EP1458898B1 - Method of fabrication of an aluminium alloy article by hot- and cold-forming - Google Patents

Method of fabrication of an aluminium alloy article by hot- and cold-forming Download PDF

Info

Publication number
EP1458898B1
EP1458898B1 EP02787956A EP02787956A EP1458898B1 EP 1458898 B1 EP1458898 B1 EP 1458898B1 EP 02787956 A EP02787956 A EP 02787956A EP 02787956 A EP02787956 A EP 02787956A EP 1458898 B1 EP1458898 B1 EP 1458898B1
Authority
EP
European Patent Office
Prior art keywords
semi
temperature
less
component
hafnium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02787956A
Other languages
German (de)
French (fr)
Other versions
EP1458898A1 (en
Inventor
Andreas Barth
Patrick Laevers
Arne Mulkers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aluminium Duffel BV
Mercedes Benz Group AG
Original Assignee
Corus Aluminium NV
DaimlerChrysler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corus Aluminium NV, DaimlerChrysler AG filed Critical Corus Aluminium NV
Publication of EP1458898A1 publication Critical patent/EP1458898A1/en
Application granted granted Critical
Publication of EP1458898B1 publication Critical patent/EP1458898B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions

Definitions

  • the invention relates a method for Production of an aluminum component according to claim and a Component produced by a method according to claims 1-8.
  • High strength Cu e.g., Al Mg Si 1 Cu 0.5
  • Zn-containing have heat-treated Al semi-finished and Al forgings Although high static strength values, but is their Breaking strain low. In the case of notch effect (e.g. Rockfall) thus results in a low dynamic Strength.
  • these alloys are vulnerable Corrosion, so that to avoid notch-acting Corrosion scars require expensive corrosion protection is.
  • forged Al chassis parts are always exposed to stone chips (notches) and corrosion, In these areas, only in exceptional cases are Cu / Zn ambience Al materials used.
  • Ductilers or notch-oriented Al Mg Si 1 alloys such as. B. the EN-AW 6082 are indeed because of their very low Cu and Zn content Corrosion resistant, but achieve this Alloys do not have sufficient strength values.
  • German Offenlegungsschriften DE OS 2 103 614 and DE OS 2 213 136 each describe an aluminum-silicon-magnesium Alloy, the recrystallization inhibiting reacts, but these alloys are too low Strength on, also is the tendency to recrystallization this alloy for multi-formed or cold-formed Components still too high. The same goes for the known alloy according to EN-AW 6082.
  • the object of the invention is a component and a method for producing a component to provide better than the prior art recrystallization-inhibiting effect and to a higher Strength and corrosion resistance of the components lead.
  • the solution of the task consists in one Method according to Claim 1 and in a component according to claim 9.
  • the Alloy a silicon content between 0.9 and 1.7 wt.% on.
  • the invention is also characterized by the fact that the Alloy elements manganese, chrome and zirconium and / or Hafnium together account for at least 0.4% by weight exhibit. Preferably, the proportion of these Elements higher than 0.6% by weight. These elements act as Recrystallization inhibitors.
  • the alloy has a silicon content of 0.9 to 1.3% on. It turned out that a lower Silicon content not to the required strength values leads.
  • the silicon works in combination with the magnesium in the form of precipitation hardening (heat treatment), the in the form of Mg2Si precipitates. higher Levels of manganese and chromium also lead to one Precipitation hardening or strengthening.
  • the alloy is particularly resistant to Recrystallization both in hot working and in Cold forming. It is almost independent of a high strength and a manufacturing process low tendency to corrosion.
  • the low Corrosion tendency is mainly due to the low proportion of Attributed to copper and zinc.
  • the process is characterized by the fact that cast Raw material of the alloy at temperatures between 420 ° C and 540 ° C, preferably homogenized between 460 ° C and 500 ° C becomes. During this homogenization, the Alloy components magnesium and silicon fine in the Aluminum matrix also distributes the form Dispersoids, as described, based on zirconium or hafnium, manganese, chromium and / or iron.
  • the raw material Homogenizing for at least 4 hours is particularly preferred a homogenization of 12 h applied.
  • the Semifinished between 500 ° C and 560 ° C, wherein each of the The highest possible temperature to choose is around To avoid recrystallisation nuclei.
  • the semi-finished products will be if necessary, separated into workpieces suitable for forming and either one or several cold formed or possibly several times warm to components or more Reshaped semi-finished products.
  • a machining of the Semi-finished products, z. B. by turning or milling is also appropriate.
  • Hot or cold forming or cutting Editing can be done within the skill of the art take place and optionally conventional heat treatments include.
  • the hot forming of the semifinished product follows at temperatures that are in the range of the usual solution annealing (between 440 ° C and 560 ° C). It is during the reshaping in particular during several forming steps make sure that the Temperature of the workpiece is not below the mentioned Temperature drops, resulting in coarse precipitates in the component structure would result.
  • the forming process replaces the Process step of the solution annealing, which affects considerably the process costs and the duration of the process.
  • the forming temperatures according to the invention are higher than the usual Forming temperatures, resulting in less solidification and thus a lower Rekristallisationskeimön in Microstructure causes.
  • the recrystallization becomes sustainable suppressed.
  • Higher strength values and above all significantly higher elongation at break in highly formed areas are the consequence.
  • the workpiece After forming, the workpiece is preferably in water quenched, which freezes the structure. At the subsequent hot curing between 160 ° C and 240 ° C the desired strength increase takes place.
  • the aluminum component according to the invention produced by a method according to any one of claims 1-8, in one of Alloy information corresponding composition one Tensile strength of at least 400 MPa and a minimum Elongation at break (A5) of 10%.
  • Such components are preferably as tie rods or other chassis parts, Profiles, bolts, screws or wheels used.
  • the Tension struts are quenched in water and at 200 ° C for 4 h artificially aged.
  • the tie rods point both in the area a middle brace as well as in the area of a big eye, due to the high degree of deformation usually one having high degree of recrystallization, a Tensile strength of more than 400 MPa and a breaking elongation (A5) of more than 13%.

