EP1587965B1 - Aluminium alloy with increased resistance and low quench sensitivity - Google Patents

Aluminium alloy with increased resistance and low quench sensitivity Download PDF

Info

Publication number
EP1587965B1
EP1587965B1 EP03789376A EP03789376A EP1587965B1 EP 1587965 B1 EP1587965 B1 EP 1587965B1 EP 03789376 A EP03789376 A EP 03789376A EP 03789376 A EP03789376 A EP 03789376A EP 1587965 B1 EP1587965 B1 EP 1587965B1
Authority
EP
European Patent Office
Prior art keywords
temperature
ingot
aluminium alloy
way
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03789376A
Other languages
German (de)
French (fr)
Other versions
EP1587965A1 (en
Inventor
Günther Höllrigl
Christophe Jaquerod
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Constellium Switzerland AG
Original Assignee
Alcan Technology and Management Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcan Technology and Management Ltd filed Critical Alcan Technology and Management Ltd
Priority to EP03789376A priority Critical patent/EP1587965B1/en
Priority to SI200330959T priority patent/SI1587965T1/en
Publication of EP1587965A1 publication Critical patent/EP1587965A1/en
Application granted granted Critical
Publication of EP1587965B1 publication Critical patent/EP1587965B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent

Definitions

  • the invention relates to an aluminum alloy with high strength and low quenching sensitivity.
  • In the context of the invention is also a method for producing thick plates of the aluminum alloy.
  • the document FR-A-2 341 661 discloses an aluminum alloy whose composition is Zn 4.0-6.2 wt.%, Mg 0.8-3.0 wt.%, Cu 0-1.5 wt.%, Zr 0.05- 0.30 wt.%, Fe 0-0.2 wt.%, Si 0-0.15 wt.%, Mn 0-0.25 wt.%, Ti 0-0.1 wt. %, Remainder Al, contains.
  • hot-rolled and hot-hardened plates are usually used today. Larger molds with a thickness of more than 300 mm were either made from forged blocks or even directly from continuous cast ingots.
  • a major disadvantage of the aluminum alloys used today for mold making is their high quenching sensitivity.
  • the cooling rate In order for the ingots or slabs to reach the level of strength required for plastic injection molding in hot curing, the cooling rate must be increased from the homogenizing or solutionizing temperature with increasing slab thickness.
  • the damaging internal stresses increase, so that limits are already set for this reason for a further increase in the cooling rate and thus the level of strength ultimately achievable.
  • the invention has the object of providing a suitable for the production of thick plates with high strength level aluminum alloy with less To provide quench sensitivity.
  • Another object of the invention is to provide a suitable method by which the aluminum alloy can be processed into thick plates having sufficiently high strength over the entire plate thickness.
  • composition of the alloy according to the invention is chosen so that it has a very low quenching sensitivity and still has an extraordinarily high level of strength. Thick cross sections can therefore be brought to a high level of strength with forced air cooling and precipitation hardening.
  • the alloy according to the invention As a material for mold construction, it is desirable to have an as isotropic distribution of the residual stresses in the cross section of the plate.
  • the grain size and the grain shape in the plate are important for the reduction of residual stresses. The finer and more uniform the crystals are, the better the internal stresses in the cross-section of the plate can be compensated.
  • the grain boundaries act as sinks for dislocations in the degradation of local stress peaks.
  • a fine grain structure in the plate can be achieved by selecting the heating rate of the ingots to the homogenizing or solution annealing temperature so that a very homogeneous distribution of submicron precipitates of Al 3 Zr in the structure arises.
  • the following two methods are particularly suitable which, depending on the desired thickness of the mold, lead to a hot-rolled and hot-hardened plate or to a hot-hardened continuously cast ingot used as a plate.
  • the ingots are cooled from the homogenization temperature of 470 to 490 ° C to the intermediate temperature of 400 to 410 ° C in still air.
  • the cooling of the billets from the intermediate temperature of 400 to 410 ° C on the one hand should be done so quickly that the loss of strength is as low as possible. On the other hand, the cooling rate must not be too high, otherwise too high residual stresses are built up.
  • the cooling of the ingot from the intermediate temperature of 400 to 410 ° C to a temperature of less than 100 ° C is preferably carried out in forced air (forced air cooling) or in a water / air spray.
  • the bar thickness must also be considered. However, it is within the scope of the expert action to determine the optimum cooling conditions for a given ingot format by means of simple experiments.
  • the low heating rate in the temperature range between 170 and 410 ° C when heating the billets to the homogenization temperature is an essential feature of the inventive method.
  • the AlZnMg equilibrium phase (T-phase) is stable.
  • the slow passage through the heterogenizing interval leads to a finely dispersed separation of the T phase, wherein the phase boundaries of the precipitated particles of the T phase form preferred nucleation sites for the precipitation of Al 3 Zr particles beginning at a temperature of about 350 ° C.
  • the previously precipitated T-phase particles dissolve, leaving behind a uniform distribution of the fine, submicron Al 3 Zr precipitates, which are preferably at the original T-phase particle boundaries and at sub-particle boundaries thus giving a homogeneous distribution.
  • These fine Al 3 Zr particles cause both a strong growth inhibition in the recrystallization of the plates in the solution annealing and in the homogenization annealing of ingot, and the result is the desired isotropic grain structure in the ingot.
  • the grain-refining additional element Zr is thus used optimally.
  • Another essential feature of the inventive method is the combined homogenization and solution annealing with subsequent two-stage cooling, whereas in the conventional method according to the prior the technique for achieving a still acceptable in the center of the ingot strength a separate solution annealing with subsequent quenching at high cooling rate is required.
  • cooling in agitated air or “forced air cooling” is understood here to mean a fan-assisted air cooling, which leads to a heat transfer coefficient at the ingot surface of about 40 W / m 2 K. Cooling in a water / air spray results in a slightly higher heat transfer coefficient at the ingot surface.
  • the alloy according to the invention has a low quenching sensitivity.
  • the loss of strength in the plate core is smaller than that of the prior art alloys, despite the relatively mild cooling conditions. It has also surprisingly been found that this effect is even more pronounced in plates made directly from continuous cast bars than in hot-rolled plates.
  • the two-stage cooling from the homogenization temperature to room temperature has proven to be particularly advantageous for achieving a structure with low residual stresses.
  • thermosetting is for the heat treatment state T76.
  • the field of application of the alloy according to the invention and of the thick plates produced therefrom results from the property spectrum described above.
  • the plates are particularly suitable for mold making, i. for the production of plastic injection molds, but also generally for machine, tool and mold making.
  • the homogenized billet was cooled in a first stage in still air from the homogenization temperature to an intermediate temperature of 400 ° C and then in a second stage with fans from 400 ° C to 100 ° C. The further cooling to room temperature was again in still air.
  • the billet was after 14 days of storage at room temperature for 8h at 95 ° C and then cured for 18h at 155 ° C to the overheated state T76 warm.
  • Brinell hardness was determined over the ingot cross-section at samples of the thermoset ingots cut out perpendicular to the bar longitudinal direction. The areas of equal hardness shown in FIG. 1 clearly show the low hardness or strength loss in the barrel core relative to the bar surface.
  • Fig. 2 the temperature-time curves calculated for the surface (O) and the core (K) of a billet having a cross section of 440 ⁇ 900 mm at a fan cooling and in Fig. 3 are the gradients derived therefrom between the temperature T K in the barrel core and the temperature T o shown on the bar surface.
  • Figs. 4 and 5 show the corresponding curves for a billet with a cross section of 1000 x 1200 mm. The results show that billets produced with the method according to the invention, with a thickness of up to 1000 mm, are still likely to fulfill the requirements imposed on plates for the production of plastic injection molds in terms of mechanical strength.

