copper/magnesium ratio is between 6.3 and 9.3.
    4. Alloy according to one of claims 1 to 3, characterised in that the silver content is between 0.45 and 0.6 per cent by weight.
    5. Allow according to one of claims 1 to 4, characterised in that the silicon content is between 0.4 and 0.6 per cent by weight.
    6. Alloy according to one of claims 1 - 5, characterised in that the manganese content is between 0.2 and 0.4 per cent by weight.
    7. Alloy according to one of claims 1 - 6, characterised in that the zirconium content is between 0.14 and 0.20 per cent by weight.
    8. Alloy according to one of claims 1 - 7, characterised in that the titanium content is between 0.10 and 0.15 per cent by weight.
    9. Alloy according to one or claims 1 - 8, characterised in that the titanium component is added by alloying in the form of an Al-Ti intermediate alloy to produce the alloy and the boron part is between 0.01 and 0.03 per cent by weight.
    10. Alloy according to one of claims 1 - 9, characterised in that the maximum iron content of the alloy is 0.10 per cent by weight.
    11. Semi-finished product produced from an alloy according to one of claims 1 to 10, characterised in that the said semi-finished product is produced by means of a hot-forming process.
    12. Method for producing a semi-finished product according to claim 11 characterised by the following steps:
      a) Casting a bar from an alloy,
      b) Homogenising the cast bar at a temperature which is as close as possible below the fusion temperature of the alloy for a time which is measured to be sufficiently long in order to obtain as uniform a distribution as possible of the allow elements in the cast structure,
      c) Hot-forming of the homogenised bar by means of forging and/or forging and/or rolling at temperatures between 320 °C and 470 °C,
      d) Solution heat-treatment of the re-formed semi-finished product at temperatures which are sufficiently high to dissolve the alloy elements, which are necessary for the hardening process, so as to be uniformly distributed in the structure, wherein the solution heat treatment is effected in a temperature range of between 490 and 505 °C over a period of between 30 minutes and 5 hours,
      e) Quenching the solution heat treated semi-finished product either in water at a maximum temperature of 100 °C or in a water-glycol mixture at a temperature less than or equal to 50 °C and
      f) Artificial ageing of the quenched semi-finished product at temperatures of between 170 and 210 °C over a period of between 5 hours and 35 hours.
    13. Method according to claim 12, characterised in that between the step of quenching and the step of artificially ageing, a cold-forming step is provided, where the quenched semi-finished product is compressed or drawn-out to reduce the internal stresses by an amount of between 1 and 5%.
    14. Method according to claim 12 or 13, characterised in that the step of artificially ageing is carried out over a period of between 10 and 25 hours.
    EP02751094A 2002-06-29 2002-06-29 Al/cu/mg/ag alloy with si, semi-finished product made from such an alloy and method for production of such a semi-finished product Expired - Lifetime EP1518000B1 (en)

    Applications Claiming Priority (1)

    Application Number Priority Date Filing Date Title
    PCT/EP2002/007193 WO2004003244A1 (en) 2002-06-29 2002-06-29 Al/cu/mg/ag alloy with si, semi-finished product made from such an alloy and method for production of such a semi-finished product

    Publications (2)

    Publication Number Publication Date
    EP1518000A1 EP1518000A1 (en) 2005-03-30
    EP1518000B1 true EP1518000B1 (en) 2005-08-31

    Family

    ID=29797107

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP02751094A Expired - Lifetime EP1518000B1 (en) 2002-06-29 2002-06-29 Al/cu/mg/ag alloy with si, semi-finished product made from such an alloy and method for production of such a semi-finished product

    Country Status (6)

    Country Link
    US (1) US7214279B2 (en)
    EP (1) EP1518000B1 (en)
    AT (1) ATE303457T1 (en)
    AU (1) AU2002368060A1 (en)
    DE (1) DE50204136D1 (en)
    WO (1) WO2004003244A1 (en)

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP2559779A1 (en) 2011-08-17 2013-02-20 Otto Fuchs KG High temperature Al-Cu-Mg-Ag alloy and method for producing a semi-finished product or product from such an aluminium alloy

