EP3176275B2 - Aluminium-silicon die casting alloy method for producing a die casting component made of the alloy, and a body component with a die casting component - Google Patents

Aluminium-silicon die casting alloy method for producing a die casting component made of the alloy, and a body component with a die casting component Download PDF

Info

Publication number
EP3176275B2
EP3176275B2 EP16002462.6A EP16002462A EP3176275B2 EP 3176275 B2 EP3176275 B2 EP 3176275B2 EP 16002462 A EP16002462 A EP 16002462A EP 3176275 B2 EP3176275 B2 EP 3176275B2
Authority
EP
European Patent Office
Prior art keywords
minutes
component
maximum
die casting
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16002462.6A
Other languages
German (de)
French (fr)
Other versions
EP3176275B1 (en
EP3176275A1 (en
Inventor
Marc Hummel
Andreas Schubert
Jan Gaugler
Steffen Otterbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Audi AG
Original Assignee
Audi AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=57354058&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3176275(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Audi AG filed Critical Audi AG
Publication of EP3176275A1 publication Critical patent/EP3176275A1/en
Publication of EP3176275B1 publication Critical patent/EP3176275B1/en
Application granted granted Critical
Publication of EP3176275B2 publication Critical patent/EP3176275B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/007Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing

Definitions

  • the invention relates to a bondable aluminum-silicon die-cast alloy, a method for producing a die-cast component from the alloy and a body component with a die-cast component.
  • EP 2 735 621 A1 an aluminum alloy for components with increased strength with a yield strength Rp 0.2 > 120 MPa and simultaneous elongation at break A > 7% in the cast state, a yield strength Rp 0.2 > 200 MPa and at the same time high elongation at break A > 6% after a T5 Heat treatment or a yield strength Rp 0.2 > 200 MPa and at the same time high elongation at break A > 9% after a T6 heat treatment, in particular for structural and chassis parts of a motor vehicle, containing 9 to 11.5% by weight of silicon, 0.45 to 0 .8% by weight manganese, 0.2 to 1.0% by weight magnesium, 0.1 to 1.0% by weight copper, max. 0.2% by weight zinc, max.
  • zirconium max. 0.4 wt.% chromium, max. 0.3 wt.% molybdenum, max. 0.2 wt.% iron, max. 0.15 wt.% titanium, 0.01 to 0.02 wt. % strontium and the remainder aluminum and manufacturing-related impurities totaling max. 0.5% by weight.
  • an aluminum-silicon casting alloy containing 5 to 12% by mass of silicon, 0.5 to 3.0% by mass of zinc, 0.1 to 0.7% by mass of magnesium, 0.2 to 0.8% by mass of manganese, 0.05 to 0.3% by mass of zirconium, individually at most 0.05% by mass and overall at most 0.4% by mass of impurities and the balance aluminum.
  • This publication also describes a method for producing a die-cast component, wherein a cast component is cast from one of the proposed casting alloys and the cast component is subjected to a heat treatment to the state T5, T6 or T7 after casting.
  • the aluminum-silicon casting alloy has very good flowability for components with wall thicknesses of less than 2 mm and the components made from it are characterized by high strength and at the same time good formability.
  • a content of at least 6.5% by weight of silicon (Si) ensures sufficient castability and avoids solidification shrinkage.
  • the upper limit of a maximum of 12% by weight must be adhered to so that no primary silicon phases occur.
  • a manganese content (Mn) of 0.3 to 0.8% by weight improves the ability to be removed from the tool cavity at low iron contents ⁇ 0.3% by weight.
  • a magnesium content (Mg) of at least 0.25% by weight leads to the formation of hardening Mg 2 Si phases; the upper limit of 0.5% by weight prevents the material from becoming too brittle.
  • Zinc (Zn) is used to further increase the strength of the alloy by solid solution hardening.
  • the zinc content in the aluminum-silicon die-cast alloy according to the present invention is limited to a maximum of 0.35% by weight, since a higher content greatly reduces the adhesive adhesion when installing such a component, as well the tendency to corrosion increases.
  • a finer grain can be formed by adding zirconium (Zr).
  • the optimal content is between 0.05% by weight and 0.30% by weight of zirconium.
  • a refinement of the alloy according to the present invention can be achieved through a strontium content (Sr) in the range of 0.006% by weight to 0.025% by weight.
  • the objects of the present invention are achieved particularly well if the magnesium content in the alloy is more than 0.35% by weight to 0.50% by weight. %, preferably in the range from 0.38% by weight to 0.45% by weight.
  • the zinc content in the aluminum-silicon die-cast alloy according to the present invention is limited to a maximum of 0.35% by weight, since a higher content greatly reduces the adhesive adhesion when installing such a component and increases the tendency to corrosion. On the other hand, a higher zinc content would further increase the strength in an advantageous manner.
  • tin (Sn) and/or cobalt (Co) can advantageously be provided for the aluminum-silicon die-cast alloy according to the present invention, depending on the strength level (e.g. for ultra-high-strength properties), up to the values specified in each case alloyed with maximum contents.
  • Tin leads to an increase in the number of vacancies after quenching, which results in accelerated precipitation kinetics.
  • the tin and cobalt content should be limited to a maximum of 0.30% by weight, otherwise embrittling intermetallic phases will occur in the case of cobalt and low-melting structural components in the case of tin.
  • the aluminum-silicon die-casting alloy according to the present invention has a maximum of 0.3% by weight individually and a maximum of 0.5% by weight overall of impurities, so the aluminum-silicon die-casting alloy is made from very pure starting materials .
  • the requirement for high purity can be met, for example, by using pure aluminum from electrolysis or from pure aluminum recyclates, e.g. from the construction or packaging industry.
  • the maximum specifications of the impurity elements, especially copper (maximum 0.05% by weight), must be adhered to in order to achieve the desired properties.
  • the annealing and/or the hot aging comprises three or more stages, it is advantageous if the total duration of the annealing and/or the total duration of the hot aging essentially corresponds to the above-mentioned values, i.e. the above-mentioned time periods for the respective stages are reduced proportionately .
  • the first stage can be annealing at a temperature in the range from 320 ° C to 380 ° C (to reduce residual stresses), followed by a second annealing stage at around 440 ° C and a third annealing stage at around 490°C.
  • the last stage can be hot aging at a temperature in the range from 240 ° C to 300 ° C for a short period of time in the range from about 5 minutes to about 45 minutes (to increase the ductility).
  • the present invention also includes a body component, in particular for a motor vehicle, which is characterized in that it consists at least partially of a die-cast component that was produced using the method according to the invention or one of its advantageous developments or refinements.
  • the die-cast component of the body component can advantageously have a wall thickness in the range of 0.6 mm to 10 mm. Furthermore, in the case of the body component, the die-cast component can be glued to at least one sheet metal component, sheet steel component, aluminum component or cast component.
  • the body component can be designed, for example, in the form of a strut mount, a longitudinal member, a connecting part, a seat mount, a hinge mount or a baffle plate.
  • novel aluminum-silicon die-casting alloy can achieve unexpected advantages in combination with the heat treatment provided according to the invention.
  • Carrying out a two-stage or multi-stage solution annealing allows a component to be annealed at temperatures of 460 ° C to 520 ° C (for example above 480 ° C, preferably above 490 ° C, particularly preferably above 500 ° C) for short times of 5 minutes to 35 minutes (e.g. in the range of 5 minutes to 25 minutes) in the last stage.
  • any remaining organic release agent residues from the casting process (which can contain very temperature-resistant mixtures of oils, waxes, polysiloxanes and other additives) are cracked particularly effectively and can therefore be removed very well and at least almost without leaving any residue.
  • a significant increase in adhesive adhesion can be achieved compared to conventionally heat-treated alloys.
  • the secondary effect is high values for the lap shear strength, especially after exposure to corrosive media.
  • the short holding time of the last solution annealing stage also reduces the risk of distortion of the component.
  • the strength level can be adjusted via the quenching gradient after solution annealing.
  • a two- or multi-stage aging allows the aging time to be reduced by separating the aging mechanisms (nucleation, germ growth, etc.).
  • the second stage in particular has a positive effect on the strength-ductility ratio at the specified zinc and zirconium contents.
  • the second aging stage is designed so that the temperature is higher than in the first aging stage and is in the range of 195 to 300 ° C.
  • WBH No. 1 Solution annealing, one-stage: 460°C/1.5 h
  • Deterrence Air quenching 0.5-2 K/s Hot aging, single stage: 220°C/3 h
  • WBH No. 2 (according to the invention): Solution annealing, two-stage: 400°C/1 h + 510°C/30 min
  • Deterrence Air quenching >3 K/s Hot aging, two-stage: 120°C/2 h + 230°C/1 h WBH No.
  • the specified times for solution annealing and aging correspond to the oven times.
  • the components can, for example, either be transported (further) into the chamber with the specified temperatures using a multi-chamber furnace or heated from a first temperature to a second temperature using ramp heating.
  • the quenching takes place without a precise definition of a lower limit temperature and was regularly cooled to approximately room temperature or slightly above, but at least to less than 200 ° C.
  • Alloy #1 AlSi10.5Mn0.60Mg0.30Sr0.012Ti0.06 (standardized reference alloy)
  • Alloy No. 2 AlSi10.5Mn0.60Mg0.40Sr0.012Ti0.06Zn0.90Zr0.10 (alloy according to DE 10 2013 002 632 A1 )
  • Alloy No. 3 AlSi10.5Mn0.60Mg0.32Sr0.012Ti0.06Zn0.10Cu0.25 (alloy according to EP 2 735 621 A1 )
  • Alloy No. 4 AlSi9.5Mn0.60Mg0.42Sr0.015Ti0.12Zn0.20Zr0.20 (alloy according to the present invention, variant 1)
  • Alloy No. 5 AlSi9.5Mn0.60Mg0.42Sr0.015Ti0.12Zn0.20Zr0.020Sn0.15Co0.10 (alloy according to the present invention; variant 2)
  • Table 1 shows the alloys used and the heat treatment carried out with them. Table 1 Example Alloy (No. #) Heat treatment (WBH No. #) Comparative example 1 1 1 Comparative example 2 2 1 Comparative example 3 3 1 Comparative example 4 1 2 Comparative example 5 2 2 Comparative example 6 4 1 example 1 4 2 Example 2 5 2 Example 3 4 3
  • Table 2 shows the resulting property profiles.
  • Table 2 Example Rm (MPa) Rp 0.2 (MPa) A5 (%) FDI Corrosion resistance Fluidity Adhesive adhesion Comparative example 1 205 133 16.3 25 + 0 + Comparative example 2 233 169 13.1 24 0 + - Comparative example 3 246 183 11.7 23 - - -- Comparative example 4 230 158 13.5 24 + 0 + Comparative example 5 252 206 12.6 27 0 + - Comparative example 6 235 163 14.7 27 + ++ + example 1 253 192 14.8 31 + ++ ++ Example 2 263 210 14.3 32 + ++ ++ Example 3 340 265 12.3 35 + ++ ++ ++: surprisingly very good; +:good 0:average -:poor; --:insufficient
  • the strength values were weighted according to prioritization in the body construction (Rm: single; Rp 0.2 : triple).
  • the average strength value is multiplied with the appropriate weighting (Rm: single, Rp 0.2 : triple) with the elongation at break A5 and, for reasons of clarity, divided by the divisor 100.
  • Fig. 1 The dependence of the adhesive adhesion (tensile shear strength) in the immersion test after 2 and 4 weeks on the zinc content is shown.
  • Fig. 2 The dependence of the adhesive adhesion (tensile shear strength) in the immersion test after 2 and 4 weeks is plotted as a function of the copper content.
  • the alloys examined according to these figures correspond to Example 1.
  • a significant increase in the mechanical characteristics can also be achieved by increasing the quenching gradient (see Example 3 with alloy No. 4 and water quenching). Alloys No. 4 and No. 5 have particularly good mechanical characteristics at quenching gradients >3 K/s, especially >4 K/s.
  • the respective alloy was heated to approx. 700°C and then poured into a test mold (max. length 300 mm). Depending on the properties of the alloy, there are different filling lengths. This filling length was measured to determine the flowability and compared between the alloy variants. Usual flow lengths are 200-250 mm. Alloys with a flowability > 250 mm were rated as “good”; Alloys with a flowability of ⁇ 200 mm were rated as “poor”. The application was relatively standardized to alloy no. 1 (reference alloy).
  • a cast sample was subjected to a salt spray test in accordance with DIN EN ISO 9227 in artificial atmospheres for a period of 3024 hours (18 weeks).
  • the assessment of the corrosion behavior, i.e. the attack, on the sample was carried out in accordance with DIN EN ISO 9227 and was evaluated accordingly.
  • the samples with the lowest and highest corrosion attack were standardized under the term corrosion to -100% (greatest attack) or 0% (least attack).
  • a particular advantage of the present invention is that aluminum-silicon die-casting alloys are provided, through which castings can be obtained that can be bonded together in the vehicle body. Compared to previously known alloys, the alloy according to the invention has significantly increased adhesive adhesion at a high level of strength.
  • the invention makes it possible to produce body components (die-cast components) with wall thicknesses in the range of ⁇ 1.0 mm and 10 mm wall thickness, particularly advantageously also very thin-walled components. Contrary to the prior art, wall thicknesses of ⁇ 1.0 mm to a minimum of 0.6 mm are possible thanks to the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Heat Treatment Of Articles (AREA)