Abstract

The alloy comprises aluminum metal with production contaminants which individually constitute not more than 0.05 wt% and in total not more than 0.15 wt%. Other metals included in the alloy are 4.6-5.2 wt% Zn; 2.6-3.0 wt% Mg; 0.1-0.2 wt% Cu; 0.05-0.2 wt% Zr; not more than 0.05 wt% Mn; not more than 0.05 wt% Cr; not more than 0.15 wt% Fe; not more than 0.15 wt% Si; not more than 0.10 wt% Ti. Preferred amounts of the metals are: 4.6 wt% Zn; 2.6-2.8 wt% Mg; 0.10-0.15 wt% Cu; 0.08-0.18 wt% Zr; not more than 0.03 wt% Mn; not more than 0.02 wt% Cr; not more than 0.12 wt% Fe; not more than 0.12 wt% Si; not more than 0.05 wt%Ti. Independent claims are included for: a) a process for manufacturing plates up to 300 mm thick in the claimed alloy in which: A) the alloy is extruded to form bars not less than 300 mm thick; B) the bars are heated at not more than 20 degrees C/hr from 170-410 degrees C to 470-490 degrees C; C) the bars are homogenized for 10-14 hrs at 470-490 degrees C; D) bars are hot rolled to form plates; E) the plates are cooled to 400-410 degrees C to not more than 100 degrees C; F) plates are cooled to room temperature; G) plates are hardened: b) a similar process in which hot rolling to form plates is omitted and the final hardened bars are used as plates.

Description

Die Erfindung betrifft eine Aluminiumlegierung mit hoher Festigkeit und geringer Abschreckempfindlichkeit. Im Rahmen der Erfindung liegt auch ein Verfahren zur Herstellung dicker Platten aus der Aluminiumlegierung.The invention relates to an aluminum alloy with high strength and low quenching sensitivity. In the context of the invention is also a method for producing thick plates of the aluminum alloy.

Insbesondere in der Automobilindustrie besteht zunehmend ein Bedarf an grossen Kunststoffbauteilen, wie z.B. integrale Stossstangen. Zur Herstellung der entsprechend grossen Spritzgiessformen werden Platten benötigt, deren Dicke sehr oft 150 mm übersteigt und in gewissen Fällen sogar mehr als 500 mm beträgt.Particularly in the automotive industry, there is an increasing demand for large plastic components, such as e.g. integral bumpers. To produce the correspondingly large injection molds, plates are required whose thickness very often exceeds 150 mm and in some cases even exceeds 500 mm.

Das Dokument FR-A-2 341 661 offenfart eine Aluminium-Legierung, deren Zusammensetzung Zn 4,0-6,2 Gew.-%, Mg 0,8-3,0 Gew.-%, Cu 0-1,5 Gew.-%, Zr 0,05-0,30 Gew.-%, Fe 0-0,2 Gew.-%, Si 0-0,15 Gew.-%, Mn 0-0,25 Gew.-%, Ti 0-0,1 Gew.-%, Rest Al, enthält.The document FR-A-2 341 661 discloses an aluminum alloy whose composition is Zn 4.0-6.2 wt.%, Mg 0.8-3.0 wt.%, Cu 0-1.5 wt.%, Zr 0.05- 0.30 wt.%, Fe 0-0.2 wt.%, Si 0-0.15 wt.%, Mn 0-0.25 wt.%, Ti 0-0.1 wt. %, Remainder Al, contains.

Für den Bau von Spritzgiessformen mit einer Dicke von beispielsweise 50 bis 300 mm werden heute üblicherweise warmgewalzte und warmausgehärtete Platten eingesetzt. Grössere Formen mit einer Dicke von mehr als 300 mm wurden entweder aus geschmiedeten Blöcken oder auch schon direkt aus Stranggussbarren gefertigt.For the construction of injection molds having a thickness of, for example, 50 to 300 mm, hot-rolled and hot-hardened plates are usually used today. Larger molds with a thickness of more than 300 mm were either made from forged blocks or even directly from continuous cast ingots.

Ein wesentlicher Nachteil der heute für den Formenbau eingesetzten Aluminiumlegierungen ist deren hohe Abschreckempfindlichkeit. Damit die Barren oder Platten bei der Warmaushärtung das für Kunststoff-Spritzgiessformen geforderte Festigkeitsniveau erreichen, muss die Abkühlungsgeschwindigkeit von der Homogenisierungs- oder Lösungsglühtemperatur mit zunehmender Plattendicke erhöht werden. Durch die hierbei auftretenden hohen Temperaturgradienten zwischen der Oberfläche und dem Kern der Barren oder Platten nehmen die schädlichen Eigenspannungen zu, so dass schon aus diesem Grund einer weiteren Erhöhung der Abkühlungsgeschwindigkeit und damit dem letztlich erreichbaren Festigkeitsniveau Grenzen gesetzt sind.A major disadvantage of the aluminum alloys used today for mold making is their high quenching sensitivity. In order for the ingots or slabs to reach the level of strength required for plastic injection molding in hot curing, the cooling rate must be increased from the homogenizing or solutionizing temperature with increasing slab thickness. As a result of the high temperature gradients occurring between the surface and the core of the ingots or slabs, the damaging internal stresses increase, so that limits are already set for this reason for a further increase in the cooling rate and thus the level of strength ultimately achievable.

Der Erfindung liegt die Aufgabe zugrunde, eine zur Herstellung von dicken Platten mit hohem Festigkeitsniveau geeignete Aluminiumlegierung mit geringer Abschreckempfindlichkeit bereitzustellen.The invention has the object of providing a suitable for the production of thick plates with high strength level aluminum alloy with less To provide quench sensitivity.

Ein weiteres Ziel der Erfindung liegt darin, ein geeignetes Verfahren anzugeben, mit dem die Aluminiumlegierung zu dicken Platten mit ausreichend hoher Festigkeit über die gesamte Plattendicke verarbeitet werden kann.Another object of the invention is to provide a suitable method by which the aluminum alloy can be processed into thick plates having sufficiently high strength over the entire plate thickness.

Zur erfindungsgemässen Lösung der Aufgabe führt eine Aluminiumlegierung mit

  • 4,6 bis 5,2 Gew.-% Zn
  • 2,6 bis 3,0 Gew.-% Mg
  • 0.1 bis 0,2 Gew.-% Cu
  • 0,05 bis 0,2 Gew.-% Zr
  • max. 0,05 Gew.-% Mn
  • max. 0,05 Gew.-% Cr
  • max. 0,15 Gew.-% Fe
  • max. 0,15 Gew.-% Si
  • max. 0,10 Gew.-% Ti
und Aluminium als Rest mit herstellungsbedingten Verunreinigungen, einzeln max. 0,05 Gew.-%, insgesamt max. 0,15 Gew.-%.For the inventive solution of the problem leads with an aluminum alloy
  • 4.6 to 5.2% by weight of Zn
  • 2.6 to 3.0% by weight Mg
  • 0.1 to 0.2% by weight of Cu
  • 0.05 to 0.2% by weight Zr
  • Max. 0.05% by weight of Mn
  • Max. 0.05 wt.% Cr
  • Max. 0.15% by weight of Fe
  • Max. 0.15% by weight of Si
  • Max. 0.10% by weight of Ti
and aluminum as balance with production-related impurities, individually max. 0.05% by weight, in total max. 0.15% by weight.