    Families Citing this family (20)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US7547366B2 (en) * 2004-07-15 2009-06-16 Alcoa Inc. 2000 Series alloys with enhanced damage tolerance performance for aerospace applications
    US7449073B2 (en) * 2004-07-15 2008-11-11 Alcoa Inc. 2000 Series alloys with enhanced damage tolerance performance for aerospace applications
    US8083871B2 (en) 2005-10-28 2011-12-27 Automotive Casting Technology, Inc. High crashworthiness Al-Si-Mg alloy and methods for producing automotive casting
    RU2455529C2 (en) * 2006-04-29 2012-07-10 Ёрликон Лайбольд Вакуум Гмбх Rotor or stator of turbomolecular pump
    RU2461643C1 (en) * 2011-06-20 2012-09-20 Открытое акционерное общество "Раменское приборостроительное конструкторское бюро" (ОАО "РПКБ") Method of thermal stabilisation of sizes of precision instrument parts from d20 hardened aluminium alloy
    US20150284826A1 (en) * 2011-09-12 2015-10-08 Alex Cho High strength al-cu-mg-ag-si alloy for structural applications
    DE102013219050B3 (en) * 2013-09-23 2015-01-22 Oerlikon Leybold Vacuum Gmbh High-performance rotors of a turbomolecular pump
    DE102013219043A1 (en) 2013-09-23 2015-03-26 Oerlikon Leybold Vacuum Gmbh Alloys of rotors of a turbomolecular pump
    EP2927335B1 (en) 2014-04-03 2016-07-13 Otto Fuchs KG Aluminium bronze alloy, method for manufacturing the same and product made of aluminium bronze
    US20150322556A1 (en) 2014-05-06 2015-11-12 Goodrich Corporation Lithium free elevated temperature aluminum copper magnesium silver alloy for forged aerospace products
    DE102014106933A1 (en) 2014-05-16 2015-11-19 Otto Fuchs Kg Special brass alloy and alloy product
    CN103981410B (en) * 2014-05-27 2016-07-27 中南大学 A kind of high damnification resistant aluminum alloy and preparation method thereof
    US9786440B2 (en) 2014-12-17 2017-10-10 Avx Corporation Anode for use in a high voltage electrolytic capacitor
    DE202016102696U1 (en) 2016-05-20 2017-08-29 Otto Fuchs - Kommanditgesellschaft - Special brass alloy as well as special brass alloy product
    DE202016102693U1 (en) 2016-05-20 2017-08-29 Otto Fuchs - Kommanditgesellschaft - Special brass alloy as well as special brass alloy product
    CN108103373B (en) * 2017-12-28 2019-11-19 中南大学 A kind of argentiferous Al-Cu-Mg alloy and the heat treatment method for obtaining high intensity P texture
    CN109898000B (en) * 2019-03-29 2020-12-15 郑州轻研合金科技有限公司 Ultrahigh-strength heat-resistant aluminum alloy and preparation method thereof
    US11009074B1 (en) 2019-11-11 2021-05-18 Aktiebolaget Skf Lightweight bearing cage for turbine engines and method of forming a lightweight bearing cage
    JP7469072B2 (en) * 2020-02-28 2024-04-16 株式会社神戸製鋼所 Aluminum alloy forgings and their manufacturing method
    CN114855039B (en) * 2021-02-03 2023-06-23 中国石油化工股份有限公司 Al-Cu-Mg-Ag alloy and preparation method and application thereof

    Family Cites Families (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3475166A (en) * 1969-01-15 1969-10-28 Electronic Specialty Co Aluminum base alloy
    GB1320271A (en) * 1971-01-29 1973-06-13 Atomic Energy Authority Uk Aluminium alloys
    JPH03107440A (en) * 1989-09-20 1991-05-07 Showa Alum Corp Aluminum alloy for load cell

    Cited By (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP2559779A1 (en) 2011-08-17 2013-02-20 Otto Fuchs KG High temperature Al-Cu-Mg-Ag alloy and method for producing a semi-finished product or product from such an aluminium alloy
    WO2013023907A1 (en) 2011-08-17 2013-02-21 Otto Fuchs Kg Heat-resistant al-cu-mg-ag alloy and process for producing a semifinished part or product composed of such an aluminium alloy

    Also Published As

    Publication number Publication date
    AU2002368060A1 (en) 2004-01-19
    ATE303457T1 (en) 2005-09-15
    WO2004003244A1 (en) 2004-01-08
    EP1518000A1 (en) 2005-03-30
    DE50204136D1 (en) 2005-10-06
    US7214279B2 (en) 2007-05-08
    US20050115645A1 (en) 2005-06-02

