EP2735621A1 - Aluminium die casting alloy - Google Patents

Aluminium die casting alloy Download PDF

Info

Publication number
EP2735621A1
EP2735621A1 EP12193547.2A EP12193547A EP2735621A1 EP 2735621 A1 EP2735621 A1 EP 2735621A1 EP 12193547 A EP12193547 A EP 12193547A EP 2735621 A1 EP2735621 A1 EP 2735621A1
Authority
EP
European Patent Office
Prior art keywords
weight
aluminum alloy
max
strength
elongation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP12193547.2A
Other languages
German (de)
French (fr)
Other versions
EP2735621B1 (en
Inventor
Leif Speckert
Stuart Wiesner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Georg Fischer Druckguss GmbH and Co KG
Georg Fischer GmbH
Original Assignee
Georg Fischer Druckguss GmbH and Co KG
Georg Fischer GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Georg Fischer Druckguss GmbH and Co KG, Georg Fischer GmbH filed Critical Georg Fischer Druckguss GmbH and Co KG
Priority to EP12193547.2A priority Critical patent/EP2735621B1/en
Priority to US14/083,990 priority patent/US9322086B2/en
Priority to CN201310643333.1A priority patent/CN103834835A/en
Publication of EP2735621A1 publication Critical patent/EP2735621A1/en
Application granted granted Critical
Publication of EP2735621B1 publication Critical patent/EP2735621B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • C22C21/04Modified aluminium-silicon alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/007Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent

Definitions

  • the present invention relates to an aluminum alloy for components with increased strength with a yield strength Rp 0.2 > 120 MPa and simultaneously high elongation at break A> 7% in the cast state, a yield strength Rp 0.2 > 200 MPa and simultaneous elongation at break A> 6% after a T5 heat treatment, or a yield strength Rp 0.2 > 200 MPa and a simultaneous elongation at break A> 9% after a T6 heat treatment, in particular for structural and chassis parts of a motor vehicle.
  • the die casting technique today allows to manufacture complicated components with high strength at high elongation.
  • chassis parts are manufactured in many places in other casting processes such as chill casting.
  • the reason for this is that these components, produced by die casting, do not reach the required strength or do not reach with sufficient elongation in order to ensure a safe operating case.
  • structural and chassis parts made of die-cast alloys of the AlSi10MnMg type are usually heat-treated, for example after T6 (solution-annealed, quenched and warm-aged) or T7 (solution-annealed, quenched and overaged) ,
  • T6 solution-annealed, quenched and warm-aged
  • T7 solution-annealed, quenched and overaged
  • an alloy of this type in the as-cast state has a yield strength Rp 0.2 of about 110 MPa with an elongation at break A of 4-5%
  • a T6 heat treatment can increase to over 150 MPa with at least 7% elongation.
  • the subsequent thermal aging at 150-250 ° C fine evenly distributed Mg 2 Si precipitates are formed, which in turn increase the material strength.
  • the mechanical properties can be optimized to either strengths or elongation at break, whereby a very broad property and thus product portfolio can be imaged by an alloy.
  • a T5 heat treatment can be sufficient, that is, a hot aging at 150 - 250 ° C without previous solution annealing. Again, the increase in strength caused by the formation of Mg2Si precipitates, but to a lesser extent, since the quenching effect of a withdrawn from the casting tool component is less strong and thus the proportion of positively dissolved magnesium in ⁇ -Al drops.
  • the object of the invention is to provide an aluminum diecasting alloy, which allows by an increased strength at the same time high elongation to map both structural and chassis parts in die casting.
  • This preferably includes chassis parts which, due to the high mechanical requirements (eg yield strength Rp 0.2 > 200 MPa at an elongation at break of A> 6%) and the component geometry are produced in other methods than the die casting method.
  • the invention has for its object to ensure good castability and mold filling.
  • the alloy should allow as many joining techniques, be of high dimensional stability and have a good corrosion resistance.
  • the aluminum alloy comprises 9 to 11.5% by weight of silicon, 0.45 to 0.8% by weight of manganese, 0.2 to 1% by weight of magnesium, 0.1 to 1 , 0% by weight copper, max. 0.2% by weight of zinc, max. 0.4% by weight zirconium, max. 0.4% by weight chromium, max. 0.3% by weight of molybdenum, max. 0.2% by weight iron, max. 0.15% by weight of titanium, 0.01 to 0.02% by weight of strontium and balance aluminum and production-related impurities up to a total of max.
  • the thermal aging can also be introduced into the component within a further process step, for example a painting process.
  • the alloy composition according to the invention with the goal of increased strengths has here a target corridor for the yield strength Rp 0.2 > 200 MPa and an elongation at break A> 10%.
  • the alloy has a high curing potential, which is used by a hot aging at temperatures between 150 and 250 ° C.
  • a hot aging at temperatures between 150 and 250 ° C.
  • the desired effect is achieved by adding 0.1 to 1.0% by weight of copper, preferably 0.15 to 0.5% by weight of copper (and more preferably 0.3 to 0.5% by weight of copper) and up to 0.2% by weight of zinc achieved.
  • the addition of zinc also improves casting behavior and mold filling.
  • a combined addition of copper and zinc in a favorable ratio within the above proportions allows a further increase in strength with sufficient corrosion resistance.
  • the alloy content of silicon is 9 to 11.5 wt.%.
  • the alloying of silicon reduces the solidification shrinkage and thus serves a good casting behavior and good mold filling.
  • zirconium causes an increase in elongation without a concomitant decrease in strength, as this results in a finer eutectic microstructure.
  • the zirconium content of the diecasting alloy according to the invention is at max. 0.4% by weight.
  • An addition of up to 0.3% by weight of molybdenum also increases the elongation while maintaining the strength.
  • a combined admixture of Molybdenum and zirconium within the specified tolerances has an even greater effect on the achieved elongation at break values.
  • strontium avoids coarse and acicular formation of the AlSi eutectic.
  • the eutectic is modified so that it forms in a fine and rather lamellar structure and serves to avoid both non-refining and over-refinement.
  • chromium causes a further increase in mechanical properties, the content is here at max. 0.4% by weight, preferably at max. 0.3% by weight.
  • the combined content of manganese and iron significantly affects the life of the casting tools and the mold release.
  • the desired effect is achieved with an addition of max. 0.2% by weight of iron and a manganese content of 0.45 to 0.8% by weight. It is advantageous to keep the iron content low in order to avoid embrittlement of the material by the formation of needle-shaped AlFeSi phases in the microstructure.
  • the simultaneous addition of manganese counteracts an excessive attack of the low-iron melt on the casting tool and increases the releasability and thus the dimensional stability by reducing the sticking tendency.
  • a favorable ratio must be set in order to avoid the formation of gravitational segregations, since these negatively affect both the flowability and the tendency to adhere.
  • titanium causes grain refining of the ⁇ -Al by providing nuclei during the formation of the aluminum dendrites.
  • the titanium content is at max. 0.15% by weight.
  • a plurality of sample components in the form of a die-cast component and two spherical mold samples were produced in a die-casting process two aluminum alloys with the following alloy compositions: Alloy 1 Alloy 2 Si [% by weight] 10.9 10.5 Fe [% by weight] 0.17 0.1 Mn [% by weight] 0.45 0.46 Cu [% by weight] 0.35 0.26 Zn [% by weight] 0.07 0.1 Mg [% by weight] 0.5 0.53 Ti [% by weight] 0.08 0.12 Cr [% by weight] 0.08 0.1 Sr [% by weight] 0,014 0,014 Mo [% by weight] 0.08 0.15 Zr [% by weight] 0.13 0.15
  • the table shows that samples of alloys 1 and 2 after a T5 heat treatment have a yield strength Rp 0.2 > 220 MPa with a simultaneous breaking elongation of A> 6% and after a T6 heat treatment a yield strength Rp 0.2 > 260 MPa at an increased elongation at break> 9%.
  • the aluminum alloy according to the invention depending on the heat treatment, is particularly suitable for the production of crash and strength-relevant chassis and structural parts of a motor vehicle by diecasting. In the production of chassis components of a motor vehicle in the die casting process, a yield strength Rp 0.2 of> 200 MPa with simultaneous elongation at break of> 6% should be achieved.
  • the abovementioned aluminum alloy makes it possible to image such chassis parts in the die casting process instead of other methods such as mold or sand casting, which are commonly used for such parts, due to the inventive increase in strength at a consistently high elongation.
  • the inventive aluminum alloy is particularly suitable for the production of strength and Crashrelevanten components of a motor vehicle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Body Structure For Vehicles (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

