EP1683882B2 - Alliage d'Aluminium avec sensitivité à la trempe réduite et procédé de fabrication d'un produit demi-final lors de cet alliage - Google Patents

Alliage d'Aluminium avec sensitivité à la trempe réduite et procédé de fabrication d'un produit demi-final lors de cet alliage Download PDF

Info

Publication number
EP1683882B2
EP1683882B2 EP05111026A EP05111026A EP1683882B2 EP 1683882 B2 EP1683882 B2 EP 1683882B2 EP 05111026 A EP05111026 A EP 05111026A EP 05111026 A EP05111026 A EP 05111026A EP 1683882 B2 EP1683882 B2 EP 1683882B2
Authority
EP
European Patent Office
Prior art keywords
percent
weight
semi
maximum
finished product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05111026A
Other languages
German (de)
English (en)
Other versions
EP1683882A1 (fr
EP1683882B1 (fr
Inventor
Matthias Dr.-Ing. Hilpert
Gregor Dr. Terlinde
Gernot Dr. Fischer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otto Fuchs KG
Original Assignee
Otto Fuchs KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=35695568&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1683882(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Otto Fuchs KG filed Critical Otto Fuchs KG
Publication of EP1683882A1 publication Critical patent/EP1683882A1/fr
Publication of EP1683882B1 publication Critical patent/EP1683882B1/fr
Application granted granted Critical
Publication of EP1683882B2 publication Critical patent/EP1683882B2/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/06Making non-ferrous alloys with the use of special agents for refining or deoxidising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals

Definitions

  • the invention relates to a quench-resistant aluminum alloy for the production of high-strength, low-intrinsic forgings and high-strength extruded and rolled products. Furthermore, the invention relates to a method for producing a semi-finished product from such an aluminum alloy.
  • high-strength aluminum alloys are needed for the production of, in particular, load-bearing fuselage, wing and chassis parts, which have high strength both under static and dynamic load.
  • the required strength properties can be achieved in the abovementioned semi-finished products by using alloys of the 7000 group (7xxx alloy) in accordance with the classification of aluminum alloys by the Aluminum Association (AA).
  • die forgings for high-stress aerospace parts are made of the AA 7075, AA 7175, AA 7475 and more preferably AA 7049 and AA 7050 alloys in the Americas and the AA 7010, AA 7049A and AA 7050A alloys used in the European area.
  • WO 02/052053 A1 is a high strength aluminum alloy of the aforementioned type with a higher zinc content compared to previous alloys of the same type coupled with a reduced copper and magnesium content.
  • the copper and magnesium content in this prior art alloy together is less than 3.5%.
  • the copper content itself is given as 1.2-2.2% by weight, preferably 1.6-1.2% by weight.
  • this prior art alloy necessarily contains one or more elements from the group of zirconium, scandium and hafnium with maximum proportions of 0.4% by weight zirconium, 0.4% by weight scandium and 0, 3% by weight hafnium.
  • the semi-finished products produced from one of the abovementioned alloys that is to say for example the forgings, the extruded profiles or the rolled plates, obtain the desired strength
  • the semi-finished products are subjected to a special heat treatment. This involves quenching of solution annealing temperature, usually associated with subsequent cold working at average thicknesses greater than 50 mm.
  • Cold forming serves to reduce the stresses induced during quenching.
  • the step of cold forming can be done by a cold heading or by stretching the semi-finished product typically by 1-3%.
  • the semi-finished products produced should be as low in natural stress as possible in order to minimize undesirable distortion during further processing of the semi-finished products.
  • the semi-finished products and, accordingly, also the prefabricated parts made therefrom should be low-stress, in order to give the designer the opportunity to utilize the entire material potential.
  • the process steps to be used for producing parts for aerospace engineering and also the maximum thickness of the semi-finished products used for the production of the parts are standardized or prescribed.
  • the maximum permissible thickness is 200 mm and assumes that after quenching the semi-finished product is necessarily subjected to a cold-forming step for the abovementioned reasons.
  • cold forming is relatively easy to achieve due to the generally simple geometry of stretching in the longitudinal direction.
  • larger and especially thicker forgings are needed.
  • US 4 629 517 A discloses an aluminum product having good strength properties and good corrosion resistance when in the T76 state.
  • the aluminum product consists of an AA 7xxx alloy containing 0.08 wt% Si, 0.29 wt% Fe, 0.20 wt% Cu, 0.03 wt% Mn, 2.5 Wt% Mg, 0.03 wt% Cr, 7.1 wt% Zn, 0.12 wt% Zr and 0.06 wt% Ti.
  • the method described in this document is only suitable for producing aluminum products having a thickness of a few millimeters.
  • the alloy described in this document is not suitable for the production of semi-finished products with medium and larger thicknesses and the required strengths.
  • the invention has the object, a method for producing a semifinished product with to suggest the desired properties of this alloy.
  • the alloy-related object is achieved by a high-strength, quench-resistant aluminum alloy having the features of claim 1.
  • the method-related object is achieved by a method according to claim 9 or claim 12.
  • Medium-sized semi-finished products have a thickness of between 50 and 180 mm.
  • Semi-finished products with a greater thickness have a coating thickness of> 180 mm.
  • the quenching-resistant alloy according to the invention can also be used to produce semi-finished products in a thickness of more than 200 mm, in particular 250 mm and more, with the desired high static and dynamic strength properties while at the same time having good fracture toughness and good stress-crack corrosion behavior. Only at these larger thicknesses a cold forming step is advantageously carried out to reduce the quench-induced residual stresses.
  • semi-finished products produced for average thicknesses of the alloy may be mildly mild after solution annealing.
  • B. can be cooled in a glycol-water mixture without the very good material properties are significantly impaired after a subsequent thermal aging.
  • the step of cold forming is omitted for medium thicknesses, since the residual stresses induced by the mild cooling are not critically low. Therefore, it is possible with this alloy to produce semi-finished products in the middle thickness range in a simpler and more cost-effective manner, namely without an otherwise necessary cold forming step.
  • the above-described advantageous properties of the alloy can also be utilized to simplify the manufacturing process of a part, for the manufacture of which a semifinished product of greater initial thickness is required and which has an average thickness after being machined.
  • a semifinished product of greater thickness is pre-machined after the step of hot forming.
  • the preprocessing is designed so that the semifinished product to be quenched in the course of the heat treatment undergoes such a thickness reduction, which is anyway necessary for the production of the finished part, that the semi-finished product is subjected to a heat treatment with mild quenching (glycol / water quenching) without carrying out a cold forming step otherwise necessary for larger thicknesses. Mixture) can be subjected.
  • the above-mentioned properties of the semifinished product produced from this alloy are unexpected since, contrary to the specifications resulting from the prior art, the copper content is significantly lower than was the case with previously known high-strength aluminum alloys. According to a preferred embodiment, the copper content is only 0.8-1.1 wt%. Thus, the copper content is only about 50% of the preferred copper content of the WO 02/052053 A1 known aluminum alloys. That nevertheless very high strength values are achieved, is surprising. These properties are believed to be due to the balanced composition of the alloy constituents, which includes the relatively high levels of zinc and the magnesium content adjusted to it. The balanced composition of the alloying elements permitted within narrow limits provides that the sum of the elements magnesium, copper and zinc is at least 9% by weight.
  • the alloy has a zinc: magnesium ratio of between 4.4 and 5.3. It has been found that the desired strength properties can only be achieved if the elements magnesium, copper and zinc in the sum more than 9 wt .-% and the zinc: magnesium ratio. These characteristics of the alloy are a measure of how the products made with the alloy have the desired strength properties. This regulation also determines the hardenability of the semi-finished products produced with the alloy.
