EP1683882B2 - Aluminium alloy with low quench sensitivity and process for the manufacture of a semi-finished product of this alloy - Google Patents

Aluminium alloy with low quench sensitivity and process for the manufacture of a semi-finished product of this alloy Download PDF

Info

Publication number
EP1683882B2
EP1683882B2 EP05111026A EP05111026A EP1683882B2 EP 1683882 B2 EP1683882 B2 EP 1683882B2 EP 05111026 A EP05111026 A EP 05111026A EP 05111026 A EP05111026 A EP 05111026A EP 1683882 B2 EP1683882 B2 EP 1683882B2
Authority
EP
European Patent Office
Prior art keywords
percent
weight
semi
maximum
finished product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05111026A
Other languages
German (de)
French (fr)
Other versions
EP1683882B1 (en
EP1683882A1 (en
Inventor
Matthias Dr.-Ing. Hilpert
Gregor Dr. Terlinde
Gernot Dr. Fischer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otto Fuchs KG
Original Assignee
Otto Fuchs KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=35695568&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1683882(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Otto Fuchs KG filed Critical Otto Fuchs KG
Publication of EP1683882A1 publication Critical patent/EP1683882A1/en
Application granted granted Critical
Publication of EP1683882B1 publication Critical patent/EP1683882B1/en
Publication of EP1683882B2 publication Critical patent/EP1683882B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/06Making non-ferrous alloys with the use of special agents for refining or deoxidising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals

Definitions

  • the invention relates to a quench-resistant aluminum alloy for the production of high-strength, low-intrinsic forgings and high-strength extruded and rolled products. Furthermore, the invention relates to a method for producing a semi-finished product from such an aluminum alloy.
  • high-strength aluminum alloys are needed for the production of, in particular, load-bearing fuselage, wing and chassis parts, which have high strength both under static and dynamic load.
  • the required strength properties can be achieved in the abovementioned semi-finished products by using alloys of the 7000 group (7xxx alloy) in accordance with the classification of aluminum alloys by the Aluminum Association (AA).
  • die forgings for high-stress aerospace parts are made of the AA 7075, AA 7175, AA 7475 and more preferably AA 7049 and AA 7050 alloys in the Americas and the AA 7010, AA 7049A and AA 7050A alloys used in the European area.
  • WO 02/052053 A1 is a high strength aluminum alloy of the aforementioned type with a higher zinc content compared to previous alloys of the same type coupled with a reduced copper and magnesium content.
  • the copper and magnesium content in this prior art alloy together is less than 3.5%.
  • the copper content itself is given as 1.2-2.2% by weight, preferably 1.6-1.2% by weight.
  • this prior art alloy necessarily contains one or more elements from the group of zirconium, scandium and hafnium with maximum proportions of 0.4% by weight zirconium, 0.4% by weight scandium and 0, 3% by weight hafnium.
  • the semi-finished products produced from one of the abovementioned alloys that is to say for example the forgings, the extruded profiles or the rolled plates, obtain the desired strength
  • the semi-finished products are subjected to a special heat treatment. This involves quenching of solution annealing temperature, usually associated with subsequent cold working at average thicknesses greater than 50 mm.
  • Cold forming serves to reduce the stresses induced during quenching.
  • the step of cold forming can be done by a cold heading or by stretching the semi-finished product typically by 1-3%.
  • the semi-finished products produced should be as low in natural stress as possible in order to minimize undesirable distortion during further processing of the semi-finished products.
  • the semi-finished products and, accordingly, also the prefabricated parts made therefrom should be low-stress, in order to give the designer the opportunity to utilize the entire material potential.
  • the process steps to be used for producing parts for aerospace engineering and also the maximum thickness of the semi-finished products used for the production of the parts are standardized or prescribed.
  • the maximum permissible thickness is 200 mm and assumes that after quenching the semi-finished product is necessarily subjected to a cold-forming step for the abovementioned reasons.
  • cold forming is relatively easy to achieve due to the generally simple geometry of stretching in the longitudinal direction.
  • larger and especially thicker forgings are needed.
  • US 4 629 517 A discloses an aluminum product having good strength properties and good corrosion resistance when in the T76 state.
  • the aluminum product consists of an AA 7xxx alloy containing 0.08 wt% Si, 0.29 wt% Fe, 0.20 wt% Cu, 0.03 wt% Mn, 2.5 Wt% Mg, 0.03 wt% Cr, 7.1 wt% Zn, 0.12 wt% Zr and 0.06 wt% Ti.
  • the method described in this document is only suitable for producing aluminum products having a thickness of a few millimeters.
  • the alloy described in this document is not suitable for the production of semi-finished products with medium and larger thicknesses and the required strengths.
  • the invention has the object, a method for producing a semifinished product with to suggest the desired properties of this alloy.
  • the alloy-related object is achieved by a high-strength, quench-resistant aluminum alloy having the features of claim 1.
  • the method-related object is achieved by a method according to claim 9 or claim 12.
  • Medium-sized semi-finished products have a thickness of between 50 and 180 mm.
  • Semi-finished products with a greater thickness have a coating thickness of> 180 mm.
  • the quenching-resistant alloy according to the invention can also be used to produce semi-finished products in a thickness of more than 200 mm, in particular 250 mm and more, with the desired high static and dynamic strength properties while at the same time having good fracture toughness and good stress-crack corrosion behavior. Only at these larger thicknesses a cold forming step is advantageously carried out to reduce the quench-induced residual stresses.
  • semi-finished products produced for average thicknesses of the alloy may be mildly mild after solution annealing.
  • B. can be cooled in a glycol-water mixture without the very good material properties are significantly impaired after a subsequent thermal aging.
  • the step of cold forming is omitted for medium thicknesses, since the residual stresses induced by the mild cooling are not critically low. Therefore, it is possible with this alloy to produce semi-finished products in the middle thickness range in a simpler and more cost-effective manner, namely without an otherwise necessary cold forming step.
  • the above-described advantageous properties of the alloy can also be utilized to simplify the manufacturing process of a part, for the manufacture of which a semifinished product of greater initial thickness is required and which has an average thickness after being machined.
  • a semifinished product of greater thickness is pre-machined after the step of hot forming.
  • the preprocessing is designed so that the semifinished product to be quenched in the course of the heat treatment undergoes such a thickness reduction, which is anyway necessary for the production of the finished part, that the semi-finished product is subjected to a heat treatment with mild quenching (glycol / water quenching) without carrying out a cold forming step otherwise necessary for larger thicknesses. Mixture) can be subjected.
  • the above-mentioned properties of the semifinished product produced from this alloy are unexpected since, contrary to the specifications resulting from the prior art, the copper content is significantly lower than was the case with previously known high-strength aluminum alloys. According to a preferred embodiment, the copper content is only 0.8-1.1 wt%. Thus, the copper content is only about 50% of the preferred copper content of the WO 02/052053 A1 known aluminum alloys. That nevertheless very high strength values are achieved, is surprising. These properties are believed to be due to the balanced composition of the alloy constituents, which includes the relatively high levels of zinc and the magnesium content adjusted to it. The balanced composition of the alloying elements permitted within narrow limits provides that the sum of the elements magnesium, copper and zinc is at least 9% by weight.
  • the alloy has a zinc: magnesium ratio of between 4.4 and 5.3. It has been found that the desired strength properties can only be achieved if the elements magnesium, copper and zinc in the sum more than 9 wt .-% and the zinc: magnesium ratio. These characteristics of the alloy are a measure of how the products made with the alloy have the desired strength properties. This regulation also determines the hardenability of the semi-finished products produced with the alloy.
  • silver addition may be advantageous.
  • the content will be limited to 0.2-0.7%, in particular 0.20-0.40% by weight.
  • the manganese content of the alloy was limited to a maximum of 0.5% by weight.
  • the hardenability of an Al-Zn-Cu-Mg alloy decreases with increasing manganese content. For this reason, the manganese content is limited.
  • zirconium additive This is according to a preferred embodiment, 0.14 - 0.20 wt .-%.
  • Zirconium also precipitates out of the microstructure during the homogenization of the continuous casting ingots in the form of zirconium aluminides. These aluminides are generally more finely dispersed than the manganese aluminides. Therefore, they are especially helpful in terms of recrystallization control.
  • the zirconium aluminides formed are not coarsened by the intended heat treatment and are stable in the selected temperature ranges, unlike manganese aluminides. For this reason, zirconium is a necessary component of the alloy.
  • the titanium contained in the alloy is primarily used for grain refining during continuous casting. Preference is given to adding from 0.03 to 0.1% by weight of titanium, in particular from 0.03 to 0.06% by weight, of titanium.
  • the alloy may contain 0.001-0.03 wt% boron. Furthermore, the alloy can max. 0.2% by weight of cerium and max. 0.30 wt .-% scandium.
  • the desired properties are achieved if the specified alloying constituents are used proportionally in the specified range. With an alloy in which one or more alloying constituents have a content which is outside the stated range, semi-finished products can no longer be produced with the required properties.
  • thermosetting of the quenched semifinished product takes place in two stages, wherein in the first stage, the semi-finished product is heated to a temperature of more than 100 ° C and held for more than eight hours at this temperature and in the second stage heated to more than 130 ° C and heated for more than five hours. These two steps can be carried out immediately after each other. Without prejudice to the desired properties of the semifinished product, the semifinished product treated with the first stage can also be cooled and the second stage of the thermosetting can be carried out at a later time.
  • the two alloys Z1, Z2 had the following composition: Si Fe Cu Mn mg Cr Zn Ti Zr Ti + Zr Alloy Z1 0.05 0.05 0.95 0.39 1.70 0,002 8.35 0,035 0.12 0,155 Alloy Z2 0.04 0.07 0.90 0,004 1.65 0.001 8.50 0,025 0.12 0.145
  • Alloys Z1, Z2 were cast on an industrial scale to 370 mm diameter continuous casting blocks.
  • the continuous casting blocks were homogenized to compensate for the crystallization induced crystallization.
  • the blocks were homogenized in two stages in a temperature range of 465 ° C - 485 ° C and cooled.
  • the homogenized blocks were preheated to 370 ° C and remolded into open-die forgings 250 mm thick and 500 mm wide.
  • the forgings made of Alloy Z1 and Z2 were solution-annealed for at least 4 hours at 485 ° C, quenched in water at room temperature and then cured between 100 ° C and 160 ° C warm, wherein the hot curing has been carried out in two stages.
  • the semi-finished product was heated to more than 100 ° C and held at this temperature for more than eight hours.
  • the second stage carried out after the first stage was carried out at a temperature of more than 130 ° C for more than five hours.
  • the K lC values are given below: alloy test direction location K IC (MPa - ⁇ m) R p0.2 (MPa) Z 1 LT edge 30.5 529 LT core 32.9 504 TL edge 23.1 516 TL core 20.4 502 Z 2 LT edge 30.3 514 LT core 35.9 520 TL edge 23.6 514 TL core 21.8 508
  • alloy Z1 alloy load direction Rp02 (MPa)
  • R m (MPa) A 5 (%) Z 1 L 504 523 11.2 LT 502 533 5.2 ST 498 522 8.0
  • the A 5 values are highest for the L direction and reach at least 6% elongation at break (A 5 ) for the two transverse directions.
  • the strength drop can be reduced.
  • W 50 mm
  • the fracture toughness K lc in the test specimens LT and TL was determined according to ASTM-E 399.
  • the K lC values are given in the following table: alloy test direction location K lC (MPa ⁇ m) R p0.2 ( Mpa ) Z 1 LT edge 30.5 529 LT core 32.9 504 TL edge 23.1 516 TL core 20.4 502 Z 1 + cold diving LT edge 38.9 485 LT core 42.2 448 TL edge 23.9 474 TL core 21.9 468
  • open-die forgings with a thickness of 150 mm and a width of 500 mm were produced from Alloy Z1 and, according to the example described above, after solution heat treatment in water or in a water-glycol mixture with about 20% or approx. 40% quenched and warmed up as previously described. A forging was additionally cold-crushed after quenching in water. Tensile specimens taken from the forgings in the "long" (L), "long-transverse” (LT) and “short-transverse” (ST) directions, the influence of different cooling media was shown.
  • Alloy Z1 for a thickness of 150 mm for different cooling treatments are shown below: quenching load direction Rp02 (MPa) R m (MPa) A 5 (%) Water (RT) L 551 573 10, 3 LT 515 544 7.5 ST 505 549 8.0 Water (RT) + cold diving L 491 537 12.8 LT 465 520 8.7 ST 430 513 8.5 Water / glycol (16-20%) L 545 566 12.5 LT 520 547 7.2 ST 512 548 8.3 Water / glycol (38-40%) L 503 529 12.2 LT 493 525 5.0 ST 487 526 5.6
  • the fracture toughness K lc in the test specimens LT and TL was determined according to ASTM-E 399.
  • the K lC values are shown in the following table: quenching test direction K lC (MPa ⁇ m) Rp02 (MPa) Water (RT) LT 36.8 551 TL 23.8 515 Water (RT) + cold diving LT 39.1 491 TL 24.1 465 Water / glycol (16-20%) LT 28.2 545 TL 20.7 520 Water glycol (38-40%) LT 35.4 503 TL 18.5 493
  • the alloy Z1 was cast analogously to the first example and produced blocks for extrusion in yet another example.
  • the homogenized blocks were preheated to over 370 ° C and extruded into extruded profiles having a rectangular cross section of 40 mm thickness and a width of 100 mm.
  • the profiles were then solution-annealed for at least 4 hours at 485 ° C., quenched in water at room temperature and then heated between 100 ° C. and 160 ° C. in two stages (first stage:> 100 ° C.,> 8 h, second stage:> 130 ° C,> 5h) cured.
  • the A 5 values are highest for the L direction and reach at least 7% elongation at break (A 5 ) for the two transverse directions.
  • FIG. 1 is a graph showing the strength behavior of various AA 7xxx alloys as a function of the average cooling rate during quenching from the solution annealing temperature.
  • FIG. It is clearly recognizable in this presentation that the loss of strength when using the claimed aluminum alloy is considerably lower even at low cooling rates than in the case of the comparative alloys AA 7075, AA 7010 and AA 7050.
  • the strength values of the products / semi-finished products produced with the claimed alloy as determined in the context of the description of the invention are considerably improved, in particular with regard to the stress-crack corrosion resistance compared to products of prior art alloys, which is a result which could not be foreseen in the form shown.
  • the results presented are also interesting in that the strength values described can be represented in particular in the case of hot curing carried out only in two stages.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Forging (AREA)

