EP1682688B1 - Al-Mg-Si cast aluminium alloy containing scandium - Google Patents

Al-Mg-Si cast aluminium alloy containing scandium Download PDF

Info

Publication number
EP1682688B1
EP1682688B1 EP04802664A EP04802664A EP1682688B1 EP 1682688 B1 EP1682688 B1 EP 1682688B1 EP 04802664 A EP04802664 A EP 04802664A EP 04802664 A EP04802664 A EP 04802664A EP 1682688 B1 EP1682688 B1 EP 1682688B1
Authority
EP
European Patent Office
Prior art keywords
weight
alloy
alloy according
aluminium casting
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP04802664A
Other languages
German (de)
French (fr)
Other versions
EP1682688A1 (en
Inventor
Hubert Koch
Blanka Lenczowski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Aluminium Rheinfelden GmbH
Original Assignee
Aluminium Rheinfelden GmbH
EADS Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aluminium Rheinfelden GmbH, EADS Deutschland GmbH filed Critical Aluminium Rheinfelden GmbH
Publication of EP1682688A1 publication Critical patent/EP1682688A1/en
Application granted granted Critical
Publication of EP1682688B1 publication Critical patent/EP1682688B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent

Definitions

  • the present invention relates to an aluminum casting alloy, which is particularly suitable for thermally highly stressed castings.
  • the performance of castings produced therefrom is considerably improved, the thermal stability of which is ensured up to temperatures of 400 ° C.
  • castings are used to produce castings with high quality standards.
  • quality of a die-cast part depends not only on the machine setting and the chosen method, but also to a great extent on the chemical composition and microstructure of the casting alloy used. These two latter parameters are known to affect the castability, the feeding behavior, the mechanical properties and, most importantly in die casting, the life of the casting tools.
  • compositions for aluminum casting alloys are known in the art.
  • EP 0 687 742 A1 discloses, for example, an aluminum-silicon based pressure casting alloy containing 9.5-11.5 wt% silicon, 0.1-0.5 wt% magnesium, 0.5-0.8 wt% manganese , Max. 0.15% by weight of iron, max. 0.03 wt% copper, Max. 0.10 zinc, max. 0.15% by weight of titanium and the remainder of aluminum and permanent finishing contains 30 to 300 ppm of strontium.
  • An aluminum alloy which consists of 5.4-5.8% by weight of magnesium, 1.8-2.5% by weight of silicon, 0.5-0.9% by weight of manganese, max. 0.2% by weight of titanium, max. 0.15 wt.% Iron, and aluminum as a remainder with further impurities individually max. 0.02% by weight, in total max. 0.2 wt .-%, which is particularly suitable for thixocasting or Thixoschmieden.
  • an aluminum casting alloy is known, which is particularly suitable for chill casting and sand casting, and at least 0.05 - 0.5 wt.% Manganese, 0.2 -1.0 wt.% Magnesium, 4-7 wt. % Zinc and 0.15-0.45 wt% chromium.
  • these aluminum casting alloys are mainly designed for safety-relevant vehicle components, such as, for example, handlebars, carriers, frame parts and wheels, in which primarily a high elongation at break is in the foreground.
  • safety-relevant vehicle components such as, for example, handlebars, carriers, frame parts and wheels, in which primarily a high elongation at break is in the foreground.
  • thermal loads up to 400 ° C, these alloys are not suitable.
  • the classic cast aluminum materials are only thermally stable up to approx. 200 ° C.
  • Aluminum alloys with scandium are known for increasing strength.
  • the high strength results from a heat aging after solution treatment and quenching with water.
  • the disadvantage is that the solution annealing usually leads to a delay, which must be corrected by additional measures or work steps (resizing and straightening).
  • Out JP-A-09279280 is an aluminum wrought alloy known and made EP 1138794 A1 and WO 96/15281 Further aluminum casting alloys are known.
  • the present invention has for its object to develop an aluminum casting alloy, which is suitable for thermally highly stressed castings.
  • the heat resistance i.
  • the thermal stability of the mechanical properties should be ensured up to temperatures of 400 ° C.
  • the aluminum casting alloy according to the invention should have a good weldability and can be produced with a variety of methods with good castability.
  • a silicon content of 1.1-4.0% by weight is advantageous. Particularly advantageous is a silicon content of 1.1 to 3.0 wt .-%.
  • the scandium In addition to intensive particle hardening by the thermally very stable Al 3 Sc particles, the scandium causes grain refining of the cast structure and recrystallization inhibition. Castings made from the alloy of the invention thus have the advantage that their mechanical properties are stable up to temperatures of 400 ° C.
  • the casting alloy according to the invention is thus predestined, above all, for castings which are subjected to high thermal loads. Furthermore, it is advantageous that due to the high heat resistance replacement of aluminum materials by materials with high density is not required. By using the alloy according to the invention, the component weight is guaranteed with increased conductivity and can even be reduced by thinner-walled castings.
  • the scandium content also improves weldability.
  • the scandium content is between 0.01-0.45 wt .-%. Particularly preferred is a scandium content of 0.015-0.4 wt .-%.
  • titanium Like scandium, titanium also causes grain refining, thus contributing in a corresponding way to improving the heat resistance. In addition, titanium lowers the electrical conductivity.
  • the titanium content is preferably 0.01-0.2% by weight, in particular 0.05-0.15% by weight.
  • zirconium Since zirconium has the same effect as scandium or titanium, it is also advantageous to additionally add zirconium to the alloy.
  • Zirconium substitutes Sc atoms and forms particles of the ternary compound Al 3 (Sc 1-x , Zr x ) which are less prone to coagulation at higher temperatures than the Al 3 Sc particles.
  • the constituents scandium and zirconium again improve the heat resistance of the alloy compared to an alloy containing only scandium. This allows further optimization in the direction of lower scandium contents to reduce costs.
  • the zirconium content of preferred embodiments is between 0.01-0.3% by weight and 0.05-0.1% by weight.
  • the aluminum casting alloy according to the invention already exhibits the heat-resistance-increasing effect in the cast state.
  • a subsequent heat treatment in a temperature range of typically 250 - 400 ° C, the mechanical properties are finally achieved with the appropriate heat resistance.
  • the time duration is known to depend on the component size or thickness, the heat resistance can be varied accordingly.
  • a solution annealing with subsequent thermal aging is not required, which is advantageous in that thus the problem of distortion, which usually involves a resizing and straightening and is known to occur in the classic, solution-treated and warm-aged aluminum casting alloys, does not matter.
  • hafnium, molybdenum, terbium, niobium, gadolinium, erbium and / or vanadium may be added to the alloy.
  • the alloy contains one or more elements selected from the group consisting of zirconium, hafnium, molybdenum, terbium, niobium, gadolinium, erbium and vanadium. The sum of the selected elements is at most 0.5% by weight, but preferably 0.01-0.3% by weight.
  • the alloy contains at least 0.001 wt .-%, preferably at least 0.008 wt .-% vanadium.
  • Vanadium acts as a grain refiner similar to titanium. In addition, it improves weldability and reduces the tendency of the melt to be scratched.
  • the alloy contains at least 0.001% by weight of gadolinium.
  • chrome 0.001-0.3% by weight, in particular 0.0015-0.2% by weight
  • Copper 0.001-1.0 wt .-%, in particular 0.5-1.0% by weight
  • Zinc 0.001-0.05% by weight.
  • the addition of iron and / or manganese is known to reduce the adhesive effect. Preference is given to using a manganese content of not more than 0.01% by weight and an iron content of from 0.05 to 0.6% by weight, in particular from 0.05 to 0.2% by weight.
  • the technical grade iron is typically at least 0.12 wt%. However, the addition of iron and / or manganese during die casting and sand casting is not absolutely necessary.
  • the die casting process is different.
  • an addition of iron and / or manganese is required to reduce the adhesive effect of the die casting in the mold.
  • the manganese content is preferably between 0.4 and 0.8% by weight.
  • the sum of manganese and iron should be at least 0.8 wt .-%.
  • the diecasting alloy contains either only iron or only manganese.
  • the first alloy also contains zirconium.
  • the second alloy has a higher scandium content than the first alloy but does not contain zircon.
  • the third alloy is a variant with higher magnesium and silicon content.
  • a fourth alloy was made by die casting, which also contains copper. This alloy was melted in a 200 kg electric heated crucible furnace. The casting temperature was 700 ° C. It was cast on a 400 t (tensile holding force) die casting machine. The sample used was a plate with the dimensions 220 ⁇ 60 ⁇ 3 mm. From the plates samples for tensile tests were taken. The test bars were only worked on the narrow sides.
  • the mechanical properties of the various die cast alloys of the present invention were cast as cast, after 3 hours of heat treatment at 300 ° C and under various thermal loads (200 ° C / 500h, 250 ° C / 500h, 350 ° C / 500h and 400 ° C / 500h) to determine thermal stability.
  • the mechanical properties of Alloy 4 Die Casting Alloy
  • Alloy 4 Die Casting Alloy
  • the Reference alloy was subjected to conventional high-temperature annealing.
  • the reference alloy was solution annealed at 540 ° C for 12h, then quenched with water and then warm-aged at 165 ° C for 6h.
  • the measurement results are summarized in Table 2, where Rp0.2 is the yield strength in MPa, Rm the tensile strength in MPa and A5 the elongation at break in%.
  • the alloy according to the invention has good mechanical properties already in the cast state.
  • a heat treatment here 300 ° C for 3h or 300 ° C for 1h
  • the mechanical properties are further increased, which is due to particle hardening by segregation from the supersaturated mixed crystal in "hot Ausausung", ie formation of secondary precipitates Al 3 (Sc 1-x , Zr x ) is due.
  • the thermal stability of alloys 1-3 can be seen well up to temperatures of 400 ° C.
  • the values for the yield strength and the tensile strength are quite high up to temperatures of 400 ° C. If one compares the measured values of the reference alloy at 250 ° C. with the corresponding values of the alloy according to the invention, it is clearly evident that the very good mechanical properties are retained in the alloy according to the invention.
  • the reference alloy at 250 ° C already shows a significant reduction in the yield strength and the tensile strength.
  • the alloy of the invention has a very good weldability. It has an excellent G discernvertialten and can be produced with the usual casting methods (die casting, sand casting, chill casting, thixocasting, rheocasting or derivatives of these methods).
  • the alloy according to the invention is preferably used for thermally highly stressed castings.
  • These are, for example, cylinder heads, crankcases, components for air conditioning systems, aircraft structural components, in particular for Supersonic aircraft, engine segments, pylons, which are highly loaded connection components between the engine and wing, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Continuous Casting (AREA)
  • Supercharger (AREA)
  • Mold Materials And Core Materials (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)