Die Zusammensetzung der Legierung ist erfindungsgemäss so gewählt, dass sie eine sehr geringe Abschreckempfindlichkeit aufweist und trotzdem ein ausserordentlich hohes Festigkeitsniveau besitzt. Dicke Querschnitte können daher mit forcierter Luftabkühlung und durch Ausscheidungshärtung auf ein hohes Festigkeitsniveau gebracht werden.The composition of the alloy according to the invention is chosen so that it has a very low quenching sensitivity and still has an extraordinarily high level of strength. Thick cross sections can therefore be brought to a high level of strength with forced air cooling and precipitation hardening.

Für die einzelnen Legierungselemente gelten die folgenden Vorzugsbereiche:

  • 4,6 bis 4,8 Gew.-% Zn
  • 2,6 bis 2,8 Gew.-% Mg
  • 0,10 bis 0,15 Gew.-% Cu
  • 0,08 bis 0,18 Gew.-% Zr
  • max. 0,03 Gew.-% Mn
  • max. 0,02 Gew.-% Cr
  • max. 0,12 Gew.-% Fe
  • max. 0,12 Gew.-% Si
  • max. 0,05 Gew.-% Ti
The following preferential ranges apply to the individual alloying elements:
  • 4.6 to 4.8% by weight of Zn
  • 2.6 to 2.8% by weight Mg
  • 0.10 to 0.15% by weight of Cu
  • 0.08 to 0.18 wt% Zr
  • Max. 0.03 wt% Mn
  • Max. 0.02 wt.% Cr
  • Max. 0.12 wt.% Fe
  • Max. 0.12% by weight of Si
  • Max. 0.05% by weight of Ti

Für die Anwendung der erfindungsgemässen Legierung als Werkstoff für den Formenbau ist eine möglichst isotrope Verteilung der Eigenspannungen im Querschnitt der Platte anzustreben. Für den Abbau der Eigenspannungen ist u.a. die Korngrösse und die Kornform in der Platte von Bedeutung. Je feiner und gleichmässiger die Kristalle vorliegen, desto besser können sich die Eigenspannungen im Querschnitt der Platte ausgleichen. Die Korngrenzen wirken dabei als Senken für Versetzungen beim Abbau von lokalen Spannungsspitzen. Wie weiter unten erläutert, kann durch den Zusatz von Zirkonium ein feines Korngefüge in der Platte erreicht werden, indem man die Aufheizgeschwindigkeit der Barren auf die Homogenisierungs- bzw. Lösungsglühtemperatur so wählt, dass eine möglichst homogene Verteilung von submikronen Ausscheidungen von Al3Zr im Gefüge entsteht.For the application of the alloy according to the invention as a material for mold construction, it is desirable to have an as isotropic distribution of the residual stresses in the cross section of the plate. Among other things, the grain size and the grain shape in the plate are important for the reduction of residual stresses. The finer and more uniform the crystals are, the better the internal stresses in the cross-section of the plate can be compensated. The grain boundaries act as sinks for dislocations in the degradation of local stress peaks. As explained below, by adding zirconium, a fine grain structure in the plate can be achieved by selecting the heating rate of the ingots to the homogenizing or solution annealing temperature so that a very homogeneous distribution of submicron precipitates of Al 3 Zr in the structure arises.

Zur Herstellung von Platten aus der erfindungsgemässen Legierung eignen sich insbesondere die folgenden zwei Verfahren, die je nach gewünschter Dicke der Form zu einer warmgewalzten und warmausgehärteten Platte oder zu einem als Platte verwendeten warmausgehärteten Stranggussbarren führen.For the production of plates from the alloy according to the invention, the following two methods are particularly suitable which, depending on the desired thickness of the mold, lead to a hot-rolled and hot-hardened plate or to a hot-hardened continuously cast ingot used as a plate.

Zur Herstellung von Platten mit einer Dicke von bis zu 300 mm ist das Verfahren durch die folgenden Schritte gekennzeichnet:

  1. A. Stranggiessen der Aluminiumlegierung zu Barren mit einer Dicke von mehr als 300 mm,
  2. B. Aufheizen der Barren mit einer Aufheizgeschwindigkeit von max. 20°C/h zwischen 170 und 410°C auf eine Temperatur von 470 bis 490°C,
  3. C. Homogenisieren der Barren während einer Zeitdauer von 10 bis 14 h bei einer Temperatur von 470 bis 490°C,
  4. D. Warmwalzen der homogenisierten Barren zu Platten,
  5. E. Abkühlen der Platten von einer Temperatur von 400 bis 410°C auf eine Temperatur von weniger als 100°C,
  6. F. Abkühlen der Platten auf Raumtemperatur,
  7. G. Warmaushärten der Platten.
For the production of sheets with a thickness of up to 300 mm, the process is characterized by the following steps:
  1. A. Continuously casting the aluminum alloy into billets having a thickness of more than 300 mm,
  2. B. Heating the ingot with a heating rate of max. 20 ° C / h between 170 and 410 ° C to a temperature of 470 to 490 ° C,
  3. C. homogenizing the bars for a period of 10 to 14 hours at a temperature of 470 to 490 ° C,
  4. D. hot rolling the homogenized billets into sheets,
  5. E. cooling the plates from a temperature of 400 to 410 ° C to a temperature of less than 100 ° C,
  6. F. cooling the plates to room temperature,
  7. G. Hot curing of the plates.

Zur Herstellung von Platten mit einer Dicke von mehr als 300 mm und insbesondere von Platten mit einer Dicke von mehr als 500 mm kann ein aus der erfindungsgemässen Legierung hergestellter Stranggussbarren direkt als Platte verwendet werden. Das Verfahren ist in diesem Fall durch die folgenden Schritte gekennzeichnet:

  1. A. Stranggiessen der Legierung zu Barren mit einer Dicke von mehr als 300 mm,
  2. B. Aufheizen der Barren mit einer Aufheizgeschwindigkeit von max. 20°C/h zwischen 170 und 410°C auf eine Temperatur von 470 bis 490°C,
  3. C. Homogenisieren der Barren während einer Zeitdauer von 10 bis 14 h bei einer Temperatur von 470 bis 490°C,
  4. D. Abkühlen der Barren auf eine Zwischentemperatur von 400 bis 410 °C,
  5. E. Abkühlen der Barren von der Zwischentemperatur von 400 bis 410°C auf eine Temperatur von weniger als 100°C,
  6. F. Abkühlen der Barren auf Raumtemperatur,
  7. G. Warmaushärten der Barren,
  8. H. Verwenden der warmausgehärteten Barren als Platten.
For the production of sheets having a thickness of more than 300 mm, and in particular sheets having a thickness of more than 500 mm, a continuous casting ingot produced from the alloy according to the invention can be used directly as a sheet. The procedure in this case is characterized by the following steps:
  1. A. continuous casting of the alloy into billets having a thickness of more than 300 mm,
  2. B. Heating the ingot with a heating rate of max. 20 ° C / h between 170 and 410 ° C to a temperature of 470 to 490 ° C,
  3. C. homogenizing the bars for a period of 10 to 14 hours at a temperature of 470 to 490 ° C,
  4. D. cooling the ingots to an intermediate temperature of 400 to 410 ° C,
  5. E. cooling the ingot from the intermediate temperature of 400 to 410 ° C to a temperature of less than 100 ° C,
  6. F. cooling the bars to room temperature,
  7. G. hot curing of the ingots,
  8. H. Using the thermoset ingots as plates.