    Similar Documents

    Publication Publication Date Title
    EP1518000B1 (en) Al/cu/mg/ag alloy with si, semi-finished product made from such an alloy and method for production of such a semi-finished product
    EP1683882B1 (en) Aluminium alloy with low quench sensitivity and process for the manufacture of a semi-finished product of this alloy
    DE69912850T2 (en) METHOD OF PRODUCING AN ALUMINUM-MAGNESIUM-LITHIUM ALLOY PRODUCT
    US10435774B2 (en) 2XXX series aluminum lithium alloys having low strength differential
    EP2559779B1 (en) High temperature Al-Cu-Mg-Ag alloy and method for producing a semi-finished product or product from such an aluminium alloy
    DE69326838T3 (en) TOUGH ALUMINUM ALLOY WITH COPPER AND MAGNESIUM
    DE60120987T2 (en) HIGH-ALUMINUM BASE ALLOY AND A PRODUCT MANUFACTURED THEREOF
    EP1718778B1 (en) Material based on an aluminum alloy, method for the production thereof and its use
    DE69836569T2 (en) Process for increasing the fracture toughness in aluminum-lithium alloys
    DE112008003052T5 (en) Product of Al-Mg-Zn wrought alloy and manufacturing method therefor
    DE10392805T5 (en) A method of producing a high strength Al-Zn-Mg-Cu alloy
    DE3411760A1 (en) METHOD FOR PRODUCING SHEET OR STRIP FROM A ROLLING BAR OF AN ALUMINUM ALLOY
    DE60300004T2 (en) Kneaded product of Al-Cu-Mg alloy for the structural component of an aircraft
    DE2103614B2 (en) Process for the production of semi-finished products from AIMgSIZr alloys with high notched impact strength
    EP1017867B1 (en) Aluminium based alloy and method for subjecting it to heat treatment
    DE2606632A1 (en) VERY HIGH CARBON STEEL AND METHOD OF MANUFACTURING THE SAME
    DE68913561T2 (en) Aluminum-lithium alloys.
    DE60019803T2 (en) HIGH-RESISTANT ALUMINUM BASE ALLOYS AND ARTICLES MANUFACTURED THEREOF
    EP1458898B1 (en) Method of fabrication of an aluminium alloy article by hot- and cold-forming
    DE112019000856T5 (en) Process for the manufacture of aluminum alloy components
    DE1284095B (en) Process for producing aluminum alloy sheets with high creep rupture strength
    DE3486352T2 (en) Aluminum-lithium alloy.
    EP3818187B1 (en) Aluminum alloy and overaged aluminum alloy product made of such an alloy
    EP2103701B1 (en) Aluminium alloy and method for producing a product from same
    EP1748088B1 (en) Process for producing a semi-finished product or component for chassis or structural automotive applications

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20040209

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AX Request for extension of the european patent

    Extension state: AL LT LV MK RO SI

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    RIN1 Information on inventor provided before grant (corrected)

    Inventor name: SAUER, DIETER

    Inventor name: TERLINDE, GREGOR

    Inventor name: FISCHER, GERNOT

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050831

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050831

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    Ref country code: CH

    Ref legal event code: EP

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20050831

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

    REF Corresponds to:

    Ref document number: 50204136

    Country of ref document: DE

    Date of ref document: 20051006

    Kind code of ref document: P

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20051130

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20051130

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20051130

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: PA ALDO ROEMPLER

    RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

    Owner name: OTTO FUCHS KG

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: ERR

    Free format text: NOTIFICATION HAS NOW BEEN RECEIVED FROM THE EUROPEAN PATENT OFFICE THAT THE CORRECT NAME OF THE SECOND APPLICANT/PROPRIETOR IS: OTTO FUCHS KG THIS CORRECTION WILL BE PUBLISHED IN THE EUROPEAN PATENT BULLETIN 05/49 DATED 20051207

    NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

    Owner name: OTTO FUCHS KG

    Effective date: 20051207

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060222

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    ET Fr: translation filed
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060630

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060630

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20060601

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060629

    BERE Be: lapsed

    Owner name: *OTTO FUCHSK.G.

    Effective date: 20060630

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: TR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050831

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060629

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PCAR

    Free format text: ALDO ROEMPLER PATENTANWALT;BRENDENWEG 11 POSTFACH 154;9424 RHEINECK (CH)

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050831

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060630

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 15

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 16

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 17

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20210630

    Year of fee payment: 20

    Ref country code: NL

    Payment date: 20210621

    Year of fee payment: 20

    Ref country code: FR

    Payment date: 20210621

    Year of fee payment: 20

    Ref country code: DE

    Payment date: 20210423

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20210623

    Year of fee payment: 20

    Ref country code: GB

    Payment date: 20210623

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 50204136

    Country of ref document: DE

    Representative=s name: HAVERKAMP PATENTANWAELTE PARTG MBB, DE

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 50204136

    Country of ref document: DE

    Ref country code: NL

    Ref legal event code: MK

    Effective date: 20220628

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: PE20

    Expiry date: 20220628

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20220628