Description

Die Erfindung betrifft eine klebbare Aluminium-Silizium-Druckgusslegierung, ein Verfahren zur Herstellung eines Druckgussbauteils aus der Legierung und eine Karosseriekomponente mit einem Druckgussbauteil.The invention relates to a bondable aluminum-silicon die-cast alloy, a method for producing a die-cast component from the alloy and a body component with a die-cast component.

Es ist seit längerem bekannt, Gussbauteile für Karosserie- und Fahrwerksanwendungen im Druckguss aus Aluminium-Silizium-Druckgusslegierungen herzustellen. Diese Legierungen enthalten üblicherweise etwa 6 bis 12 Gew.% Silizium, zeigen gute Gießeigenschaften, eine geringe Schrumpfungsneigung und eine sehr geringe Anfälligkeit für Heißrisse und Lunker. Die mit diesen Aluminium-Silizium-Druckgusslegierungen hergestellten Gussbauteile werden üblicherweise einer T5-, T6-, oder T7-Wärmebehandlung gemäß DIN EN 515 unterzogen. Durch eine T5-Wärmebehandlung werden Bauteile mit einer guten Maßhaltigkeit bei gleichzeitig hoher Festigkeit und durch eine T6- oder T7-Wärmebehandlung werden Bauteile mit guten Verformungseigenschaften bei gleichzeitig hoher Festigkeit erhalten.It has long been known to produce cast components for body and chassis applications by die casting from aluminum-silicon die-cast alloys. These alloys usually contain about 6 to 12% by weight of silicon, show good casting properties, a low tendency to shrink and a very low susceptibility to hot cracks and voids. The cast components made with these aluminum-silicon die-casting alloys are usually subjected to a T5, T6 or T7 heat treatment in accordance with DIN EN 515. A T5 heat treatment produces components with good dimensional stability and high strength, and a T6 or T7 heat treatment produces components with good deformation properties and high strength.

So beschreibt bspw. die EP 2 735 621 A1 eine Aluminium-Legierung für Bauteile mit erhöhter Festigkeit mit einer Dehngrenze Rp0,2 > 120 MPa und gleichzeitiger Bruchdehnung A > 7% im Gusszustand, einer Dehngrenze Rp0,2 > 200 MPa und gleichzeitig hoher Bruchdehnung A > 6% nach einer T5-Wärmebehandlung oder einer Dehngrenze Rp0,2 > 200 MPa und gleichzeitig hoher Bruchdehnung A > 9% nach einer T6-Wärmebehandlung, insbesondere für Struktur- und Fahrwerksteile eines Kraftwagens, enthaltend 9 bis 11,5 Gew.% Silizium, 0,45 bis 0,8 Gew.% Mangan, 0,2 bis 1,0 Gew.% Magnesium, 0,1 bis 1,0 Gew.% Kupfer, max. 0,2 Gew.% Zink, max. 0,4 Gew.% Zirkon, max. 0,4 Gew.% Chrom, max. 0,3 Gew.% Molybdän, max. 0,2 Gew.% Eisen, max. 0,15 Gew.% Titan, 0,01 bis 0,02 Gew.% Strontium und als Rest Aluminium und herstellungsbedingte Verunreinigungen von insgesamt max. 0,5 Gew.%.For example, this describes EP 2 735 621 A1 an aluminum alloy for components with increased strength with a yield strength Rp 0.2 > 120 MPa and simultaneous elongation at break A > 7% in the cast state, a yield strength Rp 0.2 > 200 MPa and at the same time high elongation at break A > 6% after a T5 Heat treatment or a yield strength Rp 0.2 > 200 MPa and at the same time high elongation at break A > 9% after a T6 heat treatment, in particular for structural and chassis parts of a motor vehicle, containing 9 to 11.5% by weight of silicon, 0.45 to 0 .8% by weight manganese, 0.2 to 1.0% by weight magnesium, 0.1 to 1.0% by weight copper, max. 0.2% by weight zinc, max. 0.4% by weight zirconium , max. 0.4 wt.% chromium, max. 0.3 wt.% molybdenum, max. 0.2 wt.% iron, max. 0.15 wt.% titanium, 0.01 to 0.02 wt. % strontium and the remainder aluminum and manufacturing-related impurities totaling max. 0.5% by weight.

Und aus der DE 10 2013 002 632 A1 ist eine Aluminium-Silizium-Gusslegierung bekannt, enthaltend 5 bis 12 Ma% Silizium, 0,5 bis 3,0 Ma% Zink, 0,1 bis 0,7 Ma% Magnesium, 0,2 bis 0,8 Ma% Mangan, 0,05 bis 0,3 Ma% Zirconium, einzelnen höchstens 0,05 Ma% und insgesamt höchstens 0,4 Ma% Verunreinigungen und als Rest Aluminium. Diese Offenlegungsschrift beschreibt auch ein Verfahren zur Herstellung eines Druckgussbauteils wobei ein Gussbauteil aus einer der vorgeschlagenen Gusslegierungen gegossen wird und das Gussbauteil nach dem Gießen einer Wärmebehandlung auf den Zustand T5, T6 oder T7 unterworfen wird. Die Aluminium-Silizium-Gusslegierung weist eine sehr gute Fließfähigkeit für Bauteile mit Wandstärken unter 2 mm auf und die daraus hergestellten Bauteile zeichnen sich durch eine hohe Festigkeit und gleichzeitig eine gute Verformbarkeit aus.And from the DE 10 2013 002 632 A1 an aluminum-silicon casting alloy is known, containing 5 to 12% by mass of silicon, 0.5 to 3.0% by mass of zinc, 0.1 to 0.7% by mass of magnesium, 0.2 to 0.8% by mass of manganese, 0.05 to 0.3% by mass of zirconium, individually at most 0.05% by mass and overall at most 0.4% by mass of impurities and the balance aluminum. This publication also describes a method for producing a die-cast component, wherein a cast component is cast from one of the proposed casting alloys and the cast component is subjected to a heat treatment to the state T5, T6 or T7 after casting. The aluminum-silicon casting alloy has very good flowability for components with wall thicknesses of less than 2 mm and the components made from it are characterized by high strength and at the same time good formability.

Es ist Aufgabe der vorliegenden Erfindung, eine neue Aluminium-Silizium-Druckgusslegierung insbesondere für dünnwandigen Karosseriekomponenten, ein neues Verfahren zur Herstellung eines Druckgussbauteils und neuartige Karosseriekomponenten mit einem Druckgussbauteil, insbesondere für ein Kraftfahrzeug zur Verfügung zu stellen, wobei sich die neue Aluminium-Silizium-Druckgusslegierung durch eine sehr gute Fließfähigkeit auszeichnet und die daraus hergestellten Druckgussbauteile bzw. Karosseriekomponenten eine gute Klebstoffhaftung, eine hohe Korrosionsresistenz und ein gutes Crashverhalten aufweisen.It is the object of the present invention to provide a new aluminum-silicon die-cast alloy, in particular for thin-walled body components, a new method for producing a die-cast component and novel body components with a die-cast component, in particular for a motor vehicle, the new aluminum-silicon Die-cast alloy is characterized by very good flowability and the die-cast components or body components made from it have good adhesive adhesion, high corrosion resistance and good crash behavior.

Diese Aufgaben werden gelöst durch die Aluminium-Silizium-Druckgusslegierung gemäß Anspruch 1, das Verfahren zur Herstellung eines Druckgussbauteils gemäß Anspruch 4 und die Karosseriekomponente gemäß Anspruch 6. Vorteilhafte Weiterbildungen der Erfindung sind Gegenstand der Unteransprüche.These tasks are solved by the aluminum-silicon die-casting alloy according to claim 1, the method for producing a die-cast component according to claim 4 and the body component according to claim 6. Advantageous developments of the invention are the subject of the subclaims.