Abstract

Cast aluminium alloys comprising 1.0-8.0% in weight magnesium (Mg), >1.0-4.0% in weight silicon (Si), 0.01-<0.5% in weight scandium (Sc), 0.005-0.2% in weight titanium (Ti), 0-0.5% in weight of at least one element or selected from the group consisting of zirconium (Zr), hafnium (Hf), molybdenum (Mo), terbium (Tb), niobium (Nb), gadolinium (Gd), erbium (Er) and vanadium (V), 0-0.8% in weight manganese (Mn), 0-0.3% in weight chromium (Cr), 0-1.0% in weight copper (Cu), 0-0.1% in weight zinc (Zn), 0-0.6% in weight iron (Fe), 0-0.004% in weight beryllium (Be), and the remainder of aluminium with further impurities to an individual maximum of 0.1% in weight and totally maximally 0.5% in weight.

Description

Die vorliegende Erfindung betrifft eine Aluminium-Gusslegierung, die insbesondere für thermisch hochbelastete Gussteile geeignet ist. Durch Verwendung der erfindungsgemäßen Aluminium-Gusslegierung wird die Leistungsfähigkeit daraus hergestellter Gussteile erheblich verbessert, wobei deren thermische Stabilität bis zu Temperaturen von 400 °C gewährleistet ist.The present invention relates to an aluminum casting alloy, which is particularly suitable for thermally highly stressed castings. By using the aluminum casting alloy according to the invention, the performance of castings produced therefrom is considerably improved, the thermal stability of which is ensured up to temperatures of 400 ° C.

Mit modernen Gießverfahren, wie beispielsweise dem Druckguss-, Sandguss-, Kokillengussverfahren oder dem Thixo- und Rheocasting, die technisch sehr weit entwickelt sind, können heute hochbelastbare Gussteile aus Aluminium-Legierungen hergestellt werden.With modern casting processes, such as die casting, sand casting, chill casting or thixotropic and rheocasting, which are technically very advanced, it is now possible to produce heavy-duty castings from aluminum alloys.

Mittels Druckguss werden zum Beispiel Gussteile mit hohen Qualitätsansprüchen hergestellt. Die Qualität eines Druckgussteils hängt aber nicht nur von der Maschineneinstellung und dem gewählten Verfahren ab, sondern in hohem Maße auch von der chemischen Zusammensetzung und der Gefügestruktur der verwendeten Gusslegierung. Diese beiden letztgenannten Parameter beeinflussen bekanntermaßen die Gießbarkeit, das Speisungsverhalten, die mechanischen Eigenschaften und, im Druckguss ganz besonders wichtig, die Lebensdauer der Gießwerkzeuge.For example, castings are used to produce castings with high quality standards. However, the quality of a die-cast part depends not only on the machine setting and the chosen method, but also to a great extent on the chemical composition and microstructure of the casting alloy used. These two latter parameters are known to affect the castability, the feeding behavior, the mechanical properties and, most importantly in die casting, the life of the casting tools.

Somit steht in der Automobil- und Flugzeugkonstruktionstechnik die Legierungsentwicklung an sich wieder stärker im Vordergrund, um durch spezielle Legierungszusammensetzungen die gewünschten Eigenschaften der Bauteile zu erzielen.Thus, in automobile and aircraft construction technology, the alloy development itself is again in the foreground in order to achieve the desired properties of the components by means of special alloy compositions.

Aus dem Stand der Technik sind eine Vielzahl von Zusammensetzungen für Aluminium-Gussiegierungen bekannt.A variety of compositions for aluminum casting alloys are known in the art.

EP 0 687 742 A1 offenbart zum Beispiel eine Druckgusslegierung auf Aluminium-Silizium-Basis, die 9,5 - 11,5 Gew.% Silizium, 0,1 - 0,5 Gew.-% Magnesium, 0,5 - 0,8 Gew.-% Mangan , max. 0,15 Gew.-% Eisen, max. 0,03 Gew.% Kupfer, max. 0,10 Zink, max. 0,15 Gew.% Titan sowie als Rest Aluminium und Dauerveredelung 30 bis 300 ppm Strontium enthält. EP 0 687 742 A1 discloses, for example, an aluminum-silicon based pressure casting alloy containing 9.5-11.5 wt% silicon, 0.1-0.5 wt% magnesium, 0.5-0.8 wt% manganese , Max. 0.15% by weight of iron, max. 0.03 wt% copper, Max. 0.10 zinc, max. 0.15% by weight of titanium and the remainder of aluminum and permanent finishing contains 30 to 300 ppm of strontium.

Aus EP 0 792 380 A1 ist eine Aluminiumlegierung bekannt, die aus 5,4 - 5,8 Gew.-% Magnesium, 1,8 - 2,5 Gew.% Silizium, 0,5 - 0,9 Gew.-% Mangan, max. 0,2 Gew.-% Titan, max. 0,15 Gew.% Eisen, sowie Aluminium als Rest mit weiteren Verunreinigungen einzeln max. 0,02 Gew.%, insgesamt max. 0,2 Gew.-% besteht, die insbesondere für das Thixocasting oder Thixoschmieden geeignet ist.Out EP 0 792 380 A1 An aluminum alloy is known which consists of 5.4-5.8% by weight of magnesium, 1.8-2.5% by weight of silicon, 0.5-0.9% by weight of manganese, max. 0.2% by weight of titanium, max. 0.15 wt.% Iron, and aluminum as a remainder with further impurities individually max. 0.02% by weight, in total max. 0.2 wt .-%, which is particularly suitable for thixocasting or Thixoschmieden.

Ferner ist aus EP 1 229 141 A1 eine Aluminium-Gusslegierung bekannt, die vor allem für den Kokillenguss und den Sandguss geeignet ist, und zumindest 0,05 - 0,5 Gew.% Mangan, 0,2 -1,0 Gew.% Magnesium, 4-7 Gew.-% Zink und 0,15 - 0,45 Gew.% Chrom enthält.Furthermore, it is off EP 1 229 141 A1 an aluminum casting alloy is known, which is particularly suitable for chill casting and sand casting, and at least 0.05 - 0.5 wt.% Manganese, 0.2 -1.0 wt.% Magnesium, 4-7 wt. % Zinc and 0.15-0.45 wt% chromium.