Bevorzugt erfolgt das Abkühlen der Barren von der Homogenisierungstemperatur von 470 bis 490°C auf die Zwischentemperatur von 400 bis 410 °C an ruhender Luft.Preferably, the ingots are cooled from the homogenization temperature of 470 to 490 ° C to the intermediate temperature of 400 to 410 ° C in still air.

Das Abkühlen der Barren von der Zwischentemperatur von 400 bis 410°C sollte einerseits so rasch erfolgen, dass der Festigkeitsverlust möglichst gering ist. Andererseits darf die Abkühlungsgeschwindigkeit auch nicht zu hoch sein, da sonst zu hohe Eigenspannungen aufgebaut werden.The cooling of the billets from the intermediate temperature of 400 to 410 ° C on the one hand should be done so quickly that the loss of strength is as low as possible. On the other hand, the cooling rate must not be too high, otherwise too high residual stresses are built up.

Das Abkühlen der Barren von der Zwischentemperatur von 400 bis 410°C auf eine Temperatur von weniger als 100°C erfolgt bevorzugt an bewegter Luft (forced air cooling) oder in einem Wasser/Luft-Sprühnebel.The cooling of the ingot from the intermediate temperature of 400 to 410 ° C to a temperature of less than 100 ° C is preferably carried out in forced air (forced air cooling) or in a water / air spray.

Bei der Wahl der Abkühlungsbedingungen muss auch die Barrendicke berücksichtigt werden. Es liegt jedoch im Rahmen des fachmännischen Handelns, für ein vorgegebenes Barrenformat die optimalen Abkühlungsbedingungen anhand einfacher Versuche zu ermitteln.When choosing the cooling conditions, the bar thickness must also be considered. However, it is within the scope of the expert action to determine the optimum cooling conditions for a given ingot format by means of simple experiments.

Die niedrige Aufheizgeschwindigkeit im Temperaturbereich zwischen 170 und 410°C beim Aufheizen der Barren auf die Homogenisierungstemperatur ist ein wesentliches Merkmal des erfindungsgemässen Verfahrens. Im erwähnten Temperaturbereich, der auch als Heterogenisierungsintervall bezeichnet wird, ist die AlZnMg-Gleichgewichtsphase (T-Phase) stabil. Das langsame Durchlaufen des Heterogenisierungsintervalls führt zu einem fein dispersen Ausscheiden der T-Phase, wobei die Phasengrenzflächen der ausgeschiedenen Teilchen der T-Phase bevorzugte Keimstellen für die bei einer Temperatur von etwa 350°C einsetzende Ausscheidung von Al3Zr-Teilchen bilden. Beim weiteren Aufheizen der Barren auf die Homogenisierungstemperatur lösen sich die zuvor ausgeschiedenen Teilchen der T-Phase auf und zurück bleibt eine gleichmässige Verteilung der feinen, submikronen Al3Zr-Ausscheidungen, welche bevorzugt an den ursprünglichen Teilchengrenzen der T-Phase sowie an Subkomgrenzen liegen und damit eine homogene Verteilung ergeben. Diese feinen Al3Zr-Teilchen bewirken eine sowohl eine starke Wachstumshemmung bei der Rekristallisation der Platten bei der Lösungsglühung als auch bei der Homogenisierungsglühung von Gussbarren, und es resultiert das gewünschte isotrope Korngefüge im Barren. Das kornfeinende Zusatzelement Zr wird damit optimal genutzt.The low heating rate in the temperature range between 170 and 410 ° C when heating the billets to the homogenization temperature is an essential feature of the inventive method. In the mentioned temperature range, which is also referred to as Heterogenisierungsintervall, the AlZnMg equilibrium phase (T-phase) is stable. The slow passage through the heterogenizing interval leads to a finely dispersed separation of the T phase, wherein the phase boundaries of the precipitated particles of the T phase form preferred nucleation sites for the precipitation of Al 3 Zr particles beginning at a temperature of about 350 ° C. As the ingot is heated further to the homogenization temperature, the previously precipitated T-phase particles dissolve, leaving behind a uniform distribution of the fine, submicron Al 3 Zr precipitates, which are preferably at the original T-phase particle boundaries and at sub-particle boundaries thus giving a homogeneous distribution. These fine Al 3 Zr particles cause both a strong growth inhibition in the recrystallization of the plates in the solution annealing and in the homogenization annealing of ingot, and the result is the desired isotropic grain structure in the ingot. The grain-refining additional element Zr is thus used optimally.

Ein weiteres wesentliches Merkmal des erfindungsgemässen Verfahrens ist die kombinierte Homogenisierungs- und Lösungsglühung mit anschliessender zweistufiger Abkühlung, wogegen bei den üblichen Verfahren nach dem Stand der Technik zur Erzielung einer auch in der Barrenmitte noch akzeptablen Festigkeit eine separate Lösungsglühung mit nachfolgendem Abschrecken bei hoher Abkühlungsgeschwindigkeit erforderlich ist.Another essential feature of the inventive method is the combined homogenization and solution annealing with subsequent two-stage cooling, whereas in the conventional method according to the prior the technique for achieving a still acceptable in the center of the ingot strength a separate solution annealing with subsequent quenching at high cooling rate is required.

Unter dem Begriff "Abkühlen an bewegter Luft" bzw. "forced air cooling" wird hier eine üblicherweise durch Ventilatoren unterstützte Luftabkühlung verstanden, die zu einem Wärmeübergangskoeffizienten an der Barrenoberfläche von etwa 40 W/m2K führt. Das Abkühlen in einem Wasser/Luft-Sprühnebel führt zu einem etwas höheren Wärmeübergangskoeffizienten an der Barrenoberfläche.The term "cooling in agitated air" or "forced air cooling" is understood here to mean a fan-assisted air cooling, which leads to a heat transfer coefficient at the ingot surface of about 40 W / m 2 K. Cooling in a water / air spray results in a slightly higher heat transfer coefficient at the ingot surface.

Die erfindungsgemässe Legierung weist eine geringe Abschreckempfindlichkeit auf. Bei der Herstellung dicker Platten ist der Festigkeitsverlust im Plattenkern trotz der verhältnismässig milden Abkühlungsbedingungen kleiner als bei den Legierungen nach dem Stand der Technik. Es hat sich zudem überraschenderweise herausgestellt, dass dieser Effekt bei direkt aus Stranggussbarren gefertigten Platten noch viel ausgeprägter ist als bei warmgewalzten Platten.The alloy according to the invention has a low quenching sensitivity. In the production of thick plates, the loss of strength in the plate core is smaller than that of the prior art alloys, despite the relatively mild cooling conditions. It has also surprisingly been found that this effect is even more pronounced in plates made directly from continuous cast bars than in hot-rolled plates.