Abstract

A component or semi-finished piece is made from a hot-form aluminium alloy of the following composition in wt. %: silicon 0.9-1.3, magnesium 0.7-1.2, manganese 0.5-1.0, copper less than 0.1, iron less than 0.5, chromium less than 0.25, titanium less than 0.1, zinc less than 0.2, zirconium and/or hafnium 0.05-0.2 and further unavoidable impurities, whereby the total amount of chromium and manganese and zirconium and/or hafnium is at least 0.4 by weight. The aluminium/silicon mixed crystals are present in addition to magnesium silicide precipitates.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung eines Aluminiumbauteils nach Anspruch und ein Bauteil, hergestellt durch ein Verfahren nach Ansprüchen 1-8.The invention relates a method for Production of an aluminum component according to claim and a Component produced by a method according to claims 1-8.

Hochfeste Cu- (z.B. Al Mg Si 1 Cu 0,5) oder Zn-haltige, wärmebehandelte Al-Halbzeuge und Al-Schmiedeteile haben zwar hohe statische Festigkeitswerte, jedoch ist deren Bruchdehnung niedrig. Im Fall von Kerbwirkung (z.B. Steinschlag) resultiert somit eine geringe dynamische Festigkeit. Auch sind diese Legierungen anfällig gegenüber Korrosion, so dass zur Vermeidung kerbwirkender Korrosionsnarben ein teurer Korrosionsschutz erforderlich ist. Da z.B. hoch belastete, geschmiedete Al-Fahrwerksteile immer Steinschlag- (Kerben) und Korrosion ausgesetzt sind, werden in diesen Bereichen nur in Ausnahmefällen Cu-/Znhaltige Al-Werkstoffe eingesetzt. Duktilere bzw. kerbunempfinlichere Al Mg Si 1-Legierungen wie z. B. die EN-AW 6082 sind zwar wegen ihres sehr geringen Cu- und Zn-Gehaltes korrosionsbeständig, jedoch erreichen diese Legierungen keine ausreichende Festigkeitswerte.High strength Cu (e.g., Al Mg Si 1 Cu 0.5) or Zn-containing, have heat-treated Al semi-finished and Al forgings Although high static strength values, but is their Breaking strain low. In the case of notch effect (e.g. Rockfall) thus results in a low dynamic Strength. Also, these alloys are vulnerable Corrosion, so that to avoid notch-acting Corrosion scars require expensive corrosion protection is. As e.g. heavily loaded, forged Al chassis parts are always exposed to stone chips (notches) and corrosion, In these areas, only in exceptional cases are Cu / Znhaltige Al materials used. Ductilers or notch-oriented Al Mg Si 1 alloys such as. B. the EN-AW 6082 are indeed because of their very low Cu and Zn content Corrosion resistant, but achieve this Alloys do not have sufficient strength values.

Ein weiterer Nachteil derartiger Legierungen besteht darin, dass beim Umformen und späteren Wärmebehandeln hoch umgeformte Schmiede- und Halbzeugzonen grobkörnig rekristallisieren. Ein grobkörniges bzw. sprödes und minder festes Gefüge führt zu einem frühen Ausfall des Al-Bauteiles.Another disadvantage of such alloys is that that during forming and later heat treatment high Formed forging and semi-finished zones coarse-grained recrystallize. A coarse-grained or brittle and less firm structure leads to an early failure of the Al component.

Dies gilt vor allem dann, wenn z. B. zu Erzielung einer hohen Materialausbeute eine Mehrfachumformung beim Schmieden erforderlich ist. Bei der Mehrfachumformung erfolgt meist der höchste Umformungsgrad erst am Ende des Umformprozesses und somit bei Temperaturen zwischen 390°C und 450°C, so dass das Gefüge beim späteren Wärmebehandeln rekristallisiert. Noch problematischer ist das Rekristallisationsverhalten kalt umgeformter Al-Halbzeuge, die später wärmebehandelt werden. So wird z.B. für das Herstellen hoch fester Al-Schrauben kalt gezogener Draht oder Stangen verwendet, der dann über Stauchen und Pressen zu einem Schraubenrohling kalt umgeformt wird. Beim späteren Wärmebehandeln ist somit das Gefüge hoch rekristallisationsanfällig. Dasselbe gilt für kalt geschmiedete Al-Räder.This is especially true if z. B. to achieve a high material yield a Mehrfachumformung when Forging is required. In the multiple forming usually the highest degree of deformation occurs only at the end of the Forming process and thus at temperatures between 390 ° C and 450 ° C, allowing the microstructure to heat later recrystallized. Even more problematic is the recrystallization behavior cold-formed Al semi-finished products, later be heat treated. For example, for making high solid Al screws cold drawn wire or rods used, then about upsetting and pressing to a Screw blank is cold formed. Later Heat treatment is thus the structure high rekristallisationsanfällig. The same applies to cold forged Al wheels.