Die erfindungsgemäße Aluminium-Silizium-Druckgusslegierung zur Herstellung eines Druckgussbauteils, insbesondere einer dünnwandigen Karosseriekomponente für ein Kraftfahrzeug, enthält

  • 6,5 Gew.% bis 12,0 Gew.% Silizium,
  • 0,30 Gew.% bis 0,80 Gew.% Mangan,
  • 0,25 Gew.% bis 0,50 Gew.% Magnesium,
  • 0,08 Gew.% bis 0,35 Gew.% Zink,
  • 0,05 Gew.% bis 0,30 Gew.% Zirconium,
  • 0,006 Gew.% bis 0,025 Gew.% Strontium,
  • einzeln maximal 0,3 Gew.%, insgesamt maximal 0,5 Gew.% Verunreinigungen
  • enthaltend als Verunreinigung maximal 0,05 Gew.% Kupfer,
  • als Rest Aluminium.
The aluminum-silicon die-cast alloy according to the invention for producing a die-cast component, in particular a thin-walled body component for a motor vehicle, contains
  • 6.5% by weight to 12.0% by weight of silicon,
  • 0.30% by weight to 0.80% by weight of manganese,
  • 0.25% by weight to 0.50% by weight of magnesium,
  • 0.08% by weight to 0.35% by weight zinc,
  • 0.05% by weight to 0.30% by weight of zirconium,
  • 0.006% by weight to 0.025% by weight of strontium,
  • individually a maximum of 0.3% by weight, a total of a maximum of 0.5% by weight of impurities
  • containing a maximum of 0.05% by weight of copper as an impurity,
  • the rest is aluminum.

Durch einen Gehalt von mindestens 6,5 Gew.% Silizium (Si) wird eine ausreichende Gießbarkeit gewährleistet und Erstarrungsschrumpfungen vermieden. Die Obergrenze von maximal 12 Gew.% ist einzuhalten, damit keine primären Siliziumphasen auftreten.A content of at least 6.5% by weight of silicon (Si) ensures sufficient castability and avoids solidification shrinkage. The upper limit of a maximum of 12% by weight must be adhered to so that no primary silicon phases occur.

Ein Mangangehalt (Mn) von 0,3 bis 0,8 Gew.% verbessert die Entformbarkeit aus der Werkzeugkavität bei geringen Eisengehalten < 0,3 Gew.%.A manganese content (Mn) of 0.3 to 0.8% by weight improves the ability to be removed from the tool cavity at low iron contents < 0.3% by weight.

Ein Magnesiumgehalt (Mg) von min. 0,25 Gew.% führt zur Ausbildung von aushärtenden Mg2Si-Phasen, die Obergrenze von 0,5 Gew.% verhindert eine zu starke Versprödung des Werkstoffs.A magnesium content (Mg) of at least 0.25% by weight leads to the formation of hardening Mg 2 Si phases; the upper limit of 0.5% by weight prevents the material from becoming too brittle.

Zink (Zn) wird für die weitere Festigkeitssteigerung mittels Mischkristallhärtung der Legierung verwendet. Dabei ist der Zink-Gehalt in der Aluminium-Silizium-Druckgusslegierung gemäß der vorliegenden Erfindung auf maximal 0,35 Gew.% begrenzt, da ein höherer Gehalt die Klebstoffhaftung beim Verbau eines solchen Bauteils stark reduziert, sowie die Korrosionsneigung erhöht.Zinc (Zn) is used to further increase the strength of the alloy by solid solution hardening. The zinc content in the aluminum-silicon die-cast alloy according to the present invention is limited to a maximum of 0.35% by weight, since a higher content greatly reduces the adhesive adhesion when installing such a component, as well the tendency to corrosion increases.

Zur weiteren Erhöhung der mechanischen Eigenschaften kann durch die Zugabe von Zirconium (Zr) ein feineres Korn ausgebildet werden. Der optimale Gehalt liegt zwischen 0,05 Gew.-% und 0,30 Gew.-% Zirconium.To further increase the mechanical properties, a finer grain can be formed by adding zirconium (Zr). The optimal content is between 0.05% by weight and 0.30% by weight of zirconium.

Durch einen Strontiumgehalt (Sr) im Bereich von 0,006 Gew.% bis 0,025 Gew.% kann eine Veredelung der Legierung gemäß der vorliegenden Erfindung erreicht werden.A refinement of the alloy according to the present invention can be achieved through a strontium content (Sr) in the range of 0.006% by weight to 0.025% by weight.

Gemäß einer vorteilhaften Weiterbildung der Aluminium-Silizium-Druckgusslegierung enthält diese

  • mehr als 0,35 Gew.% bis 0,50 Gew.% Magnesium, bevorzugt
  • 0,38 Gew.% bis 0,45 Gew.% Magnesium.
According to an advantageous development of the aluminum-silicon die-casting alloy, it contains
  • more than 0.35% by weight to 0.50% by weight of magnesium, preferred
  • 0.38% by weight to 0.45% by weight of magnesium.

Wie Versuche überraschend ergeben haben und wie unter Bezug auf die in dieser Anmeldung erläuterten erfindungsgemäßen Beispiele gezeigt wird, werden die Aufgaben der vorliegenden Erfindung besonders gut gelöst, sofern der Magnesiumgehalt in der Legierung mehr als 0,35 Gew.% bis 0,50 Gew.%, bevorzugt im Bereich von 0,38 Gew.% bis 0,45 Gew.% beträgt.As experiments have surprisingly shown and as shown with reference to the examples according to the invention explained in this application, the objects of the present invention are achieved particularly well if the magnesium content in the alloy is more than 0.35% by weight to 0.50% by weight. %, preferably in the range from 0.38% by weight to 0.45% by weight.

Gemäß einer vorteilhaften Weiterbildung der Aluminium-Silizium-Druckgusslegierung enthält diese weiter

  • maximal 0,2 Gew.% Vanadium,
  • maximal 0,2 Gew.% Molybdän,
  • maximal 0,3 Gew.% Zinn,
  • maximal 0,3 Gew.% Kobalt, und/oder
  • maximal 0,2 Gew.% Titan
als optionale(n) Legierungsbestandteil(e).According to an advantageous development of the aluminum-silicon die-cast alloy, it also contains
  • maximum 0.2% by weight vanadium,
  • maximum 0.2% by weight molybdenum,
  • maximum 0.3% by weight tin,
  • a maximum of 0.3% by weight of cobalt, and/or
  • maximum 0.2% by weight titanium
as optional alloy component(s).

Wie oben bereits erwähnt, ist der Zink-Gehalt in der Aluminium-Silizium-Druckgusslegierung gemäß der vorliegenden Erfindung auf maximal 0,35 Gew.% begrenzt, da ein höherer Gehalt die Klebstoffhaftung beim Verbau eines solchen Bauteils stark reduziert sowie die Korrosionsneigung erhöht. Andererseits würde ein höherer Zink-Gehalt die Festigkeit in vorteilhafter Weise weiter erhöhen.As already mentioned above, the zinc content in the aluminum-silicon die-cast alloy according to the present invention is limited to a maximum of 0.35% by weight, since a higher content greatly reduces the adhesive adhesion when installing such a component and increases the tendency to corrosion. On the other hand, a higher zinc content would further increase the strength in an advantageous manner.

Um einen Festigkeitsausgleich zu schaffen, kann für die Aluminium-Silizium-Druckgusslegierung gemäß der vorliegenden Erfindung in vorteilhafter Weise vorgesehen sein, je nach Festigkeitsniveau (bspw. für höchstfeste Eigenschaften) Zinn (Sn) und/oder Kobalt (Co) bis zu den jeweils angegebenen maximalen Gehalten hinzulegiert. Zinn führt dabei zu einer Erhöhung der Anzahl an Leerstellen nach der Abschreckung, was eine beschleunigte Ausscheidungskinetik zur Folge hat. Der Zinn- und Kobalt-Gehalt sollte jedoch auf jeweils max. 0,30 Gew.-% begrenzt werden, da sonst versprödende intermetallische Phasen bei Kobalt und niedrigschmelzende Gefügebestandteile im Falle von Zinn auftreten.In order to create a strength balance, tin (Sn) and/or cobalt (Co) can advantageously be provided for the aluminum-silicon die-cast alloy according to the present invention, depending on the strength level (e.g. for ultra-high-strength properties), up to the values specified in each case alloyed with maximum contents. Tin leads to an increase in the number of vacancies after quenching, which results in accelerated precipitation kinetics. However, the tin and cobalt content should be limited to a maximum of 0.30% by weight, otherwise embrittling intermetallic phases will occur in the case of cobalt and low-melting structural components in the case of tin.

Mit einer Zugabe von Vanadium (V), Molybdän (Mo) und/oder Titan (Ti) einzeln oder in Kombination mit jeweils einem Gehalt von max. 0,2 Gew.% kann eine weitere Kornfeinung bei der Aluminium-Silizium-Druckgusslegierung gemäß der vorliegenden Erfindung erreicht werden.With the addition of vanadium (V), molybdenum (Mo) and/or titanium (Ti) individually or in combination, each with a maximum content of 0.2% by weight, further grain refinement can be achieved in the aluminum-silicon die-casting alloy according to present invention can be achieved.

Wie oben bereits angegeben ist, weist die Aluminium-Silizium-Druckgusslegierung gemäß der vorliegenden Erfindung einzeln maximal 0,3 Gew.%, insgesamt maximal 0,5 Gew.% Verunreinigungen auf, die Aluminium-Silizium-Druckgusslegierung wird also aus sehr reinen Ausgangsmaterialien hergestellt.As already stated above, the aluminum-silicon die-casting alloy according to the present invention has a maximum of 0.3% by weight individually and a maximum of 0.5% by weight overall of impurities, so the aluminum-silicon die-casting alloy is made from very pure starting materials .

Diesbezüglich hat es sich als vorteilhaft erwiesen, wenn die Aluminium-Silizium-Druckgusslegierung gemäß der vorliegenden Erfindung

  • maximal 0,05 Gew.% Kupfer,
  • maximal 0,002 Gew.% Phosphor,
  • maximal 0,002 Gew.% Calcium,
  • maximal 0,002 Gew.% Natrium, und/oder
  • maximal 0,30 Gew.% Eisen
als Verunreinigung(en) aufweist.In this regard, it has proven to be advantageous if the aluminum-silicon die-casting alloy according to the present invention
  • maximum 0.05% by weight copper,
  • maximum 0.002% by weight phosphorus,
  • maximum 0.002% by weight calcium,
  • a maximum of 0.002% by weight of sodium, and/or
  • maximum 0.30% by weight iron
as a contaminant(s).

Bezüglich des Legierungsbestandteils Aluminium kann dem Erfordernis nach großer Reinheit bspw. durch die Verwendung von Reinaluminium aus der Elektrolyse oder aus sortenreinen Aluminiumrecyclaten, z.B. aus der Bau- oder Verpackungsindustrie Rechnung getragen werden. Die Maximalangaben der Verunreinigungselemente, vor allem Kupfer (maximal 0,05 Gew.%), sind zur Erfüllung der gewünschten Eigenschaften einzuhalten.With regard to the alloy component aluminum, the requirement for high purity can be met, for example, by using pure aluminum from electrolysis or from pure aluminum recyclates, e.g. from the construction or packaging industry. The maximum specifications of the impurity elements, especially copper (maximum 0.05% by weight), must be adhered to in order to achieve the desired properties.