Diese Aluminium-Gusslegierungen sind jedoch hauptsächlich für sicherheitsrelevante Fahrzeugkomponenten, wie beispielsweise Lenker, Träger, Rahmenteile und Räder, konzipiert, bei denen primär eine hohe Bruchdehnung im Vordergrund steht. Für thermische Belastungen bis zu 400 °C sind diese Legierungen nicht geeignet. Die klassischen Aluminium-Gusswerkstoffe sind nur bis ca. 200 °C thermisch stabil.However, these aluminum casting alloys are mainly designed for safety-relevant vehicle components, such as, for example, handlebars, carriers, frame parts and wheels, in which primarily a high elongation at break is in the foreground. For thermal loads up to 400 ° C, these alloys are not suitable. The classic cast aluminum materials are only thermally stable up to approx. 200 ° C.

Zudem ist aus dem Artikel von Feikus et. al "Optimierung einer AISi-Gußlegierung und anwendungsorientierte Entwicklung der Gießtechnik zu Herstellung hochbelastbarer Motorblöcke", Giesserei 88 (2001), Nr. 11, Seite 25-32 , eine speziell für Motorgussteile konzipierte AlSi7MgCuNiFe-Legierung bekannt.Moreover, from the article of Feikus et. al "Optimization of an AISi casting alloy and application-oriented development of casting technology for the production of heavy-duty engine blocks", Foundry 88 (2001), No. 11, pages 25-32 , a specially designed for engine casting AlSi7MgCuNiFe alloy known.

Daneben sind aus der WO A-96/10099 Aluminium-Legierungen mit Scandium zur Erhöhung der Festigkeit bekannt. Die hohe Festigkeit ergibt sich durch eine Warmauslagerung nach Lösungsglühen und Abschrecken mit Wasser. Von Nachteil ist, dass es beim Lösungsglühen in der Regel zu einem Verzug kommt, der durch zusätzliche Maßnahmen bzw. Arbeitsschritte (Nachmessen und Richten) korrigiert werden muss.In addition are from the WO-A-96/10099 Aluminum alloys with scandium are known for increasing strength. The high strength results from a heat aging after solution treatment and quenching with water. The disadvantage is that the solution annealing usually leads to a delay, which must be corrected by additional measures or work steps (resizing and straightening).

Aus JP-A-09279280 ist eine Aluminium-Knetlegierung bekannt und aus EP 1138794 A1 und WO 96/15281 sind weitere Aluminium-Gusslegierungen bekannt.Out JP-A-09279280 is an aluminum wrought alloy known and made EP 1138794 A1 and WO 96/15281 Further aluminum casting alloys are known.

Der vorliegende Erfindung liegt die Aufgabe zugrunde, eine Aluminium-Gusslegierung zu entwickeln, die für thermisch hochbelastete Gussteile geeignet ist. Die Warmfestigkeit, d.h. die thermische Stabilität der mechanischen Eigenschaften, soll dabei bis zu Temperaturen von 400 °C gewährleistet sein. Darüber hinaus soll die erfindungsgemäße Aluminium-Gusslegierung eine gute Schweißbarkeit aufweisen und sich mit einer Vielzahl von Verfahren bei guter Gießbarkeit herstellen lassen.The present invention has for its object to develop an aluminum casting alloy, which is suitable for thermally highly stressed castings. The heat resistance, i. The thermal stability of the mechanical properties should be ensured up to temperatures of 400 ° C. In addition, the aluminum casting alloy according to the invention should have a good weldability and can be produced with a variety of methods with good castability.

Die Aufgabe wird durch eine Aluminium-Gusslegierung gelöst, die zumindest aus

  • 3,0-6,0 Gew.-% Magnesium (Mg),
  • > 1,0 - 4,0 Gew.-% Silizium (Si),
  • 0,01 - < 0,5 Gew.-% Scandium (Sc),
  • 0,005 - 0,2 Gew.-% Titan (Ti),
  • 0 - 0,5 Gew.-% eines Elementes oder einer Elementengruppe ausgewählt aus der Gruppe bestehend aus Zirkon (Zr), Hafnium (Hf), Molybdän (Mo), Terbium (Tb),
  • Niob (Nb), Gadolinium (Gd), Erbium (Er) und Vanadium (V),
  • 0 - 0,8 Gew.-% Mangan (Mn),
  • 0 - 0,3 Gew.-% Chrom (Cr),
  • 0 - 1,0 Gew.-% Kupfer (Cu),
  • 0 - 0,05 Gew.-% Zink (Zn),
  • 0 - 0,6 Gew.-% Eisen (Fe),
  • 0 - 0,004 Gew.-% Beryllium (Be),
Rest Aluminium und weiteren Verunreinigungen mit einzeln max. 0,1 Gew.-% und insgesamt max. 0,5 Gew.-% besteht.The task is solved by an aluminum casting alloy, which at least
  • 3.0-6.0 wt.% Magnesium (Mg),
  • > 1.0-4.0% by weight of silicon (Si),
  • 0.01-0.5% by weight scandium (Sc),
  • 0.005-0.2% by weight of titanium (Ti),
  • 0 - 0.5 wt .-% of an element or an element group selected from the group consisting of zirconium (Zr), hafnium (Hf), molybdenum (Mo), terbium (Tb),
  • Niobium (Nb), gadolinium (Gd), erbium (Er) and vanadium (V),
  • 0 - 0.8 wt .-% manganese (Mn),
  • 0-0.3% by weight of chromium (Cr),
  • 0-1.0% by weight of copper (Cu),
  • 0-0.05% by weight of zinc (Zn),
  • 0-0.6% by weight of iron (Fe),
  • 0 - 0.004 wt.% Beryllium (Be),
Rest of aluminum and other impurities with individually max. 0.1% by weight and a total of max. 0.5 wt .-% consists.

Vorteilhaft ist ein Siliziumgehalt von 1,1 - 4,0 Gew.-%. Besonders vorteilhaft ist ein Siliziumgehalt von 1,1 - 3,0 Gew.-%.A silicon content of 1.1-4.0% by weight is advantageous. Particularly advantageous is a silicon content of 1.1 to 3.0 wt .-%.

Wesentlich ist die Zugabe von Scandium. Das Scandium bewirkt neben einer intensiven Teilchenhärtung durch die thermisch sehr stabilen Al3Sc-Teilchen eine Kornfeinung des Gussgefüges und eine Rekristallisationshemmung. Gussteile, die aus der erfindungsgemäßen Legierung hergestellt sind, haben somit den Vorteil, dass ihre mechanischen Eigenschaften bis zu Temperaturen von 400 °C stabil sind. Die erfindungsgemäße Gusslegierung ist damit vor allem für thermisch hochbelastete Gussteile prädestiniert. Ferner ist es von Vorteil, dass durch die hohe Warmfestigkeit ein Ersatz von Aluminiumwerkstoffen durch Werkstoffe mit hoher Dichte nicht erforderlich ist. Durch die Verwendung der erfindungsgemäßen Legierung wird das Bauteilgewicht bei erhöhter Leitungsfähigkeit garantiert bzw. kann sogar durch dünnwandigere Gussteile reduziert werden. Ein weiterer Vorteil ist, dass durch den Scandiumanteil auch die Schweißbarkeit verbessert wird. Bevorzugt liegt der Scandiumgehalt zwischen 0,01 - 0,45 Gew.-%. Besonders bevorzugt ist ein Scandiumgehalt von 0,015 - 0,4 Gew.-%.Essential is the addition of scandium. In addition to intensive particle hardening by the thermally very stable Al 3 Sc particles, the scandium causes grain refining of the cast structure and recrystallization inhibition. Castings made from the alloy of the invention thus have the advantage that their mechanical properties are stable up to temperatures of 400 ° C. The casting alloy according to the invention is thus predestined, above all, for castings which are subjected to high thermal loads. Furthermore, it is advantageous that due to the high heat resistance replacement of aluminum materials by materials with high density is not required. By using the alloy according to the invention, the component weight is guaranteed with increased conductivity and can even be reduced by thinner-walled castings. Another advantage is that the scandium content also improves weldability. Preferably, the scandium content is between 0.01-0.45 wt .-%. Particularly preferred is a scandium content of 0.015-0.4 wt .-%.

Wie Scandium bewirkt auch Titan eine Kornfeinung und trägt damit in entsprechender Weise zur Verbesserung der Warmfestigkeit bei. Daneben senkt Titan die elektrische Leitfähigkeit. Vorzugsweise beträgt der Titangehalt 0,01 - 0,2 Gew.-%, insbesondere 0,05 - 0,15 Gew.-%.Like scandium, titanium also causes grain refining, thus contributing in a corresponding way to improving the heat resistance. In addition, titanium lowers the electrical conductivity. The titanium content is preferably 0.01-0.2% by weight, in particular 0.05-0.15% by weight.