The aluminum alloy has 9-11.5wt.% silicon, 0.45-0.8wt.% manganese, 0.2-1.0wt.% magnesium, 0.1-1.0wt.% copper, not > 0.2wt.% zinc, not > 0.4wt.% zirconium, not > 0.4wt.% chromium, not > 0.3wt.% molybdenum, not > 0.2wt.% iron, not > 0.15wt% titanium, 0.01-0.02wt.% strontium, and balance aluminum and production-related impurities up to a total of not > 0.5wt.%. The aluminum alloy component in heat treatment exhibits a yield point of Rp-0.2 not less than 200 Megapascals and high elongation at break A not less than 9 percent.

Description

Die vorliegende Erfindung betrifft eine Aluminium-Legierung für Bauteile mit erhöhter Festigkeit mit einer Dehngrenze Rp0,2 > 120MPa und gleichzeitig hoher Bruchdehnung A > 7 % im Gusszustand, einer Dehngrenze Rp0,2 > 200 MPa und gleichzeitiger Bruchdehnung A > 6% nach einer T5-Wärmebehandlung, oder einer Dehngrenze Rp0,2 > 200 MPa und gleichzeitiger Bruchdehnung A > 9% nach einer T6-Wärmebehandlung, insbesondere für Struktur- und Fahrwerksteile eines Kraftwagens.The present invention relates to an aluminum alloy for components with increased strength with a yield strength Rp 0.2 > 120 MPa and simultaneously high elongation at break A> 7% in the cast state, a yield strength Rp 0.2 > 200 MPa and simultaneous elongation at break A> 6% after a T5 heat treatment, or a yield strength Rp 0.2 > 200 MPa and a simultaneous elongation at break A> 9% after a T6 heat treatment, in particular for structural and chassis parts of a motor vehicle.

Für im Druckgiessverfahren hergestellte Strukturbauteile, insbesondere dünnwandige Bauteile, als auch bei einer Anwendung des Druckgiessverfahrens für Fahrwerksteile, sind gute Fliess- und Formfülleigenschaften und die Erstarrungscharakteristik entscheidend. Ein besonderes Interesse der Automobilindustrie liegt auf dünnwandigen Strukturbauteilen, da diese bei gleicher Bauteilfunktion durch einen geringeren Materialeinsatz einen Gewichtsvorteil ermöglichen, welcher wiederum eine Senkung der Betriebskosten und eine Minderung der Umweltbelastung bedeutet.For structural components produced in the die casting method, in particular thin-walled components, as well as for an application of the pressure casting method for chassis parts, good flow and form filling properties and the solidification characteristic are decisive. A special interest of the automotive industry is on thin-walled structural components, since they allow for the same component function by a lower use of materials a weight advantage, which in turn means a reduction in operating costs and a reduction in environmental impact.

Die Druckgiesstechnik erlaubt heute, komplizierte Bauteile mit hoher Festigkeit bei hoher Dehnung herzustellen. Gängigerweise werden Fahrwerksteile vielerorts in anderen Giessverfahren wie beispielsweise dem Kokillenguss gefertigt. Grund hierfür ist, dass diese Bauteile, im Druckgiessverfahren hergestellt, die hierfür geforderten Festigkeiten nicht oder nicht bei genügender Dehnung erreichen, um so einen sicheren Betriebsfall zu gewährleisten.The die casting technique today allows to manufacture complicated components with high strength at high elongation. Usually chassis parts are manufactured in many places in other casting processes such as chill casting. The reason for this is that these components, produced by die casting, do not reach the required strength or do not reach with sufficient elongation in order to ensure a safe operating case.