Die deutschen Offenlegungsschriften DE OS 2 103 614 und DE OS 2 213 136 beschreiben jeweils eine Aluminium-Silizium-Magnesium -Legierung, die rekristallisationshemmend reagiert, diese Legierungen weisen jedoch eine zu geringe Festigkeit auf, zudem ist die Neigung zur Rekristallisation dieser Legierung für mehrfachumgeformte oder kaltumgeformte Bauteile immer noch zu hoch. Das selbe gilt für die bekannte Legierung nach der EN-AW 6082.German Offenlegungsschriften DE OS 2 103 614 and DE OS 2 213 136 each describe an aluminum-silicon-magnesium Alloy, the recrystallization inhibiting reacts, but these alloys are too low Strength on, also is the tendency to recrystallization this alloy for multi-formed or cold-formed Components still too high. The same goes for the known alloy according to EN-AW 6082.

Die Aufgabe der Erfindung besteht darin, ein Bauteil und ein Verfahren zur Herstellung eines Bauteils bereitzustellen, die gegenüber dem Stand der Technik besser rekristallisationshemmend wirken und zu einer höheren Festigkeit und Korrosionsbeständigkeit der Bauteile führen. The object of the invention is a component and a method for producing a component to provide better than the prior art recrystallization-inhibiting effect and to a higher Strength and corrosion resistance of the components lead.

Die Lösung der Aufgabe besteht in einem Verfahren nach Anspruch 1 und in einem Bauteil nach Anspruch 9.The solution of the task consists in one Method according to Claim 1 and in a component according to claim 9.

Das erfindungsgemäße Bauteil oder Halbzeug hergestellt durch ein Verfahren nach einem der Ansprüche 1-8 besteht aus einer Aluminiumlegierung mit folgender Zusammensetzung:

  • Silizium   0,9 - 1,3,
  • Magnesium   0,7 - 1,2,
  • Mangan   0, 5 - 1,0,
  • Kupfer   kleiner 0,1,
  • Eisen   kleiner 0,5,
  • Chrom   kleiner 0,25,
  • Zirkon und/oder Hafnium   0,05 - 0,2.
In vorteilhafter Weise liegen bestimmte Legierungsbestandteile in folgender Zusammensetzung vor:
  • Kupfer kleiner   0,05,
  • Eisen   0, 1 - 0,5,
  • Chrom   0,05 - 0,2,
  • Zink   kleiner 0,05.
The component or semifinished product produced by a method according to any one of claims 1-8 consists of an aluminum alloy having the following composition:
  • Silicon 0.9 - 1.3,
  • Magnesium 0.7 - 1.2,
  • Manganese 0, 5 - 1.0,
  • Copper smaller 0.1,
  • Iron less than 0.5,
  • Chrome smaller than 0.25,
  • Zirconium and / or hafnium 0.05-0.2.
Advantageously, certain alloying constituents are present in the following composition:
  • Copper smaller 0.05,
  • Iron 0, 1 - 0.5,
  • Chromium 0.05 - 0.2,
  • Zinc less than 0.05.

Zudem kann die Legierung, die Elemente

  • Zink   kleiner 0,2
  • Titan   kleiner 0,1
enthalten. Titan dient hierbei zur Kornverfeinerung, Zink kann zur Festigkeitssteigerung beitragen. Zusätzlich enthält die Legierung übliche Verunreinigungen, die auf den Herstellungsprozess zurückzuführen sind.In addition, the alloy, the elements
  • Zinc less than 0.2
  • Titanium less than 0.1
contain. Titanium serves to grain refining, zinc can contribute to the increase in strength. In addition, the alloy contains common impurities due to the manufacturing process.

In einer vorteilhaften Ausgestaltungsform weist die Legierung einen Siliziumanteil zwischen 0,9 und 1,7 Gew.% auf.In an advantageous embodiment, the Alloy a silicon content between 0.9 and 1.7 wt.% on.

Die Erfindung zeichnet sich zudem dadurch aus, dass die Legierungselemente Mangan, Chrom und Zirkon und/oder Hafnium zusammen einen Anteil von mindestens 0,4 Gew. % aufweisen. In bevorzugter Weise liegt der Anteil dieser Elemente höher als 0,6 Gew. %. Diese Elemente fungieren als Rekristallisationshemmer.The invention is also characterized by the fact that the Alloy elements manganese, chrome and zirconium and / or Hafnium together account for at least 0.4% by weight exhibit. Preferably, the proportion of these Elements higher than 0.6% by weight. These elements act as Recrystallization inhibitors.

Diese Elemente bilden mit dem Aluminium beim Homogenisierungsglühen intermetallische Dispersoide, die die Korngrenzen verankern und sich auch während weiterer Temperaturbehandlungen nicht oder nur im geringen Masse wieder auflösen. Durch die Verankerung der Dispersoide an den Korngrenzen wird das Wachstum der Körner zu Grobkorn verhindert, wodurch somit die Rekristallisation nachhaltige unterdrückt wird. Zirkon und hafniumhaltige Dispersoide sind besonders temperaturstabil, was sich hemmend auf die Rekristallisation bei hohen Temperaturen auswirkt.These elements form with the aluminum at Homogenizing annealing intermetallic dispersoids, the anchor the grain boundaries and also during further Temperature treatments are not or only to a limited extent dissolve again. By anchoring the dispersoids At the grain boundaries, the growth of grains becomes coarse grain prevents, thus making the recrystallization sustainable is suppressed. Zirconium and hafnium-containing dispersoids are particularly temperature stable, which inhibits the Recrystallization at high temperatures affects.