Da Zirkon die gleiche Wirkung wie Scandium bzw. Titan hat, ist es ferner vorteilhaft, der Legierung zusätzlich Zirkon beizumengen. Der Effekt des Scandiums, eine intensive Teilchenhärtung durch die thermisch sehr stabilen Al3Sc-Teilchen, eine Kornfeinung des Gefüges sowie eine Rekristallisationshemmung zu bewirken, wird durch die kombinierte Wirkung von Scandium und Zirkon noch erhöht. Zirkon substituiert Sc-Atome und bildet Teilchen der ternären Verbindung Al3(Sc1-x, Zrx), die weniger zur Koagulation bei höheren Temperaturen neigen als die Al3Sc-Teilchen. Somit wird durch die Bestandteile Scandium und Zirkon die Warmfestigkeit der Legierung im Vergleich zu einer Legierung, die nur Scandium enthält, nochmals verbessert. Damit ist eine weitere Optimierung in Richtung geringerer Scandiumgehalte zur Kostensenkung möglich. Der Zirkongehalt bevorzugter Ausführungsformen liegt zwischen 0,01 - 0,3 Gew.-% bzw. 0,05 - 0,1 Gew.-% .Since zirconium has the same effect as scandium or titanium, it is also advantageous to additionally add zirconium to the alloy. The effect of scandium, intensive particle hardening by the thermally very stable Al 3 Sc particles, grain refining of the microstructure and recrystallization inhibition, is further enhanced by the combined action of scandium and zirconium. Zirconium substitutes Sc atoms and forms particles of the ternary compound Al 3 (Sc 1-x , Zr x ) which are less prone to coagulation at higher temperatures than the Al 3 Sc particles. Thus, the constituents scandium and zirconium again improve the heat resistance of the alloy compared to an alloy containing only scandium. This allows further optimization in the direction of lower scandium contents to reduce costs. The zirconium content of preferred embodiments is between 0.01-0.3% by weight and 0.05-0.1% by weight.

Neben der Erhöhung der Warmfestigkeit durch die Zugabe von Scandium, Titan und gegebenenfalls Zirkon, besteht zudem der Vorteil, dass die erfindungsgemäße Aluminium-Gusslegierung bereits im Gusszustand die warmfestigkeitssteigemde Wirkung aufweist. Durch eine nachfolgende Wärmebehandlung in einem Temperaturbereich von typischerweise 250 - 400 °C werden die mechanischen Eigenschaften mit entsprechender Warmfestigkeit abschließend erzielt. Durch geeignete Wahl von Temperatur und Zeitdauer, wobei die Zeitdauer bekanntlich von der Bauteilgröße bzw. -dicke abhängt, kann die Warmfestigkeit entsprechend variiert werden. Ein Lösungsglühen mit anschließender Warmauslagerung ist nicht erforderlich, was insofern vorteilhaft ist, da somit das Problem des Verzuges, was in der Regel ein Nachmessen und Richten nach sich zieht und bekanntlich bei den klassischen, lösungsgeglühten und warmausgelagerten Aluminium-Gusslegierungen auftritt, keine Rolle spielt.In addition to increasing the heat resistance by the addition of scandium, titanium and optionally zirconium, there is also the advantage that the aluminum casting alloy according to the invention already exhibits the heat-resistance-increasing effect in the cast state. By a subsequent heat treatment in a temperature range of typically 250 - 400 ° C, the mechanical properties are finally achieved with the appropriate heat resistance. By suitable choice of temperature and time duration, wherein the time duration is known to depend on the component size or thickness, the heat resistance can be varied accordingly. A solution annealing with subsequent thermal aging is not required, which is advantageous in that thus the problem of distortion, which usually involves a resizing and straightening and is known to occur in the classic, solution-treated and warm-aged aluminum casting alloys, does not matter.

Zusätzlich zum Zirkon oder auch anstelle des Zirkons können der Legierung Hafnium, Molybdän, Terbium, Niob, Gadolinium, Erbium und/oder Vanadium beigefügt werden. Gemäß einer alternativen Ausführungsform enthält die Legierung ein oder mehrere Elemente ausgewählt aus der Gruppe bestehend aus Zirkon, Hafnium, Molybdän, Terbium, Niob, Gadolinium, Erbium und Vanadium. Dabei beträgt die Summe der ausgewählten Elemente maximal 0,5 Gew.-%, vorzugsweise jedoch 0,01 - 0,3 Gew.-%.In addition to zirconium or instead of zirconium, hafnium, molybdenum, terbium, niobium, gadolinium, erbium and / or vanadium may be added to the alloy. According to an alternative embodiment, the alloy contains one or more elements selected from the group consisting of zirconium, hafnium, molybdenum, terbium, niobium, gadolinium, erbium and vanadium. The sum of the selected elements is at most 0.5% by weight, but preferably 0.01-0.3% by weight.

Besonders vorteilhaft ist jedoch, wenn die Legierung mindestens 0,001 Gew.-%, bevorzugt mindestens 0,008 Gew.-% Vanadium enthält. Vanadium wirkt als Kornfeiner ähnlich wie Titan. Zudem verbessert es die Schweißbarkeit und verringert die Verkrätzungsneigung der Schmelze.However, it is particularly advantageous if the alloy contains at least 0.001 wt .-%, preferably at least 0.008 wt .-% vanadium. Vanadium acts as a grain refiner similar to titanium. In addition, it improves weldability and reduces the tendency of the melt to be scratched.

Gemäß einer weiteren alternativen Ausführungsform enthält die Legierung mindestens 0,001 Gew.-% Gadolinium.According to another alternative embodiment, the alloy contains at least 0.001% by weight of gadolinium.

Für die weiteren optionalen Legierungsbestandteile Chrom, Kupfer und Zink werden die folgenden Gehaltsbereiche bevorzugt: Chrom: 0,001 - 0,3 Gew.-%, insbesondere 0,0015 - 0,2 Gew.-% Kupfer: 0,001 -1,0 Gew.-%, insbesondere 0,5 -1,0 Gew.-% Zink: 0,001 - 0,05 Gew.-%. For the other optional alloying constituents chromium, copper and zinc, the following content ranges are preferred: Chrome: 0.001-0.3% by weight, in particular 0.0015-0.2% by weight Copper: 0.001-1.0 wt .-%, in particular 0.5-1.0% by weight Zinc: 0.001-0.05% by weight.

Durch die Zugabe von Eisen und/oder Mangan wird bekanntlich die Klebewirkung vermindert. Bevorzugt wird ein Mangangehalt von maximal 0,01 Gew.-% und ein Eisengehalt von 0,05 -0,6 Gew.-%, insbesondere 0,05 - 0,2 Gew.-% verwendet. Der technische Eisengehalt liegt typischerweise bei mindestens 0,12 Gew.-%. Allerdings ist die Zugabe von Eisen und/oder Mangan beim Kokillen- und Sandguss nicht unbedingt erforderlich.The addition of iron and / or manganese is known to reduce the adhesive effect. Preference is given to using a manganese content of not more than 0.01% by weight and an iron content of from 0.05 to 0.6% by weight, in particular from 0.05 to 0.2% by weight. The technical grade iron is typically at least 0.12 wt%. However, the addition of iron and / or manganese during die casting and sand casting is not absolutely necessary.

Beim Druckgussverfahren ist das anders. Hier ist eine Zugabe von Eisen und/oder Mangan erforderlich, um die Klebewirkung des Druckgussteils in der Form zu vermindern. Bei Aluminium-Gusslegierung für den Druckguss liegt der Mangangehalt bevorzugt zwischen 0,4 - 0,8 Gew.-%. Zudem sollte die Summe aus Mangan- und Eisengehalt mindestens 0,8 Gew.-% betragen. Besonders vorteilhaft ist es jedoch, wenn die Druckgusslegierung entweder nur Eisen oder nur Mangan enthält.The die casting process is different. Here, an addition of iron and / or manganese is required to reduce the adhesive effect of the die casting in the mold. In aluminum casting alloy for die casting, the manganese content is preferably between 0.4 and 0.8% by weight. In addition, the sum of manganese and iron should be at least 0.8 wt .-%. However, it is particularly advantageous if the diecasting alloy contains either only iron or only manganese.

Weitere Vorteile, Merkmale und Einzelheiten der erfindungsgemäßen Aluminium-Gusslegierung sowie deren Eigenschaften ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele.Further advantages, features and details of the aluminum casting alloy according to the invention and their properties will become apparent from the following description of preferred embodiments.