Um die geforderten mechanischen Eigenschaften, speziell eine hohe Duktilität, zu erreichen, wird bei Struktur- und Fahrwerksteilen aus Druckgusslegierungen vom Typ AlSi10MnMg meist eine Wärmebehandlung, beispielsweise nach T6 (lösungsgeglüht, abgeschreckt und warmausgelagert) oder T7 (lösungsgeglüht, abgeschreckt und überaltert), durchgeführt. Hierdurch ändert sich das Gussgefüge eines beliebigen Bauteils, welches nun höheren Anforderungen bezüglich Festigkeit und Bruchdehnung genügt. Während eine Legierung dieses Typs im Gusszustand eine Dehngrenze Rp0,2 etwa 110 MPa bei einer Bruchdehnung A von 4-5 % aufweist, kann durch eine T6-Wärmebehandlung eine Steigerung auf über 150 MPa bei mindestens 7 % Dehnung erreicht werden. Dies basiert auf der verfestigenden Wirkung der Ausscheidungshärtung, an welcher die Legierungselemente Mg und Si beteiligt sind. Durch eine Einformung des Si-Eutektikums wird ausserdem die Duktilität gesteigert. Eine solche Wärmebehandlung wird beispielsweise wie folgt durchgeführt: einem Lösungsglühen in einem Temperaturbereich von 450 bis 535 °C folgt ein Abschrecken in Wasser oder an Luft auf Temperaturen unterhalb etwa 100 °C. Durch das Lösungsglühen werden die Legierungselemente durch Diffusionsvorgänge homogen fein verteilt und durch das Abschrecken im α-Al zwangsgebunden. Zudem wird das Si-Eutektikum sphäroidisiert. Die Legierung besitzt nun eine hohe Duktilität, aber nur geringe Festigkeit. Durch die anschließende Warmauslagerung bei 150-250 °C werden feine gleichmäßig verteilte Mg2Si-Ausscheidungen gebildet, die wiederum die Materialfestigkeit erhöhen. Je nach Temperaturbild der T6-Wärmebehandlung lassen sich die mechanischen Eigenschaften auf entweder Festigkeiten oder Bruchdehnung optimieren, wodurch ein sehr breites Eigenschafts- und damit Produktfolio durch eine Legierung abgebildet werden kann. Um die Produktionskosten zu mindern, kann auch eine T5-Wärmebehandlung genügen, das heisst eine Warmauslagerung bei 150 - 250 °C ohne vorhergehende Lösungsglühung. Auch hierbei wird der Festigkeitsanstieg durch Bildung von Mg2Si-Ausscheidungen hervorgerufen, allerdings in einem geringeren Maße, da die Abschreckwirkung eines aus dem Giesswerkzeug entnommenen Bauteils weniger stark ist und somit auch der Anteil zwangsgelösten Magnesiums im α-Al herabsinkt.In order to achieve the required mechanical properties, especially a high ductility, structural and chassis parts made of die-cast alloys of the AlSi10MnMg type are usually heat-treated, for example after T6 (solution-annealed, quenched and warm-aged) or T7 (solution-annealed, quenched and overaged) , This changes the cast structure of any component which now meets higher requirements in terms of strength and elongation at break. While an alloy of this type in the as-cast state has a yield strength Rp 0.2 of about 110 MPa with an elongation at break A of 4-5%, For example, a T6 heat treatment can increase to over 150 MPa with at least 7% elongation. This is based on the hardening effect of precipitation hardening, in which the alloying elements Mg and Si are involved. Injection of the Si eutectic also increases the ductility. Such a heat treatment is carried out, for example, as follows: Solution heat treatment in a temperature range of 450 to 535 ° C is followed by quenching in water or in air to temperatures below about 100 ° C. The solution annealing homogeneously finely distributes the alloying elements by diffusion processes and forcibly bonds them by quenching in α-Al. In addition, the Si eutectic is spheroidized. The alloy now has a high ductility, but only low strength. The subsequent thermal aging at 150-250 ° C, fine evenly distributed Mg 2 Si precipitates are formed, which in turn increase the material strength. Depending on the temperature profile of the T6 heat treatment, the mechanical properties can be optimized to either strengths or elongation at break, whereby a very broad property and thus product portfolio can be imaged by an alloy. In order to reduce the production costs, a T5 heat treatment can be sufficient, that is, a hot aging at 150 - 250 ° C without previous solution annealing. Again, the increase in strength caused by the formation of Mg2Si precipitates, but to a lesser extent, since the quenching effect of a withdrawn from the casting tool component is less strong and thus the proportion of positively dissolved magnesium in α-Al drops.