Description

Die Erfindung betrifft eine abschreckunempfindliche Aluminiumlegierung zur Herstellung hochfester, eigenspannungsarmer Schmiedestücke und hochfester Strangpress- und Walzprodukte. Ferner betrifft die Erfindung ein Verfahren zum Herstellen eines Halbzeuges aus einer solchen Aluminiumlegierung.The invention relates to a quench-resistant aluminum alloy for the production of high-strength, low-intrinsic forgings and high-strength extruded and rolled products. Furthermore, the invention relates to a method for producing a semi-finished product from such an aluminum alloy.

Für die Luft- und Raumfahrtindustrie werden hochfeste Aluminiumlegierungen zum Herstellen vor allem von tragenden Rumpf-, Flügel- und Fahrwerksteilen benötigt, die sowohl bei statischer als auch bei dynamischer Beanspruchung eine hohe Festigkeit aufweisen. Die geforderten Festigkeitseigenschaften können bei vorgenannten Halbzeugen durch Einsatz von Legierungen der 7000-Gruppe (7xxx-Legierung) entsprechend der von der Aluminum Association (AA) vorgenommenen Klassifizierung von Aluminiumlegierungen erreicht werden.For the aerospace industry, high-strength aluminum alloys are needed for the production of, in particular, load-bearing fuselage, wing and chassis parts, which have high strength both under static and dynamic load. The required strength properties can be achieved in the abovementioned semi-finished products by using alloys of the 7000 group (7xxx alloy) in accordance with the classification of aluminum alloys by the Aluminum Association (AA).

Gesenkschmiedestücke für hoch beanspruchte Teile in der Luft- und Raumfahrt werden beispielsweise aus den Legierungen AA 7075, AA 7175, AA 7475 und besonders bevorzugt aus den Legierungen AA 7049 und AA 7050 im amerikanischen Raum und aus den Legierungen AA 7010, AA 7049A und AA 7050A im europäischen Raum eingesetzt.For example, die forgings for high-stress aerospace parts are made of the AA 7075, AA 7175, AA 7475 and more preferably AA 7049 and AA 7050 alloys in the Americas and the AA 7010, AA 7049A and AA 7050A alloys used in the European area.

Aus WO 02/052053 A1 ist eine hochfeste Aluminiumlegierung des vorgenannten Typs mit einem gegenüber früheren Legierungen desselben Typs erhöhten Zinkgehalt, gekoppelt mit einem reduzierten Kupfer- und Magnesiumgehalt bekannt. Der Kupfer- und Magnesiumgehalt bei dieser vorbekannten Legierung beträgt zusammen weniger als 3,5 %. Der Kupfergehalt selbst wird mit 1,2 - 2,2 Gew.-%, bevorzugt mit 1,6 - 2,2 Gew.-% angegeben. Zusätzlich zu den Elementen Zink, Magnesium und Kupfer enthält diese vorbekannte Legierung zwingend eines oder mehrere Elemente aus der Gruppe Zirkon, Scandium und Hafnium mit maximalen Anteilen von 0,4 Gew.-% Zirkon, 0,4 Gew.-% Scandium und 0,3 Gew.-% Hafnium.Out WO 02/052053 A1 is a high strength aluminum alloy of the aforementioned type with a higher zinc content compared to previous alloys of the same type coupled with a reduced copper and magnesium content. The copper and magnesium content in this prior art alloy together is less than 3.5%. The copper content itself is given as 1.2-2.2% by weight, preferably 1.6-1.2% by weight. In addition to the elements zinc, magnesium and copper, this prior art alloy necessarily contains one or more elements from the group of zirconium, scandium and hafnium with maximum proportions of 0.4% by weight zirconium, 0.4% by weight scandium and 0, 3% by weight hafnium.

Damit die aus einer der vorgenannten Legierungen hergestellten Halbzeuge, also beispielsweise die Schmiedestücke, die stranggepressten Profile oder die gewalzten Platten die gewünschten Festigkeit erhalten, werden die Halbzeuge einer besonderen Wärmebehandlung unterzogen. Diese beinhaltet ein Abschrecken von Lösungsglühtemperatur, zumeist verbunden mit einer nachfolgenden Kaltumformung bei mittleren Dicken von mehr als 50 mm. Die Kaltumformung dient zur Reduzierung der beim Abschrecken induzierten Spannungen. Der Schritt des Kaltumformens kann durch ein Kaltstauchen oder auch durch ein Recken des Halbzeuges typischerweise um 1 - 3% erfolgen. Die hergestellten Halbzeuge sollen möglichst eigenspannungsarm sein, um bei der weiteren Bearbeitung der Halbzeuge einen unerwünschten Verzug zu minimieren. Zudem sollen die Halbzeuge und dementsprechend auch die daraus hergestellten Fertigteile eigenspannungsarm sein, um dem Konstrukteur die Möglichkeit zu geben, das gesamte Werkstoffpotential zu nutzen. Aus diesem Grunde sind beispielsweise für die Legierungen AA 7050 sowie AA 7010 die zum Herstellen von Teilen für die Luft- und Raumfahrttechnik einzusetzenden Verfahrensschritte und auch die maximale Dicke der zur Herstellung der Teile verwendeten Halbzeuge genormt bzw. vorgeschrieben. Die maximale zugelassene Dicke beträgt 200 mm und setzt voraus, dass nach dem Abschrecken das Halbzeug zwingend einem Kaltumformschritt aus vorgenannten Gründen unterzogen wird. Bei Strangpress- und Walzprodukten ist ein Kaltumformen aufgrund der in aller Regel einfachen Geometrie durch Recken in Längsrichtung relativ einfach zu erreichen. Bei geometrisch komplizierten Schmiedestücken ist dagegen die Erzielung eines gleichmäßig hohen Stauchgrades - wenn überhaupt - nur mit einem hohen Aufwand möglich. Im Zuge der Konzeption größerer Flugzeuge werden auch immer größere und insbesondere dickere Schmiedeteile benötigt.In order that the semi-finished products produced from one of the abovementioned alloys, that is to say for example the forgings, the extruded profiles or the rolled plates, obtain the desired strength, the semi-finished products are subjected to a special heat treatment. This involves quenching of solution annealing temperature, usually associated with subsequent cold working at average thicknesses greater than 50 mm. Cold forming serves to reduce the stresses induced during quenching. The step of cold forming can be done by a cold heading or by stretching the semi-finished product typically by 1-3%. The semi-finished products produced should be as low in natural stress as possible in order to minimize undesirable distortion during further processing of the semi-finished products. In addition, the semi-finished products and, accordingly, also the prefabricated parts made therefrom should be low-stress, in order to give the designer the opportunity to utilize the entire material potential. For this reason, for example, for the alloys AA 7050 and AA 7010, the process steps to be used for producing parts for aerospace engineering and also the maximum thickness of the semi-finished products used for the production of the parts are standardized or prescribed. The maximum permissible thickness is 200 mm and assumes that after quenching the semi-finished product is necessarily subjected to a cold-forming step for the abovementioned reasons. In extruded and rolled products, cold forming is relatively easy to achieve due to the generally simple geometry of stretching in the longitudinal direction. In the case of geometrically complicated forgings, on the other hand, it is only possible to achieve a uniformly high degree of compression - if at all - with great effort. In the course of designing larger aircraft, larger and especially thicker forgings are needed.

US 4 629 517 A offenbart ein Aluminiumprodukt mit guten Festigkeitseigenschaften und einem guten Korrosionswiderstand, wenn dieses im T76-Zustand vorliegt. Das Aluminiumprodukt besteht aus einer AA 7xxx-Legierung, die 0,08 Gew.-% Si, 0,29 Gew.-% Fe, 0,20 Gew.-% Cu, 0,03 Gew.-% Mn, 2,5 Gew.-% Mg, 0,03 Gew.% Cr, 7,1 Gew.-% Zn, 0,12 Gew.-% Zr und 0,06 Gew.-% Ti besteht. Das in diesem Dokument beschriebene Verfahren eignet sich jedoch nur zum Herstellen von Aluminiumprodukten, die eine Dicke von wenigen Millimetern aufweisen. Zur Herstellung von Halbzeugen mit mittleren und größeren Dicken und den geforderten Festigkeiten eignet sich die in diesem Dokument beschriebene Legierung nicht. US 4 629 517 A discloses an aluminum product having good strength properties and good corrosion resistance when in the T76 state. The aluminum product consists of an AA 7xxx alloy containing 0.08 wt% Si, 0.29 wt% Fe, 0.20 wt% Cu, 0.03 wt% Mn, 2.5 Wt% Mg, 0.03 wt% Cr, 7.1 wt% Zn, 0.12 wt% Zr and 0.06 wt% Ti. However, the method described in this document is only suitable for producing aluminum products having a thickness of a few millimeters. The alloy described in this document is not suitable for the production of semi-finished products with medium and larger thicknesses and the required strengths.

In " Aluminum and Aluminium Alloys" (1993) edited by J.R. Davies - ASM International Materials Park (Seiten 265 - 274 ) sind Verfahren beschrieben, mit denen sich Aluminiumhalbzeuge mit Dicken von bis zu 114 mm herstellen lassen. Hierzu werden unter anderem auch die bereits eingangs genannten AA 7xxx-Legierungen verwendet. Dieses Dokument offenbart jedoch nicht, mit welcher Legierung und mit welchen Verfahren sich Aluminiumhalbzeuge mit größeren Dicken, als im Dokument angegebenen, herstellen lassen.In " Aluminum and Aluminum Alloys "(1993) edited by JR Davies - ASM International Materials Park (pages 265-274 ) describes processes that can be used to produce aluminum semi-finished products with thicknesses of up to 114 mm. Among others, the already mentioned AA 7xxx alloys are used for this purpose. However, this document does not disclose with which alloy and by which method aluminum semi-finished products of greater thickness than those specified in the document can be produced.