Die Legierung weist einen Siliziumanteil von 0,9 bis 1,3 % auf. Es hat sich herausgestellt, dass ein niedrigerer Siliziumanteil nicht zu den geforderten Festigkeitswerten führt. Das Silizium wirkt in Kombination mit dem Magnesium in Form einer Ausscheidungshärtung (Wärmebehandlung), die sich in Form von Mg2Si-Ausscheidungen einstellt. Höhere Gehalte an Mangan und Chrom führen ebenfalls zu einer Ausscheidungshärtung bzw. Festigungssteigerung.The alloy has a silicon content of 0.9 to 1.3% on. It turned out that a lower Silicon content not to the required strength values leads. The silicon works in combination with the magnesium in the form of precipitation hardening (heat treatment), the in the form of Mg2Si precipitates. higher Levels of manganese and chromium also lead to one Precipitation hardening or strengthening.

Darüber hinaus ist es zweckmäßig, dass für eine Mischkristallhärtung, also einer Bildung von AlSi-Mischkristallen ein Überschuss an Silizium besteht, der nicht in Mg2Si-Ausscheidungen gebunden ist. Das Verhältnis von Silizium zu Magnesium liegt somit bevorzugt zwischen 1,1 bis 1,3 zu 1, besonders bevorzugt zwischen 1,16 bis 1,24 zu 1.In addition, it is appropriate for a Solid-solution hardening, ie formation of AlSi mixed crystals there is an excess of silicon, the is not bound in Mg2Si excretions. The relationship from silicon to magnesium is thus preferred between 1.1 to 1.3 to 1, more preferably between 1.16 to 1.24 to 1.

Die Legierung ist besonders resistent gegen Rekristallisation sowohl bei Warmumformung als auch bei Kaltumformung. Sie weist an sich nahezu unabhängig von einem Herstellungsverfahren eine hohe Festigkeit und eine geringe Korrosionsneigung auf. Die geringe Korrosionsneigung ist vor allem auf den geringen Anteil an Kupfer und Zink zurückzuführen.The alloy is particularly resistant to Recrystallization both in hot working and in Cold forming. It is almost independent of a high strength and a manufacturing process low tendency to corrosion. The low Corrosion tendency is mainly due to the low proportion of Attributed to copper and zinc.

Das Verfahren zeichnet sich dadurch aus, dass gegossenes Rohmaterial der Legierung bei Temperaturen zwischen 420° C und 540°C, bevorzugt zwischen 460°C und 500°C homogenisiert wird. Während dieser Homogenisierung werden die Legierungsbestandteile Magnesium und Silizium fein in der Aluminium-Matrix verteilt zudem bilden sich die Dispersoide, die, wie beschrieben, auf Basis vom Zirkon oder Hafnium, Mangan, Chrom und/oder Eisen bestehen.The process is characterized by the fact that cast Raw material of the alloy at temperatures between 420 ° C and 540 ° C, preferably homogenized between 460 ° C and 500 ° C becomes. During this homogenization, the Alloy components magnesium and silicon fine in the Aluminum matrix also distributes the form Dispersoids, as described, based on zirconium or hafnium, manganese, chromium and / or iron.

Es hat sich als vorteilhaft herausgestellt, das Rohmaterial mindestens 4 h zu homogenisieren, besonders bevorzugt wird eine Homogenisierung von 12 h angewendet.It has turned out to be advantageous, the raw material Homogenizing for at least 4 hours is particularly preferred a homogenization of 12 h applied.

Im weiteren Verfahren wird das Rohmaterial bei einer Temperatur zwischen 450° C und 560° C zu Halbzeugen geformt (z. B. Strangpressen oder Walzen von Blechen) und gegebenenfalls abgeschreckt. Bevorzugt erfolgt die Halbzeugformung zwischen 500°C und 560°C, wobei jeweils die höchstmögliche Temperatur zu wählen ist um Rekristallisationskeime zu vermeiden. Die Halbzeuge werden falls notwendig in umformgerechte Werkstücke vereinzelt und entweder ein- oder mehrfach kalt umgeformt oder gegebenenfalls mehrfach warm zu Bauteilen oder weiteren Halbzeugen umgeformt. Eine spanende Bearbeitung der Halbzeuge, z. B. durch Drehen oder Fräsen ist ebenfalls zweckmäßig. Das Warm- oder Kaltumformen oder das spanende Bearbeiten kann im Rahmen des fachmännischen Könnens erfolgen und gegebenenfalls übliche Wärmebehandlungen beinhalten.In the further process, the raw material at a Temperature formed between 450 ° C and 560 ° C to semi-finished products (eg extrusion or rolling of sheets) and optionally quenched. Preferably, the Semifinished between 500 ° C and 560 ° C, wherein each of the The highest possible temperature to choose is around To avoid recrystallisation nuclei. The semi-finished products will be if necessary, separated into workpieces suitable for forming and either one or several cold formed or possibly several times warm to components or more Reshaped semi-finished products. A machining of the Semi-finished products, z. B. by turning or milling is also appropriate. Hot or cold forming or cutting Editing can be done within the skill of the art take place and optionally conventional heat treatments include.