Weitaus höhere Festigkeiten von bis zu 600 MPa für die Dehngrenze Rp0,2 werden aufgrund ihres höheren Aushärtungspotentials von AlZnMg- und AlMgCu-Knetlegierungen erreicht. Bei diesen Legierungstypen beruht die verfestigende Wirkung auf der Ausscheidungshärtung der Legierungselemente Mg, Cu und Zn ( W. Hufnagel et al., "Aluminium-Taschenbuch 14. Auflage", Aluminium-Verlag Düsseldorf, 1988, S.46ff ). Allerdings sind diese Legierungen aufgrund ihrer Anfälligkeit zu Warmrissen als auch ihrer Klebeneigung im Giesswerkzeug nicht druckgussgeeignet.Far higher strengths of up to 600 MPa for the yield strength Rp0,2 are achieved due to their higher hardening potential of AlZnMg and AlMgCu wrought alloys. In these types of alloys, the strengthening effect is due to the precipitation hardening of the alloying elements Mg, Cu and Zn ( W. Hufnagel et al., "Aluminum Pocket Book 14th Edition", Aluminum-Verlag Dusseldorf, 1988, p.47ff ). However, these alloys are not suitable for die casting due to their susceptibility to hot cracks and their tendency to stick in the casting tool.

Als weitere Anforderungen eines im Druckgiessverfahren hergestellten Struktur- oder Fahrwerksteil sind neben den hohen Ansprüchen an Festigkeit und Dehnung auch Korrosionsbeständigkeit, Schweisseignung und Lebensdauer der Giesswerkzeuge zu nennen. Eine weitere Vorgabe besteht in der Maßhaltigkeit der Bauteile nach einer Wärmebehandlung, um einen problemfreien Zusammenbau der Karosserie gewährleisten zu können.As further requirements of a structure or chassis part produced by die casting, apart from the high demands on strength and elongation, too Corrosion resistance, welding suitability and lifetime of the casting tools. Another requirement is the dimensional accuracy of the components after a heat treatment in order to ensure trouble-free assembly of the body can.

Aufwendige Lösungsglühbehandlungen haben neben wirtschaftlichen Mehrkosten der Wärmebehandlung selbst auch den Nachteil, dass Bauteile durch die schroffe Abschreckung zu Verzug neigen, welcher zu mechanischer Nacharbeit und erhöhtem Ausschuss führen kann.Elaborate solution annealing treatments have in addition to economic additional costs of heat treatment itself also the disadvantage that components tend by the abrupt quenching to delay, which can lead to mechanical rework and increased rejects.

Aufgabe der Erfindung ist es, eine Aluminium-Druckgusslegierung zu schaffen, welche durch eine erhöhte Festigkeit bei gleichzeitig hoher Dehnung ermöglicht, sowohl Struktur- als auch Fahrwerksteile im Druckgiessverfahren abzubilden. Dies beinhaltet bevorzugt Fahrwerksteile, welche aufgrund der hohen mechanischen Anforderungen (z.B. Dehngrenze Rp0,2 > 200 MPa bei einer Bruchdehnung von A > 6 %) und der Bauteilgeometrie eher in anderen Verfahren denn dem Druckgiessverfahren hergestellt werden. Zudem liegt der Erfindung die Aufgabe zugrunde, eine gute Giessbarkeit und Formfüllung zu gewährleisten. Weiterhin soll die Legierung möglichst viele Fügetechniken erlauben, von hoher Maßhaltigkeit sein und eine gute Korrosionsbeständigkeit aufweisen.The object of the invention is to provide an aluminum diecasting alloy, which allows by an increased strength at the same time high elongation to map both structural and chassis parts in die casting. This preferably includes chassis parts which, due to the high mechanical requirements (eg yield strength Rp 0.2 > 200 MPa at an elongation at break of A> 6%) and the component geometry are produced in other methods than the die casting method. In addition, the invention has for its object to ensure good castability and mold filling. Furthermore, the alloy should allow as many joining techniques, be of high dimensional stability and have a good corrosion resistance.