  • silver addition may be advantageous.
  • the content will be limited to 0.2-0.7%, in particular 0.20-0.40% by weight.
  • the manganese content of the alloy was limited to a maximum of 0.5% by weight.
  • the hardenability of an Al-Zn-Cu-Mg alloy decreases with increasing manganese content. For this reason, the manganese content is limited.
  • zirconium additive This is according to a preferred embodiment, 0.14 - 0.20 wt .-%.
  • Zirconium also precipitates out of the microstructure during the homogenization of the continuous casting ingots in the form of zirconium aluminides. These aluminides are generally more finely dispersed than the manganese aluminides. Therefore, they are especially helpful in terms of recrystallization control.
  • the zirconium aluminides formed are not coarsened by the intended heat treatment and are stable in the selected temperature ranges, unlike manganese aluminides. For this reason, zirconium is a necessary component of the alloy.
  • the titanium contained in the alloy is primarily used for grain refining during continuous casting. Preference is given to adding from 0.03 to 0.1% by weight of titanium, in particular from 0.03 to 0.06% by weight, of titanium.
  • the alloy may contain 0.001-0.03 wt% boron. Furthermore, the alloy can max. 0.2% by weight of cerium and max. 0.30 wt .-% scandium.
  • the desired properties are achieved if the specified alloying constituents are used proportionally in the specified range. With an alloy in which one or more alloying constituents have a content which is outside the stated range, semi-finished products can no longer be produced with the required properties.
  • thermosetting of the quenched semifinished product takes place in two stages, wherein in the first stage, the semi-finished product is heated to a temperature of more than 100 ° C and held for more than eight hours at this temperature and in the second stage heated to more than 130 ° C and heated for more than five hours. These two steps can be carried out immediately after each other. Without prejudice to the desired properties of the semifinished product, the semifinished product treated with the first stage can also be cooled and the second stage of the thermosetting can be carried out at a later time.
  • the two alloys Z1, Z2 had the following composition: Si Fe Cu Mn mg Cr Zn Ti Zr Ti + Zr Alloy Z1 0.05 0.05 0.95 0.39 1.70 0,002 8.35 0,035 0.12 0,155 Alloy Z2 0.04 0.07 0.90 0,004 1.65 0.001 8.50 0,025 0.12 0.145
  • Alloys Z1, Z2 were cast on an industrial scale to 370 mm diameter continuous casting blocks.
  • the continuous casting blocks were homogenized to compensate for the crystallization induced crystallization.
  • the blocks were homogenized in two stages in a temperature range of 465 ° C - 485 ° C and cooled.
  • the homogenized blocks were preheated to 370 ° C and remolded into open-die forgings 250 mm thick and 500 mm wide.
  • the forgings made of Alloy Z1 and Z2 were solution-annealed for at least 4 hours at 485 ° C, quenched in water at room temperature and then cured between 100 ° C and 160 ° C warm, wherein the hot curing has been carried out in two stages.
  • the semi-finished product was heated to more than 100 ° C and held at this temperature for more than eight hours.
  • the second stage carried out after the first stage was carried out at a temperature of more than 130 ° C for more than five hours.
  • the K lC values are given below: alloy test direction location K IC (MPa - ⁇ m) R p0.2 (MPa) Z 1 LT edge 30.5 529 LT core 32.9 504 TL edge 23.1 516 TL core 20.4 502 Z 2 LT edge 30.3 514 LT core 35.9 520 TL edge 23.6 514 TL core 21.8 508
  • alloy Z1 alloy load direction Rp02 (MPa)
  • R m (MPa) A 5 (%) Z 1 L 504 523 11.2 LT 502 533 5.2 ST 498 522 8.0
  • the A 5 values are highest for the L direction and reach at least 6% elongation at break (A 5 ) for the two transverse directions.
  • the strength drop can be reduced.
  • W 50 mm
  • the fracture toughness K lc in the test specimens LT and TL was determined according to ASTM-E 399.
  • the K lC values are given in the following table: alloy test direction location K lC (MPa ⁇ m) R p0.2 ( Mpa ) Z 1 LT edge 30.5 529 LT core 32.9 504 TL edge 23.1 516 TL core 20.4 502 Z 1 + cold diving LT edge 38.9 485 LT core 42.2 448 TL edge 23.9 474 TL core 21.9 468
  • open-die forgings with a thickness of 150 mm and a width of 500 mm were produced from Alloy Z1 and, according to the example described above, after solution heat treatment in water or in a water-glycol mixture with about 20% or approx. 40% quenched and warmed up as previously described. A forging was additionally cold-crushed after quenching in water. Tensile specimens taken from the forgings in the "long" (L), "long-transverse” (LT) and “short-transverse” (ST) directions, the influence of different cooling media was shown.
  • Alloy Z1 for a thickness of 150 mm for different cooling treatments are shown below: quenching load direction Rp02 (MPa) R m (MPa) A 5 (%) Water (RT) L 551 573 10, 3 LT 515 544 7.5 ST 505 549 8.0 Water (RT) + cold diving L 491 537 12.8 LT 465 520 8.7 ST 430 513 8.5 Water / glycol (16-20%) L 545 566 12.5 LT 520 547 7.2 ST 512 548 8.3 Water / glycol (38-40%) L 503 529 12.2 LT 493 525 5.0 ST 487 526 5.6
  • the fracture toughness K lc in the test specimens LT and TL was determined according to ASTM-E 399.
  • the K lC values are shown in the following table: quenching test direction K lC (MPa ⁇ m) Rp02 (MPa) Water (RT) LT 36.8 551 TL 23.8 515 Water (RT) + cold diving LT 39.1 491 TL 24.1 465 Water / glycol (16-20%) LT 28.2 545 TL 20.7 520 Water glycol (38-40%) LT 35.4 503 TL 18.5 493
  • the alloy Z1 was cast analogously to the first example and produced blocks for extrusion in yet another example.
  • the homogenized blocks were preheated to over 370 ° C and extruded into extruded profiles having a rectangular cross section of 40 mm thickness and a width of 100 mm.
  • the profiles were then solution-annealed for at least 4 hours at 485 ° C., quenched in water at room temperature and then heated between 100 ° C. and 160 ° C. in two stages (first stage:> 100 ° C.,> 8 h, second stage:> 130 ° C,> 5h) cured.
  • the A 5 values are highest for the L direction and reach at least 7% elongation at break (A 5 ) for the two transverse directions.
  • FIG. 1 is a graph showing the strength behavior of various AA 7xxx alloys as a function of the average cooling rate during quenching from the solution annealing temperature.
  • FIG. It is clearly recognizable in this presentation that the loss of strength when using the claimed aluminum alloy is considerably lower even at low cooling rates than in the case of the comparative alloys AA 7075, AA 7010 and AA 7050.
  • the strength values of the products / semi-finished products produced with the claimed alloy as determined in the context of the description of the invention are considerably improved, in particular with regard to the stress-crack corrosion resistance compared to products of prior art alloys, which is a result which could not be foreseen in the form shown.
  • the results presented are also interesting in that the strength values described can be represented in particular in the case of hot curing carried out only in two stages.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Forging (AREA)