Es ist daher Aufgabe der Erfindung, eine weitgehend abschreckunempfindliche, hochfeste Aluminiumlegierung mit gleichen oder besseren Festigkeitseigenschaften wie die Legierungen AA 7010 und AA 7050 zur Verfügung zu haben, die gleichzeitig bei großen Dicken nach einer Kaltumformung niedrige innere Abschreckeigenspannungen aufweist und aus der außerdem Halbzeuge mit einer mittleren Dicke mit hoher Festigkeit und Bruchzähigkeit hergestellt werden können, ohne dass zur Reduzierung von beim Abschrecken induzierten Eigenspannungen zwingend ein Kaltumformschritt benötigt wird.It is therefore an object of the invention to have a largely quenching insensitive, high-strength aluminum alloy with the same or better strength properties as the alloys AA 7010 and AA 7050 available, which has low internal Abschreckeigenspannungen at high thicknesses after cold forming and also from the semi-finished with a medium thickness can be produced with high strength and fracture toughness without necessarily requiring a cold forming step to reduce residual stresses induced during quenching.

Des Weiteren liegt der Erfindung die Aufgabe zugrunde, ein Verfahren zum Herstellen eines Halbzeuges mit den gewünschten Eigenschaften aus dieser Legierung vorzuschlagen.Furthermore, the invention has the object, a method for producing a semifinished product with to suggest the desired properties of this alloy.

Gelöst wird die legierungsbezogene Aufgabe durch eine hochfeste abschreckunempfindliche Aluminiumlegierung mit den Merkmalen des Anspruchs 1.The alloy-related object is achieved by a high-strength, quench-resistant aluminum alloy having the features of claim 1.

Die verfahrensbezogene Aufgabe wird mit einem Verfahren gemäß Anspruch 9 oder dem Anspruch 12 gelöst.The method-related object is achieved by a method according to claim 9 or claim 12.

Die im Rahmen dieser Ausführungen benutzten Begriffe bezüglich der Dicke sind nachfolgend definiert: Halbzeuge mittlerer Dicke weisen Vergütungsdicken von 50 - 180 mm auf. Halbzeuge mit einer größeren Dicke weisen eine Vergütungsdicke von >180 mm auf.The terms used in the context of these embodiments with regard to the thickness are defined below: Medium-sized semi-finished products have a thickness of between 50 and 180 mm. Semi-finished products with a greater thickness have a coating thickness of> 180 mm.

Mit der erfindungsgemäßen abschreckunempfindlichen Legierung können mit den gewünschten hohen statischen und dynamischen Festigkeitseigenschaften bei gleichzeitig guter Bruchzähigkeit und gutem Spannungs-Riss-Korrosionsverhalten auch Halbzeuge in einer Dicke von mehr als 200 mm, insbesondere von 250 mm und mehr hergestellt werden. Nur bei diesen größeren Dicken wird zweckmäßigerweise ein Kaltumformschritt zum Abbau der abschreckinduzierten Eigenspannungen durchgeführt.The quenching-resistant alloy according to the invention can also be used to produce semi-finished products in a thickness of more than 200 mm, in particular 250 mm and more, with the desired high static and dynamic strength properties while at the same time having good fracture toughness and good stress-crack corrosion behavior. Only at these larger thicknesses a cold forming step is advantageously carried out to reduce the quench-induced residual stresses.

Darüber hinaus können für mittlere Dicken aus der Legierung hergestellte Halbzeuge nach der Lösungsglühung mild z. B. in einem Glykol-Wasser-Gemisch abgekühlt werden können, ohne dass die sehr guten Werkstoffeigenschaften nach einer anschließenden Warmauslagerung nennenswert beeinträchtigt werden. Aus diesem Grund entfällt bei mittleren Dicken der Schritt einer Kaltumformung, da die bei dem milden Abkühlen induzierten Eigenspannungen unkritisch niedrig liegen. Daher ist es mit dieser Legierung möglich, Halbzeuge im mittleren Dickenbereich auf einfachere und kostengünstigere Art und Weise, nämlich ohne einen ansonsten notwendigen Kaltumformschritt herzustellen.In addition, semi-finished products produced for average thicknesses of the alloy may be mildly mild after solution annealing. B. can be cooled in a glycol-water mixture without the very good material properties are significantly impaired after a subsequent thermal aging. For this reason, the step of cold forming is omitted for medium thicknesses, since the residual stresses induced by the mild cooling are not critically low. Therefore, it is possible with this alloy to produce semi-finished products in the middle thickness range in a simpler and more cost-effective manner, namely without an otherwise necessary cold forming step.

Die vorbeschriebenen vorteilhaften Eigenschaften der Legierung können auch ausgenutzt werden, um den Herstellungsprozess eines Teiles, für dessen Herstellung ein Halbzeug größerer Ausgangsdicke benötigt wird und das nach seiner Bearbeitung eine mittlere Dicke aufweist, zu vereinfachen. Ein solches beispielsweise geschmiedetes Halbzeug größerer Dicke wird nach dem Schritt des Warmumformens zerspanend vorbearbeitet. Die Vorbearbeitung ist so ausgelegt, dass das dann im Zuge der Warmbehandlung abzuschreckende Halbzeug eine solche, zur Herstellung des Fertigteils ohnehin notwendige Dickenreduzierung erfährt, dass das vorbearbeitete Halbzeug ohne Durchführen eines ansonsten für größere Dicken notwendigen Kaltumformschrittes einer Warmbehandlung mit mildem Abschrecken (Glykol-Wasser-Gemisch) unterzogen werden kann.The above-described advantageous properties of the alloy can also be utilized to simplify the manufacturing process of a part, for the manufacture of which a semifinished product of greater initial thickness is required and which has an average thickness after being machined. Such for example forged semi-finished product of greater thickness is pre-machined after the step of hot forming. The preprocessing is designed so that the semifinished product to be quenched in the course of the heat treatment undergoes such a thickness reduction, which is anyway necessary for the production of the finished part, that the semi-finished product is subjected to a heat treatment with mild quenching (glycol / water quenching) without carrying out a cold forming step otherwise necessary for larger thicknesses. Mixture) can be subjected.

Mit der erfindungsgemäßen Legierung können somit Halbzeuge mit einer mittleren Dicke durch Glykol-Wassergemische milde abgeschreckt werden, während bei Halbzeugen größerer Dicke ein solches mildes Abschrecken aufgrund der erforderlichen Mindestabkühlgeschwindigkeit nicht mehr zweckmäßig ist, so dass diese in Wasser abgeschreckt werden. In folge dessen werden diese Halbzeuge anschließend einer Kaltumformung unterworfen, etwa einem Stauchen oder Recken um 1 - 5 %.With the alloy according to the invention thus semi-finished products with a medium thickness can be gently quenched by glycol-water mixtures, while semifinished products of greater thickness such mild quenching due to the required Mindestabkühlgeschwindigkeit is no longer appropriate, so that they are quenched in water. As a result, these semi-finished products are then subjected to cold forming, such as upsetting or stretching by 1-5%.

Die erzielten vorgenannten Eigenschaften des aus dieser Legierung hergestellten Halbzeuges sind unerwartet, da entgegen der sich aus dem Stand der Technik ergebenden Vorgaben der Kupfergehalt deutlich geringer ist als dieses bei vorbekannten hochfesten Aluminiumlegierungen der Fall war. Gemäß einem bevorzugten Ausführungsbeispiel beträgt der Kupfergehalt nur 0,8 - 1,1 Gew.-%. Damit beträgt der Kupfergehalt lediglich etwa 50% des bevorzugten Kupfergehaltes der aus WO 02/052053 A1 bekannten Aluminiumlegierungen. Dass dennoch sehr hohe Festigkeitswerte erzielt werden, ist überraschend. Es wird angenommen, dass diese Eigenschaften in der ausgeglichenen Zusammenstellung der Legierungsbestandteile begründet sind, wozu auch die relativ hohen Zinkgehalte und der daran angepasste Magnesiumgehalt zu zählen sind. In der ausgewogenen Zusammenstellung der nur in engen Grenzen zugelassenen Legierungselemente ist vorgesehen, dass die Summe der Elemente Magnesium, Kupfer und Zink mindestens 9 Gew.-% beträgt. Darüber hinaus weist die Legierung ein Zink : Magnesium-Verhältnis auf, das zwischen 4,4 und 5,3 beträgt. Es hat sich gezeigt, dass die gewünschten Festigkeitseigenschaften nur dann erreicht werden können, wenn die Elemente Magnesium, Kupfer und Zink in der Summe mehr als 9 Gew.-% und das Zink : Magnesium-Verhältnis aufweisen. Diese Merkmale der Legierung sind ein Maß dafür, dass die mit der Legierung hergestellten Produkte die gewünschten Festigkeitseigenschaften aufweisen. Dieses Regulativ bestimmt gleichfalls die Aushärtbarkeit der mit der Legierung hergestellten Halbzeuge.The above-mentioned properties of the semifinished product produced from this alloy are unexpected since, contrary to the specifications resulting from the prior art, the copper content is significantly lower than was the case with previously known high-strength aluminum alloys. According to a preferred embodiment, the copper content is only 0.8-1.1 wt%. Thus, the copper content is only about 50% of the preferred copper content of the WO 02/052053 A1 known aluminum alloys. That nevertheless very high strength values are achieved, is surprising. These properties are believed to be due to the balanced composition of the alloy constituents, which includes the relatively high levels of zinc and the magnesium content adjusted to it. The balanced composition of the alloying elements permitted within narrow limits provides that the sum of the elements magnesium, copper and zinc is at least 9% by weight. In addition, the alloy has a zinc: magnesium ratio of between 4.4 and 5.3. It has been found that the desired strength properties can only be achieved if the elements magnesium, copper and zinc in the sum more than 9 wt .-% and the zinc: magnesium ratio. These characteristics of the alloy are a measure of how the products made with the alloy have the desired strength properties. This regulation also determines the hardenability of the semi-finished products produced with the alloy.

Besonders hohe statische und dynamische Festigkeitseigenschaften und eine besondere Abschreckunempflindlichkeit bei gleichzeitig hoher Bruchzähigkeit erhält man, wenn der Kupfergehalt 0,8 - 1,1 Gew.-% und der Magnesiumgehalt 1,6 - 1,8 Gew.-% beträgt. Damit liegt der Kupfergehalt deutlich unter der maximalen Löslichkeit für Kupfer in Gegenwart des vorgenannten Magnesiumgehaltes. Dieses hat zur Folge, dass der Anteil an unlöslichen, kupferhaltigen Phasen auch unter Berücksichtigung der übri gen Legierungs- und Begleitelemente sehr gering ist. Dieses hat unmittelbar eine Verbesserung der dynamischen Eigenschaften und der Bruchzähigkeit zur Folge.Particularly high static and dynamic strength properties and a special Abschreckunempflindlichkeit with high fracture toughness is obtained when the copper content is 0.8 to 1.1 wt .-% and the magnesium content 1.6 to 1.8 wt .-%. Thus, the copper content is well below the maximum solubility for copper in the presence of the aforementioned magnesium content. This has the consequence that the proportion of insoluble, copper-containing phases is very low, taking into account the übri alloying and accompanying elements. This immediately results in an improvement in dynamic properties and fracture toughness.

Zur weiteren Festigkeitssteigerung der Legierung kann ein Silberzusatz vorteilhaft sein. Aus wirtschaftlichen Gründen wird man den Gehalt auf 0,2 - 0,7%, insbesondere auf 0,20 - 0,40 Gew.-% begrenzen.To further increase the strength of the alloy, silver addition may be advantageous. For economic reasons, the content will be limited to 0.2-0.7%, in particular 0.20-0.40% by weight.

Der Mangangehalt der Legierung wurde auf maximal 0,5 Gew.-% beschränkt. Mangan scheidet sich in Al-Zn-Cu-Mg-Legierungen bei der Homogenisierung der Stranggussbarren in Form von fein verteilten Manganaluminiden aus, die außerdem noch einen Teil des in der Legierung als Verunreinigung vorhandenen Eisens enthalten können. Diese Manganaluminide sind hilfreich bei der Rektristallisationskontrolle des Gefüges bei der Warmbehandlung des umgeformten Halbzeuges. Erfahrungsgemäß sinkt mit steigendem Mangangehalt die Durchhärtbarkeit einer Al-Zn-Cu-Mg-Legierung. Aus diesem Grunde ist der Mangangehalt begrenzt.The manganese content of the alloy was limited to a maximum of 0.5% by weight. Manganese precipitates in Al-Zn-Cu-Mg alloys in the homogenization of the continuous cast ingots in the form of finely divided manganese aluminides, which may also contain some of the iron present as an impurity in the alloy. These manganese aluminides are helpful in the recrystallization control of the microstructure during the heat treatment of the transformed semifinished product. Experience has shown that the hardenability of an Al-Zn-Cu-Mg alloy decreases with increasing manganese content. For this reason, the manganese content is limited.