Die Aufgabe wird erfindungsgemäss dadurch gelöst, dass die Aluminium-Legierung aus 9 bis 11,5 Gew. % Silizium, 0,45 bis 0,8 Gew. % Mangan, 0,2 bis 1 Gew. % Magnesium, 0,1 bis 1,0 Gew. % Kupfer, max. 0,2 Gew. % Zink, max. 0,4 Gew. % Zirkon, max. 0,4 Gew. % Chrom, max. 0,3 Gew. % Molybdän, max. 0,2 Gew. % Eisen, max. 0,15 Gew. % Titan, 0,01 bis 0,02 Gew. % Strontium und als Rest Aluminium und herstellungsbedingte Verunreinigungen bis insgesamt max. 0,5 Gew. % besteht, wodurch die erhöhten Festigkeiten bei gleichzeitig hoher Dehnung gewährleistet sind, sei es im Gusszustand oder nach einer Wärmebehandlung, beispielsweise nach einer T5, T6, T7 oder anderen bekannten Wärmebehandlungen. Die Warmauslagerung kann auch innerhalb eines weiteren Prozessschrittes, beispielsweise einem Lackiervorgang, in das Bauteil eingebracht werden.The object is achieved according to the invention in that the aluminum alloy comprises 9 to 11.5% by weight of silicon, 0.45 to 0.8% by weight of manganese, 0.2 to 1% by weight of magnesium, 0.1 to 1 , 0% by weight copper, max. 0.2% by weight of zinc, max. 0.4% by weight zirconium, max. 0.4% by weight chromium, max. 0.3% by weight of molybdenum, max. 0.2% by weight iron, max. 0.15% by weight of titanium, 0.01 to 0.02% by weight of strontium and balance aluminum and production-related impurities up to a total of max. 0.5 wt.%, Whereby the increased strength while ensuring high elongation are ensured, whether in the cast state or after a heat treatment, for example after a T5, T6, T7 or other known heat treatments. The thermal aging can also be introduced into the component within a further process step, for example a painting process.

Das Erreichen der geforderten Qualität, u.a. hinsichtlich Festigkeit und Dehnung, lässt sich massiv durch die Wahl der Legierung beeinflussen. Die erfindungsgemäße Legierungszusammensetzung mit dem Ziel erhöhter Festigkeiten hat hier einen Zielkorridor für die Dehngrenze Rp0,2 > 200 MPa und einer Bruchdehnung A > 10 %.Achieving the required quality, including strength and elongation, can be massively influenced by the choice of alloy. The alloy composition according to the invention with the goal of increased strengths has here a target corridor for the yield strength Rp 0.2 > 200 MPa and an elongation at break A> 10%.

Erfindungsgemäß besitzt die Legierung ein hohes Aushärtungspotential, welches durch eine Warmauslagerung bei Temperaturen zwischen 150 und 250 °C genutzt wird. Als Ergebnis der Entwicklung stellte sich heraus, dass durch die Beimengung geringer Mengen an Kupfer oder Zink eine signifikante festigkeitssteigernde Wirkung ohne Einbussen der Dehnung bei ausreichender Korrosionsbeständigkeit erreicht wird. Die gewünschte Wirkung wird durch eine Zugabe von 0,1 bis 1,0 Gew. % Kupfer vorzugsweise 0,15 bis 0,5 Gew. % Kupfer (und nochmals bevorzugt 0,3 bis 0,5 Gew. % Kupfer) und bis zu 0,2 Gew. % Zink erzielt. Die Zugabe von Zink verbessert zudem das Giessverhalten und die Formfüllung.According to the invention, the alloy has a high curing potential, which is used by a hot aging at temperatures between 150 and 250 ° C. As a result of the development, it has been found that the addition of small amounts of copper or zinc achieves a significant strength-enhancing effect without sacrificing elongation with sufficient corrosion resistance. The desired effect is achieved by adding 0.1 to 1.0% by weight of copper, preferably 0.15 to 0.5% by weight of copper (and more preferably 0.3 to 0.5% by weight of copper) and up to 0.2% by weight of zinc achieved. The addition of zinc also improves casting behavior and mold filling.