Claims (13)

  1. Alliage d'aluminium à sensibilité réduite à la trempe destiné à fabriquer des pièces forgées à haute résistance et à faible contrainte résiduelle ainsi que des produits filés et laminés à haute résistance constitué de :
    - 7,0 - 10,5 % en poids de zinc,
    - 1,0 - 2,5 % en poids de magnésium,
    - 0,1-1,15% en poids de cuivre
    - 0,06 - 0,25 % en poids de zircon,
    - 0,02-0,15% en poids de titane,
    - maximum 0,5 % en poids de manganèse,
    - maximum 0,6 % en poids d'argent,
    - maximum 0,10 % en poids de silicium,
    - maximum 0,10 % en poids de fer,
    - maximum 0,04 % en poids de chrome,
    - ainsi qu'à titre facultatif un ou plusieurs éléments du groupe hafnium, scandium, strontium et/ou vanadium avec une teneur totale de 1,0 % en poids au maximum,
    - ainsi qu'à titre facultatif 0,001 - 0,03 % en poids de bore,
    - ainsi qu'à titre facultatif maximum 0,2 % en poids de cérium et maximum 0,30 % en poids scandium,
    - ainsi qu'à titre facultatif 0,2 % en poids de cérium au maximum,
    - en plus d'impuretés diverses avec une teneur de 0,05 % en poids au maximum par élément et une teneur totale de 0,15 % en poids au maximum,
    - le reste : de l'aluminium,
    - la somme des éléments d'alliage de zinc, de magnésium et de cuivre s'élevant à au moins 9 % en poids et
    - le rapport zinc : magnésium de l'alliage se situant entre 4,4 et 5,3.
  2. Alliage d'aluminium selon la revendication 1 caractérisé en ce que l'alliage contient 1,6 - 1,8 % en poids de magnésium et 0,8 - 1,1 % en poids de cuivre.
  3. Alliage d'aluminium selon la revendication 1 caractérisé en ce que l'alliage d'aluminium contient 0,8 -1,1 % en poids de cuivre et 0,3 - 0,5 % en poids de manganèse.
  4. Alliage d'aluminium selon la revendication 1 caractérisé en ce que l'alliage d'aluminium contient 0,8 - 1,1 % en poids de cuivre et au maximum 0,03 % en poids de manganèse.
  5. Alliage d'aluminium selon la revendication 1 caractérisé en ce que l'alliage d'aluminium contient 0,2 - 0,3 % en poids de cuivre et 0,25 - 0,40 % en poids d'argent.
  6. Alliage d'aluminium selon l'une des revendications 1 à 5 caractérisé en ce que l'alliage d'aluminium contient 0,10 - 0,15 % en poids de titane.
  7. Alliage d'aluminium selon l'une des revendications 1 à 6 caractérisé en ce que l'alliage contient au maximum 0,30 % en poids de scandium et au maximum 0,2 % en poids de vanadium, de hafnium ou de cérium.
  8. Alliage d'aluminium selon l'une des revendications 1 à 7 caractérisé en ce que la teneur en fer et en silicium représente respectivement au maximum 0,08 % en poids.
  9. Procédé pour fabriquer à partir d'un alliage d'aluminium selon l'une des revendications 1 à 8, un demi-produit à haute résistance, à faible contrainte résiduelle, selon les étapes suivantes :
    - Formage à chaud des barres homogénéisées par forgeage, filage et/ou laminage dans une plage de températures de 350 - 440 °C ;
    - Mise en solution du demi-produit formé à chaud à des températures suffisamment élevées afin de mettre en solution pour une répartition homogène dans la structure des éléments d'alliage indispensables au durcissement structural, de préférence à 465 - 500 °C ;
    - Trempe des demi-produits, préalablement soumis au recuit de mise en solution, dans l'eau, dans un mélange eau-glycol ou dans un mélange salin à des températures entre 100 °C et 170°C;
    - Formage à froid du demi-produit trempé afin de réduire les contraintes résiduelles survenues lors de la trempe dans un médium de refroidissement ; et
    - Revenu en un ou plusieurs paliers du demi-produit préalablement trempé, les taux d'échauffement, les temps de séjour et les températures étant ajustés en vue d'une optimisation des propriétés du matériau.
  10. Procédé selon la revendication 9 caractérisé en ce que l'étape de formage à froid est réalisée par refoulement ou étirage du demi-produit.
  11. Procédé selon la revendication 9 ou 10 caractérisé en ce que le taux de formage à froid représente 1 - 5 %.
  12. Procédé pour fabriquer à partir d'un alliage d'aluminium selon l'une des revendications 1 à 8, un demi-produit à haute résistance, à faible contrainte résiduelle, d'une épaisseur de traitement de 50 - 180 mm, selon les étapes suivantes :
    - Formage à chaud des barres homogénéisées par forgeage, filage et/ou laminage dans une plage de températures de 350 - 440 °C ;
    - Mise en solution du demi-produit formé à chaud à des températures suffisamment élevées afin de mettre en solution pour une répartition homogène dans la structure des éléments d'alliage indispensables au durcissement structural, de préférence à 465 - 500 °C ;
    - Trempe des demi-produits, préalablement soumis au recuit de mise en solution, dans l'eau, dans un mélange eau-glycol ou dans un mélange salin à des températures entre 100 °C et 170°C;
    - Revenu en un ou plusieurs paliers du demi-produit préalablement trempé, les taux d'échauffement, les temps de séjour et les températures étant ajustés en vue d'une optimisation des propriétés du matériau.
  13. Procédé selon la revendication 12 caractérisé en ce qu'après l'étape de formage à chaud, on dispose d'un demi-produit d'une épaisseur de traitement supérieure à 180 mm, qui, avant le traitement thermique à venir, sera d'abord usiné par enlèvement de copeaux, afin de réduire par l'enlèvement des copeaux l'épaisseur du demi-produit de telle sorte que ce demi-produit préalablement usiné présente une épaisseur de traitement de 50 - 180 mm et que le traitement thermique à suivre soit réalisé conformément aux exigences applicables aux demi-produits d'une épaisseur de traitement de 50-180 mm.
EP05111026A 2005-01-19 2005-11-21 Alliage d'Aluminium avec sensitivité à la trempe réduite et procédé de fabrication d'un produit demi-final lors de cet alliage Active EP1683882B2 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102005002390 2005-01-19