Bei der Herstellung der dicken Platten hat sich die zweistufige Abkühlung von der Homogenisierungstemperatur auf Raumtemperatur als besonders vorteilhaft zur Erzielung einer Struktur mit geringen Eigenspannungen herausgestellt.In the production of the thick plates, the two-stage cooling from the homogenization temperature to room temperature has proven to be particularly advantageous for achieving a structure with low residual stresses.

Zum Warmaushärten wird bevorzugt nacheinander eine Raumtemperaturlagerung, eine erste Wärmebehandlung bei einer ersten Temperatur und eine zweite Wärmebehandlung bei einer gegenüber der ersten Temperatur höheren zweiten Temperatur durchgeführt, z.B.

  • 1 bis 30 Tage Lagerung bei Raumtemperatur,
  • 6 bis 10 h Lagerung bei einer Temperatur von 90 bis 100°C,
  • 8 bis 22 h Lagerung bei einer Temperatur von 150 bis 160°C.
For thermosetting, a room temperature storage, a first heat treatment at a first temperature and a second heat treatment at a second temperature higher than the first temperature are preferably carried out successively, for example
  • 1 to 30 days storage at room temperature,
  • 6 to 10 hours storage at a temperature of 90 to 100 ° C,
  • 8 to 22 h storage at a temperature of 150 to 160 ° C.

Besonders bevorzugt ist die Warmaushärtung zum Wärmebehandlungszustand T76.It is particularly preferable that the thermosetting is for the heat treatment state T76.

Der Anwendungsbereich der erfindungsgemässen Legierung und der aus dieser hergestellten dicken Platten ergibt sich aus dem vorstehend beschriebenen Eigenschaftsspektrum. Die Platten eignen sich insbesondere für den Formenbau, d.h. für die Fertigung von Kunststoff-Spritzgiessformen, aber auch allgemein für den Maschinen-, Werkzeug- und Formenbau.The field of application of the alloy according to the invention and of the thick plates produced therefrom results from the property spectrum described above. The plates are particularly suitable for mold making, i. for the production of plastic injection molds, but also generally for machine, tool and mold making.

Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele sowie anhand der Zeichnung; diese zeigt schematisch in

  • Fig. 1 die Verteilung der Brinell-Härte über einen Teil des Querschnitts eines Stranggussbarrens mit einem Querschnitt von 440 mm x 900 mm nach Ventilatorkühlung.
  • Fig. 2 den gemessenen Temperaturverlauf bei einem Stranggussbarren mit einem Querschnitt von 440 mm x 900 mm an der Oberfläche und in der Mitte bei Ventilatorkühlung;
  • Fig. 3 den berechneten Verlauf der inneren Temperaturgradienten beim Temperaturverlauf von Fig. 2;
  • Fig. 4 den berechneten Temperaturverlauf bei einem Stranggussbarren mit einem Querschnitt von 1000 mm x 1200 mm an der Oberfläche und in der Mitte bei Ventilatorkühlung;
  • Fig. 5 den berechneten Verlauf der inneren Temperaturgradienten beim Temperaturverlauf von Fig. 4;
Further advantages, features and details of the invention will become apparent from the following description of preferred embodiments and from the drawing; this shows schematically in
  • Fig. 1 shows the distribution of Brinell hardness over a part of the cross section of a continuous casting ingot with a cross section of 440 mm x 900 mm after fan cooling.
  • 2 shows the measured temperature profile in a continuous casting ingot with a cross section of 440 mm × 900 mm at the surface and in the middle with fan cooling;
  • FIG. 3 shows the calculated course of the internal temperature gradients in the temperature profile of FIG. 2; FIG.
  • 4 shows the calculated temperature profile in the case of a continuous casting ingot with a cross section of 1000 mm × 1200 mm at the surface and in the middle with fan cooling;
  • FIG. 5 shows the calculated profile of the internal temperature gradients in the temperature profile of FIG. 4; FIG.

Beispielexample

Eine Legierung mit der Zusammensetzung (in Gew.-%): 0.040 Si, 0.08 Fe, 0.14 Cu, 0.0046 Mn, 2.69 Mg, 0.0028 Cr, 4.69 Zn, 0.017 Ti, 0.16 Zr, Rest Al, wurde in industriellem Massstab zu einem Stranggussbarren mit einem Querschnitt von 440 x 900 mm vergossen. Der Barren wurden innerhalb von 30 h auf eine Temperatur von 480°C aufgeheizt, wobei darauf geachtet wurde, dass die Aufheizgeschwindigkeit im Bereich zwischen 170 und 410°C weniger als 20°C/h betrug. Die Homogenisierung des Barrens zum Ausgleich der erstarrungsbedingten Kristallseigerungen erfolgte durch Halten des Barrens während 12h bei 480°C.An alloy having the composition (in wt.%): 0.040 Si, 0.08 Fe, 0.14 Cu, 0.0046 Mn, 2.69 Mg, 0.0028 Cr, 4.69 Zn, 0.017 Ti, 0.16 Zr, balance Al, became a continuous casting billet on an industrial scale Cast with a cross section of 440 x 900 mm. The bars were heated to a temperature of 480 ° C within 30 h, being careful that the heating rate in the range between 170 and 410 ° C less than 20 ° C / h. The homogenization of the billet to compensate for the solidification-related Kristallseigerungen carried out by holding the billet for 12 hours at 480 ° C.

Der homogenisierte Barren wurden in einer ersten Stufe an ruhender Luft von der Homogenisierungstemperatur auf eine Zwischentemperatur von 400°C und anschliessend in einer zweiten Stufe mit Ventilatoren von 400°C auf 100°C abgekühlt. Die weitere Abkühlung auf Raumtemperatur erfolgte wiederum an ruhender Luft.The homogenized billet was cooled in a first stage in still air from the homogenization temperature to an intermediate temperature of 400 ° C and then in a second stage with fans from 400 ° C to 100 ° C. The further cooling to room temperature was again in still air.

Der Barren wurde nach 14 Tagen Lagerung bei Raumtemperatur während 8h bei 95°C und anschliessend während 18h bei 155°C zum überhärteten Zustand T76 warm ausgehärtet.The billet was after 14 days of storage at room temperature for 8h at 95 ° C and then cured for 18h at 155 ° C to the overheated state T76 warm.

An senkrecht zur Barrenlängsrichtung herausgesägten Proben der warmausgehärteten Barren wurde die Brinell-Härte über den Barrenquerschnitt bestimmt. Die in Fig. 1 dargestellten Bereiche gleicher Härte zeigen deutlich den geringen Härte- bzw. Festigkeitsverlust im Barrenkern gegenüber der Barrenoberfläche.Brinell hardness was determined over the ingot cross-section at samples of the thermoset ingots cut out perpendicular to the bar longitudinal direction. The areas of equal hardness shown in FIG. 1 clearly show the low hardness or strength loss in the barrel core relative to the bar surface.