Die vorliegende Erfindung umfasst auch ein Verfahren zur Herstellung eines Druckgussbauteils, insbesondere für eine dünnwandige Karosseriekomponente, umfassend die Schritte:

  • Gießen eines Druckgussbauteils aus einer erfindungsgemäßen Aluminium-Silizium-Druckgusslegierung oder einer ihrer vorteilhaften Weiterbildungen und Ausgestaltungen, und
  • Unterziehen des Druckgussbauteils einer Wärmebehandlung umfassend in der angegebenen Reihenfolge
    • ein mehrstufiges Glühen umfassend wenigstens
      • ein erstes Glühen bei einer Temperatur im Bereich von 320°C bis 450°C für eine Zeitdauer von 20 Minuten bis 75 Minuten, und
      • ein zweites Glühen bei einer Temperatur im Bereich von 460°C bis 520°C für eine Zeitdauer von 5 Minuten bis 35 Minuten,
    • eine Abschreckung mit einem Temperaturgradienten im Bereich von 3 K/s bis 200 K/s, und
    • einer mehrstufigen Warmauslagerung umfassend wenigstens
    • eine erste Warmauslagerung bei einer Temperatur im Bereich von 100°C bis 180°C für eine Zeitdauer von 40 Minuten bis 150 Minuten, und
    • eine zweite Warmauslagerung bei einer Temperatur im Bereich von 195°C bis 300°C für eine Zeitdauer von 30 Minuten bis 100 Minuten.
The present invention also includes a method for producing a die-cast component, in particular for a thin-walled body component, comprising the steps:
  • Casting a die-cast component from an aluminum-silicon die-cast alloy according to the invention or one their advantageous further training and developments, and
  • Subjecting the die-cast component to a comprehensive heat treatment in the specified order
    • comprising at least multi-stage annealing
      • a first annealing at a temperature in the range of 320°C to 450°C for a period of 20 minutes to 75 minutes, and
      • a second annealing at a temperature in the range of 460°C to 520°C for a period of 5 minutes to 35 minutes,
    • a quenching with a temperature gradient in the range of 3 K/s to 200 K/s, and
    • comprising at least a multi-stage hot aging process
    • a first aging at a temperature in the range from 100°C to 180°C for a period of 40 minutes to 150 minutes, and
    • a second aging at a temperature in the range from 195°C to 300°C for a period of 30 minutes to 100 minutes.

Umfasst das Glühen und/oder die Warmauslagerung drei oder mehr Stufen, ist es von Vorteil, wenn die Gesamtdauer des Glühens und/oder die Gesamtdauer der Warmauslagerung im Wesentlichen den oben genannten Werten entspricht, d.h. die oben angegebenen Zeitdauern für die jeweiligen Stufen anteilig reduziert werden.If the annealing and/or the hot aging comprises three or more stages, it is advantageous if the total duration of the annealing and/or the total duration of the hot aging essentially corresponds to the above-mentioned values, i.e. the above-mentioned time periods for the respective stages are reduced proportionately .

Bei einem dreistufigen Glühen kann bspw. als erste Stufe ein Glühen bei einer Temperatur im Bereich von 320°C bis 380°C vorgesehen sein (zum Abbau von Eigenspannungen), daran anschließend eines zweite Glühstufe bei etwa 440°C und eine dritte Glühstufe bei etwa 490°C.In the case of three-stage annealing, for example, the first stage can be annealing at a temperature in the range from 320 ° C to 380 ° C (to reduce residual stresses), followed by a second annealing stage at around 440 ° C and a third annealing stage at around 490°C.

Und bei einer dreistufigen Warmauslagerung kann bspw. als letzte Stufe eine Warmauslagerung bei einer Temperatur im Bereich von 240°C bis 300°C für eine kurze Zeitdauer im Bereich von etwa 5 Minuten bis etwa 45 Minuten vorgesehen sein (zur Erhöhung der Duktilität).And in a three-stage hot aging process, for example, the last stage can be hot aging at a temperature in the range from 240 ° C to 300 ° C for a short period of time in the range from about 5 minutes to about 45 minutes (to increase the ductility).

Das erfindungsgemäße Verfahren kann dahin in vorteilhafter Weise weitergebildet sein, dass

  • das erste Glühen bei einer Temperatur im Bereich von 380°C bis 440°C für eine Zeitdauer von 20 Minuten bis 45 Minuten,
  • das zweite Glühen bei einer Temperatur im Bereich von 490°C bis 510°C für eine Zeitdauer von 5 Minuten bis 20 Minuten,
  • die Abschreckung mittels Luft mit einem Temperaturgradienten im Bereich von 3 K/s bis 12 K/s oder mittels Wasser mit einem Temperaturgradienten im Bereich von 80 K/s bis 200 K/s,
  • die erste Warmauslagerung bei einer Temperatur von 120°C bis 170°C für eine Zeitdauer von 40 Minuten bis 90 Minuten, und
  • die zweite Warmauslagerung bei einer Temperatur von 200°C bis 240°C für eine Zeitdauer von 40 Minuten bis 80 Minuten
durchgeführt werden.The method according to the invention can be developed in an advantageous manner so that
  • the first annealing at a temperature in the range of 380°C to 440°C for a period of 20 minutes to 45 minutes,
  • the second annealing at a temperature in the range of 490 ° C to 510 ° C for a period of 5 minutes to 20 minutes,
  • quenching using air with a temperature gradient in the range of 3 K/s to 12 K/s or using water with a temperature gradient in the range of 80 K/s to 200 K/s,
  • the first aging at a temperature of 120°C to 170°C for a period of 40 minutes to 90 minutes, and
  • the second aging at a temperature of 200°C to 240°C for a period of 40 minutes to 80 minutes
be performed.

Die vorliegende Erfindung umfasst auch eine Karosseriekomponente, insbesondere für ein Kraftfahrzeug, die dadurch gekennzeichnet ist, dass sie zumindest anteilig aus einem Druckgussbauteil besteht, das unter Verwendung des erfindungsgemäßen Verfahrens oder einer seiner vorteilhaften Weiterbildungen oder Ausgestaltungen hergestellt wurde.The present invention also includes a body component, in particular for a motor vehicle, which is characterized in that it consists at least partially of a die-cast component that was produced using the method according to the invention or one of its advantageous developments or refinements.

Das Druckgussbauteil der Karosseriekomponente kann in vorteilhafter Weise eine Wandstärke im Bereich von 0,6 mm bis 10 mm aufweisen. Des Weiteren kann bei der Karosseriekomponente das Druckgussbauteil mit wenigstens einem Blechbauteil, Stahlblechbauteil, Aluminiumbauteil oder Gussbauteil verklebt sein.The die-cast component of the body component can advantageously have a wall thickness in the range of 0.6 mm to 10 mm. Furthermore, in the case of the body component, the die-cast component can be glued to at least one sheet metal component, sheet steel component, aluminum component or cast component.

Die Karosseriekomponente kann bspw. in Form einer Federbeinaufnahme, eines Längsträgers, eines Verbindungsteils, einer Sitzaufnahme, einer Scharnieraufnahme oder einer Prallplatte ausgebildet sein.The body component can be designed, for example, in the form of a strut mount, a longitudinal member, a connecting part, a seat mount, a hinge mount or a baffle plate.

Die vorliegende Erfindung wird anhand der beigefügten Zeichnungen näher erläutert.The present invention is explained in more detail with reference to the accompanying drawings.

Dabei zeigen:

Fig. 1
den Einfluss des Zink-Gehalts auf die Zugscherfestigkeit nach zwei und vier Wochen Immersionstest bei einer Aluminium-Silizium-Druckgusslegierung gemäß der vorliegenden Erfindung, die einer Wärmebehandlung gemäß der vorliegenden Erfindung unterzogen wurde;
Fig. 2
den Einfluss des Kupfer-Gehalts auf die Zugscherfestigkeit nach zwei und vier Wochen Immersionstest bei einer Aluminium-Silizium-Druckgusslegierung gemäß der vorliegenden Erfindung, die einer Wärmebehandlung gemäß der vorliegenden Erfindung unterzogen wurde;
Fig. 3
einen Vergleich der Materialeigenschaften von Aluminium-Silizium-Druckgusslegierungen nach dem Stand der Technik und Aluminium-Silizium-Druckgusslegierungen gemäß der vorliegenden Erfindung.
Show:
Fig. 1
the influence of zinc content on the lap shear strength after two and four weeks of immersion testing on an aluminum-silicon die-casting alloy according to the present invention subjected to a heat treatment according to the present invention;
Fig. 2
the influence of the copper content on the tensile shear strength after two and four weeks of immersion testing in an aluminum-silicon die-casting alloy according to the present invention, which undergoes heat treatment subjected to the present invention;
Fig. 3
a comparison of the material properties of aluminum-silicon die-casting alloys according to the prior art and aluminum-silicon die-casting alloys according to the present invention.

Die nachfolgend erläuterten Ausführungsbeispiele stellen bevorzugte Ausführungsformen der vorliegenden Erfindung dar. Die vorliegende Erfindung ist selbstverständlich nicht auf diese Ausführungsformen beschränkt.The exemplary embodiments explained below represent preferred embodiments of the present invention. The present invention is of course not limited to these embodiments.

Die in der obigen Beschreibung genannten Merkmale und Merkmalskombinationen sowie die in der nachfolgenden Beschreibung von Ausführungsformen, Ausführungsbeispielen und der Figurenbeschreibung genannten und/oder in den Figuren alleine gezeigten Merkmale und Merkmalskombinationen sind nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar, ohne den Rahmen der vorliegenden Erfindung zu verlassen.The features and combinations of features mentioned in the above description as well as the features and combinations of features mentioned in the following description of embodiments, exemplary embodiments and the description of the figures and/or shown in the figures alone are not only in the combination specified in each case, but also in other combinations or in Can be used alone without departing from the scope of the present invention.

Durch die neuartige Aluminium-Silizium-Druckgusslegierung können in Kombination mit der erfindungsgemäß vorgesehene Wärmebehandlung unerwartete Vorteile erzielt werden.The novel aluminum-silicon die-casting alloy can achieve unexpected advantages in combination with the heat treatment provided according to the invention.

Die Durchführung einer zwei- oder mehrstufigen Lösungsglühung erlaubt die Glühung eines Bauteils bei Temperaturen von 460°C bis 520°C (bspw. über 480°C, bevorzugt über 490°C, besonders bevorzugt über 500°C) für kurze Zeiten von 5 Minuten bis 35 Minuten (bspw. im Bereich von 5 Minuten bis 25 Minuten) in der letzten Stufe.Carrying out a two-stage or multi-stage solution annealing allows a component to be annealed at temperatures of 460 ° C to 520 ° C (for example above 480 ° C, preferably above 490 ° C, particularly preferably above 500 ° C) for short times of 5 minutes to 35 minutes (e.g. in the range of 5 minutes to 25 minutes) in the last stage.