Beispiele:Examples:

Aus drei verschiedenen Legierungen wurden mittels der Diezstabkokille Probenstäbe zur Bestimmung der mechanischen Eigenschaften gegossen. Die erste Legierung enthält neben Scandium und Titan auch Zirkon. Die zweite Legierung weist einen höheren Scandiumgehalt als die erste Legierung auf, enthält aber kein Zirkon. Die dritte Legierung ist eine Variante mit höherem Magnesium- und Siliziumgehalt.From three different alloys sample bars were cast by means of Diezstabkokille to determine the mechanical properties. In addition to scandium and titanium, the first alloy also contains zirconium. The second alloy has a higher scandium content than the first alloy but does not contain zircon. The third alloy is a variant with higher magnesium and silicon content.

Zudem wurde eine vierte Legierung mittels Druckguß hergestellt, die auch Kupfer enthält. Diese Legierung wurde in einem 200 kg-elektrobeheizten Tiegelofen erschmolzen. Die Gießtemperatur betrug 700 °C. Es wurde auf einer 400 t (Zughaltekraft) Druckgussmaschine gegossen. Als Probenform diente eine Platte mit den Massen 220 x 60 x 3 mm. Aus den Platten wurden Probestäbe für Zugversuche entnommen. Die Probestäbe waren nur auf den Schmalseiten bearbeitet.In addition, a fourth alloy was made by die casting, which also contains copper. This alloy was melted in a 200 kg electric heated crucible furnace. The casting temperature was 700 ° C. It was cast on a 400 t (tensile holding force) die casting machine. The sample used was a plate with the dimensions 220 × 60 × 3 mm. From the plates samples for tensile tests were taken. The test bars were only worked on the narrow sides.

Zu Vergleichszwecken wurde ferner eine Referenzlegierung (Legierung 5), die weder Scandium noch Zirkon enthält, verwendet. Diese Legierung wurde ebenfalls mittels Diezstabkokille gegossen. Die jeweiligen Legierungszusammensetzungen sind in Tabelle 1 zusammengefasst. Tabelle 1: Legierungszusammensetzungen Legierung Zusammensetzung (Gew.-%) Si Cu Fe Mn Mg Cr Zn Ti V Zr Sc 1 1,11 0 0,065 0,1 3,09 0,001 0,002 0,149 0,036 0,076 0,15 2 1,11 0 0,066 0,103 3,34 0,001 0,005 0,122 0,033 0 0,4 3 2,49 0 0,08 0,06 5,6 0 0 0,11 0,19 0,08 0,15 4 2,35 0,001 0,078 0,69 5,59 0,001 0,001 0,1 0,044 0,06 0,17 5 (Ref.) 1,1 0 0,081 0,004 3,036 0,001 0,003 0,129 0,03 0 0 For comparison, a reference alloy (Alloy 5) containing neither scandium nor zircon was further used. This alloy was also cast by Diezstabkokille. The respective alloy compositions are summarized in Table 1. Table 1: Alloy compositions alloy Composition (% by weight) Si Cu Fe Mn mg Cr Zn Ti V Zr sc 1 1.11 0 0,065 0.1 3.09 0.001 0,002 0,149 0,036 0,076 0.15 2 1.11 0 0.066 0.103 3.34 0.001 0.005 0,122 0.033 0 0.4 3 2.49 0 0.08 0.06 5.6 0 0 0.11 0.19 0.08 0.15 4 2.35 0.001 0.078 0.69 5.59 0.001 0.001 0.1 0,044 0.06 0.17 5 (Ref.) 1.1 0 0.081 0,004 3,036 0.001 0,003 0,129 0.03 0 0

Die mechanischen Eigenschaften der verschiedenen mittels Diezstabkokille gegossenen erfindungsgemäßen Legierungen wurden im Gusszustand, nach 3-stündiger Wärmebehandlung bei 300 °C und anschtießend unter verschieden thermischen Belastungen (200 °C/500h, 250 °C/500h, 350 °C/500h und 400 °C/500h), zum Ermitteln der thermischen Stabilität, gemessen. Die mechanischen Eigenschaften der Legierung 4 (Druckgusslegierung) wurden lediglich im Gusszustand und nach 1-stündiger, 300 °C - Wärmebehandlung gemessen. Die Referenzlegierung wurde einem herkömmlichen Hochtemperaturglühen unterzogen. Die Referenzlegierung wurde bei 540 °C für 12h lösungsgeglüht, anschließend mit Wasser abgeschreckt und dann bei 165 °C für 6h warmausgelagert. Die Messergebnisse sind in Tabelle 2 zusammengefasst, wobei Rp0.2 die Dehngrenze in MPa, Rm die Zugfestigkeit in MPa und A5 die Bruchdehnung in % ist.The mechanical properties of the various die cast alloys of the present invention were cast as cast, after 3 hours of heat treatment at 300 ° C and under various thermal loads (200 ° C / 500h, 250 ° C / 500h, 350 ° C / 500h and 400 ° C / 500h) to determine thermal stability. The mechanical properties of Alloy 4 (Die Casting Alloy) were measured only in the cast condition and after a 1 hour, 300 ° C heat treatment. The Reference alloy was subjected to conventional high-temperature annealing. The reference alloy was solution annealed at 540 ° C for 12h, then quenched with water and then warm-aged at 165 ° C for 6h. The measurement results are summarized in Table 2, where Rp0.2 is the yield strength in MPa, Rm the tensile strength in MPa and A5 the elongation at break in%.

Die Versuche zeigen, dass die erfindungsgemäße Legierung bereits im Gusszustand gute mechanische Eigenschaften aufweist. Durch eine Wärmebehandlung (hier 300 °C für 3h bzw. 300 °C für 1h) werden die mechanischen Eigenschaften weiter erhöht, was auf Teilchenhärtung durch Entmischung aus dem übersättigten Mischkristall bei "Warmausiagerung", also Bildung von Sekundärausscheidungen Al3(Sc1-x, Zrx) zurückzuführen ist. Außerdem ist die thermische Stabilität der Legierungen 1-3 bis zu Temperaturen von 400 °C gut zu erkennen. Insbesondere die Werte für die Dehngrenze und die Zugfestigkeit sind bis zu Temperaturen von 400 °C recht hoch. Vergleicht man die Messwerte der Referenzlegierung bei 250 °C mit den entsprechenden Werten der erfindungsgemäßen Legierung, erkennt man deutlich die Beibehaltung der sehr guten mechanischen Eigenschaften bei der erfindungsgemäßen Legierung. Im Gegensatz dazu zeigt die Referenzlegierung bei 250 °C bereits eine deutliche Reduzierung der Dehngrenze sowie der Zugfestigkeit.The experiments show that the alloy according to the invention has good mechanical properties already in the cast state. By a heat treatment (here 300 ° C for 3h or 300 ° C for 1h), the mechanical properties are further increased, which is due to particle hardening by segregation from the supersaturated mixed crystal in "hot Ausausung", ie formation of secondary precipitates Al 3 (Sc 1-x , Zr x ) is due. In addition, the thermal stability of alloys 1-3 can be seen well up to temperatures of 400 ° C. In particular, the values for the yield strength and the tensile strength are quite high up to temperatures of 400 ° C. If one compares the measured values of the reference alloy at 250 ° C. with the corresponding values of the alloy according to the invention, it is clearly evident that the very good mechanical properties are retained in the alloy according to the invention. In contrast, the reference alloy at 250 ° C already shows a significant reduction in the yield strength and the tensile strength.

Neben der Warmfestigkeit bis zu Temperaturen von 400 °C, weist die erfindungsgemäße Legierung eine sehr gute Schweißbarkeit auf. Sie hat ein ausgezeichnetes Gießvertialten und ist mit den üblichen Gussverfahren (Druckguss, Sandguss, Kokillenguss, Thixocasting, Rheocasting oder Derivate dieser Verfahren) herstellbar.In addition to the heat resistance up to temperatures of 400 ° C, the alloy of the invention has a very good weldability. It has an excellent Gießvertialten and can be produced with the usual casting methods (die casting, sand casting, chill casting, thixocasting, rheocasting or derivatives of these methods).