Das Warmumformen des Halbzeugs folgt bei Temperaturen, die im Bereich des üblichen Lösungsglühen liegen (zwischen 440°C und 560°C). Es ist während des Umformens insbesondere während mehrerer Umformschritte darauf zu achten, dass die Temperatur des Werkstücks nicht unter die genannte Temperatur fällt, was grobe Ausscheidungen im Bauteilgefüge zur Folge hätte. Der Umformvorgang ersetzt demnach den Prozessschritt des Lösungsglühens, was sich erheblich auf die Prozesskosten und die Prozessdauer auswirkt.The hot forming of the semifinished product follows at temperatures that are in the range of the usual solution annealing (between 440 ° C and 560 ° C). It is during the reshaping in particular during several forming steps make sure that the Temperature of the workpiece is not below the mentioned Temperature drops, resulting in coarse precipitates in the component structure would result. The forming process replaces the Process step of the solution annealing, which affects considerably the process costs and the duration of the process.

Die erfindungsgemäßen Umformtemperaturen, die gleichzeitig ein Lösungsglühen beinhalten, liegen höher als die üblichen Umformtemperaturen, was eine geringere Verfestigung und somit eine geringere Rekristallisationskeimbildung im Gefüge bewirkt. Somit wird die Rekristallisation nachhaltig unterdrückt. Höhere Festigkeitswerte und vor allem deutliche höhere Bruchdehnung in hochumgeformten Bereiche sind die Folge.The forming temperatures according to the invention, the same time a solution annealing, are higher than the usual Forming temperatures, resulting in less solidification and thus a lower Rekristallisationskeimbildung in Microstructure causes. Thus, the recrystallization becomes sustainable suppressed. Higher strength values and above all significantly higher elongation at break in highly formed areas are the consequence.

Nach dem Umformen wird das Werkstück bevorzugt in Wasser abgeschreckt, wodurch das Gefüge eingefroren wird. Beim anschließenden Warmaushärten zwischen 160°C und 240°C erfolgt die gewünschte Festigkeitssteigerung.After forming, the workpiece is preferably in water quenched, which freezes the structure. At the subsequent hot curing between 160 ° C and 240 ° C the desired strength increase takes place.

Das erfindungsgemäße Aluminiumbauteil hergestellt durch ein Verfahren nach einem der Ansprüche 1-8 weist bei einer der Legierungsangaben entsprechenden Zusammensetzung eine Zugfestigkeit von mindestens 400 MPa und eine minimale Bruchdehnung (A5) von 10 % auf. Derartige Bauteile werden bevorzugt als Zugstreben oder andere Fahrwerksteile, Profile, Bolzen, Schrauben oder Räder verwendet.The aluminum component according to the invention produced by a method according to any one of claims 1-8, in one of Alloy information corresponding composition one Tensile strength of at least 400 MPa and a minimum Elongation at break (A5) of 10%. Such components are preferably as tie rods or other chassis parts, Profiles, bolts, screws or wheels used.

Im Folgenden wird die Erfindung an Hand von zwei Beispielen näher erläutert. Das den Beispielen 1 und 2 zugrundeliegende Verfahrensschema ist in Fig. 1 dargestellt.In the following the invention is based on two examples explained in more detail. That the examples 1 and 2 The underlying process scheme is shown in FIG. 1 shown.

Beispiel 1:Example 1:

Eine Legierungsschmelze mit der Zusammensetzung in Gewicht %:

  • Silizium   1,2,
  • Magnesium   1,0,
  • Mangan   0,5,
  • Kupfer   0,05,
  • Eisen   0,2,
  • Chrom   0,2,
  • Titan   0,05,
  • Zink   0,1,
  • Zirkon   0,2,
wird zu Barren gegossen. Die Barren werden bei einer Temperatur von 480° C für 12 h homogenisiert. Im nächsten Verfahrensschritt werden die Barren bei einer Temperatur von 500° C in Rundstangen (=Halbzeug) gepresst. Die Rundstangen werden abgeschreckt und in etwa 20 cm lange Werkstücke vereinzelt.An alloy melt with the composition in weight%:
  • Silicon 1,2,
  • Magnesium 1.0,
  • Manganese 0.5,
  • Copper 0.05,
  • Iron 0.2,
  • Chrome 0.2,
  • Titanium 0.05,
  • Zinc 0.1,
  • Zircon 0.2,
is poured into ingots. The ingots are homogenized at a temperature of 480 ° C for 12 h. In the next process step, the billets are pressed at a temperature of 500 ° C in round bars (= semi-finished). The round bars are quenched and separated into about 20 cm long workpieces.

Die Werkstücke werden auf eine Temperatur von 530° C erhitzt und in mehreren Schmiedeprozessen (=Umformen) zu Zugstreben umgeformt. Während des Schmiedens fällt die Temperatur des Werkstückes nicht unter 440°C. Die Zugstreben werden in Wasser abgeschreckt und bei 200°C 4 h warmausgelagert. Die Zugstreben weisen sowohl im Bereich einer Mittelstrebe als auch im Bereich eines großen Auges, das auf Grund des hohen Umformgrades üblicherweise einen hohen Grad an Rekristallisation aufweist, eine Zugfestigkeit von mehr als 400 MPa und eine Bruchdehnung (A5) von mehr als 13 % auf.The workpieces are heated to a temperature of 530 ° C heated and in several forging processes (= forming) too Tension struts transformed. During forging, the falls Temperature of the workpiece not lower than 440 ° C. The Tension struts are quenched in water and at 200 ° C for 4 h artificially aged. The tie rods point both in the area a middle brace as well as in the area of a big eye, due to the high degree of deformation usually one having high degree of recrystallization, a Tensile strength of more than 400 MPa and a breaking elongation (A5) of more than 13%.