Publications (3)

Publication Number Publication Date
EP1683882A1 EP1683882A1 (fr) 2006-07-26
EP1683882B1 EP1683882B1 (fr) 2007-10-17
EP1683882B2 true EP1683882B2 (fr) 2010-07-21

Family

ID=35695568

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05111026A Active EP1683882B2 (fr) 2005-01-19 2005-11-21 Alliage d'Aluminium avec sensitivité à la trempe réduite et procédé de fabrication d'un produit demi-final lors de cet alliage

Country Status (4)

Country Link
US (5) US20060157172A1 (fr)
EP (1) EP1683882B2 (fr)
DE (1) DE502005001724D1 (fr)
ES (1) ES2292075T5 (fr)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080299000A1 (en) * 2002-09-21 2008-12-04 Universal Alloy Corporation Aluminum-zinc-copper-magnesium-silver alloy wrought product
JP4932473B2 (ja) * 2003-03-17 2012-05-16 アレリス、アルミナム、コブレンツ、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング 一体化されたモノリシックアルミニウム構造の製造方法およびその構造から機械加工されたアルミニウム製品
ES2292075T5 (es) 2005-01-19 2010-12-17 Otto Fuchs Kg Aleacion de aluminio no sensible al enfriamiento brusco, asi como procedimiento para fabricar un producto semiacabado a partir de esta aleacion.
US8083871B2 (en) 2005-10-28 2011-12-27 Automotive Casting Technology, Inc. High crashworthiness Al-Si-Mg alloy and methods for producing automotive casting
CN100523242C (zh) * 2006-11-13 2009-08-05 上海昊华模具有限公司 车用子午线轮胎模具用铝合金
US8673209B2 (en) * 2007-05-14 2014-03-18 Alcoa Inc. Aluminum alloy products having improved property combinations and method for artificially aging same
US9163304B2 (en) 2010-04-20 2015-10-20 Alcoa Inc. High strength forged aluminum alloy products
CN101818290A (zh) * 2010-05-28 2010-09-01 中南大学 一种同时添加Ag、Ge的低淬火敏感性铝合金
US9347558B2 (en) 2010-08-25 2016-05-24 Spirit Aerosystems, Inc. Wrought and cast aluminum alloy with improved resistance to mechanical property degradation
RU2013115468A (ru) 2010-09-08 2014-10-20 Алкоа Инк. Улучшенные алюминиево-литиевые сплавы и способы их получения
JP5023232B1 (ja) 2011-06-23 2012-09-12 住友軽金属工業株式会社 高強度アルミニウム合金材およびその製造方法
JP5285170B2 (ja) 2011-11-07 2013-09-11 住友軽金属工業株式会社 高強度アルミニウム合金材及びその製造方法
CN103131992B (zh) * 2011-11-29 2015-05-20 贵州铝厂 一种低锌热浸镀铝合金镀层材料
WO2013172910A2 (fr) 2012-03-07 2013-11-21 Alcoa Inc. Alliages d'aluminium 2xxx améliorés et procédés de production correspondants
CN102760508B (zh) * 2012-07-18 2014-05-28 中南大学 含Hf和Ce的高电导率抗蠕变铝合金电缆导体及制备方法
US10266933B2 (en) 2012-08-27 2019-04-23 Spirit Aerosystems, Inc. Aluminum-copper alloys with improved strength
US9587298B2 (en) 2013-02-19 2017-03-07 Arconic Inc. Heat treatable aluminum alloys having magnesium and zinc and methods for producing the same
CN103436756B (zh) * 2013-09-13 2015-09-09 邓才松 一种高耐磨不抱轴铝基合金及其制备方法
JP6344923B2 (ja) 2014-01-29 2018-06-20 株式会社Uacj 高強度アルミニウム合金及びその製造方法
BR112016024536B1 (pt) 2014-04-30 2021-03-30 Alcoa Usa Corp Peça de liga de alumínio fundido
US20150322556A1 (en) 2014-05-06 2015-11-12 Goodrich Corporation Lithium free elevated temperature aluminum copper magnesium silver alloy for forged aerospace products
CN104073698B (zh) * 2014-06-26 2016-04-27 龙口市丛林铝材有限公司 一种6系轨道车辆悬挂臂铝型材及其制备方法
CN104018041B (zh) * 2014-06-26 2016-08-24 龙口市丛林铝材有限公司 一种高铁车体铝型材及其制备方法
CN104630582A (zh) * 2015-01-21 2015-05-20 湖州宏叶铝塑材料有限公司 一种汽车用耐疲劳耐腐蚀铝型材及其制备方法
CN104651674A (zh) * 2015-03-09 2015-05-27 苏州圣谱拉新材料科技有限公司 一种稀土铝合金材料及其制备方法
CN106868361A (zh) * 2015-12-10 2017-06-20 华为技术有限公司 铝合金材料及应用该铝合金材料的外壳
CN108070747A (zh) * 2016-11-14 2018-05-25 镇江市润州金山金属粉末厂 一种高性能钒锶合金
JP7085564B6 (ja) * 2017-04-05 2022-07-26 アーエムアーゲー キャスティング ゲーエムベーハー 出発材料、その使用、およびその出発材料を用いた付加製造法
CN107240434A (zh) * 2017-06-27 2017-10-10 苏州菱慧电子科技有限公司 一种导电金属材料
CN107460382B (zh) * 2017-08-18 2019-04-30 江苏大学 各向同性超强耐蚀铝合金轧制板材及制备方法
CN109913714B (zh) * 2017-12-12 2021-10-29 东莞顺成五金制造有限公司 一种食品机械用合金连接件及其制备工艺
CN108048715B (zh) * 2018-02-01 2019-07-16 佛山市三水凤铝铝业有限公司 一种用于消费电子产品壳体的高强度铝合金及其挤压方法
CN108468003A (zh) * 2018-04-11 2018-08-31 益阳仪纬科技有限公司 一种铝合金及其铸造方法
US11970756B2 (en) 2018-07-02 2024-04-30 Otto Fuchs Kommanditgesellschaft Aluminum alloy and overaged aluminum alloy product of such alloy
CN110699575B (zh) * 2019-09-27 2020-12-29 黄山市龙跃铜业有限公司 一种高强度高韧性铝合金及其制备方法
CN110846599B (zh) * 2019-11-14 2021-03-26 中国航发北京航空材料研究院 一种提高800MPa级铝合金腐蚀性能的热处理方法
CN110777286B (zh) * 2019-12-04 2021-09-21 中南大学 一种中强可焊耐蚀含钪高镁铝合金锻件的制备方法
CN111057916A (zh) * 2019-12-25 2020-04-24 宁波旭升汽车技术股份有限公司 一种新型铝合金锻造材及其制备方法
CN113118707B (zh) * 2021-02-26 2022-11-29 程明阳 一种强化银壶的生产工艺
CN114196843A (zh) * 2021-12-01 2022-03-18 昆山风雷益铝业有限公司 一种高强度铝合金板制备工艺及铝合金板

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3943039A (en) 1974-10-08 1976-03-09 Kaiser Aluminum & Chemical Corporation Anodizing pretreatment for nickel plating
US3945861A (en) 1975-04-21 1976-03-23 Aluminum Company Of America High strength automobile bumper alloy
US4049474A (en) 1975-07-25 1977-09-20 Evegny Dmitrievich Zakharov Aluminum-based alloy
US4063936A (en) 1974-01-14 1977-12-20 Alloy Trading Co., Ltd. Aluminum alloy having high mechanical strength and elongation and resistant to stress corrosion crack
JPS58161747A (ja) 1982-03-19 1983-09-26 Kobe Steel Ltd フラツシユバツト溶接部の耐応力腐蝕割れ性に優れた高強度アルミニウム合金
EP1241275A1 (fr) 1999-10-05 2002-09-18 Gosudarstvennoe Predpriyatie Vserossiisky Nauchnoissledovarelsky Institut Aviatsionnykh Materialov Alliage hautement resistant a base d'aluminium et article fait a partir de cet alliage
WO2003085145A2 (fr) 2002-04-05 2003-10-16 Pechiney Rhenalu Produits en alliages al-zn-mg- cu