Ausgeglichen wird die reduzierte Wirkung des Mangans hinsichtlich der Gefügekontrolle durch einen Zirkonzusatz. Dieser beträgt gemäß einem bevorzugten Ausführungsbeispiel 0,14 - 0,20 Gew.-%. Zirkon scheidet sich ebenfalls bei der Homogenisierung der Stranggussbarren in Form von Zirkonaluminiden aus dem Gefüge aus. Diese Aluminide sind in der Regel feindisperser ausgebildet als die Manganaluminide. Deshalb sind sie besonders hilfreich im Hinblick auf die Rekristallisationskontrolle. Die gebildeten Zirkonaluminide werden nicht durch die vorgesehene Warmbehandlung vergröbert und sind in den gewählten Temperaturbereichen im Gegensatz zu Manganaluminiden stabil. Aus diesem Grunde ist Zirkon notwendiger Bestandteil der Legierung.The reduced effect of manganese with regard to microstructural control is compensated by a zirconium additive. This is according to a preferred embodiment, 0.14 - 0.20 wt .-%. Zirconium also precipitates out of the microstructure during the homogenization of the continuous casting ingots in the form of zirconium aluminides. These aluminides are generally more finely dispersed than the manganese aluminides. Therefore, they are especially helpful in terms of recrystallization control. The zirconium aluminides formed are not coarsened by the intended heat treatment and are stable in the selected temperature ranges, unlike manganese aluminides. For this reason, zirconium is a necessary component of the alloy.

Das in der Legierung enthaltene Titan dient vornehmlich der Kornfeinung beim Stranggießen. Bevorzugt werden 0,03 - 0,1 Gew.-% Titan, insbesondere 0,03 - 0,06 Gew.-% Titan zulegiert.The titanium contained in the alloy is primarily used for grain refining during continuous casting. Preference is given to adding from 0.03 to 0.1% by weight of titanium, in particular from 0.03 to 0.06% by weight, of titanium.

Fakultativ kann die Legierung 0,001 - 0,03 Gew.-% Bor enthalten. Des Weiteren kann die Legierung max. 0,2 Gew.-% Cer und max. 0,30 Gew.-% Scandium aufweisen.Optionally, the alloy may contain 0.001-0.03 wt% boron. Furthermore, the alloy can max. 0.2% by weight of cerium and max. 0.30 wt .-% scandium.

Die gewünschten Eigenschaften werden erreicht, wenn die angegebenen Legierungsbestandteile anteilsmäßig in dem angegebenen Bereich eingesetzt werden. Mit einer Legierung, bei der eines oder mehrere Legierungsbestandteile einen Anteil aufweisen, der außerhalb des angegebenen Bereiches liegt, können Halbzeuge nicht mehr mit den geforderten Eigenschaften hergestellt werden.The desired properties are achieved if the specified alloying constituents are used proportionally in the specified range. With an alloy in which one or more alloying constituents have a content which is outside the stated range, semi-finished products can no longer be produced with the required properties.

Hergestellt werden die Halbzeuge aus dieser Legierung mit folgenden Schritten:

  • Gießen von Barren aus der Legierung;
  • Homogenisierung der gegossenen Barren bei einer Temperatur, die möglichst dicht unter Anschmelztemperatur der Legierung liegt für eine Aufheiz- und Haltezeit, die ausreichend ist, eine möglichst gleichmäßige und feine Verteilung der Legierungselemente im Gussgefüge zu erreichen, bevorzugt bei 460 - 490°C;
  • Warmumformen der homogenisierten Barren durch Schmieden, Strangpressen und/oder Walzen im Temperaturbereich von 350 - 440°C;
  • Lösungsglühen des warmumgeformten Halbzeuges bei Temperaturen, die hoch genug sind, um die für die Aushärtung notwendigen Legierungselemente gleichmäßig im Gefüge verteilt in Lösung zu bringen, bevorzugt bei 465 - 500°C;
  • Abschrecken der lösungsgeglühten Halbzeuge in Wasser mit einer Temperatur zwischen Raumtemperatur und 100°C oder in einem Wasser-Glykol-Gemisch oder in einem Salzgemisch mit Temperaturen zwischen 100°C und 170°C; und
  • Warmaushärten des abgeschreckten Halbzeuges einstufig oder mehrstufig, wobei Aufheizraten, Haltezeiten und Temperaturen auf die Optimierung der Eigenschaften eingestellt werden.
The semi-finished products are manufactured from this alloy with the following steps:
  • Casting bars of the alloy;
  • Homogenization of the cast ingots at a temperature which is as close as possible to the melting temperature of the alloy for a heating and holding time which is sufficient to achieve the most uniform and fine distribution of the alloying elements in the cast structure, preferably at 460-490 ° C .;
  • Hot working of the homogenised billets by forging, extrusion and / or rolling in the temperature range of 350 - 440 ° C;
  • Solution heat treatment of the hot-formed semifinished product at temperatures which are high enough to dissolve the alloying elements necessary for hardening evenly distributed in the structure, preferably at 465-500 ° C .;
  • Quenching the solution-annealed semi-finished products in water at a temperature between room temperature and 100 ° C or in a water-glycol mixture or in a salt mixture with temperatures between 100 ° C and 170 ° C; and
  • Heat curing the quenched semi-finished product in one or more stages, with heating rates, holding times and temperatures are set to optimize the properties.

Besonders bevorzugt ist ein Verfahren, bei dem das Warmaushärten des abgeschreckten Halbzeuges zweistufig erfolgt, wobei in der ersten Stufe das Halbzeug auf eine Temperatur von mehr als 100°C erwärmt und für mehr als acht Stunden auf dieser Temperatur gehalten wird und in der zweiten Stufe auf mehr als 130°C erwärmt und für mehr als fünf Stunden erwärmt wird. Diese beiden Schritte können unmittelbar im Anschluss nacheinander durchgeführt werden. Ohne Nachteile hinsichtlich der gewünschten Eigenschaften des Halbzeuges in Kauf zu nehmen, kann das mit der ersten Stufe behandelte Halbzeug auch Abkühlen und die zweite Stufe des Warmaushärtens zu einem späteren Zeitpunkt vorgenommen werden.Particularly preferred is a method in which the thermosetting of the quenched semifinished product takes place in two stages, wherein in the first stage, the semi-finished product is heated to a temperature of more than 100 ° C and held for more than eight hours at this temperature and in the second stage heated to more than 130 ° C and heated for more than five hours. These two steps can be carried out immediately after each other. Without prejudice to the desired properties of the semifinished product, the semifinished product treated with the first stage can also be cooled and the second stage of the thermosetting can be carried out at a later time.

Bei größeren Dicken kann es notwendig sein, dass trotz der Abschreckunempfindlichkeit der Legierung das Halbzeug zum Reduzieren der beim Abschrecken entstandenen Eigenspannungen einem Kaltumformschritt nach dem Schritt des Abschreckens unterworfen werden muß. Zweckmäßigerweise erfolgt dieses durch Stauchen oder Recken des Halbzeuges um typischerweise 1 - 5 %.For larger thicknesses, it may be necessary, in spite of the quenching resistance of the alloy, to subject the semi-finished product to reducing the residual stresses resulting from quenching to a cold working step after the quenching step. Appropriately, this is done by upsetting or stretching the semi-finished product by typically 1 - 5%.

BEISPIELE:EXAMPLES:

Zum Erstellen von Probestücken zum Durchführen der notwendigen Festigkeitsuntersuchungen wurden zwei typische Legierungszusammensetzungen der beanspruchten Aluminiumlegierung eingesetzt. Die beiden Legierungen Z1, Z2 wiesen folgende Zusammensetzung auf: Si Fe Cu Mn Mg Cr Zn Ti Zr Ti + Zr Legierung Z1 0,05 0,05 0,95 0,39 1,70 0,002 8,35 0,035 0,12 0,155 Legierung Z2 0,04 0,07 0,90 0,004 1,65 0,001 8,50 0,025 0,12 0,145 Two typical alloy compositions of the claimed aluminum alloy were used to make specimens to perform the necessary strength studies. The two alloys Z1, Z2 had the following composition: Si Fe Cu Mn mg Cr Zn Ti Zr Ti + Zr Alloy Z1 0.05 0.05 0.95 0.39 1.70 0,002 8.35 0,035 0.12 0,155 Alloy Z2 0.04 0.07 0.90 0,004 1.65 0.001 8.50 0,025 0.12 0.145

Die Legierungen Z1, Z2 wurden im industriellen Maßstab zu Stranggussblöcken mit einem Durchmesser von 370 mm vergossen. Die Stranggussblöcke wurden zum Ausgleich der erstarrungsbedingten Kristallseigerungen homogenisiert. Die Blöcke wurden zweistufig in einem Temperaturbereich von 465°C - 485°C homogenisiert und abgekühlt.Alloys Z1, Z2 were cast on an industrial scale to 370 mm diameter continuous casting blocks. The continuous casting blocks were homogenized to compensate for the crystallization induced crystallization. The blocks were homogenized in two stages in a temperature range of 465 ° C - 485 ° C and cooled.

Beispiel 1:Example 1:

Nach dem Abdrehen der Gusshaut der auf diese Weise hergestellten Blöcke wurden die homogenisierten Blöcke auf 370°C vorgewärmt und zu Freiformschmiedestücken mit einer Dicke von 250 mm und zu einer Breite von 500 mm mehrfach umgeformt.After dressing the cast skin of the blocks thus produced, the homogenized blocks were preheated to 370 ° C and remolded into open-die forgings 250 mm thick and 500 mm wide.

Anschließend wurden die Freiformschmiedestücke aus Legierung Z1 und Z2 mindestens 4 Stunden bei 485°C lösungsgeglüht, in Wasser von Raumtemperatur abgeschreckt und anschließend zwischen 100°C und 160°C warm ausgehärtet, wobei das Warmaushärten zweistufig vorgenommen worden ist. In der ersten Stufe wurde das Halbzeug auf mehr als 100°C erwärmt und auf dieser Temperatur für mehr als acht Stunden gehalten. Die im Anschluss an die erste Stufe durchgeführte zweite Stufe erfolgte bei einer Temperatur von mehr als 130°C für mehr als fünf Stunden.Subsequently, the forgings made of Alloy Z1 and Z2 were solution-annealed for at least 4 hours at 485 ° C, quenched in water at room temperature and then cured between 100 ° C and 160 ° C warm, wherein the hot curing has been carried out in two stages. In the first stage, the semi-finished product was heated to more than 100 ° C and held at this temperature for more than eight hours. The second stage carried out after the first stage was carried out at a temperature of more than 130 ° C for more than five hours.