Bevorzugt wird die erfindungsgemäße Legierung für thermisch hochbelastete Gussteile verwendet. Dies sind beispielsweise Zylinderköpfe, Kurbelgehäuse, Komponenten für Klimaanlagen, Flugzeugstrukturbauteile, insbesondere Für Überschallflugzeuge, Triebwerksegmente, Pylone, welche hochbelastete Verbindungsbauteile zwischen Triebwerk und Flügel sind, und dergleichen. Tabelle 2: Mechanische Eigenschaften Legierung Gießform Wärmebehandlung Mechanische Eigenschaften Rp0.2 [MPa] Rm [MPa] A5 [%] 1 Diez Gusszustand 105 229 13,8 1 Diez 300 °C/3h 200 272 8,6 1 Diez 300 °C/3h & 200 °C/500h 196 270 8,4 1 Diez 300 °C/3h & 250 °C/500h 202 279 8,1 1 Diez 300 °C/3h & 350 °C/500h 149 241 11,5 1 Diez 300 °C/3h & 400 °C/500h 105 201 13,5 2 Diez Gusszustand 124 202 3,9 2 Diez 300 °C/3h 274 315 2,7 2 Diez 300 °C/3h & 200 °C/500h 253 295 1,9 2 Diez 300 °C/3h & 250 °C/500h 236 285 3 3 Diez Gusszustand 100 240 8,1 3 Diez 300 °C/3h 207 290 4 3 Diez 300 °C/3h & 200 °C/500h 215 296 3,8 3 Diez 300 °C/3h & 250 °C/500h 212 294 3,6 3 Diez 300 °C/3h & 350 °C/500h 178 278 5,7 3 Diez 300 °C/3h & 400 °C/500h 135 245 11,4 4 Druc k-guß Gusszustand 194 335 15,8 4 Druc k-guß 300 °C/1h 247 349 9,9 5 (Referenz) Diez 540 °C/12h/w/165 °C/6h 184 270 13,8 5 (Referenz) Diez & 200 °C/500h 161 226 14,1 5 (Referenz) Diez & 250 °C/500h 87 180 17,7 The alloy according to the invention is preferably used for thermally highly stressed castings. These are, for example, cylinder heads, crankcases, components for air conditioning systems, aircraft structural components, in particular for Supersonic aircraft, engine segments, pylons, which are highly loaded connection components between the engine and wing, and the like. Table 2: Mechanical properties alloy mold heat treatment Mechanical properties Rp0.2 [MPa] Rm [MPa] A5 [%] 1 Diez cast state 105 229 13.8 1 Diez 300 ° C / 3h 200 272 8.6 1 Diez 300 ° C / 3h & 200 ° C / 500h 196 270 8.4 1 Diez 300 ° C / 3h & 250 ° C / 500h 202 279 8.1 1 Diez 300 ° C / 3h & 350 ° C / 500h 149 241 11.5 1 Diez 300 ° C / 3h & 400 ° C / 500h 105 201 13.5 2 Diez cast state 124 202 3.9 2 Diez 300 ° C / 3h 274 315 2.7 2 Diez 300 ° C / 3h & 200 ° C / 500h 253 295 1.9 2 Diez 300 ° C / 3h & 250 ° C / 500h 236 285 3 3 Diez cast state 100 240 8.1 3 Diez 300 ° C / 3h 207 290 4 3 Diez 300 ° C / 3h & 200 ° C / 500h 215 296 3.8 3 Diez 300 ° C / 3h & 250 ° C / 500h 212 294 3.6 3 Diez 300 ° C / 3h & 350 ° C / 500h 178 278 5.7 3 Diez 300 ° C / 3h & 400 ° C / 500h 135 245 11.4 4 Diecast cast state 194 335 15.8 4 Diecast 300 ° C / 1h 247 349 9.9 5 (reference) Diez 540 ° C / 12h / w / 165 ° C / 6h 184 270 13.8 5 (reference) Diez & 200 ° C / 500h 161 226 14.1 5 (reference) Diez & 250 ° C / 500h 87 180 17.7

Claims (15)

  1. Aluminium casting alloy, characterized in that the alloy consists at least of
    3.0 - 6.0% by weight magnesium (Mg),
    > 1.0 - 4.0% by weight silicon (Si),
    0.01 - < 0.5% by weight scandium (Sc),
    0.005 - 0.2% by weight titanium (Ti),
    0 - 0.5% by weight of an element or of a group of elements selected from the group consisting of zirconium (Zr), hafnium (Hf), molybdenum (Mo), terbium (Tb), niobium (Nb), gadolinium (Gd), erbium (Er) and vanadium (V),
    0 - 0.8% by weight manganese (Mn),
    0 - 0.3% by weight chromium (Cr),
    0 - 1.0% by weight copper (Cu),
    0 - 0.05% by weight zinc (Zn),
    0 - 0.6% by weight iron (Fe),
    0 - 0.004% by weight beryllium (Be)
    and remainder aluminium and further impurities to an individual maximum of 0.1% by weight and a total maximum of 0.5% by weight.
  2. Aluminium casting alloy according to Claim 1, characterized in that the alloy contains 1.1 - 4.0% by weight, in particular 1.1 - 3.0% by weight, silicon (Si).
  3. Aluminium casting alloy according to Claim 1 or 2, characterized in that the alloy contains 0.01 - 0.45% by weight, in particular 0.015 - 0.4% by weight, scandium (Sc) .
  4. Aluminium casting alloy according to one of Claims 1 to 3, characterized in that the alloy contains 0.01 - 0.2% by weight, in particular 0.05 - 0.15% by weight, titanium (Ti).
  5. Aluminium casting alloy according to one of Claims 1 to 4, characterized in that the alloy contains 0.01 - 0.3% by weight, in particular 0.05 - 0.1% by weight, zirconium (Zr).
  6. Aluminium casting alloy according to one of Claims 1 to 5, characterized in that the alloy contains at least 0.001% by weight, in particular at least 0.008% by weight, vanadium (V).
  7. Aluminium casting alloy according to one of Claims 1 to 6, characterized in that the alloy contains at least 0.001% by weight gadolinium (Gd).
  8. Aluminium casting alloy according to one of Claims 1 to 7, characterized in that the alloy contains 0.001 - 0.3% by weight, in particular 0.0015 - 0.2% by weight, chromium (Cr).
  9. Aluminium casting alloy according to one of Claims 1 to 8, characterized in that the alloy contains 0.001 - 1.0% by weight, in particular 0.5 - 1.0% by weight, copper (Cu).
  10. Aluminium casting alloy according to one of Claims 1 to 9, characterized in that the alloy contains 0.001 - 0.05% by weight zinc (Zn).
  11. Aluminium casting alloy according to one of Claims 1 to 10, characterized in that the alloy contains 0.05 - 0.6% by weight, preferably 0.05 - 0.2% by weight, iron (Fe).
  12. Aluminium casting alloy according to one of Claims 1 to 11, characterized in that the alloy contains at most 0.15% by weight or 0.4 - 0.8% by weight manganese (Mn).
  13. Use of the aluminium casting alloy according to one of Claims 1 to 12 for producing cast components which can withstand high thermal loads, wherein, after the casting, the cast components are heat-treated at a temperature of 250 - 400°C.
  14. Use of the aluminium casting alloy according to one of Claims 1 to 12 for producing cast components, which can withstand high thermal loads, by means of pressure die-casting, sand casting, gravity die-casting, thixocasting, rheocasting or derivatives of these processes.
  15. Use of the aluminium casting alloy according to one of Claims 1 to 12 for cylinder heads, crankcases, heat-resistant safety components, components of air-conditioning systems, structural components for aircraft, in particular for supersonic aircraft, engine segments or aircraft pylons.
EP04802664A 2003-11-11 2004-11-03 Al-Mg-Si cast aluminium alloy containing scandium Not-in-force EP1682688B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10352932A DE10352932B4 (en) 2003-11-11 2003-11-11 Cast aluminum alloy
PCT/DE2004/002425 WO2005047554A1 (en) 2003-11-11 2004-11-03 Al/mg/si cast aluminium alloy containing scandium

Publications (2)

Publication Number Publication Date
EP1682688A1 EP1682688A1 (en) 2006-07-26
EP1682688B1 true EP1682688B1 (en) 2010-01-06

Family

ID=34585030

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04802664A Not-in-force EP1682688B1 (en) 2003-11-11 2004-11-03 Al-Mg-Si cast aluminium alloy containing scandium

Country Status (6)

Country Link
US (1) US20070240796A1 (en)
EP (1) EP1682688B1 (en)
AT (1) ATE454480T1 (en)
DE (2) DE10352932B4 (en)
ES (1) ES2339356T3 (en)
WO (1) WO2005047554A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109680192A (en) * 2019-01-29 2019-04-26 北京工业大学 A kind of Al-Mg-Mn-Er-Zr alloy hot and stabilizing annealing technique and material