In Fig. 2 sind die für die Oberfläche (O) und den Kern (K) eines Barrens mit einem Querschnitt von 440 x 900 mm berechneten Temperatur-Zeit-Kurven bei einer Ventilatorabkühlung und in Fig. 3 die daraus abgeleiteten Gradienten zwischen der Temperatur TK im Barrenkern und der Temperatur To an der Barrenoberfläche dargestellt. Zum Vergleich zeigen die Fig. 4 und 5 die entsprechenden Kurven für einen Barren mit einem Querschnitt von 1000 x 1200 mm. Die Ergebnisse zeigen, dass mit dem erfindungsgemässen Verfahren hergestellte Barren mit einer Dicke bis zu 1000 mm immer noch die an Platten zur Fertigung von Kunststoff-Spritzgiessformen bezüglich der mechanischen Festigkeit gestellten Anforderungen erfüllen dürften.In Fig. 2, the temperature-time curves calculated for the surface (O) and the core (K) of a billet having a cross section of 440 × 900 mm at a fan cooling and in Fig. 3 are the gradients derived therefrom between the temperature T K in the barrel core and the temperature T o shown on the bar surface. For comparison, Figs. 4 and 5 show the corresponding curves for a billet with a cross section of 1000 x 1200 mm. The results show that billets produced with the method according to the invention, with a thickness of up to 1000 mm, are still likely to fulfill the requirements imposed on plates for the production of plastic injection molds in terms of mechanical strength.

Claims (19)

  1. Aluminium alloy exhibiting high strength and low quench sensitivity having
    4.6 to 5.2 wt.% Zn
    2.6 to 3.0 wt.% Mg
    0.1 to 0.2 wt.% Cu
    0.05 to 0.2 wt.% Zr
    max. 0.05 wt.% Mn
    max. 0.05 wt.% Cr
    max. 0.15 wt.% Fe
    max. 0.15 wt.% Si
    max. 0.10 wt.% Ti
    the remainder being impurities due to the manufacturing process, individually at maximum 0.05 wt.%, in total at maximum 0.15 wt.%.
  2. Aluminium alloy according to claim 1, characterised by way of 4.6 to 4.8 wt.% Zn.
  3. Aluminium alloy according to claim 1 or 2, characterised by way of 2.6 to 2.8 wt.% Mg.
  4. Aluminium alloy according to one of the claims 1 to 3, characterised by way of 0.10 to 0.15 wt.% Cu.
  5. Aluminium alloy according to one of the claims 1 to 4, characterised by way of 0.08 to 0.18 wt.% Zr.
  6. Aluminium alloy according to one of the claims 1 to 5, characterised by way of a maximum concentration of 0.03 wt.% Mn.
  7. Aluminium alloy according to one of the claims 1 to 5, characterised by way of a maximum concentration of 0.02 wt.% Cr.
  8. Aluminium alloy according to one of the claims 1 to 7, characterised by way of a maximum concentration of 0.12 wt.% Fe.
  9. Aluminium alloy according to one of the claims 1 to 8, characterised by way of a maximum concentration of 0.12 wt.% Si.
  10. Aluminium alloy according to one of the claims 1 to 9, characterised by way of a maximum concentration of 0.05 wt.% Ti.
  11. Process for manufacturing plates of thickness up to 300 mm out of an aluminium alloy according to one of the claims 1 to 10, characterised by way of the steps
    A. Continuous casting the aluminium alloy as an ingot with a thickness greater than 300 mm,
    B. Heating the ingot at a maximum heating rate of 20°C/h between 170 and 410°C to a temperature of 470 to 490°C,
    C. Homogenising the ingot for an interval of 10 to 14 h at a temperature of 470 to 490°C,
    D. Hot rolling the homogenised ingot to plate,
    E. Cooling the plate from a temperature of 400 to 410°C to a temperature of less than 100°C,
    F. Cooling the plate to room temperature
    G. Artificially age-hardening the plate.
  12. Process for manufacturing plate with a thickness of greater than 300 mm out of an aluminium alloy according to one of the claims 1 to 10 is characterised by way of the steps
    A. Continuous casting the aluminium alloy as an ingot with a thickness greater than 300 mm,
    B. Heating the ingot at a maximum heating rate of 20°C/h between 170 and 410°C to a temperature of 470 to 490°C,
    C. Homogenising the ingot for an interval of 10 to 14 h at a temperature of 470 to 490°C,
    D. Cooling the ingot to an intermediate temperature of 400 to 410°C,
    E. Cooling the ingot from the intermediate temperature of 400 to 410°C to a temperature below 100°C,
    F. Cooling the ingot to room temperature,
    G. Artificially age-hardening the ingot,
    H. Use of the artificially age-hardened ingot as plate.
  13. Process according to claim 12, characterised in that the cooling of the ingot from the homogenisation temperature of 470 - 490°C to the intermediate temperature of 400 - 410°C takes place in still air.
  14. Process according to claim 11 or 12, characterised in that the cooling of the ingot from the intermediate temperature of 400 - 410°C to a temperature below 100°C takes place by forced air cooling.
  15. Process according to claim 11 or 12, characterised in that the cooling of the ingot from the intermediate temperature of 400 - 410°C to a temperature below 100°C takes place in a water-air-mist spray.
  16. Process according to one of the claims 11 to 15, characterised in that the artificial age-hardening is carried out, after storage at room temperature, in a first heat-treatment at a first temperature, followed by a second heat-treatment at a second temperature which is higher than the first temperature.
  17. Process according to claim 16, characterised by way of
    - 1-30 days storage at room temperature,
    - 6 - 10 h at a temperature of 90 - 100°C
    - 8 - 22 h at a temperature of 150-160°C.
  18. Process according to claim 17, characterised in that the artificial age-hardening is carried out resulting in a heat-treatment condition T76.
  19. Use of a plate manufactured by the process according to one of the claims 11 to 18 for machine, tool and mould production, in particular for plastic injection moulding moulds.
EP03789376A 2003-01-16 2003-12-20 Aluminium alloy with increased resistance and low quench sensitivity Expired - Lifetime EP1587965B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP03789376A EP1587965B1 (en) 2003-01-16 2003-12-20 Aluminium alloy with increased resistance and low quench sensitivity
SI200330959T SI1587965T1 (en) 2003-01-16 2003-12-20 Aluminium alloy with increased resistance and low quench sensitivity

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP03405013 2003-01-16
EP03405013A EP1441041A1 (en) 2003-01-16 2003-01-16 Aluminium alloy with high strength and low quenching sensitivity
PCT/EP2003/014696 WO2004063407A1 (en) 2003-01-16 2003-12-20 Aluminium alloy with increased resistance and low quench sensitivity
EP03789376A EP1587965B1 (en) 2003-01-16 2003-12-20 Aluminium alloy with increased resistance and low quench sensitivity

Publications (2)

Publication Number Publication Date
EP1587965A1 EP1587965A1 (en) 2005-10-26
EP1587965B1 true EP1587965B1 (en) 2007-07-18

Family

ID=32524285

Family Applications (2)

Application Number Title Priority Date Filing Date
EP03405013A Withdrawn EP1441041A1 (en) 2003-01-16 2003-01-16 Aluminium alloy with high strength and low quenching sensitivity
EP03789376A Expired - Lifetime EP1587965B1 (en) 2003-01-16 2003-12-20 Aluminium alloy with increased resistance and low quench sensitivity

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP03405013A Withdrawn EP1441041A1 (en) 2003-01-16 2003-01-16 Aluminium alloy with high strength and low quenching sensitivity

Country Status (16)

Country Link
US (2) US20060096676A1 (en)
EP (2) EP1441041A1 (en)
AT (1) ATE367456T1 (en)
AU (1) AU2003293963A1 (en)
CA (1) CA2513333C (en)
DE (1) DE50307736D1 (en)
DK (1) DK1587965T3 (en)
ES (1) ES2290544T3 (en)
HR (1) HRP20050704B1 (en)
NO (1) NO340750B1 (en)
PL (1) PL203780B1 (en)
PT (1) PT1587965E (en)
RU (1) RU2351674C2 (en)
SI (1) SI1587965T1 (en)
TW (1) TWI291993B (en)
WO (1) WO2004063407A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008053893A1 (en) * 2008-10-30 2010-05-12 Audi Ag Device for cooling a cast component through a cooling medium, comprises distributor elements for the distribution of cooling medium, where one of the distribution elements is formed as support element for supporting the cast component