Family Cites Families (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2052000C3 (de) * 1970-10-23 1974-09-12 Fa. Otto Fuchs, 5882 Meinerzhagen Verwendung einer hochfesten Aluminiumlegierung
US3743549A (en) * 1971-02-09 1973-07-03 I Esercizio Dell Istituto Sper Thermomechanical process for improving the toughness of the high strength aluminum alloys
US4863528A (en) * 1973-10-26 1989-09-05 Aluminum Company Of America Aluminum alloy product having improved combinations of strength and corrosion resistance properties and method for producing the same
US4305763A (en) 1978-09-29 1981-12-15 The Boeing Company Method of producing an aluminum alloy product
FR2457908A1 (fr) 1979-06-01 1980-12-26 Gerzat Metallurg Procede de fabrication de corps creux en alliage d'aluminium et produits ainsi obtenus
FR2517702B1 (fr) 1981-12-03 1985-11-15 Gerzat Metallurg
GB2114601B (en) 1981-12-23 1986-05-08 Aluminum Co Of America High strength aluminum alloy resistant to exfoliation and method of heat treatment
US4828631A (en) * 1981-12-23 1989-05-09 Aluminum Company Of America High strength aluminum alloy resistant to exfoliation and method of making
US4954188A (en) * 1981-12-23 1990-09-04 Aluminum Company Of America High strength aluminum alloy resistant to exfoliation and method of making
US4629517A (en) * 1982-12-27 1986-12-16 Aluminum Company Of America High strength and corrosion resistant aluminum article and method
US4713216A (en) 1985-04-27 1987-12-15 Showa Aluminum Kabushiki Kaisha Aluminum alloys having high strength and resistance to stress and corrosion
AT384744B (de) 1986-02-07 1987-12-28 Austria Metall Verwendung einer legierung auf ein band aus a1 zn mg cu-legierungen fuer schwingend beanspruchte sportgeraete
US5055257A (en) * 1986-03-20 1991-10-08 Aluminum Company Of America Superplastic aluminum products and alloys
FR2601967B1 (fr) 1986-07-24 1992-04-03 Cerzat Ste Metallurg Alliage a base d'al pour corps creux sous pression.
JPS6383251A (ja) * 1986-09-26 1988-04-13 Ichiro Kawakatsu 高力高弾性アルミニウム合金の製造法
US5221377A (en) * 1987-09-21 1993-06-22 Aluminum Company Of America Aluminum alloy product having improved combinations of properties
DE68927149T2 (de) 1988-10-12 1997-04-03 Aluminum Co Of America Verfahren zur Herstellung eines nichtkristallisierten, flachgewalzten, dünnen, wärmebehandelten Produktes auf Aluminiumbasis
FR2640644B1 (fr) 1988-12-19 1991-02-01 Pechiney Recherche Procede d'obtention par " pulverisation-depot " d'alliages d'al de la serie 7000 et de materiaux composites a renforts discontinus ayant pour matrice ces alliages a haute resistance mecanique et bonne ductilite
CA1340618C (fr) 1989-01-13 1999-06-29 James T. Staley Alliage d'aluminium possedant des proprietes combinees ameliorees de resistance, de durete, et anticorrosion
FR2645546B1 (fr) 1989-04-05 1994-03-25 Pechiney Recherche Alliage a base d'al a haut module et a resistance mecanique elevee et procede d'obtention
CH682326A5 (fr) 1990-06-11 1993-08-31 Alusuisse Lonza Services Ag
EP0462055A1 (fr) 1990-06-11 1991-12-18 Alusuisse-Lonza Services Ag Matériau semi-fini en alliage AlZnMg superplastique
US5277719A (en) * 1991-04-18 1994-01-11 Aluminum Company Of America Aluminum alloy thick plate product and method
US5312498A (en) 1992-08-13 1994-05-17 Reynolds Metals Company Method of producing an aluminum-zinc-magnesium-copper alloy having improved exfoliation resistance and fracture toughness
FR2695942B1 (fr) 1992-09-22 1994-11-18 Gerzat Metallurg Alliage d'aluminium pour corps creux sous pression.
WO1994024326A1 (fr) 1993-04-15 1994-10-27 Alcan International Limited Procede de fabrication de corps creux
FR2716896B1 (fr) 1994-03-02 1996-04-26 Pechiney Recherche Alliage 7000 à haute résistance mécanique et procédé d'obtention.
US5597529A (en) * 1994-05-25 1997-01-28 Ashurst Technology Corporation (Ireland Limited) Aluminum-scandium alloys
WO1996010099A1 (fr) 1994-09-26 1996-04-04 Ashurst Technology Corporation (Ireland) Limited Alliages de fonderie d'aluminium a haute resistance pour applications structurelles
JP3834076B2 (ja) * 1995-04-21 2006-10-18 昭和電工株式会社 押出材の製造方法
US6027582A (en) * 1996-01-25 2000-02-22 Pechiney Rhenalu Thick alZnMgCu alloy products with improved properties
FR2744136B1 (fr) 1996-01-25 1998-03-06 Pechiney Rhenalu Produits epais en alliage alznmgcu a proprietes ameliorees
JP3705320B2 (ja) * 1997-04-18 2005-10-12 株式会社神戸製鋼所 耐食性に優れる高強度熱処理型7000系アルミニウム合金
US6231995B1 (en) 1997-06-07 2001-05-15 Kabushiki Kaisha Kobe Seiko Sho Aluminum extruded door beam material