Hierdurch werden noch vorhandene organische Trennmittelrückstände aus dem Gießprozess (die sehr temperaturbeständige Mischungen aus Ölen, Wachsen, Polysiloxanen und weiteren Additiven aufweisen können) besonders wirkungsvoll vercrackt und können damit sehr gut und zumindest nahezu rückstandslos entfernt werden. Im Ergebnis kann so eine deutliche Steigerung der Klebstoffhaftung gegenüber herkömmlich wärmebehandelten Legierungen erzielt werden.As a result, any remaining organic release agent residues from the casting process (which can contain very temperature-resistant mixtures of oils, waxes, polysiloxanes and other additives) are cracked particularly effectively and can therefore be removed very well and at least almost without leaving any residue. As a result, a significant increase in adhesive adhesion can be achieved compared to conventionally heat-treated alloys.

Resultierend daraus ergeben sich als sekundärer Effekt hohe Werte für die Zugscherfestigkeiten, insbesondere nach Einwirkung korrosiver Medien. Die kurze Haltedauer der letzten Lösungsglühstufe reduziert außerdem die Gefahr des Verzugs des Bauteils.As a result, the secondary effect is high values for the lap shear strength, especially after exposure to corrosive media. The short holding time of the last solution annealing stage also reduces the risk of distortion of the component.

Das Festigkeitsniveau kann erfindungsgemäß über den Abschreckgradienten nach der Lösungsglühung eingestellt werden. Dabei gilt der Zusammenhang, dass je höher der Abschreckgradient gewählt wird, desto höher die zu erreichende Festigkeit ist.According to the invention, the strength level can be adjusted via the quenching gradient after solution annealing. The following applies: the higher the quenching gradient is selected, the higher the strength that can be achieved.

Eine zwei- oder mehrstufige Auslagerung erlaubt die Reduzierung der Auslagerungsdauer mittels Separation der Auslagerungsmechanismen (Keimbildung, Keimwachstum, etc.). Überraschenderweise hat sich gezeigt, dass sich insbesondere die zweite Stufe positiv auf das Festigkeits-Duktilitäts-Verhältnis bei den angegebenen Gehalten aus Zink und Zirconium auswirkt. Dabei ist die zweite Auslagerungsstufe so gestaltet, dass die Temperatur dabei höher als bei der ersten Auslagerungsstufe ist und im Bereich von 195 bis 300°C liegt.A two- or multi-stage aging allows the aging time to be reduced by separating the aging mechanisms (nucleation, germ growth, etc.). Surprisingly, it has been shown that the second stage in particular has a positive effect on the strength-ductility ratio at the specified zinc and zirconium contents. The second aging stage is designed so that the temperature is higher than in the first aging stage and is in the range of 195 to 300 ° C.

Sollen verschiedene Bauteile unterschiedliche Festigkeiten aufweisen, ist es besonders vorteilhaft, eine einheitliche (d.h. die gleiche) Aluminium-Silizium-Druckgusslegierung zu verwenden und auch die Glüh- sowie Auslagerungsprozesse gleich bezüglich Temperatur- und Zeitverläufe zu gestalten. Die unterschiedlichen Festigkeiten können dann auf einfache Weise durch unterschiedlich hohe Abschreckgradienten nach dem letzten Glühprozess eingestellt werden (siehe hierzu nachfolgend Beispiele 1 und 3). Hierüber ist es möglich, besonders gute Klebstoffhaftungs- und Crasheigenschaften über alle Festigkeitsklassen zu erreichen.If different components are to have different strengths, it is particularly advantageous to use a uniform (i.e. the same) aluminum-silicon die-casting alloy and to design the annealing and aging processes in the same way with regard to temperature and time profiles. The different strengths can then be easily adjusted by using different quenching gradients after the last annealing process (see Examples 1 and 3 below). This makes it possible to achieve particularly good adhesive adhesion and crash properties across all strength classes.

Die vorliegende Erfindung und die durch sie erzielbaren Vorteile werden nachfolgend durch einen Vergleich zwischen verschiedenen Aluminium-Silizium-Druckgusslegierungen und den jeweils angegebenen Wärmebehandlungen näher erläutert. Bei den angegebenen Vergleichsbeispielen 1 bis 5 wird keine Aluminium-Silizium-Druckgusslegierung gemäß der vorliegenden Erfindung verwendet, bei Vergleichsbeispiel 6 wird eine Aluminium-Silizium-Druckgusslegierung gemäß der vorliegenden Erfindung mit nur einem einstufigen Lösungsglühen und einer einstufigen Warmauslagerung behandelt und bei den Beispielen 1 bis 3 handelt es sich um Beispiele, bei denen Aluminium-Silizium-Druckgusslegierungen gemäß der vorliegenden Erfindung einer Wärmebehandlung gemäß der vorliegenden Erfindung unterzogen wurden.The present invention and the advantages that can be achieved by it are explained in more detail below by a comparison between different aluminum-silicon die-casting alloys and the heat treatments specified in each case. In the given comparative examples 1 to 5, no aluminum-silicon die-casting alloy according to the present invention is used, in comparative example 6, an aluminum-silicon die-casting alloy according to the present invention is treated with only one-stage solution annealing and one-stage hot aging, and in examples 1 to 3 are examples in which aluminum-silicon die-casting alloys according to the present invention were subjected to heat treatment according to the present invention.

Verwendete Wärmebehandlungsverfahren:
WBH Nr. 1: Lösungsglühung, einstufig: 460°C/1,5 h Abschreckung: Luftabschreckung 0,5-2 K/s Warmauslagerung, einstufig: 220°C/3 h
WBH Nr. 2 (erfindungsgemäß): Lösungsglühung, zweistufig: 400°C/1 h + 510°C/30 min Abschreckung: Luftabschreckung >3 K/s Warmauslagerung, zweistufig: 120°C/2 h + 230°C/1 h
WBH Nr. 3 (erfindungsgemäß): Lösungsglühung, zweistufig: 400°C/1 h + 510°C/30 min Abschreckung: Wasserabschreckung >80 K/s Warmauslagerung, zweistufig: 120°C/2 h + 230°C/1 h
Heat treatment processes used:
WBH No. 1: Solution annealing, one-stage: 460°C/1.5 h Deterrence: Air quenching 0.5-2 K/s Hot aging, single stage: 220°C/3 h
WBH No. 2 (according to the invention): Solution annealing, two-stage: 400°C/1 h + 510°C/30 min Deterrence: Air quenching >3 K/s Hot aging, two-stage: 120°C/2 h + 230°C/1 h
WBH No. 3 (according to the invention): Solution annealing, two-stage: 400°C/1 h + 510°C/30 min Deterrence: Water quenching >80 K/s Hot aging, two-stage: 120°C/2 h + 230°C/1 h

Die angegebenen Zeitdauern bei der Lösungsglühung und Warmauslagerung entsprechen den Ofenzeiten. Die Bauteile können hierzu bspw. entweder mit Hilfe eines Mehrkammerofens in die Kammer mit den jeweils angegebenen Temperaturen (weiter)transportiert werden oder mittels einer Rampenaufheizung von einer ersten Temperatur auf eine zweite Temperatur erwärmt werden.The specified times for solution annealing and aging correspond to the oven times. For this purpose, the components can, for example, either be transported (further) into the chamber with the specified temperatures using a multi-chamber furnace or heated from a first temperature to a second temperature using ramp heating.

Die Abschreckung erfolgt ohne genaue Festlegung einer unteren Grenztemperatur und es wurde regelmäßig bis in etwa Raumtemperatur oder etwas darüber abgekühlt, mindestens jedoch auf kleiner 200°C.The quenching takes place without a precise definition of a lower limit temperature and was regularly cooled to approximately room temperature or slightly above, but at least to less than 200 ° C.

Verwendete Legierungen:Alloys used:

Legierung Nr. 1:Alloy #1: AlSi10,5Mn0,60Mg0,30Sr0,012Ti0,06 (genormte Referenzlegierung)AlSi10.5Mn0.60Mg0.30Sr0.012Ti0.06 (standardized reference alloy) Legierung Nr. 2:Alloy No. 2: AlSi10,5Mn0,60Mg0,40Sr0,012Ti0,06Zn0,90Zr0,10 (Legierung gemäß DE 10 2013 002 632 A1 )AlSi10.5Mn0.60Mg0.40Sr0.012Ti0.06Zn0.90Zr0.10 (alloy according to DE 10 2013 002 632 A1 ) Legierung Nr. 3:Alloy No. 3: AlSi10,5Mn0,60Mg0,32Sr0,012Ti0,06Zn0,10Cu0,25 (Legierung gemäß EP 2 735 621 A1 )AlSi10.5Mn0.60Mg0.32Sr0.012Ti0.06Zn0.10Cu0.25 (alloy according to EP 2 735 621 A1 ) Legierung Nr. 4:Alloy No. 4: AlSi9,5Mn0,60Mg0,42Sr0,015Ti0,12Zn0,20Zr0,20 (Legierung gemäß der vorliegenden Erfindung, Variante 1)AlSi9.5Mn0.60Mg0.42Sr0.015Ti0.12Zn0.20Zr0.20 (alloy according to the present invention, variant 1) Legierung Nr. 5:Alloy No. 5: AlSi9,5Mn0,60Mg0,42Sr0,015Ti0,12Zn0,20Zr0,020Sn0,15Co0,10 (Legierung gemäß der vorliegenden Erfindung; Variante 2)AlSi9.5Mn0.60Mg0.42Sr0.015Ti0.12Zn0.20Zr0.020Sn0.15Co0.10 (alloy according to the present invention; variant 2)

Tabelle 1 zeigt die verwendeten Legierungen und die damit jeweils durchgeführten Wärmebehandlung. Tabelle 1 Beispiel Legierung (Nr. #) Wärmebehandlung (WBH Nr. #) Vergleichsbeispiel 1 1 1 Vergleichsbeispiel 2 2 1 Vergleichsbeispiel 3 3 1 Vergleichsbeispiel 4 1 2 Vergleichsbeispiel 5 2 2 Vergleichsbeispiel 6 4 1 Beispiel 1 4 2 Beispiel 2 5 2 Beispiel 3 4 3 Table 1 shows the alloys used and the heat treatment carried out with them. Table 1 Example Alloy (No. #) Heat treatment (WBH No. #) Comparative example 1 1 1 Comparative example 2 2 1 Comparative example 3 3 1 Comparative example 4 1 2 Comparative example 5 2 2 Comparative example 6 4 1 example 1 4 2 Example 2 5 2 Example 3 4 3