Den warmausgehärteten Freiformschmiedestücken wurden Zugproben entnommen, an denen die Festigkeitseigenschaften der Raumtemperatur in den Probenlagen "lang" (L), "lang-quer" (LT) und "kurz-quer" (ST) ermittelt wurden. Die durchschnittlichen Festigkeitseigenschaften der Legierung Z1 und Z2 für eine Dicke von 250 mm bei Wasserabschreckung ist in der nachfolgenden Tabelle wiedergegeben: Legierung Belastungsrichtung R p02 (MPa) R m (MPa) A 5 (%) Z 1 L 504 523 11,2 LT 502 533 5,2 ST 498 522 8,0 Z 2 L 520 528 8,6 LT 508 530 4,0 ST 511 525 5,1 Tensile samples were taken from the thermoset open-die forgings to determine the room temperature strength properties in the "long" (L), "long-transverse" (LT) and "short-transverse" (ST) sample plies. The average strength properties of alloy Z1 and Z2 for a thickness of 250 mm with water quenching are given in the following table: alloy load direction Rp02 (MPa) R m (MPa) A 5 (%) Z 1 L 504 523 11.2 LT 502 533 5.2 ST 498 522 8.0 Z 2 L 520 528 8.6 LT 508 530 4.0 ST 511 525 5.1

Die Ergebnisse lassen erkennen, dass die Rp02 und Rm-Werte für alle drei Belastungsrichtungen nahezu identisch sind und für die Streckgrenze (Rp02) über 490 MPa und Zugfestigkeit über 520 MPa liegen. Die A5-Werte sind für die L-Richtung am höchsten und erreichen für die beiden Querrichtungen mindestens 4% Bruchdehnung (A5). An Kompakt-Zug-Proben (W = 50 mm) aus den gleichen Freiformschmiedestücken wurde die Bruchzähigkeit KlC in den Probenlagen L-T und T-L nach ASTM - E 399 ermittelt. Die KlC-Werte sind nachfolgend wiedergegeben: Legierung Prüfrichtung Lage KlC (MPa -√m) Rp0,2 (MPa) Z 1 L-T Rand 30,5 529 L-T Kern 32,9 504 T-L Rand 23,1 516 T-L Kern 20,4 502 Z 2 L-T Rand 30,3 514 L-T Kern 35,9 520 T-L Rand 23,6 514 T-L Kern 21,8 508 The results indicate that the R p02 and R m values are nearly identical for all three load directions and are above 490 MPa and tensile strength above 520 MPa for the yield strength (R p02 ). The A 5 values are highest for the L direction and reach at least 4% elongation at break (A 5 ) for the two transverse directions. On compact tensile specimens (W = 50 mm) from the same open-die forgings , the fracture toughness K IC in the LT and TL test specimens was determined according to ASTM-E 399. The K lC values are given below: alloy test direction location K IC (MPa -√m) R p0.2 (MPa) Z 1 LT edge 30.5 529 LT core 32.9 504 TL edge 23.1 516 TL core 20.4 502 Z 2 LT edge 30.3 514 LT core 35.9 520 TL edge 23.6 514 TL core 21.8 508

An Rundproben wurde für die LT- und die ST-Lage die Spannungs-Riss-Korrosionsbeständigkeit gemäß ASTM G47 (Wechseltauchversuch) ermittelt. Die Ergebnisse sind nachfolgend für die Legierung Z1 wiedergegeben: Belastungsrichtung Spannung (MPa) Dauer (Tage) Elektr. Leitfähigkeit (% IACS) LT 320 > 30 34,7 ST 320 >30 On round specimens, the stress cracking corrosion resistance was determined for the LT and ST layers in accordance with ASTM G47 (alternating dip test). The results are given below for the alloy Z1: load direction Voltage (MPa) Duration (days) Electric conductivity (% IACS) LT 320 > 30 34.7 ST 320 > 30

Für beide Prüfrichtungen ergeben sich bei einer Spannung von 320 MPa Lebensdauern von mehr als 30 Tagen. In typischen Spezifikationen für hochfeste Al-Legierungen, wie beispielsweise zu AA 7050 werden diese Lebensdauern bei Mindestspannungen von 240 MPa gefordert. Dieses bedeutet, dass die neue Legierung trotz deutlich höherer Festigkeit verglichen mit der Legierung AA 7050 gleichzeitig eine Spannungsrisskorrosionsbeständigkeit aufweist, die deutlich über dem Mindestwert für AA 7050 liegt.For both test directions, life of more than 30 days results at a stress of 320 MPa. Typical specifications for high strength Al alloys, such as AA 7050, require these lives at minimum stresses of 240 MPa. This means that the new alloy, despite significantly higher strength compared to the alloy AA 7050 at the same time has a stress corrosion cracking resistance, which is well above the minimum value for AA 7050.

Analog wurden Schmiedestücke mit den gleichen Parametern aus der Legierung Z1 hergestellt. Zusätzlich wurden die Schmiedestücke nach dem Lösungsglühen und der Abschreckung in die kurze Querrichtung (ST) zur Verminderung der Abschreckeingenspannungen kaltgestaucht. Nach der anschließenden Aushärtung, die entsprechend der vorgenannten Parameter zweistufig durchgeführt worden ist, wurden die Festigkeitseigenschaften bei Raumtemperatur in den Probenlagen "lang" (L), "lang-quer" (LT) und "kurz-quer" (ST) ermittelt. Die Ergebnisse sind in der nachfolgenden Tabelle für die Legierung Z1 aufgeführt: Legierung Belastungsrichtung R p02 (MPa) R m (MPa) A 5 (%) Z 1 L 504 523 11.2 LT 502 533 5,2 ST 498 522 8,0 Z 1 + Kaltstauchen L 448 501 11,1 LT 468 516 6,7 ST 417 498 10,8 Similarly, forgings were made with the same parameters from alloy Z1. In addition, after solution annealing and quenching in the short transverse direction (ST), the forgings were cold-rolled to reduce the detonation ring tensions. After the subsequent curing, which was carried out in two stages according to the aforementioned parameters, the strength properties were determined at room temperature in the sample layers "long" (L), "long-transverse" (LT) and "short-transverse" (ST). The results are listed in the following table for alloy Z1: alloy load direction Rp02 (MPa) R m (MPa) A 5 (%) Z 1 L 504 523 11.2 LT 502 533 5.2 ST 498 522 8.0 Z 1 + cold diving L 448 501 11.1 LT 468 516 6.7 ST 417 498 10.8

Die Ergebnisse lassen erkennen, dass die Rp02- und Rm-Werte für alle drei Belastungsrichtungen niedriger liegen und der niedrigste Wert für die kurze Querrichtung (ST) gefunden wurde. Die A5-Werte sind für die L-Richtung am höchsten und erreichen für die beiden Querrichtungen mindestens 6% Bruchdehnung (A5). Durch eine Verkürzung der zweiten Aushärtungsstufe lässt sich der Festigkeitsabfall reduzieren. An Kompakt-Zug-Proben (W = 50 mm) aus den gleichen Freiformschmiedestücken wurde die Bruchzähigkeit Klc in den Probenlagen L-T und T-L nach ASTM-E 399 ermittelt. Die KlC-Werte sind in der nachfolgenden Tabelle wiedergegeben: Legierung Prüfrichtung Lage KlC (MPa √m) Rp0,2 (Mpa) Z 1 L-T Rand 30,5 529 L-T Kern 32,9 504 T-L Rand 23,1 516 T-L Kern 20,4 502 Z 1 + Kaltstauchen L-T Rand 38,9 485 L-T Kern 42,2 448 T-L Rand 23,9 474 T-L Kern 21,9 468 The results indicate that the p02 R - and R are m values for all three directions of load low and the lowest value for the short transverse (ST) has been found. The A 5 values are highest for the L direction and reach at least 6% elongation at break (A 5 ) for the two transverse directions. By shortening the second curing step, the strength drop can be reduced. On compact tensile specimens (W = 50 mm) from the same open-die forgings, the fracture toughness K lc in the test specimens LT and TL was determined according to ASTM-E 399. The K lC values are given in the following table: alloy test direction location K lC (MPa √m) R p0.2 ( Mpa ) Z 1 LT edge 30.5 529 LT core 32.9 504 TL edge 23.1 516 TL core 20.4 502 Z 1 + cold diving LT edge 38.9 485 LT core 42.2 448 TL edge 23.9 474 TL core 21.9 468

Beispiel 2:Example 2:

In einer weiteren Untersuchungsreihe wurden Freiformschmiedestücke mit einer Dicke von 150 mm und einer Breite von 500 mm aus Legierung Z1 hergestellt und entsprechend dem vorbeschriebenen Beispiel nach dem Lösungsglühen in Wasser bzw. in einem Wasser-Glykol-Gemisch mit ca. 20% bzw. ca. 40% abgeschreckt und wie vorbeschrieben warmausgelagert. Ein Schmiedestück wurde zusätzlich nach dem Abschrecken in Wasser kaltgestaucht. An Zugproben, die den Schmiedestücken in den Richtungen "lang" (L), "lang-quer" (LT) und "kurz-quer" (ST) entnommen wurden, wurde der Einfluss der unterschiedlichen Abkühlmedien dargestellt. Die durchschnittlichen Festigkeitseigenschaften der Legierung Z1 für eine Dicke von 150 mm für unterschiedliche Abkühlbehandlungen sind nachfolgend wiedergegeben: Abschreckmedium Belastungsrichtung R p02 (MPa) R m (MPa) A5 (%) Wasser (RT) L 551 573 10, 3 LT 515 544 7,5 ST 505 549 8,0 Wasser (RT) + Kaltstauchen L 491 537 12,8 LT 465 520 8,7 ST 430 513 8,5 Wasser/ Glykol (16-20%) L 545 566 12,5 LT 520 547 7,2 ST 512 548 8,3 Wasser/ Glykol (38-40%) L 503 529 12,2 LT 493 525 5,0 ST 487 526 5,6 In a further series of tests, open-die forgings with a thickness of 150 mm and a width of 500 mm were produced from Alloy Z1 and, according to the example described above, after solution heat treatment in water or in a water-glycol mixture with about 20% or approx. 40% quenched and warmed up as previously described. A forging was additionally cold-crushed after quenching in water. Tensile specimens taken from the forgings in the "long" (L), "long-transverse" (LT) and "short-transverse" (ST) directions, the influence of different cooling media was shown. The average strength properties of Alloy Z1 for a thickness of 150 mm for different cooling treatments are shown below: quenching load direction Rp02 (MPa) R m (MPa) A 5 (%) Water (RT) L 551 573 10, 3 LT 515 544 7.5 ST 505 549 8.0 Water (RT) + cold diving L 491 537 12.8 LT 465 520 8.7 ST 430 513 8.5 Water / glycol (16-20%) L 545 566 12.5 LT 520 547 7.2 ST 512 548 8.3 Water / glycol (38-40%) L 503 529 12.2 LT 493 525 5.0 ST 487 526 5.6

Die Ergebnisse zeigen, dass eine Verminderung der Abkühlgeschwindigkeit durch Glykolzusätze kaum einen Einfluss auf die Festigkeitswerte der Legierung hat. Die Duktilität nimmt nur minimal mit sinkender Abkühlgeschwindigkeit bzw. steigendem Glykolgehalt ab.The results show that a reduction of the cooling rate by glycol additives has hardly any influence on the strength values of the alloy. The ductility decreases only minimally with decreasing cooling rate or increasing glycol content.

An Kompakt-Zug-Proben (W = 50 mm) aus den gleichen Freiformschmiedestücken wurde die Bruchzähigkeit Klc in den Probenlagen L-T und T-L nach ASTM-E 399 ermittelt. Die KlC-Werte sind in nachfolgender Tabelle enthalten: Abschreckmedium Prüfrichtung KlC (MPa √m) Rp02 (MPa) Wasser (RT) L-T 36,8 551 T-L 23,8 515 Wasser (RT) + Kaltstauchen L-T 39,1 491 T-L 24,1 465 Wasser/ Glykol (16-20%) L-T 28,2 545 T-L 20,7 520 Wasserl Glykol (38-40%) L-T 35,4 503 T-L 18,5 493 On compact tensile specimens (W = 50 mm) from the same open-die forgings, the fracture toughness K lc in the test specimens LT and TL was determined according to ASTM-E 399. The K lC values are shown in the following table: quenching test direction K lC (MPa √m) Rp02 (MPa) Water (RT) LT 36.8 551 TL 23.8 515 Water (RT) + cold diving LT 39.1 491 TL 24.1 465 Water / glycol (16-20%) LT 28.2 545 TL 20.7 520 Water glycol (38-40%) LT 35.4 503 TL 18.5 493

Für die L-T Lage ist keine eindeutige Abhängigkeit von der Abkühlgeschwindigkeit erkennbar, für die T-L Lage ist dagegen ein Trend zu leicht niedrigeren Werten mit abnehmender Abkühlgeschwindigkeit zu sehen.There is no clear dependency on the cooling rate for the L-T position, whereas for the T-L layer there is a trend towards slightly lower values with decreasing cooling rate.

Beispiel 3:Example 3:

Zur Ermittlung der Festigkeitseigenschaften wurde in noch einem weiteren Beispiel die Legierung Z1 analog zu dem ersten Beispiel vergossen und Blöcke für das Strangpressen hergestellt.To determine the strength properties, the alloy Z1 was cast analogously to the first example and produced blocks for extrusion in yet another example.

Nach dem Abdrehen der Gusshaut wurden die homogenisierten Blöcke auf über 370°C vorgewärmt und zu Strangpressprofilen mit einem Rechteckquerschnitt von einer Dicke von 40 mm und zu einer breite von 100 mm verpresst.After dressing the cast skin, the homogenized blocks were preheated to over 370 ° C and extruded into extruded profiles having a rectangular cross section of 40 mm thickness and a width of 100 mm.