KR100502776B1 (ko) 1997-08-04 2005-07-25 후고벤스 알루미늄 발츠프로두크테 게엠베하 브레이징 용도 및 용접 구조체용 고강도 알루미늄-마그네슘-아연-실리콘 합금, 그 용접 구조체와 브레이징 구조체 및 그 사용방법
FR2805282B1 (fr) * 2000-02-23 2002-04-12 Gerzat Metallurg Procede de fabrication de corps creux sous pression en alliage a1znmgcu
US7135077B2 (en) 2000-05-24 2006-11-14 Pechiney Rhenalu Thick products made of heat-treatable aluminum alloy with improved toughness and process for manufacturing these products
US6562154B1 (en) 2000-06-12 2003-05-13 Aloca Inc. Aluminum sheet products having improved fatigue crack growth resistance and methods of making same
RU2184166C2 (ru) * 2000-08-01 2002-06-27 Государственное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" Высокопрочный сплав на основе алюминия и изделие, выполненное из него
CN1489637A (zh) * 2000-12-21 2004-04-14 �Ƹ��� 铝合金产品及人工时效方法
US20020150498A1 (en) * 2001-01-31 2002-10-17 Chakrabarti Dhruba J. Aluminum alloy having superior strength-toughness combinations in thick gauges
FR2820438B1 (fr) 2001-02-07 2003-03-07 Pechiney Rhenalu Procede de fabrication d'un produit corroye a haute resistance en alliage alznmagcu
JP4285916B2 (ja) * 2001-02-16 2009-06-24 株式会社神戸製鋼所 高強度、高耐食性構造用アルミニウム合金板の製造方法
US6569271B2 (en) 2001-02-28 2003-05-27 Pechiney Rolled Products, Llc. Aluminum alloys and methods of making the same
US6480440B2 (en) 2001-03-07 2002-11-12 Westerngeco, L.L.C. Seismic receiver motion compensation
DE10152396A1 (de) * 2001-10-24 2003-05-15 Bowas Ag Fuer Industrievertrie Herstellung wasserfreier Nitrocellulose und Eyplosivstoffe in sphäroider Form
FR2838135B1 (fr) 2002-04-05 2005-01-28 Pechiney Rhenalu PRODUITS CORROYES EN ALLIAGES A1-Zn-Mg-Cu A TRES HAUTES CARACTERISTIQUES MECANIQUES, ET ELEMENTS DE STRUCTURE D'AERONEF
US20050006010A1 (en) * 2002-06-24 2005-01-13 Rinze Benedictus Method for producing a high strength Al-Zn-Mg-Cu alloy
US20040099352A1 (en) 2002-09-21 2004-05-27 Iulian Gheorghe Aluminum-zinc-magnesium-copper alloy extrusion
FR2846669B1 (fr) 2002-11-06 2005-07-22 Pechiney Rhenalu PROCEDE DE FABRICATION SIMPLIFIE DE PRODUITS LAMINES EN ALLIAGES A1-Zn-Mg, ET PRODUITS OBTENUS PAR CE PROCEDE
US7097719B2 (en) * 2002-11-15 2006-08-29 Alcoa Inc. Aluminum alloy product having improved combinations of properties
EP1441041A1 (fr) * 2003-01-16 2004-07-28 Alcan Technology & Management Ltd. Alliage d'aluminium à haute résistance et faible sensibilité à la trempe
CN100547098C (zh) * 2003-04-10 2009-10-07 克里斯铝轧制品有限公司 一种铝-锌-镁-铜合金
US7666267B2 (en) * 2003-04-10 2010-02-23 Aleris Aluminum Koblenz Gmbh Al-Zn-Mg-Cu alloy with improved damage tolerance-strength combination properties
US20050034794A1 (en) 2003-04-10 2005-02-17 Rinze Benedictus High strength Al-Zn alloy and method for producing such an alloy product
US20050056353A1 (en) * 2003-04-23 2005-03-17 Brooks Charles E. High strength aluminum alloys and process for making the same
DE04767427T1 (de) 2003-06-24 2006-10-12 Alcan Rhenalu Produkte aus al/zn/mg/cu-legierungen mit verbessertem kompromiss zwischen statischen mechanischen eigenschaften und schadenstoleranz
US6968923B2 (en) * 2003-07-30 2005-11-29 Control Components, Inc. Reduced noise valve stack connection
EP1660272B1 (fr) 2003-08-29 2017-12-27 Aleris Rolled Products Germany GmbH Feuille de brasage en alliage d'aluminium a haute resistance, ensemble brase et procede de production de ladite feuille
US20050087266A1 (en) * 2003-10-23 2005-04-28 Shinji Makino Impact absorbing material
WO2005040440A1 (fr) 2003-10-23 2005-05-06 Aisin Keikinzoku Co., Ltd. Article extrude en alliage d'aluminium ayant d'excellentes proprietes absorbant les chocs
EP1544316B1 (fr) 2003-12-16 2012-03-07 Constellium France Tôle épaisse en alliage Al-Zn-Cu-Mg recristallisée à faible teneur en Zr
ES2393706T3 (es) * 2003-12-16 2012-12-27 Constellium France Producto modelado en forma de chapa laminada y elemento de estructura para aeronave de aleación Al-Zn-Cu-Mg
US20050238529A1 (en) 2004-04-22 2005-10-27 Lin Jen C Heat treatable Al-Zn-Mg alloy for aerospace and automotive castings
US20050238528A1 (en) 2004-04-22 2005-10-27 Lin Jen C Heat treatable Al-Zn-Mg-Cu alloy for aerospace and automotive castings
FR2872172B1 (fr) 2004-06-25 2007-04-27 Pechiney Rhenalu Sa Produits en alliage d'aluminium a haute tenacite et haute resistance a la fatigue
ES2292075T5 (es) * 2005-01-19 2010-12-17 Otto Fuchs Kg Aleacion de aluminio no sensible al enfriamiento brusco, asi como procedimiento para fabricar un producto semiacabado a partir de esta aleacion.
KR20090026337A (ko) * 2006-06-30 2009-03-12 알칸 롤드 프로덕츠-레이븐스우드, 엘엘씨. 고강도의 열처리 가능 알루미늄 합금