Tabelle 2 zeigt die resultierenden Eigenschaftsprofile. Tabelle 2 Beispiel Rm (MPa) Rp0,2 (MPa) A5 (%) FDI Korrosionsbeständigkeit Fließfähigkeit Klebstoffhaftung Vergleichsbeispiel 1 205 133 16,3 25 + 0 + Vergleichsbeispiel 2 233 169 13,1 24 0 + - Vergleichsbeispiel 3 246 183 11,7 23 - - -- Vergleichsbeispiel 4 230 158 13,5 24 + 0 + Vergleichsbeispiel 5 252 206 12,6 27 0 + - Vergleichsbeispiel 6 235 163 14,7 27 + ++ + Beispiel 1 253 192 14,8 31 + ++ ++ Beispiel 2 263 210 14,3 32 + ++ ++ Beispiel 3 340 265 12,3 35 + ++ ++ ++: überraschend sehr gut; +:gut 0:durchschnittlich -:schlecht; --:ungenügend Table 2 shows the resulting property profiles. Table 2 Example Rm (MPa) Rp 0.2 (MPa) A5 (%) FDI Corrosion resistance Fluidity Adhesive adhesion Comparative example 1 205 133 16.3 25 + 0 + Comparative example 2 233 169 13.1 24 0 + - Comparative example 3 246 183 11.7 23 - - -- Comparative example 4 230 158 13.5 24 + 0 + Comparative example 5 252 206 12.6 27 0 + - Comparative example 6 235 163 14.7 27 + ++ + example 1 253 192 14.8 31 + ++ ++ Example 2 263 210 14.3 32 + ++ ++ Example 3 340 265 12.3 35 + ++ ++ ++: surprisingly very good; +:good 0:average -:poor; --:insufficient

In Tabelle 2 bedeuten Rm: Zugfestigkeit Rp0,2: 0,2%-Dehngrenze A5: Bruchdehnung FDI: Festigkeits-Duktilitäts-Index, berechnet aus den für Fahrzeugkarosserie-Bauteile auslegungsrelevanten Materialkennwerten Rm, Rp0,2 und A5; FDI = (Rm+3*Rp0,2)/4*A5/100 In Table 2 mean RM: tensile strenght Rp 0.2 : 0.2% yield strength A5: Elongation at break FDI: Strength-ductility index, calculated from the material parameters Rm, Rp 0.2 and A5 relevant to the design of vehicle body components; FDI = (Rm+3*Rp 0.2 )/4*A5/100

Für den FDI wurden die Festigkeitswerte nach Priorisierung im Karosseriebau gewichtet (Rm: einfach; Rp0,2: dreifach). Der gemittelte Festigkeitswert wird mit entsprechender Gewichtung (Rm: einfach, Rp0,2: dreifach) mit der Bruchdehnung A5 multipliziert und aus Gründen der Übersichtlichkeit durch den Divisor 100 dividiert.For the FDI, the strength values were weighted according to prioritization in the body construction (Rm: single; Rp 0.2 : triple). The average strength value is multiplied with the appropriate weighting (Rm: single, Rp 0.2 : triple) with the elongation at break A5 and, for reasons of clarity, divided by the divisor 100.

Mit den aus dem Stand der Technik bekannten Lösungen können nur FDI-Werte bis maximal ≤27 erreicht werden (siehe Vergleichsbeispiele 5 und 6).With the solutions known from the prior art, only FDI values up to a maximum of ≤27 can be achieved (see comparative examples 5 and 6).

Auf Basis der erfindungsgemäßen Beispiele 1 bis 3 ist ersichtlich, dass nur durch eine Kombination der neuen Legierung gemäß der vorliegenden Erfindung mit der optimierten Wärmebehandlung gemäß der vorliegenden Erfindung ein FDI > 30 erreicht werden kann und weitere Eigenschaftsvorteile hinsichtlich Klebstoffhaftung, Fließfähigkeit sowie Korrosions- und Crashverhalten erzielt werden können.Based on Examples 1 to 3 according to the invention, it can be seen that only by combining the new alloy according to the present invention with the optimized heat treatment according to the present invention can an FDI > 30 be achieved and further property advantages in terms of adhesive adhesion, flowability as well as corrosion and crash behavior can be achieved.

Demgegenüber können, wenn aus dem Stand der Technik bekannte Legierungen (Legierung Nr. 1 oder Nr. 2) einer Wärmebehandlung gemäß der vorliegenden Erfindung unterzogen werden (WBH Nr. 2), lediglich FDI-Werte < 30 erreicht werden (siehe Vergleichsbeispiele 4 und 5). Gleiches gilt, wenn eine Legierung gemäß der vorliegenden Erfindung (Legierung Nr. 4) einer nur einfachen Wärmebehandlung (WBH Nr. 1) mit jeweils einer Lösungsglühung und einer Warmauslagerung unterzogen wird (siehe Vergleichsbeispiel 6).In contrast, when alloys known from the prior art (Alloy No. 1 or No. 2) are subjected to a heat treatment according to the present invention (WBH No. 2), only FDI values <30 can be achieved (see Comparative Examples 4 and 5 ). The same applies if an alloy according to the present invention (Alloy No. 4) is subjected to only a simple heat treatment (WBH No. 1), each with solution annealing and hot aging (see Comparative Example 6).

In Fig. 1 ist die Abhängigkeit der Klebstoffhaftung (Zugscherfestigkeit) im Immersionstest nach 2 und 4 Wochen vom Zinkgehalt dargestellt. In Fig. 2 ist die Abhängigkeit der Klebstoffhaftung (Zugscherfestigkeit) im Immersionstest nach 2 und 4 Wochen in Abhängigkeit vom Kupfergehalt aufgetragen. In Bezug auf die übrigen Legierungsbestandteile sowie die Wärmebehandlung entsprechen die gemäß dieser Figuren untersuchten Legierungen jeweils Beispiel 1.In Fig. 1 The dependence of the adhesive adhesion (tensile shear strength) in the immersion test after 2 and 4 weeks on the zinc content is shown. In Fig. 2 The dependence of the adhesive adhesion (tensile shear strength) in the immersion test after 2 and 4 weeks is plotted as a function of the copper content. With regard to the remaining alloy components and the heat treatment, the alloys examined according to these figures correspond to Example 1.

Aus Fig. 1 ist ersichtlich, dass besonders vorteilhafte Klebstoffhaftungseigenschaften dann erreicht werden, wenn bei der Legierung Nr. 4 der Zink-gehalt zwischen 0,08 Gew.% und 0,35 Gew.% liegt und Kupfer nicht als Legierungselement verwendet wird. Kupfer ist lediglich als Verunreinigungselement mit Gehalten bis maximal 0,05 Gew.% zulässig, damit die geforderten Zugscherfestigkeiten von prozesssicheren > 25 MPa nach 4 Wochen Immersionstest erreicht werden können.Out of Fig. 1 It can be seen that particularly advantageous adhesive adhesion properties are achieved when the zinc content of alloy No. 4 is between 0.08% by weight and 0.35% by weight and copper is not used as an alloying element. Copper is only permitted as an impurity element with contents of up to a maximum of 0.05% by weight so that the required tensile shear strengths of process-reliable > 25 MPa can be achieved after 4 weeks of immersion testing.

Neben den Klebstoffhaftungseigenschaften hat sich bei der Legierung gemäß Beispiel 1 (Legierung Nr. 4, Wärmebehandlung Nr. 2) überraschenderweise gezeigt, dass neben sehr hohen 0,2%-Dehngrenzen im Bereich von 0,08 Gew.% bis 0,35 Gew.% Zink vor allem die Fließfähigkeit der Legierung besonders gute Werte liefert. Es konnte hier ein Maximum in Abhängigkeit vom Zinkgehalt der Legierung festgestellt werden. Die Zusammenhänge sind in Fig. 3 dargestellt.In addition to the adhesive adhesion properties, it has surprisingly been shown in the alloy according to Example 1 (Alloy No. 4, Heat Treatment No. 2) that in addition to very high 0.2% yield strengths in the range of 0.08% by weight to 0.35% by weight. % zinc, above all, the flowability of the alloy delivers particularly good values. A maximum was found here depending on the zinc content of the alloy. The connections are in Fig. 3 shown.

Eine weitere Erhöhung der mechanischen Kennwerte ohne weitere Eigenschaftsnachteile konnten durch geringe Gehalte von Kobalt (Co) und/oder Zinn (Sn) zur Erhöhung der 0,2%-Dehngrenze erzielt werden (vgl. Beispiele 1 und 2).A further increase in the mechanical characteristics without further disadvantages in properties could be achieved by low contents of cobalt (Co) and/or tin (Sn) to increase the 0.2% yield strength (see Examples 1 and 2).

Eine deutliche Steigerung der mechanischen Kennwerte kann auch durch Erhöhung des Abschreckgradienten erzielt werden (siehe Beispiel 3 mit Legierung Nr. 4 und Wasserabschreckung). Die Legierungen Nr. 4 und Nr. 5 besitzen besonders gute mechanische Kennwerte bei Abschreckgradienten >3 K/s, insbesondere >4 K/s.A significant increase in the mechanical characteristics can also be achieved by increasing the quenching gradient (see Example 3 with alloy No. 4 and water quenching). Alloys No. 4 and No. 5 have particularly good mechanical characteristics at quenching gradients >3 K/s, especially >4 K/s.

Vor allem bei Legierung Nr. 4 konnten durch die optimierte Wärmebehandlung WBH Nr. 2 sehr gute Festigkeits-Duktilitäts-Eigenschaften von Versuchsbauteilen der erzeugten Gussbauteile erzielt werden (vgl. Vergleichsbeispiel 6 und Beispiel 1).Especially with alloy No. 4, very good strength-ductility properties of test components of the cast components produced could be achieved through the optimized heat treatment WBH No. 2 (see Comparative Example 6 and Example 1).

Wie aus Fig. 3 ersichtlich ist, zeigen lediglich Kombinationen der Legierungszusammensetzung gemäß der vorliegenden Erfindung mit der Wärmebehandlung gemäß der vorliegenden Erfindung die geforderten Eigenschaftsprofile (Beispiele 1 bis 3). Alle in Fig. 3 dargestellten Eigenschaften sind referenziert auf Vergleichsbeispiel 1 mit einer Standardlegierung für Karosseriegussanwendungen und einer Wärmebehandlung gemäß dem Stand der Technik (WBH Nr. 1). Bei den Beispielen Nr. 1 bis 3 gemäß der vorliegenden Erfindung zeigen sich sämtliche betrachteten Eigenschaften gegenüber dem Vergleichsbeispiel 1 deutlich verbessert.How out Fig. 3 As can be seen, only combinations of the alloy composition according to the present invention with the heat treatment according to the present invention show the required property profiles (Examples 1 to 3). Alone Fig. 3 The properties shown are referenced to Comparative Example 1 with a standard alloy for body casting applications and a heat treatment according to the prior art (WBH No. 1). In Examples Nos. 1 to 3 according to the present invention, all properties considered are significantly improved compared to Comparative Example 1.