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT501867B1 (en) 2005-05-19 2009-07-15 Aluminium Lend Gmbh & Co Kg ALUMINUM ALLOY
DE502006000145D1 (en) * 2005-08-22 2007-11-29 Rheinfelden Aluminium Gmbh Heat-resistant aluminum alloy
DE102005047435A1 (en) * 2005-09-30 2007-04-05 Ks Aluminium-Technologie Ag Method for manufacturing a cylinder crank housing for an internal combustion engine involves thixocasting or rheocasting super eutectic aluminium silicon alloy
DE102006039684B4 (en) * 2006-08-24 2008-08-07 Audi Ag Aluminum safety component
US7811395B2 (en) 2008-04-18 2010-10-12 United Technologies Corporation High strength L12 aluminum alloys
US8017072B2 (en) 2008-04-18 2011-09-13 United Technologies Corporation Dispersion strengthened L12 aluminum alloys
US7879162B2 (en) 2008-04-18 2011-02-01 United Technologies Corporation High strength aluminum alloys with L12 precipitates
US20090260724A1 (en) * 2008-04-18 2009-10-22 United Technologies Corporation Heat treatable L12 aluminum alloys
US7875131B2 (en) 2008-04-18 2011-01-25 United Technologies Corporation L12 strengthened amorphous aluminum alloys
US7875133B2 (en) 2008-04-18 2011-01-25 United Technologies Corporation Heat treatable L12 aluminum alloys
US7871477B2 (en) 2008-04-18 2011-01-18 United Technologies Corporation High strength L12 aluminum alloys
US8409373B2 (en) 2008-04-18 2013-04-02 United Technologies Corporation L12 aluminum alloys with bimodal and trimodal distribution
US8002912B2 (en) 2008-04-18 2011-08-23 United Technologies Corporation High strength L12 aluminum alloys
WO2009129559A1 (en) * 2008-04-22 2009-10-29 Joka Buha Magnesium grain refining using vanadium
US8778098B2 (en) 2008-12-09 2014-07-15 United Technologies Corporation Method for producing high strength aluminum alloy powder containing L12 intermetallic dispersoids
US8778099B2 (en) 2008-12-09 2014-07-15 United Technologies Corporation Conversion process for heat treatable L12 aluminum alloys
US9611522B2 (en) 2009-05-06 2017-04-04 United Technologies Corporation Spray deposition of L12 aluminum alloys
US8728389B2 (en) 2009-09-01 2014-05-20 United Technologies Corporation Fabrication of L12 aluminum alloy tanks and other vessels by roll forming, spin forming, and friction stir welding
US8409496B2 (en) 2009-09-14 2013-04-02 United Technologies Corporation Superplastic forming high strength L12 aluminum alloys
CN102031424A (en) * 2009-09-29 2011-04-27 贵州铝厂 Cr-Tb high-strength heat-resistant aluminum alloy material and preparation method thereof
US9194027B2 (en) 2009-10-14 2015-11-24 United Technologies Corporation Method of forming high strength aluminum alloy parts containing L12 intermetallic dispersoids by ring rolling
US8409497B2 (en) 2009-10-16 2013-04-02 United Technologies Corporation Hot and cold rolling high strength L12 aluminum alloys
UA96812C2 (en) 2010-01-21 2011-12-12 Юлий Викторович Мильман Aluminium cast alloy containing magnesium and silicon
FR2956597B1 (en) 2010-02-23 2012-03-16 Airbus Operations Sas PROCESS FOR PRODUCING A REINFORCED CURVED METAL STRUCTURE AND CORRESPONDING STRUCTURE
CN101831578B (en) * 2010-06-02 2011-08-31 东北轻合金有限责任公司 Preparation method of aluminum-magnesium-erbium alloy cast ingot
AT511207B1 (en) * 2011-09-20 2012-10-15 Salzburger Aluminium Ag ALUMINUM ALLOY WITH SCANDIUM AND ZIRCON
GB201205655D0 (en) 2012-03-30 2012-05-16 Jaguar Cars Alloy and method of production thereof
US9601978B2 (en) * 2013-04-26 2017-03-21 GM Global Technology Operations LLC Aluminum alloy rotor for an electromagnetic device
DE102013012259B3 (en) 2013-07-24 2014-10-09 Airbus Defence and Space GmbH Aluminum material with improved precipitation hardening, process for its production and use of the aluminum material
GB201402323D0 (en) 2014-02-11 2014-03-26 Univ Brunel A high strength cast aluminium alloy for high pressure die casting
CN104032192B (en) * 2014-03-18 2016-04-27 北京工业大学 A kind of raising contains rolling and the thermal treatment process of erbium aluminum alloy plate materials antifatigue damage performance
CN103938038B (en) * 2014-04-12 2016-01-13 北京工业大学 A kind of resistance to long-term intergranular corrosion containing Zn, Er height Mg aluminum alloy plate materials Stabilizing Heat Treatment technique
KR101606525B1 (en) 2014-10-29 2016-03-25 주식회사 케이엠더블유 Aluminum alloy for die casting having excellent corrosion resistance
CN104313414A (en) * 2014-11-06 2015-01-28 广西柳州银海铝业股份有限公司 Aluminum-magnesium alloy and preparation method of plate of aluminum-magnesium alloy
DE102015200632A1 (en) 2015-01-16 2016-07-21 Federal-Mogul Nürnberg GmbH Method for producing an engine component, engine component and use of a grain refiner for producing an engine component
CN104674083B (en) * 2015-03-10 2017-02-08 陈丹红 Aluminum alloy material for hubs and preparation method of aluminum alloy material
CN104862552A (en) * 2015-05-28 2015-08-26 马鸿斌 Novel aluminum alloy and preparation method thereof
CN105112742B (en) * 2015-09-01 2017-01-04 合肥工业大学 A kind of Al-Si-Mg-Cu-Ti-Sc casting wrought alloy and preparation method thereof
DE102015013540A1 (en) * 2015-10-19 2017-04-20 Trimet Aluminium Se aluminum alloy
CN105256182A (en) * 2015-10-20 2016-01-20 安徽天祥空调科技有限公司 High-corrosion-resistance light and thin aluminum alloy sheet for air conditioner radiator and manufacturing method for high-corrosion-resistance light and thin aluminum alloy sheet
DE102015221643A1 (en) * 2015-11-04 2017-05-04 Airbus Defence and Space GmbH Al-Mg-Si alloy with scandium for the integral assembly of ALM structures
CN105256192A (en) * 2015-11-13 2016-01-20 无锡清杨机械制造有限公司 Aluminium alloy panel and preparation method thereof
EP3181711B1 (en) 2015-12-14 2020-02-26 Apworks GmbH Aluminium alloy containing scandium for powder metallurgy technologies
CN105420564A (en) * 2015-12-15 2016-03-23 深圳市鑫雅豪精密五金有限公司 High-end aluminium alloy material MH-03 and preparation method thereof
CN105734364A (en) * 2016-03-25 2016-07-06 广州市华峰有色金属有限公司 High-end aluminum alloy material JH9 and preparation method thereof
ES2684614T3 (en) 2016-04-19 2018-10-03 Rheinfelden Alloys Gmbh & Co. Kg Alloy for pressure molding
EP3235917B1 (en) * 2016-04-19 2018-08-15 Rheinfelden Alloys GmbH & Co. KG Alloy for pressure die casting
EP3235916B1 (en) 2016-04-19 2018-08-15 Rheinfelden Alloys GmbH & Co. KG Cast alloy
FR3057476B1 (en) * 2016-10-17 2018-10-12 Constellium Issoire ALUMINUM-MAGNESIUM-SCANDIUM ALLOY THIN SHEET FOR AEROSPATIAL APPLICATIONS
CN106591649A (en) * 2016-12-14 2017-04-26 沈阳工业大学 High-strength Al-Cu-Mg-Mn-Er wrought aluminum alloy and preparation method thereof
CN108034871A (en) * 2017-11-21 2018-05-15 保定隆达铝业有限公司 A kind of almag of two width formula frame of handwheel casting and preparation method thereof
CN108165907B (en) * 2018-02-22 2020-03-27 山东南山铝业股份有限公司 Production process of aluminum profile for automobile collision energy-absorbing component and aluminum profile produced by production process
CN109022956B (en) * 2018-08-30 2020-01-21 河南明泰铝业股份有限公司 5A12 aluminum alloy cast ingot and production method and application thereof
CN109112368A (en) * 2018-09-20 2019-01-01 辽宁工业大学 One kind casting hypoeutectic Al-Mg containing Sc2Si alloy and its production method
CN109778028A (en) * 2019-01-21 2019-05-21 宁波市鄞州迪信机械制造有限公司 A kind of sewing machine aluminium alloy cover board
CN111809086B (en) * 2019-04-12 2021-12-07 比亚迪股份有限公司 Die-casting aluminum alloy and preparation method and application thereof
CN111809083B (en) * 2019-04-12 2022-06-24 通用汽车环球科技运作有限责任公司 Aluminum alloy composition for simplifying semi-solid casting process and semi-solid casting method
US11958140B2 (en) 2019-05-10 2024-04-16 General Cable Technologies Corporation Aluminum welding alloys with improved performance
CN110453119A (en) * 2019-09-05 2019-11-15 安徽鑫发铝业有限公司 A kind of anticorrosion antiwear type high intensity electrophoretic aluminium section and its preparation process
CN111155003A (en) * 2020-02-25 2020-05-15 广西大学 High-strength high-toughness high-magnesium aluminum alloy and preparation method thereof
CN111575545B (en) * 2020-05-30 2022-11-08 苏州慧金新材料科技有限公司 High-strength die-casting alloy material for mobile phone middle plate and preparation method and application thereof
CN111500906B (en) * 2020-06-04 2021-06-04 福建祥鑫股份有限公司 High-strength corrosion-resistant aluminum alloy and preparation method thereof
CN114000017A (en) * 2020-07-27 2022-02-01 湖南稀土金属材料研究院 High-strength high-conductivity aluminum alloy conductor material and preparation method thereof
CN112063899A (en) * 2020-09-14 2020-12-11 肇庆新联昌金属实业有限公司 High-plasticity aluminum alloy and preparation method thereof
CN115011846B (en) * 2022-06-17 2022-12-02 吉林大学 High-strength and high-stability Al-Mg-Si-Cu-Sc aluminum alloy and preparation method thereof
CN115418538A (en) * 2022-08-18 2022-12-02 昆明理工大学 High-strength corrosion-resistant aluminum alloy material and preparation method thereof
CN116732374B (en) * 2023-06-15 2023-12-01 湘潭大学 Method for preparing 6061 aluminum alloy by doping scandium and zirconium and 6061 aluminum alloy
CN117926087A (en) * 2024-03-20 2024-04-26 广东鸿图汽车零部件有限公司 Cast aluminum alloy and preparation method and application thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3619181A (en) * 1968-10-29 1971-11-09 Aluminum Co Of America Aluminum scandium alloy
US5055257A (en) * 1986-03-20 1991-10-08 Aluminum Company Of America Superplastic aluminum products and alloys
US5597529A (en) * 1994-05-25 1997-01-28 Ashurst Technology Corporation (Ireland Limited) Aluminum-scandium alloys
CH689143A5 (en) * 1994-06-16 1998-10-30 Rheinfelden Aluminium Gmbh Aluminum-silicon casting alloys with high corrosion resistance, particularly for safety components.
DE59505226D1 (en) * 1994-11-15 1999-04-08 Rheinfelden Aluminium Gmbh ALUMINUM CAST ALLOY
JP3594270B2 (en) * 1996-04-12 2004-11-24 古河スカイ株式会社 Al-Mg-Si based alloy with excellent weldability
ES2192257T3 (en) * 1997-11-20 2003-10-01 Alcan Tech & Man Ag PROCEDURE FOR MANUFACTURE OF A STRUCTURAL COMPONENT PART BASED ON AN ALUMINUM ALLOY MOLDED BY PRESSURE COLADA.
US6004506A (en) * 1998-03-02 1999-12-21 Aluminum Company Of America Aluminum products containing supersaturated levels of dispersoids
JP2000328209A (en) * 1999-05-18 2000-11-28 Furukawa Electric Co Ltd:The Production of aluminum alloy spring material
EP1138794B1 (en) * 2000-03-31 2007-02-14 Corus Aluminium Voerde GmbH Aliminium die-casting alloy product
US6562154B1 (en) * 2000-06-12 2003-05-13 Aloca Inc. Aluminum sheet products having improved fatigue crack growth resistance and methods of making same
EP1229141A1 (en) * 2001-02-05 2002-08-07 ALUMINIUM RHEINFELDEN GmbH Cast aluminium alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109680192A (en) * 2019-01-29 2019-04-26 北京工业大学 A kind of Al-Mg-Mn-Er-Zr alloy hot and stabilizing annealing technique and material