Anschließend wurden die Profile mindestens 4 Stunden bei 485°C lösungsgeglüht, in Wasser von Raumtemperatur abgeschreckt und anschließend zwischen 100°C und 160°C warm in zwei Stufen (erste Stufe: >100°C, >8h; zweite Stufe: >130°C, >5h) ausgehärtet.The profiles were then solution-annealed for at least 4 hours at 485 ° C., quenched in water at room temperature and then heated between 100 ° C. and 160 ° C. in two stages (first stage:> 100 ° C.,> 8 h, second stage:> 130 ° C,> 5h) cured.

Den warmausgehärteten Strangpressprofilen wurden Zugproben entnommen, an denen die Festigkeitseigenschaften bei Raumtemperatur in den Probenlagen "lang" (L), "lang-quer" (LT) und "kurz-quer" (ST) ermittelt wurden. Die durchschnittlichen Festigkeitseigenschaften der Legierung Z1 für ein stranggepreßtes Rechteckprofil (40 x 100 mm) bei Wasserabkühlung mit nachfolgendem Recken sind in nachfolgender Tabelle wiedergegeben: Belastungsrichtung R p02 (MPa) R m (MPa) A 5 (%) L 600 609 9,3 LT 554 567 7,1 ST 505 561 7,5 Tear samples were taken from the thermoset extruded sections to determine the room temperature strength properties in the "long" (L), "long-transverse" (LT), and "short-transverse" (ST) sample plies. The average strength properties of alloy Z1 for an extruded rectangular profile (40 x 100 mm) with water cooling followed by stretching are shown in the following table: load direction Rp02 (MPa) R m (MPa) A 5 (%) L 600 609 9.3 LT 554 567 7.1 ST 505 561 7.5

Die Resultate lassen erkennen, dass die Rp02- und Rm-Werte mit Werten von 600 MPa bzw. 609 MPa in der L-Richtung am höchsten und in der ST-Richtung am niedrigsten liegen, mit Werten von 505 MPa und 561 MPa. Die A5-Werte sind für die L-Richtung am höchsten und erreichen für die beiden Querrichtungen mindestens 7% Bruchdehnung (A5). An Kompakt-Zug-Proben (w = 50 mm) aus dem gleichen Strangpressprofil wurde die Bruchzähigkeit Klc in den Probenlagen L-T und T-L nach ASTM-E 399 ermittelt. Die durchschnittlichen bruchmechanischen Eigenschaften der Legierung Z1 des stranggepressten Rechteckprofils (40 x 100 mm) bei Wasserabschreckung sind in nachfolgender Tabelle enthalten: Prüfrichtung KlC (MPa √m) R p02 (MPa) L-T 50,9 600 T-L 30,7 554 The results indicate that the p02 R - R and m are values with values of 600 MPa and 609 MPa in the L direction and lowest in the ST-direction lowest, with values of 505 MPa and 561 MPa. The A 5 values are highest for the L direction and reach at least 7% elongation at break (A 5 ) for the two transverse directions. Compact fracture specimens (w = 50 mm) from the same extruded section were used to determine the fracture toughness K lc in the LT and TL test specimen according to ASTM-E 399. The average fracture mechanics properties of Alloy Z1 extruded rectangular profile (40 x 100 mm) with water quenching are shown in the following table: test direction K lC (MPa √m) Rp02 (MPa) LT 50.9 600 TL 30.7 554

Figur 1 zeigt ein Diagramm zum Darstellen des Festigkeitsverhaltens verschiedener AA 7xxx-Legierungen in Abhängigkeit von der mittleren Abkühlgeschwindigkeit während des Abschreckens von der Lösungsglühtemperatur. Deutlich erkennbar ist in dieser Darstellung, dass der Festigkeitsverlust bei Einsatz der beanspruchten Aluminiumlegierung auch bei niedrigen Abkühlgeschwindigkeiten erheblich geringer ist als bei den Vergleichslegierungen AA 7075, AA 7010 und AA 7050. FIG. 1 FIG. 12 is a graph showing the strength behavior of various AA 7xxx alloys as a function of the average cooling rate during quenching from the solution annealing temperature. FIG. It is clearly recognizable in this presentation that the loss of strength when using the claimed aluminum alloy is considerably lower even at low cooling rates than in the case of the comparative alloys AA 7075, AA 7010 and AA 7050.

Die im Rahmen der Beschreibung der Erfindung ermittelten Festigkeitswerte der mit der beanspruchten Legierung hergestellten Produkte/Halbzeuge sind insbesondere hinsichtlich der Spannungs-Riss-Korrosionsbeständigkeit gegenüber Produkten vorbekannter Legierungen erheblich verbessert, was ein Ergebnis darstellt, das in der sich darstellenden Form nicht vorhersehbar war. Interessant sind die dargestellten Ergebnisse auch dahingehend, dass die beschriebenen Festigkeitswerte sich insbesondere bei nur zweistufig durchgeführtem Warmaushärten darstellen lassen.The strength values of the products / semi-finished products produced with the claimed alloy as determined in the context of the description of the invention are considerably improved, in particular with regard to the stress-crack corrosion resistance compared to products of prior art alloys, which is a result which could not be foreseen in the form shown. The results presented are also interesting in that the strength values described can be represented in particular in the case of hot curing carried out only in two stages.

Claims (13)

  1. Aluminium alloy that is not sensitive to quenching and is used for producing high-strength forged pieces that are low in internal stress, and for high-strength extruded and rolled products, the said alloy being composed of:
    - 7.0 - 10.5 percent by weight zinc,
    - 1.0 - 2.5 percent by weight magnesium,
    - 0.1 -1.15 percent by weight copper,
    - 0.06 - 0.25 percent by weight zirconium,
    - 0.02 - 0.15 percent by weight titanium,
    - Maximum of 0.5 percent by weight manganese,
    - Maximum of 0.6 percent by weight silver,
    - Maximum of 0.10 percent by weight silicon,
    - Maximum of 0.10 percent by weight iron,
    - Maximum of 0.04 percent by weight chrome
    - and, as an option, one or more elements form the group hafnium, scandium, strontium and/or vanadium with a summary content of a maximum of 1.0 percent by weight
    - and, as an option, 0.001 - 0.03 percent by weight boron,
    - and, as an option, a maximum of 0.2 percent by weight cerium and a maximum of 0.30 percent by weight scandium,
    - and, as an option, a maximum of 0.2 percent by weight cerium
    - together with other contaminants with proportions of a maximum of 0.05 percent by weight per element and an overall proportion of a maximum of 0.15 percent by weight,
    - remainder: aluminium,
    - wherein the sum of the alloy elements zinc and magnesium and copper is at least 9 percent by weight and
    - wherein the ratio of zinc to magnesium in the alloy is between 4.4 and 5.3.
  2. Aluminium alloy according to claim 1, characterised in that the alloy contains 1.6 - 1.8 percent by weight magnesium and 0.8 - 1.1 percent by weight copper.
  3. Aluminium alloy according to claim 1, characterised in that the aluminium alloy contains 0.8 - 1.1 percent by weight copper and 0.3 - 0.5 percent by weight manganese.
  4. Aluminium alloy according to claim 1, characterised in that the aluminium alloy contains 0.8 - 1.1 percent by weight copper and a maximum of 0.03 percent by weight manganese.
  5. Aluminium alloy according to claim 1, characterised in that the aluminium alloy contains 0.2 - 0.3 percent by weight copper and 0.25 - 0.40 percent by weight silver.
  6. Aluminium alloy according to one of claims 1 to 5, characterised in that the aluminium alloy contains 0.10 - 0.15 percent by weight titanium.
  7. Aluminium alloy according to one of claims 1 to 6, characterised in that the alloy contains a maximum of 0.30 percent by weight scandium and a maximum of 0.2 percent by weight vanadium or hafnium or cerium.
  8. Aluminium alloy according to one of claims 1 to 7, characterised in that the iron and silicon content is a maximum of 0.08 percent by weight in each case.
  9. Method for producing a high-strength, semi-finished product that is low in internal stress by using an aluminium alloy in accordance with one of claims 1 to 8, the said method including the following steps:
    - hot forming the homogenised bars by means of forging, extruding and/or rolling within the temperature range of 350 - 440° C;
    - solution treating the hot-formed semi-finished product at temperatures that are high enough to bring the alloy elements necessary for hardening into solution evenly distributed in the structure, preferably at 465 - 500° C;
    - quenching the solution heat treated semi-finished product in water, in a water glycol mixture or in a saline mixture at temperatures between 100° C and 170° C;
    - cold forming the quenched semi-finished product to reduce the internal stress generated during the quenching process in the quenching medium; and
    - artificially ageing the quenched semi-finished product in one step or in multiple steps, wherein heating rates, holding times and temperatures are set to optimise the required material characteristics.
  10. Method according to claim 9, characterised in that the cold forming step is carried out by means of upsetting or drawing out the semi-finished product.
  11. Method according to claim 9 or 10, characterised in that the cold forming rate is 1 - 5 %.
  12. Method for producing a high-strength, semi-finished product with a heat treatable thickness of 50 - 180 mm from an aluminium alloy in accordance with one of claims 1 to 8, the said method including the following steps:
    - hot forming of the homogenised bars by means of forging, extruding and/or rolling within the temperature range of 350 - 440° C;
    - solution treating the hot-formed semi-finished product at temperatures that are high enough to bring the alloy elements necessary for hardening into solution evenly distributed in the structure, preferably at 465 - 500° C;
    - quenching of the solution heat treated semi-finished product in water, in a water glycol mixture or in a saline mixture at temperatures between 100° C and 170° C; and
    - artificially ageing the quenched semi-finished product in one step or in multiple steps, wherein heating rates, holding times and temperatures are set to optimise the required material characteristics.
  13. Method according to claim 12, characterised in that after the heat forming step, there is produced a semi-finished product, which has a heat treatable thickness of more than 180 mm and which, before the subsequent heat treatment, is machined by way of a preliminary machining process in order to reduce the thickness of the semi-finished product by means of the machining process, such that the said preliminarily machined semi-finished product has a heat treatable thickness of between 50 and 180 mm and the subsequent heat treatment is carried out corresponding to the requirements for semi-finished products with a heat treatable thickness of between 50 and 180 mm.
EP05111026A 2005-01-19 2005-11-21 Aluminium alloy with low quench sensitivity and process for the manufacture of a semi-finished product of this alloy Active EP1683882B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102005002390 2005-01-19

Publications (3)

Publication Number Publication Date
EP1683882A1 EP1683882A1 (en) 2006-07-26
EP1683882B1 EP1683882B1 (en) 2007-10-17
EP1683882B2 true EP1683882B2 (en) 2010-07-21

Family

ID=35695568

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05111026A Active EP1683882B2 (en) 2005-01-19 2005-11-21 Aluminium alloy with low quench sensitivity and process for the manufacture of a semi-finished product of this alloy

Country Status (4)