Für die in den Figuren verwendeten Begriffe gilt folgendes:The following applies to the terms used in the figures:

Fließfähigkeit:Fluidity:

Die jeweilige Legierung wurde auf ca. 700°C erwärmt und anschließend in eine Prüfkokille (max. Länge 300 mm) gegossen. Je nach Eigenschaft der Legierung ergeben sich unterschiedliche Fülllängen. Diese Fülllänge wurde zur Ermittlung der Fließfähigkeit gemessen und zwischen den Legierungsvarianten verglichen. Übliche Fließlängen liegen bei 200-250 mm. Legierungen mit einer Fließfähigkeit > 250 mm wurden als "gut" bewertet; Legierungen mit einer Fließfähigkeit von < 200 mm wurden als "schlecht" bewertet. Die Auftragung erfolgte relativ normiert zur Legierung Nr. 1 (Referenzlegierung).The respective alloy was heated to approx. 700°C and then poured into a test mold (max. length 300 mm). Depending on the properties of the alloy, there are different filling lengths. This filling length was measured to determine the flowability and compared between the alloy variants. Usual flow lengths are 200-250 mm. Alloys with a flowability > 250 mm were rated as “good”; Alloys with a flowability of <200 mm were rated as “poor”. The application was relatively standardized to alloy no. 1 (reference alloy).

Korrosionsresistenz:Corrosion resistance:

Eine gegossene Probe wurde in künstlichen Atmosphären einer Salzsprühnebelprüfung nach DIN EN ISO 9227 über eine Dauer von 3024h (18 Wochen) unterzogen. Die Bewertung des Korrosionsverhaltens, also der Angriff, auf die Probe erfolgte nach DIN EN ISO 9227 und wurde entsprechend ausgewertet. Die Proben mit dem geringsten bzw. höchsten Korrosionsangriff wurden unter dem Begriff Korrosion zu -100% (größter Angriff) bzw. 0% (geringster Angriff) normiert.A cast sample was subjected to a salt spray test in accordance with DIN EN ISO 9227 in artificial atmospheres for a period of 3024 hours (18 weeks). The assessment of the corrosion behavior, i.e. the attack, on the sample was carried out in accordance with DIN EN ISO 9227 and was evaluated accordingly. The samples with the lowest and highest corrosion attack were standardized under the term corrosion to -100% (greatest attack) or 0% (least attack).

Immersionstest:Immersion test:

Je zwei gegossene Gussplatten wurden mit einer definierten Überlappung verklebt und nach der Aushärtung des Klebstoffs in den Immersionstest gegeben. Hier werden die Probestreifen 2 bzw. 4 Wochen in einer 5-prozentigen NaCI-Lösung bei einer definieren Temperatur zwischen 50-80°C gelagert. Nach Beendigung des Tests werden die Zugproben mit Hilfe einer Zugprüfmaschine zerstört, d.h. die Kleberaupe bis zum Versagen auseinandergezogen und die auftretende Zugkraft (Zugscherfestigkeit) ermittelt.Two cast iron plates were glued together with a defined overlap and put into the immersion test after the adhesive had hardened. Here the sample strips are stored for 2 or 4 weeks in a 5 percent NaCl solution at a defined temperature between 50-80°C. After completion of the test, the tensile samples are destroyed using a tensile testing machine, i.e. the adhesive bead is pulled apart until failure and the resulting tensile force (tensile shear strength) is determined.

Übliche Zugscherfestigkeitswerte nach 4 Wochen Immersionstest liegen bei ca. 25 MPa. Sehr gute Ergebnisse liegen zwischen 27-30 MPa, schlechte Werte weisen Zugscherfestigkeiten < 23 MPa auf. Die Resultate wurden anschließend zur Legierung Nr. 1 (Referenzlegierung) normiert.Usual tensile shear strength values after 4 weeks of immersion testing are approximately 25 MPa. Very good results are between 27-30 MPa, poor values show tensile shear strengths < 23 MPa. The results were then normalized to alloy No. 1 (reference alloy).

Ein besonderer Vorteil der vorliegenden Erfindung ist, dass Aluminium-Silizium-Druckgusslegierungen zur Verfügung gestellt werden, durch die Gussteile erhalten werden können, die in der Fahrzeugkarosserie durch kleben miteinander verbunden werden können. Gegenüber bisher bekannten Legierungen weist die erfindungsgemäße Legierung ein deutlich erhöhte Klebstoffhaftung bei einem hohen Festigkeitsniveau auf.A particular advantage of the present invention is that aluminum-silicon die-casting alloys are provided, through which castings can be obtained that can be bonded together in the vehicle body. Compared to previously known alloys, the alloy according to the invention has significantly increased adhesive adhesion at a high level of strength.

Bezüglich der hierbei verwendbaren Klebstoffe und der Klebverfahren ergeben sich keine Besonderheiten bzw. keine Einschränkungen im Bezug auf die aus dem Stand der Technik bekannten Klebstoffe und -verfahren. Gleiches gilt für die Materialien, mit denen die Legierungen gemäß der vorliegenden Erfindung verklebt werden können. Diesbezüglich kann ein Fachmann somit auf die ihm aufgrund seines Fachwissens bekannten Lösungen zurückgreifen, so dass in der vorliegenden Anmeldung hierauf auch nicht näher eingegangen zu werden braucht.With regard to the adhesives and the bonding processes that can be used here, there are no special features or no restrictions in relation to the adhesives and processes known from the prior art. The same applies to the materials with which the alloys according to the present invention can be bonded. In this regard, a person skilled in the art can therefore rely on the solutions known to him based on his specialist knowledge, so that there is no need to go into this in more detail in the present application.

Durch die Erfindung können Karosseriekomponenten (Druckgussbauteile) im Wandstärkenbereich im Bereich von < 1,0 mm und 10 mm Wanddicke hergestellt werden, besonders vorteilhaft auch sehr dünnwandige Bauteile. Entgegen dem vorbekannten Stand der Technik sind durch die vorliegende Erfindung Wandstärken von < 1,0 mm bis minimal 0,6 mm möglich.The invention makes it possible to produce body components (die-cast components) with wall thicknesses in the range of <1.0 mm and 10 mm wall thickness, particularly advantageously also very thin-walled components. Contrary to the prior art, wall thicknesses of <1.0 mm to a minimum of 0.6 mm are possible thanks to the present invention.

Als einige, nicht abschließende Beispiele für durch die vorliegende Erfindung herstellbare Karosseriekomponenten seien erwähnt Federbeinaufnahmen, Längsträger, Verbindungsteile, Sitzaufnahmen, Scharnieraufnahmen und/oder Prallplatten.Some non-exhaustive examples of body components that can be produced using the present invention include suspension strut mounts, side members, connecting parts, seat mounts, hinge mounts and/or impact plates.

Durch die vorliegende Erfindung ergeben sich somit insbesondere die folgenden Vorteile:

  • hohe Korrosionsresistenz durch begrenzten Zink-Gehalt;
  • durch begrenzten Zink-Gehalt bedingtes erniedrigtes Festigkeitsniveau wird durch mehrstufige Wärmebehandlung kompensiert, wahlweise auch durch Zugabe von Zinn und/oder Kobalt;
  • gute Klebstoffhaftung auch unter Feuchteeinfluss im Immersionstest;
  • sehr guter Festigkeits-Duktilitäts-Index (FDI), d.h. gutes Crashverhalten;
  • sehr gute Fließfähigkeit, daher sehr dünnwandige Bauteile möglich;
  • durch den Entfall von Kupfer als Legierungsbestandteil hohe Korrosionsbeständigkeit und Crashfestigkeit der Legierung; ebenso ist eine sehr gute Stanznieteignung gegeben.
The present invention results in the following advantages in particular:
  • high corrosion resistance due to limited zinc content;
  • Reduced strength level caused by limited zinc content is compensated for by multi-stage heat treatment, optionally also by adding tin and/or cobalt;
  • good adhesive adhesion even under the influence of moisture in the immersion test;
  • very good strength-ductility index (FDI), ie good crash behavior;
  • very good flowability, therefore very thin-walled components possible;
  • Due to the elimination of copper as an alloy component, the alloy has high corrosion resistance and crash resistance; It is also very suitable for punch riveting.

Claims (9)

  1. Aluminium-silicon die casting alloy for producing a die casting component, in particular a thin-walled body component for a motor vehicle, containing
    - 6.5 wt.% to 12.0 wt.% silicon,
    - 0.30 wt.% to 0.80 wt.% manganese,
    - 0.25 wt.% to 0.50 wt.% magnesium,
    - 0.08 wt.% to 0.35 wt.% zinc,
    - 0.05 wt.% to 0.30 wt.% zirconium,
    - 0.006 wt.% to 0.025 wt.% strontium,
    - individually a maximum of 0.3 wt.%, overall a maximum of 0.5 wt.% impurities,
    - containing as impurity a maximum of 0.05 wt.% copper,
    - as optional alloy component(s)
    - a maximum of 0.2 wt.% vanadium,
    - a maximum of 0.2 wt.% molybdenum,
    - a maximum of 0.3 wt.% tin,
    - a maximum of 0.3 wt.% cobalt, and/or
    - a maximum of 0.2 wt.% titanium
    - as the remainder aluminium.
  2. Aluminium-silicon die casting alloy according to claim 1, containing more than 0.35 wt.% to 0.50 wt.% magnesium, preferably 0.38 wt.% to 0.45 wt.% magnesium.
  3. Aluminium-silicon-die casting alloy according to any of the preceding claims, containing as an impurity (impurities)
    - a maximum of 0.002 wt.% phosphorus,
    - a maximum of 0.002 wt.% calcium,
    - a maximum of 0.002 wt.% sodium, and/or
    - a maximum of 0.30 wt.% iron.
  4. Method for producing a die casting component, in particular for a thin-walled body component, comprising the steps:
    - casting a die casting component from an aluminium-silicon die casting alloy according to any of claims 1 to 3, and
    - subjecting the die casting component to a heat treatment comprising in the specified order:
    - a multistage annealing comprising at least
    - a first annealing at a temperature in the range of 320°C to 450°C for a period of 20 minutes to 75 minutes, and
    - a second annealing at a temperature in the range of 460°C to 520°C for a period of 5 minutes to 35 minutes,
    - quenching at a temperature gradient in the range of 3 K/s to 200 K/s, and
    - a multistage artificial ageing comprising at least
    - a first artificial ageing at a temperature in the range of 100°C to 180°C for a period of 40 minutes to 150 minutes, and
    - a second artificial ageing at a temperature in the range of 195°C to 300°C for a period of 30 minutes to 100 minutes.
  5. Method according to claim 4, wherein
    - the first annealing is performed at a temperature in the range of 380°C to 440°C for a period of 20 minutes to 45 minutes,
    - the second annealing is performed at a temperature in the range of 490°C to 510°C for a period of 5 minutes to 20 minutes,
    - the quenching is performed by means of air at a temperature gradient in the range of 3 K/s to 12 K/s or by means of water at a temperature gradient in the range of 80 K/s to 200 K/s,
    - the first artificial ageing is performed at a temperature of 120°C to 170°C for a period of 40 minutes to 90 minutes and
    - the second artificial ageing is performed at a temperature of 200°C to 240°C for a period of 40 minutes to 80 minutes.
  6. Body component for a motor vehicle,
    characterised in that
    it consists at least proportionally of a die casting component, which is produced according to any of claims 4 or 5.
  7. Body component according to claim 6,
    characterised in that
    the casting component has a wall thickness in the range of 0.6 mm to 10 mm.
  8. Body component according to any of claims 6 or 7,
    characterised in that
    the casting component is adhered to at least one sheet metal part, steel sheet metal part, aluminium component or cast component.
  9. Body component according to any of claims 6 to 8 in the form of a strut mount, a longitudinal beam, a connecting part, a seat mount, a hinge seat or a baffle plate.
EP16002462.6A 2015-12-03 2016-11-18 Aluminium-silicon die casting alloy method for producing a die casting component made of the alloy, and a body component with a die casting component Active EP3176275B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015015610.1A DE102015015610A1 (en) 2015-12-03 2015-12-03 Aluminum-silicon diecasting alloy, method of making a die cast component of the alloy and body component with a die cast component