Beispiel 2:Example 2:

Analog Beispiel 1 werden Gussbarren homogenisiert und anschließend bei einer Temperatur von 500°C zu Blechen (=Halbzeug) gewalzt. Aus den Blechen werden runde Werkstücke ausgestanzt und diese in mehreren Schritten kalt zu Rädern umgeformt.As in Example 1, ingots are homogenized and then at a temperature of 500 ° C to sheets (= Semi-finished product) rolled. From the sheets are round Workpieces punched out and these cold in several steps transformed into wheels.

Claims (11)

  1. Process for producing a component or semi-finished product from an aluminium alloy, the alloy containing (in % by weight):
    silicon   0.9 - 1.3
    magnesium   0.7 - 1.2
    copper   less than 0.1
    iron   less than 0.5
    chromium   less than 0.25
    zirconium and/or hafnium   0.05 - 0.2
    manganese   0.5 - 1.0
    remainder Al and standard impurities
    and the total amount of chromium and manganese and zirconium and/or hafnium is at least 0.6% by weight, in which process
    a cast raw material is homogenized at a temperature of between 420°C and 540°C,
    is shaped into semi-finished products at a temperature of between 450°C and 560°C,
    the semi-finished product is then heated to a solution annealing temperature of between 440°C and 560°C,
    is hot-formed one or more times at this temperature,
    the workpiece obtained in this way is quenched in water or in air, and
    is hot age-hardened at a temperature of between 160°C and 240°C.
  2. Process for producing a component or semi-finished product from an aluminium alloy, the alloy containing (in % by weight):
    silicon   0.9 - 1.7
    magnesium   0.7 - 1.2
    copper   less than 0.1
    iron   less than 0.5
    chromium   less than 0.25
    zirconium and/or hafnium   0.05 - 0.2
    manganese   0.5 - 1.0
    remainder Al and standard impurities
    and the total amount of chromium and manganese and zirconium and/or hafnium is at least 0.6% by weight, in which process
    a cast raw material is homogenized at a temperature of between 420°C and 540°C,
    is shaped into semi-finished products at a temperature of between 450°C and 560°C,
    the semi-finished product is then heated to a solution annealing temperature of between 440°C and 560°C,
    is hot-formed one or more times at this temperature,
    the workpiece obtained in this way is quenched in water or in air, and
    is hot age-hardened at a temperature of between 160°C and 240°C.
  3. Process according to Claim 1 or 2, characterized in that the alloy additionally includes the following constituents, in % by weight:
    titanium   less than 0.1
    zinc   less than 0.2.
  4. Process according to one of Claims 1 to 3, characterized in that the ratio of silicon to magnesium is between 1.1 to 1 and 1.3 to 1.
  5. Process according to Claim 4, characterized in that the ratio of silicon to magnesium is between 1.16 to 1 and 1.24 to 1.
  6. Process according to one of Claims 1 to 5, characterized in that zirconium- and/or hafnium-containing dispersoids are anchored at the grain boundaries of the microstructure.
  7. Process according to one of Claims 1 to 6, characterized in that the cast raw material is homogenized for at least four hours.
  8. Process according to one of Claims 1 to 7, characterized in that the cast raw material is homogenized for twelve hours.
  9. Component produced by a process according to one of Claims 1 to 8.
  10. Component or semi-finished products as described in one of Claims 1 to 6, characterized in that the component has an elongation at break A5 of more than 10%.
  11. Component or semi-finished product as described in one of Claims 1 to 7, characterized in that the component or semi-finished product is an underbody part, in particular a tension strut or a bolt, a profiled section, a screw or a wheel.
EP02787956A 2001-12-21 2002-12-18 Method of fabrication of an aluminium alloy article by hot- and cold-forming Expired - Lifetime EP1458898B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10163039 2001-12-21
DE10163039A DE10163039C1 (en) 2001-12-21 2001-12-21 Hot and cold formable component made of an aluminum alloy and process for its production
PCT/EP2002/014452 WO2003054243A1 (en) 2001-12-21 2002-12-18 Hot- and cold-formed aluminium alloy

Publications (2)

Publication Number Publication Date
EP1458898A1 EP1458898A1 (en) 2004-09-22
EP1458898B1 true EP1458898B1 (en) 2005-04-27

Family

ID=7710217

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02787956A Expired - Lifetime EP1458898B1 (en) 2001-12-21 2002-12-18 Method of fabrication of an aluminium alloy article by hot- and cold-forming

Country Status (7)

Country Link
US (2) US20050095167A1 (en)
EP (1) EP1458898B1 (en)
AT (1) ATE294252T1 (en)
AU (1) AU2002352255A1 (en)
DE (2) DE10163039C1 (en)
ES (1) ES2239261T3 (en)
WO (1) WO2003054243A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2644725A2 (en) 2012-03-30 2013-10-02 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Aluminum alloy forged material for automobile and method for manufacturing the same