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4063936A (en) 1974-01-14 1977-12-20 Alloy Trading Co., Ltd. Aluminum alloy having high mechanical strength and elongation and resistant to stress corrosion crack
US3943039A (en) 1974-10-08 1976-03-09 Kaiser Aluminum & Chemical Corporation Anodizing pretreatment for nickel plating
US3945861A (en) 1975-04-21 1976-03-23 Aluminum Company Of America High strength automobile bumper alloy
US4049474A (en) 1975-07-25 1977-09-20 Evegny Dmitrievich Zakharov Aluminum-based alloy
JPS58161747A (ja) 1982-03-19 1983-09-26 Kobe Steel Ltd フラツシユバツト溶接部の耐応力腐蝕割れ性に優れた高強度アルミニウム合金
EP1241275A1 (fr) 1999-10-05 2002-09-18 Gosudarstvennoe Predpriyatie Vserossiisky Nauchnoissledovarelsky Institut Aviatsionnykh Materialov Alliage hautement resistant a base d'aluminium et article fait a partir de cet alliage
WO2003085145A2 (fr) 2002-04-05 2003-10-16 Pechiney Rhenalu Produits en alliages al-zn-mg- cu

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
"Effects of copper on precipitation and quench sensitivity of AlZnMg alloys" R:J. Livak and J.M. Papazian, Scripta Metallurgica, 1984, Vol 18 pp483-488
"Investigations into the Possibility of Reducing Quench-Sensitivity in High- Strength Al-Zn-Mg-Cu Alloys", H.A. Holl, Journal of the Institute of Metals, 1969, Vol 97, pages 200 - 205
"Kupferhaltige AlZnMg-Knetlegierungen - Eigenschaften und Entwicklungstendenzen, Teil I : Schrifttumsauswertung" ALUMINUM vOL 48, 1972 PAGES 724-733
Aerospace Structural Metals Handbook, Eds. 1997, Vol. 3, Seite 5
ASM Specialty Handbook Aluminium and aluminium alloys, eds. J.R. Davis, 1993, Seiten 41, 45 und 46 Entwicklung der Abschreckempfindlichkeit der Legierung 7046
Druck der Abbildung 24 von D13 in Internationalen Einheiten
extrait de "Teal sheets, the Aluminum Association" Revised October 2002
J.E. Hatch, Editor "Aluminium, properties and physical metallurgy", ASM, 1984, S. 165
K.R. Van Horn, Editor "Aluminum Vol III Fabrication and Finishing", American Society for Metals, 1967, pp 22-24

Also Published As

Publication number Publication date
US20060157172A1 (en) 2006-07-20
EP1683882A1 (fr) 2006-07-26
DE502005001724D1 (de) 2007-11-29
US20160010195A1 (en) 2016-01-14
ES2292075T5 (es) 2010-12-17
US20140099230A1 (en) 2014-04-10
US20120202086A1 (en) 2012-08-09
ES2292075T3 (es) 2008-03-01
US20110008202A1 (en) 2011-01-13
US10301710B2 (en) 2019-05-28
EP1683882B1 (fr) 2007-10-17

Similar Documents

Publication Publication Date Title
EP1683882B2 (fr) Alliage d'Aluminium avec sensitivité à la trempe réduite et procédé de fabrication d'un produit demi-final lors de cet alliage
AT502294B1 (de) Al-zn-knetlegierung und verwendung einer solchen legierung
DE69912850T2 (de) Herstellungsverfahren eines produktes aus aluminium-magnesium-lithium-legierung
DE112004003147B4 (de) Al-Zn-Mg-Cu-Legierung
DE10392805B4 (de) Verfahren zum Herstellen einer hochfesten Al-Zn-Mg-Cu-Legierung
DE10392806B4 (de) Verfahren zum Herstellen einer hochfesten ausgeglichenen AI-Mg-Si-Legierung
DE112004000995B4 (de) Hoch schadenstolerantes Aluminiumlegierungsprodukt, insbesondere für Luft- und Raumfahrtanwendungen
DE69326838T3 (de) Zähe aluminiumlegierung mit kupfer und magnesium
DE60203801T2 (de) Schweißbare hochfeste Al-Mg-Si-Legierung
DE60100724T2 (de) Plattierte Bleche aus Aluminium-Legierung für Flugzeugstrukturelemente
EP1718778B1 (fr) Materiau a base d'alliage d'aluminium, procede de production et utilisation correspondants
DE69125436T3 (de) Verfahren zur Herstellung von Blech aus einer Aluminiumlegierung
EP1518000B1 (fr) Alliage al-cu-mg-ag avec si, produit semi-fini realise a partir de cet alliage, et procede de realisation d'un produit semi-fini de ce type
DE2953182A1 (en) Aluminum alloy
DE112008003052T5 (de) Produkt aus Al-Mg-Zn-Knetlegierung und Herstellungsverfahren dafür
DE60300004T3 (de) Knetprodukt aus Al-Cu-Mg-Legierung für das Strukturbauteil eines Flugzeugs
DE3411760A1 (de) Verfahren zur herstellung von blech oder band aus einem walzbarren einer aluminiumlegierung
DE2103614B2 (de) Verfahren zur Herstellung von Halbzeug aus AIMgSIZr-Legierungen mit hoher Kerbschlagzähigkeit
AT502313B1 (de) Verfahren zum herstellen einer hochschadenstoleranten aluminiumlegierung
EP3024958B1 (fr) Alliage d'aluminium de fondèrie résistant a haute temperature et pièce de fonderie pour moteurs a combustion interne utilisant cet alliage
EP1017867B1 (fr) Alliage a base d'aluminium et procede permettant de le soumettre a un traitement thermique
DE2743470A1 (de) Kupferlegierung
DE10163039C1 (de) Warm- und kaltumformbares Bauteil aus einer Aluminiumlegierung und Verfahren zu seiner Herstellung
DE1284095B (de) Verfahren zum Herstellen von Aluminiumlegierungsblechen hoher Zeitstandfestigkeit
DE602004005529T2 (de) Schmiedealuminiumlegierung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20060703

17Q First examination report despatched

Effective date: 20061006

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

17Q First examination report despatched

Effective date: 20061006

AKX Designation fees paid

Designated state(s): DE ES FR GB IT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502005001724

Country of ref document: DE

Date of ref document: 20071129

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20080116

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2292075

Country of ref document: ES

Kind code of ref document: T3

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: ALCAN FRANCE SAS (FR) / ALCAN RHENALU (FR) / ALCAN

Effective date: 20080708

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: ALCAN FRANCE SAS (FR) / ALCAN RHENALU (FR) / ALCAN

Effective date: 20080708

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20100721

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): DE ES FR GB IT

REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Effective date: 20101203

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20201130

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005001724

Country of ref document: DE

Representative=s name: HAVERKAMP PATENTANWAELTE PARTG MBB, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20211123

Year of fee payment: 17

Ref country code: ES

Payment date: 20211216

Year of fee payment: 17

Ref country code: DE

Payment date: 20211011

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005001724

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230529

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221121

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230601

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20240102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221122

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231122

Year of fee payment: 19