Publications (3)

Publication Number Publication Date
EP3176275A1 EP3176275A1 (en) 2017-06-07
EP3176275B1 EP3176275B1 (en) 2018-10-10
EP3176275B2 true EP3176275B2 (en) 2023-12-13

Family

ID=57354058

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16002462.6A Active EP3176275B2 (en) 2015-12-03 2016-11-18 Aluminium-silicon die casting alloy method for producing a die casting component made of the alloy, and a body component with a die casting component

Country Status (2)

Country Link
EP (1) EP3176275B2 (en)
DE (1) DE102015015610A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11313015B2 (en) * 2018-03-28 2022-04-26 GM Global Technology Operations LLC High strength and high wear-resistant cast aluminum alloy
US11352685B2 (en) 2019-09-17 2022-06-07 Ford Global Technologies, Llc Multi-step aging process for improved bond durability
EP3825428B1 (en) 2019-11-25 2022-11-16 AMAG casting GmbH Die cast component and method for producing a die cast component
DE102020100689A1 (en) 2020-01-14 2021-07-15 Audi Aktiengesellschaft Method for producing a motor vehicle rim from aluminum or an aluminum alloy for a wheel of a motor vehicle and a motor vehicle rim
DE102020100688A1 (en) * 2020-01-14 2021-07-15 Audi Aktiengesellschaft Method for producing a motor vehicle rim from an aluminum alloy for a wheel of a motor vehicle and corresponding motor vehicle rim
DE102021131973A1 (en) * 2021-12-03 2023-06-07 Audi Aktiengesellschaft Die-cast aluminum alloy
CN114231865B (en) * 2021-12-22 2023-02-28 合肥工业大学 Two-stage spheroidizing annealing method for Al-Si alloy
CN115961186A (en) * 2022-11-11 2023-04-14 蔚来动力科技(合肥)有限公司 Die-casting aluminum alloy material and preparation method and application thereof
CN117821813B (en) * 2024-03-04 2024-04-26 鸿劲新材料研究(南通)有限公司 Aluminum alloy material for auxiliary frame of automobile and preparation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1612286A2 (en) 2004-06-29 2006-01-04 ALUMINIUM RHEINFELDEN GmbH Aluminium alloy for pressure die casting
DE102008046803A1 (en) 2008-09-11 2010-03-25 Audi Ag Aluminum alloy, useful to produce cast component and for casting components of car, comprises silicon, manganese, magnesium, copper and iron, and aluminum and production related impurities
DE102013002632A1 (en) 2012-02-16 2013-08-22 Audi Ag Aluminum-silicon die casting alloy comprises a specific amount of silicon, zinc, magnesium, manganese, zirconium, contaminants, and aluminum
EP2653579A1 (en) 2012-04-17 2013-10-23 Georg Fischer Druckguss GmbH & Co. KG Aluminium alloy
EP2735621A1 (en) 2012-11-21 2014-05-28 Georg Fischer Druckguss GmbH & Co. KG Aluminium die casting alloy

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH689143A5 (en) * 1994-06-16 1998-10-30 Rheinfelden Aluminium Gmbh Aluminum-silicon casting alloys with high corrosion resistance, particularly for safety components.
DE29522065U1 (en) * 1994-06-16 1999-09-02 Rheinfelden Aluminium Gmbh Die casting alloy
DE102008056511B4 (en) * 2008-11-08 2011-01-20 Audi Ag Process for producing thin-walled metal components from an Al-SiMg alloy, in particular components of a motor vehicle
DE102009012073B4 (en) * 2009-03-06 2019-08-14 Andreas Barth Use of an aluminum casting alloy
DE102011112005A1 (en) * 2011-08-29 2013-02-28 Audi Ag Alloy, preferably aluminum casting alloy, useful e.g. as a sand or die casting alloy, comprises a specified range of silicon, zinc, iron, copper, magnesium, strontium, sodium, antimony and aluminum

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1612286A2 (en) 2004-06-29 2006-01-04 ALUMINIUM RHEINFELDEN GmbH Aluminium alloy for pressure die casting
DE102008046803A1 (en) 2008-09-11 2010-03-25 Audi Ag Aluminum alloy, useful to produce cast component and for casting components of car, comprises silicon, manganese, magnesium, copper and iron, and aluminum and production related impurities
DE102013002632A1 (en) 2012-02-16 2013-08-22 Audi Ag Aluminum-silicon die casting alloy comprises a specific amount of silicon, zinc, magnesium, manganese, zirconium, contaminants, and aluminum
EP2653579A1 (en) 2012-04-17 2013-10-23 Georg Fischer Druckguss GmbH & Co. KG Aluminium alloy
EP2735621A1 (en) 2012-11-21 2014-05-28 Georg Fischer Druckguss GmbH & Co. KG Aluminium die casting alloy

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
Bibliographische Daten des Dokuments
CATRIN KAMMER: "ALUMINIUM TASCHENBUCH 1 - GRUNDLAGEN UND WERKSTOFFE, 16. Auflage", 2012, BEUTH VERLAG GMBH, ISBN: 978-3-410-22028-2
CATRIN KAMMER: "ALUMINIUM TASCHENBUCH 3 - WEITERVERARBEITUNG UND ANWENDUNG", 2014, BEUTH VERLAG GMBH BERLIN, ISBN: 978-3-410-23135-6,
Duden - bis - Rechtschreibung
Duden - hierdurch - Rechtschreibung
Duden - maximal- Rechtschreibung
Duden - weniger - Rechtschreibung
Prüfung der Beständigkeit gegen interkristalline Korrosion, 15.07.2020
Seiten 162 bis 163
Wikipedia-Eintrage „Komfeinung"

Also Published As

Publication number Publication date
EP3176275B1 (en) 2018-10-10
EP3176275A1 (en) 2017-06-07
DE102015015610A1 (en) 2017-06-08

Similar Documents

Publication Publication Date Title
EP3176275B2 (en) Aluminium-silicon die casting alloy method for producing a die casting component made of the alloy, and a body component with a die casting component
EP3314031B1 (en) High strength and easily reformable almg tape and method for producing the same
EP1682688B1 (en) Al-Mg-Si cast aluminium alloy containing scandium
DE102013012259B3 (en) Aluminum material with improved precipitation hardening, process for its production and use of the aluminum material
AT502294B1 (en) AL-ZN KNET ALLOY AND USE OF SUCH ALLOY
EP3235917B1 (en) Alloy for pressure die casting
DE102006005250B4 (en) Iron-nickel alloy
EP2888382B1 (en) Aluminium alloy strip which is resistant to intercrystalline corrosion and method for producing same
EP3825428B1 (en) Die cast component and method for producing a die cast component
WO2005045080A1 (en) Aluminium alloy
EP2449145A1 (en) Almgsi strip for applications having high plasticity requirements
EP1518000A1 (en) Al/cu/mg/ag alloy with si, semi-finished product made from such an alloy and method for production of such a semi-finished product
EP1017867B1 (en) Aluminium based alloy and method for subjecting it to heat treatment
DE112019000856T5 (en) Process for the manufacture of aluminum alloy components
DE102013002632B4 (en) Aluminum-silicon diecasting alloy and method of making a die cast component
EP2041328A1 (en) Aluminum alloy and the utilization thereof for a cast component, in particular a motor vehicle
EP3497256B1 (en) Aluminum alloy and aluminum alloy strip for pedestrian impact protection
DE602004005529T2 (en) Wrought aluminum alloy
EP2703508A1 (en) Aluminium alloy resistant to intercrystalline corrosion
EP1748088B1 (en) Process for producing a semi-finished product or component for chassis or structural automotive applications
EP2088216A1 (en) Aluminium alloy
DE102019202676B4 (en) Cast components with high strength and ductility and low tendency to hot crack
DE202016105961U1 (en) High strength and high ductile magnesium alloy
DE102015007929A1 (en) Cast aluminum alloy, method of manufacturing an aluminum cast alloy component and using an aluminum casting alloy
CH700835B1 (en) Aluminum composite sheet metal product.

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171207

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180531

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AUDI AG

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1051336

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016002176

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181010

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190110

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190210

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190210

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190111

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502016002176

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181118

26 Opposition filed

Opponent name: STRAWMAN LIMITED

Effective date: 20190709

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181118

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181010

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20161118

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

PLBP Opposition withdrawn

Free format text: ORIGINAL CODE: 0009264

PLAY Examination report in opposition despatched + time limit

Free format text: ORIGINAL CODE: EPIDOSNORE2

PLBC Reply to examination report in opposition received

Free format text: ORIGINAL CODE: EPIDOSNORE3

PLAY Examination report in opposition despatched + time limit

Free format text: ORIGINAL CODE: EPIDOSNORE2

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1051336

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211118

PLBC Reply to examination report in opposition received

Free format text: ORIGINAL CODE: EPIDOSNORE3

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

GRAT Correction requested after decision to grant or after decision to maintain patent in amended form

Free format text: ORIGINAL CODE: EPIDOSNCDEC

27A Patent maintained in amended form

Effective date: 20231213

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502016002176

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231127

Year of fee payment: 8

Ref country code: DE

Payment date: 20231130

Year of fee payment: 8