Country Link
US (5) US20060157172A1 (en)
EP (1) EP1683882B2 (en)
DE (1) DE502005001724D1 (en)
ES (1) ES2292075T5 (en)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080299000A1 (en) * 2002-09-21 2008-12-04 Universal Alloy Corporation Aluminum-zinc-copper-magnesium-silver alloy wrought product
WO2004083478A1 (en) * 2003-03-17 2004-09-30 Corus Aluminium Walzprodukte Gmbh Method for producing an integrated monolithic aluminium structure and aluminium product machined from that structure
ES2292075T5 (en) * 2005-01-19 2010-12-17 Otto Fuchs Kg ALUMINUM ALLOY NOT SENSITIVE TO BRUSH COOLING, AS WELL AS A PROCEDURE FOR MANUFACTURING A SEMI-FINISHED PRODUCT FROM THIS ALLOY.
US8083871B2 (en) 2005-10-28 2011-12-27 Automotive Casting Technology, Inc. High crashworthiness Al-Si-Mg alloy and methods for producing automotive casting
CN100523242C (en) * 2006-11-13 2009-08-05 上海昊华模具有限公司 Aluminium alloy for Vehicular radial ply tyre moulds
US8673209B2 (en) * 2007-05-14 2014-03-18 Alcoa Inc. Aluminum alloy products having improved property combinations and method for artificially aging same
US9163304B2 (en) 2010-04-20 2015-10-20 Alcoa Inc. High strength forged aluminum alloy products
CN101818290A (en) * 2010-05-28 2010-09-01 中南大学 Low quenching sensitive aluminum alloy added with Ag and Ge at same time
US9347558B2 (en) 2010-08-25 2016-05-24 Spirit Aerosystems, Inc. Wrought and cast aluminum alloy with improved resistance to mechanical property degradation
MX2013002636A (en) * 2010-09-08 2013-05-09 Alcoa Inc Improved aluminum-lithium alloys, and methods for producing the same.
JP5023232B1 (en) 2011-06-23 2012-09-12 住友軽金属工業株式会社 High strength aluminum alloy material and manufacturing method thereof
JP5285170B2 (en) * 2011-11-07 2013-09-11 住友軽金属工業株式会社 High strength aluminum alloy material and manufacturing method thereof
CN103131992B (en) * 2011-11-29 2015-05-20 贵州铝厂 Low zinc hot dipping aluminum alloy coating material
WO2013172910A2 (en) 2012-03-07 2013-11-21 Alcoa Inc. Improved 2xxx aluminum alloys, and methods for producing the same
CN102760508B (en) * 2012-07-18 2014-05-28 中南大学 High-conductivity creep-resistant aluminium alloy cable conductor containing Hf and Ce and preparation method thereof
US10266933B2 (en) 2012-08-27 2019-04-23 Spirit Aerosystems, Inc. Aluminum-copper alloys with improved strength
US9587298B2 (en) 2013-02-19 2017-03-07 Arconic Inc. Heat treatable aluminum alloys having magnesium and zinc and methods for producing the same
CN103436756B (en) * 2013-09-13 2015-09-09 邓才松 A kind of high abrasion not seize aluminum base alloy and preparation method thereof
JP6344923B2 (en) 2014-01-29 2018-06-20 株式会社Uacj High strength aluminum alloy and manufacturing method thereof
ES2718395T5 (en) 2014-04-30 2022-04-01 Alcoa Usa Corp Enhanced 7xx Aluminum Casting Alloys
US20150322556A1 (en) 2014-05-06 2015-11-12 Goodrich Corporation Lithium free elevated temperature aluminum copper magnesium silver alloy for forged aerospace products
CN104018041B (en) * 2014-06-26 2016-08-24 龙口市丛林铝材有限公司 A kind of high ferro car body aluminium section bar and preparation method thereof
CN104073698B (en) * 2014-06-26 2016-04-27 龙口市丛林铝材有限公司 A kind of 6 is rail vehicle suspension arm aluminium section bar and preparation method thereof
CN104630582A (en) * 2015-01-21 2015-05-20 湖州宏叶铝塑材料有限公司 Fatigue-resistant corrosion-resistant aluminum profile for automobile and preparation method of aluminum profile
CN104651674A (en) * 2015-03-09 2015-05-27 苏州圣谱拉新材料科技有限公司 Rare earth aluminum alloy material and preparation method thereof
CN106868361A (en) * 2015-12-10 2017-06-20 华为技术有限公司 Aluminum alloy materials and the shell using the aluminum alloy materials
CN108070747A (en) * 2016-11-14 2018-05-25 镇江市润州金山金属粉末厂 A kind of high performance vanadium strontium alloy
EP3607103B1 (en) * 2017-04-05 2021-06-02 AMAG casting GmbH Additive production method, and starting material for same
CN107240434A (en) * 2017-06-27 2017-10-10 苏州菱慧电子科技有限公司 A kind of conductive metallic material
CN107460382B (en) * 2017-08-18 2019-04-30 江苏大学 The superpower Alcoa rolled plate of isotropism and preparation method
CN109913714B (en) * 2017-12-12 2021-10-29 东莞顺成五金制造有限公司 Alloy connecting piece for food machinery and preparation process thereof
CN108048715B (en) * 2018-02-01 2019-07-16 佛山市三水凤铝铝业有限公司 A kind of high-strength aluminum alloy and its pressing method for consumption electronic product shell
CN108468003A (en) * 2018-04-11 2018-08-31 益阳仪纬科技有限公司 A kind of aluminium alloy and its casting method
EP3818187B1 (en) * 2018-07-02 2021-11-17 Otto Fuchs - Kommanditgesellschaft - Aluminum alloy and overaged aluminum alloy product made of such an alloy
CN110699575B (en) * 2019-09-27 2020-12-29 黄山市龙跃铜业有限公司 High-strength and high-toughness aluminum alloy and preparation method thereof
CN110846599B (en) * 2019-11-14 2021-03-26 中国航发北京航空材料研究院 Heat treatment method for improving corrosion performance of 800 MPa-grade aluminum alloy
CN110777286B (en) * 2019-12-04 2021-09-21 中南大学 Preparation method of medium-strength weldable corrosion-resistant scandium-containing high-magnesium aluminum alloy forging
CN111057916A (en) * 2019-12-25 2020-04-24 宁波旭升汽车技术股份有限公司 Novel aluminum alloy forging material and preparation method thereof
CN113118707B (en) * 2021-02-26 2022-11-29 程明阳 Production process of reinforced silver kettle
CN114196843A (en) * 2021-12-01 2022-03-18 昆山风雷益铝业有限公司 High-strength aluminum alloy plate preparation process and aluminum alloy plate

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3943039A (en) 1974-10-08 1976-03-09 Kaiser Aluminum & Chemical Corporation Anodizing pretreatment for nickel plating
US3945861A (en) 1975-04-21 1976-03-23 Aluminum Company Of America High strength automobile bumper alloy
US4049474A (en) 1975-07-25 1977-09-20 Evegny Dmitrievich Zakharov Aluminum-based alloy
US4063936A (en) 1974-01-14 1977-12-20 Alloy Trading Co., Ltd. Aluminum alloy having high mechanical strength and elongation and resistant to stress corrosion crack
JPS58161747A (en) 1982-03-19 1983-09-26 Kobe Steel Ltd High strength aluminum alloy with superior stress corrosion cracking resistance at flash butt weld zone
EP1241275A1 (en) 1999-10-05 2002-09-18 Gosudarstvennoe Predpriyatie Vserossiisky Nauchnoissledovarelsky Institut Aviatsionnykh Materialov Highly resistant aluminum-based alloy and article made from said alloy
WO2003085145A2 (en) 2002-04-05 2003-10-16 Pechiney Rhenalu Al-zn-mg-cu alloy products displaying an improved compromise between static mechanical properties and tolerance to damage

Family Cites Families (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2052000C3 (en) 1970-10-23 1974-09-12 Fa. Otto Fuchs, 5882 Meinerzhagen Use of a high-strength aluminum alloy
US3743549A (en) * 1971-02-09 1973-07-03 I Esercizio Dell Istituto Sper Thermomechanical process for improving the toughness of the high strength aluminum alloys
US4863528A (en) * 1973-10-26 1989-09-05 Aluminum Company Of America Aluminum alloy product having improved combinations of strength and corrosion resistance properties and method for producing the same
US4305763A (en) 1978-09-29 1981-12-15 The Boeing Company Method of producing an aluminum alloy product
FR2457908A1 (en) 1979-06-01 1980-12-26 Gerzat Metallurg PROCESS FOR PRODUCING HOLLOW BODIES OF ALUMINUM ALLOY AND PRODUCTS THUS OBTAINED
FR2517702B1 (en) 1981-12-03 1985-11-15 Gerzat Metallurg
GB2114601B (en) 1981-12-23 1986-05-08 Aluminum Co Of America High strength aluminum alloy resistant to exfoliation and method of heat treatment
US4954188A (en) * 1981-12-23 1990-09-04 Aluminum Company Of America High strength aluminum alloy resistant to exfoliation and method of making
US4828631A (en) * 1981-12-23 1989-05-09 Aluminum Company Of America High strength aluminum alloy resistant to exfoliation and method of making
US4629517A (en) * 1982-12-27 1986-12-16 Aluminum Company Of America High strength and corrosion resistant aluminum article and method
US4713216A (en) 1985-04-27 1987-12-15 Showa Aluminum Kabushiki Kaisha Aluminum alloys having high strength and resistance to stress and corrosion
AT384744B (en) 1986-02-07 1987-12-28 Austria Metall USE OF AN ALLOY ON A STRIP OF A1 ZN MG CU ALLOYS FOR VIBRANTLY USED SPORTS EQUIPMENT
US5055257A (en) * 1986-03-20 1991-10-08 Aluminum Company Of America Superplastic aluminum products and alloys
FR2601967B1 (en) 1986-07-24 1992-04-03 Cerzat Ste Metallurg AL-BASED ALLOY FOR HOLLOW BODIES UNDER PRESSURE.
JPS6383251A (en) * 1986-09-26 1988-04-13 Ichiro Kawakatsu Manufacture of high strength and high elasticity aluminum alloy
US5221377A (en) * 1987-09-21 1993-06-22 Aluminum Company Of America Aluminum alloy product having improved combinations of properties
DE68927149T2 (en) 1988-10-12 1997-04-03 Aluminum Co Of America Process for producing a non-crystallized, flat-rolled, thin, heat-treated aluminum-based product
FR2640644B1 (en) 1988-12-19 1991-02-01 Pechiney Recherche PROCESS FOR OBTAINING "SPRAY-DEPOSIT" ALLOYS FROM AL OF THE 7000 SERIES AND COMPOSITE MATERIALS WITH DISCONTINUOUS REINFORCEMENTS HAVING THESE ALLOYS WITH HIGH MECHANICAL RESISTANCE AND GOOD DUCTILITY
CA1340618C (en) 1989-01-13 1999-06-29 James T. Staley Aluminum alloy product having improved combinations of strength, toughness and corrosion resistance
FR2645546B1 (en) 1989-04-05 1994-03-25 Pechiney Recherche HIGH MODULATED AL MECHANICAL ALLOY WITH HIGH MECHANICAL RESISTANCE AND METHOD FOR OBTAINING SAME
CH682326A5 (en) 1990-06-11 1993-08-31 Alusuisse Lonza Services Ag
EP0462055A1 (en) 1990-06-11 1991-12-18 Alusuisse-Lonza Services Ag AlZnMg-alloy superplastic preform material
US5277719A (en) * 1991-04-18 1994-01-11 Aluminum Company Of America Aluminum alloy thick plate product and method
US5312498A (en) 1992-08-13 1994-05-17 Reynolds Metals Company Method of producing an aluminum-zinc-magnesium-copper alloy having improved exfoliation resistance and fracture toughness
FR2695942B1 (en) 1992-09-22 1994-11-18 Gerzat Metallurg Aluminum alloy for pressurized hollow bodies.
US5932037A (en) 1993-04-15 1999-08-03 Luxfer Group Limited Method of making hollow bodies
FR2716896B1 (en) 1994-03-02 1996-04-26 Pechiney Recherche Alloy 7000 with high mechanical resistance and process for obtaining it.
US5597529A (en) * 1994-05-25 1997-01-28 Ashurst Technology Corporation (Ireland Limited) Aluminum-scandium alloys
AU3813795A (en) 1994-09-26 1996-04-19 Ashurst Technology Corporation (Ireland) Limited High strength aluminum casting alloys for structural applications
JP3834076B2 (en) * 1995-04-21 2006-10-18 昭和電工株式会社 Extruded material manufacturing method
FR2744136B1 (en) 1996-01-25 1998-03-06 Pechiney Rhenalu THICK ALZNMGCU ALLOY PRODUCTS WITH IMPROVED PROPERTIES
US6027582A (en) * 1996-01-25 2000-02-22 Pechiney Rhenalu Thick alZnMgCu alloy products with improved properties
JP3705320B2 (en) 1997-04-18 2005-10-12 株式会社神戸製鋼所 High strength heat treatment type 7000 series aluminum alloy with excellent corrosion resistance
US6231995B1 (en) 1997-06-07 2001-05-15 Kabushiki Kaisha Kobe Seiko Sho Aluminum extruded door beam material
ATE217912T1 (en) 1997-08-04 2002-06-15 Corus Aluminium Walzprod Gmbh HIGHLY DEFORMABLE, CORROSION-RESISTANT ALLOY
FR2805282B1 (en) 2000-02-23 2002-04-12 Gerzat Metallurg A1ZNMGCU ALLOY PRESSURE HOLLOW BODY PROCESS
US7135077B2 (en) 2000-05-24 2006-11-14 Pechiney Rhenalu Thick products made of heat-treatable aluminum alloy with improved toughness and process for manufacturing these products
US6562154B1 (en) 2000-06-12 2003-05-13 Aloca Inc. Aluminum sheet products having improved fatigue crack growth resistance and methods of making same
RU2184166C2 (en) 2000-08-01 2002-06-27 Государственное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" Aluminum-based high-strength alloy and product manufactured therefrom
US20020150498A1 (en) * 2001-01-31 2002-10-17 Chakrabarti Dhruba J. Aluminum alloy having superior strength-toughness combinations in thick gauges
IL156386A0 (en) * 2000-12-21 2004-01-04 Alcoa Inc Aluminum alloy products and artificial aging method
FR2820438B1 (en) 2001-02-07 2003-03-07 Pechiney Rhenalu PROCESS FOR THE MANUFACTURE OF A CORROSIVE PRODUCT WITH HIGH RESISTANCE IN ALZNMAGCU ALLOY
JP4285916B2 (en) * 2001-02-16 2009-06-24 株式会社神戸製鋼所 Manufacturing method of aluminum alloy plate for structural use with high strength and high corrosion resistance
US6569271B2 (en) 2001-02-28 2003-05-27 Pechiney Rolled Products, Llc. Aluminum alloys and methods of making the same
US6480440B2 (en) 2001-03-07 2002-11-12 Westerngeco, L.L.C. Seismic receiver motion compensation
DE10152396A1 (en) * 2001-10-24 2003-05-15 Bowas Ag Fuer Industrievertrie Manufacture of anhydrous nitrocellulose and eyplosive substances in spheroidal form
FR2838135B1 (en) * 2002-04-05 2005-01-28 Pechiney Rhenalu CORROSIVE ALLOY PRODUCTS A1-Zn-Mg-Cu WITH VERY HIGH MECHANICAL CHARACTERISTICS, AND AIRCRAFT STRUCTURE ELEMENTS
US20050006010A1 (en) * 2002-06-24 2005-01-13 Rinze Benedictus Method for producing a high strength Al-Zn-Mg-Cu alloy
US20040099352A1 (en) * 2002-09-21 2004-05-27 Iulian Gheorghe Aluminum-zinc-magnesium-copper alloy extrusion
FR2846669B1 (en) 2002-11-06 2005-07-22 Pechiney Rhenalu PROCESS FOR THE SIMPLIFIED MANUFACTURE OF LAMINATED PRODUCTS OF A1-Zn-Mg ALLOYS AND PRODUCTS OBTAINED THEREBY
EP1565586B1 (en) 2002-11-15 2009-06-10 Alcoa Inc. Aluminum alloy product having improved combinations of properties
EP1441041A1 (en) 2003-01-16 2004-07-28 Alcan Technology & Management Ltd. Aluminium alloy with high strength and low quenching sensitivity
US20050034794A1 (en) 2003-04-10 2005-02-17 Rinze Benedictus High strength Al-Zn alloy and method for producing such an alloy product
WO2004090185A1 (en) * 2003-04-10 2004-10-21 Corus Aluminium Walzprodukte Gmbh An al-zn-mg-cu alloy
US7666267B2 (en) * 2003-04-10 2010-02-23 Aleris Aluminum Koblenz Gmbh Al-Zn-Mg-Cu alloy with improved damage tolerance-strength combination properties
WO2005003398A2 (en) 2003-04-23 2005-01-13 Kaiser Aluminum & Chemical Corporation High strength aluminum alloys and process for making the same
US7452429B2 (en) * 2003-06-24 2008-11-18 Pechiney Rhenalu Products made of Al-Zn-Mg-Cu alloys with an improved compromise between static mechanical characteristics and damage tolerance
US6968923B2 (en) * 2003-07-30 2005-11-29 Control Components, Inc. Reduced noise valve stack connection
EP1660272B1 (en) 2003-08-29 2017-12-27 Aleris Rolled Products Germany GmbH High strength aluminium alloy brazing sheet, brazed assembly and method for producing same
WO2005040440A1 (en) 2003-10-23 2005-05-06 Aisin Keikinzoku Co., Ltd. Aluminum alloy extruded article excellent in shock absorbing property
US20050087266A1 (en) * 2003-10-23 2005-04-28 Shinji Makino Impact absorbing material
ES2393706T3 (en) * 2003-12-16 2012-12-27 Constellium France Modeled product in the form of laminated sheet and structure element for Al-Zn-Cu-Mg alloy aircraft
EP1544316B1 (en) 2003-12-16 2012-03-07 Constellium France Thick sheet made of Al-Zn-Cu-Mg recrystallised alloy with low Zirconium content
US20050238528A1 (en) 2004-04-22 2005-10-27 Lin Jen C Heat treatable Al-Zn-Mg-Cu alloy for aerospace and automotive castings
US20050238529A1 (en) 2004-04-22 2005-10-27 Lin Jen C Heat treatable Al-Zn-Mg alloy for aerospace and automotive castings
FR2872172B1 (en) * 2004-06-25 2007-04-27 Pechiney Rhenalu Sa ALUMINUM ALLOY PRODUCTS WITH HIGH TENACITY AND HIGH FATIGUE RESISTANCE
ES2292075T5 (en) * 2005-01-19 2010-12-17 Otto Fuchs Kg ALUMINUM ALLOY NOT SENSITIVE TO BRUSH COOLING, AS WELL AS A PROCEDURE FOR MANUFACTURING A SEMI-FINISHED PRODUCT FROM THIS ALLOY.
EP2049696B1 (en) * 2006-06-30 2016-03-02 Constellium Rolled Products Ravenswood, LLC High strength, heat treatable al-zn-mg aluminum alloy