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1683882B2 (en) * 2005-01-19 2010-07-21 Otto Fuchs KG Aluminium alloy with low quench sensitivity and process for the manufacture of a semi-finished product of this alloy
CN100363146C (en) * 2005-05-20 2008-01-23 东北轻合金有限责任公司 Method for manufacturing shape bar of aluminum alloy in use for float bridge
KR20080109938A (en) 2006-05-18 2008-12-17 가부시키가이샤 고베 세이코쇼 Process for producing aluminum alloy plate and aluminum alloy plate
CN100523242C (en) * 2006-11-13 2009-08-05 上海昊华模具有限公司 Aluminium alloy for Vehicular radial ply tyre moulds
WO2009156283A1 (en) 2008-06-24 2009-12-30 Aleris Aluminum Koblenz Gmbh Al-zn-mg alloy product with reduced quench sensitivity
RU2457422C2 (en) * 2010-04-16 2012-07-27 Российская Федерация в лице Министерства промышленности торговли Российской Федерации Manufacturing method of sandwich plate based on aluminium for bullet-proof welded armour
FR2968675B1 (en) 2010-12-14 2013-03-29 Alcan Rhenalu 7XXX THICK-ALLOY PRODUCTS AND METHOD OF MANUFACTURE
RU2489217C1 (en) * 2011-12-27 2013-08-10 Открытое акционерное общество "Всероссийский институт легких сплавов" (ОАО "ВИЛС") Method of sheets production from heat-hardened aluminium alloys alloyed with scandium and zirconium
JP6344923B2 (en) * 2014-01-29 2018-06-20 株式会社Uacj High strength aluminum alloy and manufacturing method thereof
WO2018037390A2 (en) 2016-08-26 2018-03-01 Shape Corp. Warm forming process and apparatus for transverse bending of an extruded aluminum beam to warm form a vehicle structural component
BR112019006573B8 (en) * 2016-09-30 2022-01-04 Obshchestvo S Ogranichennoy Otvetstvennostyu Obedinennaya Kompaniya Rusal Inzhenerno Tekh Tsentr Process for obtaining semi-finished and deformed products from aluminum-based alloys
CN110114498A (en) 2016-10-24 2019-08-09 形状集团 Multistage aluminium alloy for producing vehicle part is formed and hot-working method
CN112921220A (en) * 2021-01-25 2021-06-08 西南铝业(集团)有限责任公司 Al-Zn-Cu-Mg ingot and preparation method thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3542606A (en) * 1968-03-13 1970-11-24 Kaiser Aluminium Chem Corp Hot worked metal article of aluminum base alloy and method of producing same
US3694272A (en) * 1970-12-24 1972-09-26 Kaiser Aluminium Chem Corp Method for forming aluminum sheet
ATA113876A (en) * 1976-02-18 1978-04-15 Vmw Ranshofen Berndorf Ag WELDABLE, EXTREMELY HOT FORMING, BORON-FREE CAST AND WET ALUMINUM ALLOYS WITH HIGH RESISTANCE AGAINST STRESS Cracks AND COATING CORROSION WITH AT THE SAME TIME GOOD MECHANICAL PROPERTIES
US4618382A (en) * 1983-10-17 1986-10-21 Kabushiki Kaisha Kobe Seiko Sho Superplastic aluminium alloy sheets
JPH0794701B2 (en) * 1991-04-01 1995-10-11 住友軽金属工業株式会社 Manufacturing method of aluminum alloy soft material for welded structure
US5389165A (en) * 1991-05-14 1995-02-14 Reynolds Metals Company Low density, high strength Al-Li alloy having high toughness at elevated temperatures
MX9204270A (en) * 1991-07-23 1993-01-01 Alcan Int Ltd IMPROVED ALUMINUM ALLOY.
JPH07252573A (en) * 1994-03-17 1995-10-03 Kobe Steel Ltd Al-zn-mg-cu alloy excellent in toughness and its production
US5961752A (en) * 1994-04-07 1999-10-05 Northwest Aluminum Company High strength Mg-Si type aluminum alloy
JP4204650B2 (en) 1996-12-09 2009-01-07 三井金属鉱業株式会社 High strength heat-resistant zinc alloy and molded product
JP3638188B2 (en) * 1996-12-12 2005-04-13 住友軽金属工業株式会社 Manufacturing method of high strength aluminum alloy extruded tube for front fork outer tube of motorcycle with excellent stress corrosion cracking resistance
US6869490B2 (en) * 2000-10-20 2005-03-22 Pechiney Rolled Products, L.L.C. High strength aluminum alloy

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008053893A1 (en) * 2008-10-30 2010-05-12 Audi Ag Device for cooling a cast component through a cooling medium, comprises distributor elements for the distribution of cooling medium, where one of the distribution elements is formed as support element for supporting the cast component
DE102008053893B4 (en) * 2008-10-30 2010-08-19 Audi Ag Apparatus and method for cooling at least one cast component

Also Published As

Publication number Publication date
DK1587965T3 (en) 2007-11-19
NO20053832D0 (en) 2005-08-15
PL376309A1 (en) 2005-12-27
RU2005125727A (en) 2007-02-27
ES2290544T3 (en) 2008-02-16
US7901522B2 (en) 2011-03-08
CA2513333C (en) 2010-09-14
NO340750B1 (en) 2017-06-12
WO2004063407A1 (en) 2004-07-29
AU2003293963A1 (en) 2004-08-10
EP1441041A1 (en) 2004-07-28
US20060096676A1 (en) 2006-05-11
TW200427850A (en) 2004-12-16
DE50307736D1 (en) 2007-08-30
RU2351674C2 (en) 2009-04-10
HRP20050704B1 (en) 2008-06-30
EP1587965A1 (en) 2005-10-26
NO20053832L (en) 2005-10-17
TWI291993B (en) 2008-01-01
HRP20050704A2 (en) 2006-02-28
SI1587965T1 (en) 2007-12-31
ATE367456T1 (en) 2007-08-15
US20090223608A1 (en) 2009-09-10
PL203780B1 (en) 2009-11-30
CA2513333A1 (en) 2004-07-29
PT1587965E (en) 2007-10-12