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005060297A1 (en) * 2005-11-14 2007-05-16 Fuchs Kg Otto Energieabsorbtionsbauteil
JP4944525B2 (en) * 2006-07-18 2012-06-06 株式会社神戸製鋼所 Bolt manufacturing method, bolt, bolt profile, bolt molding apparatus, and bolt profile molding method
DE102007032143A1 (en) * 2007-07-09 2009-01-15 Thyssenkrupp Drauz Nothelfer Gmbh Motor vehicle door, has inner panel and reinforcement brackets integrally formed, and frame-shaped component comprising reinforcement regions, where frame shaped component is hot-formed from high-strength steel plate
EP2149618B1 (en) 2008-07-30 2011-10-26 Olab S.r.l. Hot pressing process, particularly for providing metal unions for pneumatic, hydraulic and fluid-operated circuits, and metal union obtained thereby
DE102009059804A1 (en) 2009-12-21 2011-06-22 Daimler AG, 70327 Method for producing and increasing strength of a composite component, which is formed from a cast component made of an aluminum alloy, comprises connecting the cast component over a bolted connection
EP2787094B1 (en) * 2011-12-02 2016-12-07 UACJ Corporation Aluminum alloy material and aluminum alloy structure and production process therefor
WO2014003074A1 (en) 2012-06-27 2014-01-03 株式会社Uacj Aluminum alloy sheet for blow molding and production method therefor
JP6557476B2 (en) * 2015-02-10 2019-08-07 三菱アルミニウム株式会社 Aluminum alloy fin material
SI24911A (en) 2016-03-04 2016-07-29 Impol 2000, d.d. High-strength aluminum alloy Al-Mg-Si and procedure for its manufacture
US20190136348A1 (en) * 2016-06-01 2019-05-09 Aleris Aluminum Duffel Bvba 6xxx-series aluminium alloy forging stock material and method of manufacturing thereof
WO2019139723A1 (en) 2018-01-12 2019-07-18 Accuride Corporation Aluminum alloys for applications such as wheels and methods of manufacture
FR3101641B1 (en) * 2019-10-04 2022-01-21 Constellium Issoire Aluminum alloy precision sheets
CN112522552B (en) * 2020-11-04 2022-04-26 佛山科学技术学院 Corrosion-resistant aluminum alloy and preparation method and application thereof

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3945860A (en) * 1971-05-05 1976-03-23 Swiss Aluminium Limited Process for obtaining high ductility high strength aluminum base alloys
CA962172A (en) * 1971-05-05 1975-02-04 Olin Corporation High ductility high strength aluminum base alloys and process for obtaining same
US3717512A (en) * 1971-10-28 1973-02-20 Olin Corp Aluminum base alloys
CH624147A5 (en) * 1976-12-24 1981-07-15 Alusuisse
JPS58156197A (en) * 1982-03-10 1983-09-17 Sumitomo Light Metal Ind Ltd Super high pressure plate fin type heat exchanger
FR2529578B1 (en) * 1982-07-02 1986-04-11 Cegedur METHOD FOR IMPROVING BOTH FATIGUE RESISTANCE AND TENACITY OF HIGH RESISTANCE AL ALLOYS
FR2617188B1 (en) * 1987-06-23 1989-10-20 Cegedur AL-BASED ALLOY FOR CASING AND PROCESS FOR OBTAINING
US5108519A (en) * 1988-01-28 1992-04-28 Aluminum Company Of America Aluminum-lithium alloys suitable for forgings
JPH03287738A (en) * 1990-04-03 1991-12-18 Kobe Steel Ltd Fin material for heat exchanger assembled by vacuum brazing method and its manufacture
DE4421744C2 (en) * 1993-07-02 1996-05-23 Fuchs Fa Otto Use of a wrought alloy of the type AlMgSiCu for the production of high-strength and corrosion-resistant parts
JPH07197219A (en) * 1993-12-28 1995-08-01 Furukawa Electric Co Ltd:The Production of aluminum alloy sheet for forming
FR2737225B1 (en) * 1995-07-28 1997-09-05 Pechiney Rhenalu AL-CU-MG ALLOY WITH HIGH FLUID RESISTANCE
FR2744136B1 (en) * 1996-01-25 1998-03-06 Pechiney Rhenalu THICK ALZNMGCU ALLOY PRODUCTS WITH IMPROVED PROPERTIES
JPH11310841A (en) * 1998-04-28 1999-11-09 Nippon Steel Corp Aluminum alloy extruded shape excellent in fatigue strength, and its production
US6630037B1 (en) * 1998-08-25 2003-10-07 Kobe Steel, Ltd. High strength aluminum alloy forgings

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2644725A2 (en) 2012-03-30 2013-10-02 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Aluminum alloy forged material for automobile and method for manufacturing the same

Also Published As

Publication number Publication date
DE10163039C1 (en) 2003-07-24
ATE294252T1 (en) 2005-05-15
US20050095167A1 (en) 2005-05-05
WO2003054243A1 (en) 2003-07-03
EP1458898A1 (en) 2004-09-22
DE50202955D1 (en) 2005-06-02
AU2002352255A1 (en) 2003-07-09
US20080078480A1 (en) 2008-04-03
ES2239261T3 (en) 2005-09-16