Also Published As

Publication number Publication date
ES2339356T3 (en) 2010-05-19
DE502004010622D1 (en) 2010-02-25
DE10352932B4 (en) 2007-05-24
DE10352932A1 (en) 2005-06-16
EP1682688A1 (en) 2006-07-26
ATE454480T1 (en) 2010-01-15
US20070240796A1 (en) 2007-10-18
WO2005047554B1 (en) 2005-07-14
WO2005047554A1 (en) 2005-05-26

Similar Documents

Publication Publication Date Title
EP1682688B1 (en) Al-Mg-Si cast aluminium alloy containing scandium
EP3235917B1 (en) Alloy for pressure die casting
EP2735621B1 (en) Aluminium die casting alloy
DE102013012259B3 (en) Aluminum material with improved precipitation hardening, process for its production and use of the aluminum material
EP2653579B1 (en) Aluminium alloy
EP1683882B1 (en) Aluminium alloy with low quench sensitivity and process for the manufacture of a semi-finished product of this alloy
EP1978120B1 (en) Aluminium-silicon alloy and method for production of same
EP1443122B1 (en) Die cast aluminium alloy
AT502294B1 (en) AL-ZN KNET ALLOY AND USE OF SUCH ALLOY
EP0918095B1 (en) Process of manufacturing a structural element made of a die-cast aluminium alloy
EP3176275B2 (en) Aluminium-silicon die casting alloy method for producing a die casting component made of the alloy, and a body component with a die casting component
DE102016219711B4 (en) Aluminum alloy for die casting and process for its heat treatment
EP1612286A2 (en) Aluminium alloy for pressure die casting
DE112015000499T5 (en) Plastic deformed aluminum alloy product, process for producing the same and automobile component
EP1719820A2 (en) Aluminium cast alloy
EP3159422A1 (en) Alloy for pressure die casting
DE102019205267B3 (en) Die-cast aluminum alloy
WO2017174185A1 (en) Aluminum alloy, in particular for a casting method, and method for producing a component from such an aluminum alloy
EP0853133A1 (en) Use of an aluminium alloy for pressure die casting
DE102011112005A1 (en) Alloy, preferably aluminum casting alloy, useful e.g. as a sand or die casting alloy, comprises a specified range of silicon, zinc, iron, copper, magnesium, strontium, sodium, antimony and aluminum
DE1483228B2 (en) ALUMINUM ALLOY WITH HIGH PERFORMANCE
DE602004005529T2 (en) Wrought aluminum alloy
AT407533B (en) ALUMINUM ALLOY
EP2088216B1 (en) Aluminium alloy
EP3670691B1 (en) Magnesium alloy and its process of manufacture

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060428

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20061011

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: AL-MG-SI CAST ALUMINIUM ALLOY CONTAINING SCANDIUM

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502004010622

Country of ref document: DE

Date of ref document: 20100225

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100106

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2339356

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100506

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100506

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100407

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100406

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

26N No opposition filed

Effective date: 20101007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

BERE Be: lapsed

Owner name: EADS DEUTSCHLAND G.M.B.H.

Effective date: 20101130

Owner name: ALUMINIUM RHEINFELDEN G.M.B.H.

Effective date: 20101130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101103

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004010622

Country of ref document: DE

Owner name: ALUMINIUM RHEINFELDEN GMBH, DE

Free format text: FORMER OWNER: EADS DEUTSCHLAND GMBH, ALUMINIUM RHEINFELDEN GMBH, , DE

Effective date: 20140819

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004010622

Country of ref document: DE

Owner name: AIRBUS DEFENCE AND SPACE GMBH, DE

Free format text: FORMER OWNER: EADS DEUTSCHLAND GMBH, ALUMINIUM RHEINFELDEN GMBH, , DE

Effective date: 20140819

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004010622

Country of ref document: DE

Owner name: ALUMINIUM RHEINFELDEN GMBH, DE

Free format text: FORMER OWNERS: EADS DEUTSCHLAND GMBH, 85521 OTTOBRUNN, DE; ALUMINIUM RHEINFELDEN GMBH, 79618 RHEINFELDEN, DE

Effective date: 20140819

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004010622

Country of ref document: DE

Owner name: AIRBUS DEFENCE AND SPACE GMBH, DE

Free format text: FORMER OWNERS: EADS DEUTSCHLAND GMBH, 85521 OTTOBRUNN, DE; ALUMINIUM RHEINFELDEN GMBH, 79618 RHEINFELDEN, DE

Effective date: 20140819

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20171121

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20171120

Year of fee payment: 14

Ref country code: AT

Payment date: 20171121

Year of fee payment: 14

Ref country code: ES

Payment date: 20171220

Year of fee payment: 14

Ref country code: IT

Payment date: 20171124

Year of fee payment: 14

Ref country code: GB

Payment date: 20171123

Year of fee payment: 14

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 454480

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181103

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181103

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181103

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181104

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20211118

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004010622

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230601