Similar Documents

Publication Publication Date Title
DE69326838T3 (en) TOUGH ALUMINUM ALLOY WITH COPPER AND MAGNESIUM
AT502310B1 (en) AN AL-ZN-MG-CU ALLOY
DE2953182C2 (en) Method for producing an alloy product from an aluminium alloy
EP1682688B1 (en) Al-Mg-Si cast aluminium alloy containing scandium
DE112004000995B4 (en) Highly damage tolerant aluminum alloy product, especially for aerospace applications
DE69836569T3 (en) Process for increasing the fracture toughness in aluminum-lithium alloys
EP1587965B1 (en) Aluminium alloy with increased resistance and low quench sensitivity
DE69737768T2 (en) 6XXX ALUMINUM ALLOY
DE112008003052T5 (en) Product of Al-Mg-Zn wrought alloy and manufacturing method therefor
EP1683882A1 (en) Aluminium alloy with low quench sensitivity and process for the manufacture of a semi-finished product of this alloy
DE102008033027A1 (en) Increasing strength and ductility of precipitation-hardenable metal materials such as light metal alloys based on e.g. aluminum, comprises transferring the material into a state of solid solution, and rapidly cooling/quenching the material
EP0918095A1 (en) Structural element made of a die-cast aluminium alloy
DE60023753T2 (en) HEAT TREATMENT FOR AGING-HARDENING ALUMINUM ALLOYS
DE2813986A1 (en) SUPERPLASTIC ALUMINUM ALLOY PRODUCTS AND METHOD FOR THE PRODUCTION THEREOF
DE2103614B2 (en) Process for the production of semi-finished products from AIMgSIZr alloys with high notched impact strength
DE60106488T2 (en) CURABLE ALUMINUM ALLOYS
DE60114281T2 (en) Cast and forged product using a copper-based alloy
EP2061912B1 (en) ALUMINIUM ALLOY OF THE AlZnMg TYPE AND METHOD OF PRODUCING IT
DE10163039C1 (en) Hot and cold formable component made of an aluminum alloy and process for its production
EP0989195B1 (en) Heat resisting aluminium alloy of the type AlCuMg
CH623359A5 (en)
DE69921146T2 (en) METHOD FOR THE PRODUCTION OF HEAT-TREATABLE PANEL OBJECTS
DE2239071A1 (en) ALUMINUM BASE ALLOY AND METHOD FOR MANUFACTURING IT
DE1608190B1 (en) PROCESS FOR INCREASING THE HARDNESS AND ABRASION RESISTANCE OF AN ALZNMG ALLOY
DE2314058C3 (en) Method of making a high strength aluminum alloy forging

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050816

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HOELLRIGL, GUENTHER

Inventor name: JAQUEROD, CHRISTOPHE

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CZ DE DK ES FI FR GB GR HU IT LI LU MC NL PT RO SE SI SK TR

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CZ DE DK ES FI FR GB GR HU IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50307736

Country of ref document: DE

Date of ref document: 20070830

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070815

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20071001

ET Fr: translation filed
REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20070402961

Country of ref document: GR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E002077

Country of ref document: HU

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2290544

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080421

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MC

Payment date: 20101201

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BG

Payment date: 20101215

Year of fee payment: 8

Ref country code: FI

Payment date: 20101229

Year of fee payment: 8

Ref country code: LU

Payment date: 20110103

Year of fee payment: 8

Ref country code: RO

Payment date: 20101213

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20101228

Year of fee payment: 8

Ref country code: SE

Payment date: 20101229

Year of fee payment: 8

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: ENGINEERED PRODUCTS SWITZERLAND AG

Effective date: 20110907

BECN Be: change of holder's name

Owner name: CONSTELLIUM SWITZERLAND A.G.

Effective date: 20110906

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: CONSTELLIUM SWITZERLAND AG (LTD, SA)

Free format text: ALCAN TECHNOLOGY & MANAGEMENT LTD.#BADISCHE BAHNHOFSTRASSE 16#8212 NEUHAUSEN AM RHEINFALL (CH) -TRANSFER TO- CONSTELLIUM SWITZERLAND AG (LTD, SA)#MAX HOEGGER-STRASSE 6#8048 ZUERICH (CH)

Ref country code: CH

Ref legal event code: NV

Representative=s name: NOVAGRAAF SWITZERLAND SA

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: ENGINEERED PRODUCTS SWITZERLAND AG, CH

Effective date: 20111004

Ref country code: FR

Ref legal event code: CD

Owner name: ENGINEERED PRODUCTS SWITZERLAND AG, CH

Effective date: 20111004

REG Reference to a national code

Ref country code: NL

Ref legal event code: SD

Effective date: 20111214

Ref country code: NL

Ref legal event code: TD

Effective date: 20111214

REG Reference to a national code

Ref country code: SI

Ref legal event code: SP73

Owner name: CONSTELLIUM SWITZERLAND AG; CH

Effective date: 20111103

Ref country code: FR

Ref legal event code: CD

Owner name: CONSTELLIUM SWITZERLAND AG, CH

Effective date: 20111130

REG Reference to a national code

Ref country code: SK

Ref legal event code: TC4A

Ref document number: E 2528

Country of ref document: SK

Owner name: CONSTELLIUM SWITZERLAND AG, ZUERICH, CH

Effective date: 20111212

Ref country code: SK

Ref legal event code: PC4A

Ref document number: E 2528

Country of ref document: SK

Owner name: ALCAN FINANCES SWITZERLAND AG, ZUERICH, CH

Free format text: FORMER OWNER: ALCAN TECHNOLOGY & MANAGEMENT LTD., NEUHAUSEN AM RHEINFALL, CH

Effective date: 20111103

REG Reference to a national code

Ref country code: PT

Ref legal event code: PC4A

Owner name: ALCAN FINANCES SWITZERLAND AG, CH

Effective date: 20120118

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: CONSTELLIUM SWITZERLAND AG

Effective date: 20120228

REG Reference to a national code

Ref country code: HU

Ref legal event code: FH1C

Free format text: FORMER REPRESENTATIVE(S): ERDELY PETER, DANUBIA SZABADALMI ES JOGI IRODA KFT., HU

Representative=s name: DANUBIA SZABADALMI ES JOGI IRODA KFT., HU

Ref country code: HU

Ref legal event code: GB9C

Owner name: CONSTELLIUM SWITZERLAND AG, CH

Free format text: FORMER OWNER(S): ALCAN TECHNOLOGY & MANAGEMENT LTD., CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50307736

Country of ref document: DE

Owner name: CONSTELLIUM SWITZERLAND AG, CH

Free format text: FORMER OWNER: ALCAN TECHNOLOGY & MANAGEMENT LTD., NEUHAUSEN AM RHEINFALL, CH

Effective date: 20120319

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20120510 AND 20120516

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 367456

Country of ref document: AT

Kind code of ref document: T

Owner name: CONSTELLIUM SWITZERLAND AG, CH

Effective date: 20120420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111231

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111220

REG Reference to a national code

Ref country code: GR

Ref legal event code: ML

Ref document number: 20070402961

Country of ref document: GR

Effective date: 20120704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111220

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20161214

Year of fee payment: 14

Ref country code: DK

Payment date: 20161227

Year of fee payment: 14

Ref country code: SK

Payment date: 20161202

Year of fee payment: 14

Ref country code: NL

Payment date: 20161226

Year of fee payment: 14

Ref country code: CH

Payment date: 20161227

Year of fee payment: 14

Ref country code: GB

Payment date: 20161228

Year of fee payment: 14

Ref country code: CZ

Payment date: 20161208

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20161227

Year of fee payment: 14

Ref country code: SI

Payment date: 20161205

Year of fee payment: 14

Ref country code: AT

Payment date: 20161202

Year of fee payment: 14

Ref country code: PT

Payment date: 20161205

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20161207

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20161222

Year of fee payment: 14

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20170710

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20171231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171220

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180620

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20180101

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 367456

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171220

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171220

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 2528

Country of ref document: SK

Effective date: 20171220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180101

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20180806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171220

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171220

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171220

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171220

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171221

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20190703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20221227

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20221227

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20221228

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50307736

Country of ref document: DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MK

Effective date: 20231220