Similar Documents

Publication Publication Date Title
AT502310B1 (en) AN AL-ZN-MG-CU ALLOY
EP1683882B1 (en) Aluminium alloy with low quench sensitivity and process for the manufacture of a semi-finished product of this alloy
US10435774B2 (en) 2XXX series aluminum lithium alloys having low strength differential
DE69836569T2 (en) Process for increasing the fracture toughness in aluminum-lithium alloys
EP1458898B1 (en) Method of fabrication of an aluminium alloy article by hot- and cold-forming
EP1518000B1 (en) Al/cu/mg/ag alloy with si, semi-finished product made from such an alloy and method for production of such a semi-finished product
DE69911648T2 (en) METHOD FOR PRODUCING AN ALUMINUM AUTOMATIC ALLOY
DE2103614B2 (en) Process for the production of semi-finished products from AIMgSIZr alloys with high notched impact strength
DE2264997A1 (en) PRECIPITABLE NICKEL, IRON ALLOY
DE3541781A1 (en) HEAT-RESISTANT, HIGH-STRENGTH ALUMINUM ALLOY AND METHOD FOR PRODUCING A COMPONENT MADE FROM THIS ALLOY
DE102017114162A1 (en) HIGH STRENGTH AND HIGH CRYAN RESISTANT ALUMINUM ALLOY ALLOYS AND HPDC MOTOR BLOCKS
EP1017867B1 (en) Aluminium based alloy and method for subjecting it to heat treatment
DE2606632A1 (en) VERY HIGH CARBON STEEL AND METHOD OF MANUFACTURING THE SAME
DE2500084C3 (en) Process for the production of aluminum semi-finished products
DE60114281T2 (en) Cast and forged product using a copper-based alloy
DE2647391A1 (en) MANUFACTURE OF EXTRUDED PRODUCTS FROM ALUMINUM ALLOYS
EP1587965B1 (en) Aluminium alloy with increased resistance and low quench sensitivity
DE2704765A1 (en) COPPER ALLOY, METHOD OF MANUFACTURING IT AND ITS USE FOR ELECTRIC CONTACT SPRINGS
EP0989195B1 (en) Heat resisting aluminium alloy of the type AlCuMg
DE2242235C3 (en) Superplastic aluminum alloy
DE1284095B (en) Process for producing aluminum alloy sheets with high creep rupture strength
DE1483228B2 (en) ALUMINUM ALLOY WITH HIGH PERFORMANCE
DE2500083A1 (en) ALUMINUM WICKED ALLOYS AND PROCESSING METHODS
DE2221660A1 (en) Process for the production of aluminum alloys of high strength and ductility
DE1290727B (en) Process for the production of high strength niobium alloys

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040617

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MULKERS, ARNE

Inventor name: LAEVERS, PATRICK

Inventor name: BARTH, ANDREAS

RTI1 Title (correction)

Free format text: METHOD OF FABRICATION OF AN ALUMINIUM ALLOY ARTICLE BY HOT- AND COLD-FORMING

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050427

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050427

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050427

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050427

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050427

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050427

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050427

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050427

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50202955

Country of ref document: DE

Date of ref document: 20050602

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050727

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050727

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050727

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2239261

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051010

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051218

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051231

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051231

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060130

BECA Be: change of holder's address

Owner name: MERCEDESSTRASSE, 137, D-70327 STUTTGART

Effective date: 20050427

Owner name: CORUS ALUMINIUM N.V.

Effective date: 20050427

Owner name: A. STOCLETLAAN 87, B-2570 DUFFEL (BE)

Effective date: 20050427

Owner name: DAIMLER A.G.

Effective date: 20050427

BECN Be: change of holder's name

Owner name: CORUS ALUMINIUM N.V.

Effective date: 20050427

Owner name: DAIMLER A.G.

Effective date: 20050427

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: DAIMLER AG

Free format text: CORUS ALUMINIUM N.V.#A. STOCLETLAAN 87#2570 DUFFEL (BE) $ DAIMLER AG#EPPLESTRASSE 225#70567 STUTTGART (DE) -TRANSFER %%- CORUS ALUMINIUM N.V.#A. STOCLETLAAN 87#2570 DUFFEL (BE) $ DAIMLER AG#MERCEDESSTRASSE 137#70327 STUTTGART (DE)

Effective date: 20080430

Ref country code: CH

Ref legal event code: PFA

Owner name: CORUS ALUMINIUM N.V.

Free format text: DAIMLERCHRYSLER AG#EPPLESTRASSE 225#70567 STUTTGART (DE) $ CORUS ALUMINIUM N.V.#A. STOCLETLAAN 87#2570 DUFFEL (BE) -TRANSFER TO- CORUS ALUMINIUM N.V.#A. STOCLETLAAN 87#2570 DUFFEL (BE) $ DAIMLER AG#EPPLESTRASSE 225#70567 STUTTGART (DE)

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20121218

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20130125

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50202955

Country of ref document: DE

Owner name: ALERIS ALUMINUM DUFFEL BVBA, BE

Free format text: FORMER OWNERS: CORUS ALUMINIUM N.V., DUFFEL, BE; DAIMLER AG, 70327 STUTTGART, DE

Effective date: 20140303

Ref country code: DE

Ref legal event code: R081

Ref document number: 50202955

Country of ref document: DE

Owner name: ALERIS ALUMINUM DUFFEL BVBA, BE

Free format text: FORMER OWNER: CORUS ALUMINIUM N.V., DAIMLER AG, , BE

Effective date: 20140303

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUEA

Owner name: ALERIS ALUMINUM DUFFEL BVBA, BE

Free format text: FORMER OWNER: DAIMLER AG, BE

Ref country code: CH

Ref legal event code: PFA

Owner name: DAIMLER AG, BE

Free format text: FORMER OWNER: CORUS ALUMINIUM N.V., DE

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM AND CO. AG PATENT- UND MARKENANWAELTE , CH

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150505

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20150423 AND 20150430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: ALERIS ALUMINUM DUFFEL BVBA, BE

Effective date: 20151201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131218

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20191220

Year of fee payment: 18

Ref country code: DE

Payment date: 20191120

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20191217

Year of fee payment: 18

Ref country code: FR

Payment date: 20191219

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20191220

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20191220

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50202955

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201218

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201219

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201218

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210701

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231