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4063936A (en) 1974-01-14 1977-12-20 Alloy Trading Co., Ltd. Aluminum alloy having high mechanical strength and elongation and resistant to stress corrosion crack
US3943039A (en) 1974-10-08 1976-03-09 Kaiser Aluminum & Chemical Corporation Anodizing pretreatment for nickel plating
US3945861A (en) 1975-04-21 1976-03-23 Aluminum Company Of America High strength automobile bumper alloy
US4049474A (en) 1975-07-25 1977-09-20 Evegny Dmitrievich Zakharov Aluminum-based alloy
JPS58161747A (en) 1982-03-19 1983-09-26 Kobe Steel Ltd High strength aluminum alloy with superior stress corrosion cracking resistance at flash butt weld zone
EP1241275A1 (en) 1999-10-05 2002-09-18 Gosudarstvennoe Predpriyatie Vserossiisky Nauchnoissledovarelsky Institut Aviatsionnykh Materialov Highly resistant aluminum-based alloy and article made from said alloy
WO2003085145A2 (en) 2002-04-05 2003-10-16 Pechiney Rhenalu Al-zn-mg-cu alloy products displaying an improved compromise between static mechanical properties and tolerance to damage

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
"Effects of copper on precipitation and quench sensitivity of AlZnMg alloys" R:J. Livak and J.M. Papazian, Scripta Metallurgica, 1984, Vol 18 pp483-488
"Investigations into the Possibility of Reducing Quench-Sensitivity in High- Strength Al-Zn-Mg-Cu Alloys", H.A. Holl, Journal of the Institute of Metals, 1969, Vol 97, pages 200 - 205
"Kupferhaltige AlZnMg-Knetlegierungen - Eigenschaften und Entwicklungstendenzen, Teil I : Schrifttumsauswertung" ALUMINUM vOL 48, 1972 PAGES 724-733
Aerospace Structural Metals Handbook, Eds. 1997, Vol. 3, Seite 5
ASM Specialty Handbook Aluminium and aluminium alloys, eds. J.R. Davis, 1993, Seiten 41, 45 und 46 Entwicklung der Abschreckempfindlichkeit der Legierung 7046
Druck der Abbildung 24 von D13 in Internationalen Einheiten
extrait de "Teal sheets, the Aluminum Association" Revised October 2002
J.E. Hatch, Editor "Aluminium, properties and physical metallurgy", ASM, 1984, S. 165
K.R. Van Horn, Editor "Aluminum Vol III Fabrication and Finishing", American Society for Metals, 1967, pp 22-24

Also Published As

Publication number Publication date
ES2292075T3 (en) 2008-03-01
ES2292075T5 (en) 2010-12-17
US20110008202A1 (en) 2011-01-13
US20160010195A1 (en) 2016-01-14
DE502005001724D1 (en) 2007-11-29
US20140099230A1 (en) 2014-04-10
US20060157172A1 (en) 2006-07-20
EP1683882B1 (en) 2007-10-17
US10301710B2 (en) 2019-05-28
EP1683882A1 (en) 2006-07-26
US20120202086A1 (en) 2012-08-09

Similar Documents

Publication Publication Date Title
EP1683882B2 (en) Aluminium alloy with low quench sensitivity and process for the manufacture of a semi-finished product of this alloy
AT502294B1 (en) AL-ZN KNET ALLOY AND USE OF SUCH ALLOY
DE69912850T2 (en) METHOD OF PRODUCING AN ALUMINUM-MAGNESIUM-LITHIUM ALLOY PRODUCT
DE112004003147B4 (en) Al-Zn-Mg-Cu alloy
DE10392805B4 (en) Process for producing high-strength Al-Zn-Mg-Cu alloy
DE10392806B4 (en) Process for producing a high-strength balanced Al-Mg-Si alloy
DE112004000995B4 (en) Highly damage tolerant aluminum alloy product, especially for aerospace applications
DE69326838T3 (en) TOUGH ALUMINUM ALLOY WITH COPPER AND MAGNESIUM
DE60203801T2 (en) Weldable high strength Al-Mg-Si alloy
DE69117066T2 (en) IMPROVED AL-LI ALLOY SYSTEM
DE60100724T2 (en) Clad aluminum alloy sheets for aircraft structural elements
EP1718778B1 (en) Material based on an aluminum alloy, method for the production thereof and its use
DE69125436T2 (en) Aluminum alloy sheet with good resistance to damage for aircraft sheet
DE68928676T2 (en) Aluminum alloy product with improved combinations of strength, toughness and corrosion resistance
EP1518000B1 (en) Al/cu/mg/ag alloy with si, semi-finished product made from such an alloy and method for production of such a semi-finished product
DE2953182A1 (en) Aluminum alloy
DE112008003052T5 (en) Product of Al-Mg-Zn wrought alloy and manufacturing method therefor
DE60300004T3 (en) Kneaded product of Al-Cu-Mg alloy for the structural component of an aircraft
DE3411760A1 (en) METHOD FOR PRODUCING SHEET OR STRIP FROM A ROLLING BAR OF AN ALUMINUM ALLOY
DE2103614B2 (en) Process for the production of semi-finished products from AIMgSIZr alloys with high notched impact strength
AT502313B1 (en) METHOD FOR PRODUCING A HIGH-DAMAGE TOLERANT ALUMINUM ALLOY
EP3024958B1 (en) High temperature strength aluminium casting alloy and casting for combustion engines cast from said alloy
EP1017867B1 (en) Aluminium based alloy and method for subjecting it to heat treatment
DE10163039C1 (en) Hot and cold formable component made of an aluminum alloy and process for its production
DE1284095B (en) Process for producing aluminum alloy sheets with high creep rupture strength

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20060703

17Q First examination report despatched

Effective date: 20061006

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

17Q First examination report despatched

Effective date: 20061006

AKX Designation fees paid

Designated state(s): DE ES FR GB IT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502005001724

Country of ref document: DE

Date of ref document: 20071129

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20080116

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2292075

Country of ref document: ES

Kind code of ref document: T3

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: ALCAN FRANCE SAS (FR) / ALCAN RHENALU (FR) / ALCAN

Effective date: 20080708

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: ALCAN FRANCE SAS (FR) / ALCAN RHENALU (FR) / ALCAN

Effective date: 20080708

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20100721

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): DE ES FR GB IT

REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Effective date: 20101203

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20201130

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005001724

Country of ref document: DE

Representative=s name: HAVERKAMP PATENTANWAELTE PARTG MBB, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20211123

Year of fee payment: 17

Ref country code: ES

Payment date: 20211216

Year of fee payment: 17

Ref country code: DE

Payment date: 20211011

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005001724

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230529

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221121

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230601

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20240102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221122

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231122

Year of fee payment: 19