Eine kombinierte Zugabe von Kupfer und Zink in günstigem Verhältnis innerhalb der oben genannten Anteile erlaubt eine nochmalige Steigerung der Festigkeit bei ausreichender Korrosionsbeständigkeit.A combined addition of copper and zinc in a favorable ratio within the above proportions allows a further increase in strength with sufficient corrosion resistance.

Der Legierungsanteil an Silizium beträgt 9 bis 11,5 Gew. %. Das Zulegieren von Silizium mindert die Erstarrungsschwindung und dient somit einem guten Giessverhalten und guter Formfüllung.The alloy content of silicon is 9 to 11.5 wt.%. The alloying of silicon reduces the solidification shrinkage and thus serves a good casting behavior and good mold filling.

Die Zugabe von 0,2 bis 1,0 Gew. % Magnesium, vorzugsweise 0,2 bis 0,8 Gew. % Magnesium, bewirkt eine festigkeitssteigernde Wirkung aufgrund der oben beschriebenen Ausscheidungshärtung. Zudem senkt eine Zugabe in günstigem Verhältnis zu Kupfer die Korrosionsanfälligkeit der erfindungsgemäßen Aluminium-Druckgusslegierung.The addition of 0.2 to 1.0% by weight of magnesium, preferably 0.2 to 0.8% by weight of magnesium, causes a strength-enhancing effect due to the precipitation hardening described above. In addition, an addition in favorable ratio to copper lowers the susceptibility to corrosion of the aluminum diecasting alloy according to the invention.

Eine Beimengung von Zirkonium bewirkt eine Steigerung der Dehnung ohne gleichzeitigen Abfall der Festigkeit, da hierdurch ein feineres eutektisches Gefüge vorliegt. Der Zirkoniumgehalt der erfindungsgemäßen Druckgusslegierung liegt bei max. 0,4 Gew. %. Auch eine Zugabe von bis zu 0,3 Gew. % Molybdän erhöht die Dehnung bei gleichbleibender Festigkeit. Eine kombinierte Beimengung von Molybdän und Zirkonium innerhalb der angegebenen Toleranzen wirkt sich nochmals steigernd auf die erreichten Bruchdehnungswerte aus.An admixture of zirconium causes an increase in elongation without a concomitant decrease in strength, as this results in a finer eutectic microstructure. The zirconium content of the diecasting alloy according to the invention is at max. 0.4% by weight. An addition of up to 0.3% by weight of molybdenum also increases the elongation while maintaining the strength. A combined admixture of Molybdenum and zirconium within the specified tolerances has an even greater effect on the achieved elongation at break values.

Durch Zugabe von Strontium wird eine grobe und nadelförmige Ausbildung des AlSi-Eutektikums vermieden. Durch eine Beimengung von 0,01 bis 0,02 Gew. % Strontium wird das Eutektikum dahingehend modifiziert, dass es sich in einer feinen und eher lamellaren Struktur ausbildet sowie zur Vermeidung einer Nicht- wie auch einer Überveredelung dient.The addition of strontium avoids coarse and acicular formation of the AlSi eutectic. By adding 0.01 to 0.02% by weight of strontium, the eutectic is modified so that it forms in a fine and rather lamellar structure and serves to avoid both non-refining and over-refinement.

Eine Zugabe von Chrom bewirkt eine weitere Steigerung der mechanischen Eigenschaften, der Gehalt liegt hier bei max. 0,4 Gew. %, vorzugsweise bei max. 0,3 Gew. %.An addition of chromium causes a further increase in mechanical properties, the content is here at max. 0.4% by weight, preferably at max. 0.3% by weight.

Der kombinierte Gehalt von Mangan und Eisen beeinflusst wesentlich die Lebensdauer der Giesswerkzeuge und die Entformbarkeit. Die gewünschte Wirkung wird mit einer Zugabe von max. 0,2 Gew. % Eisen und einem Mangangehalt von 0,45 bis 0,8 Gew. % erreicht. Es ist von Vorteil, den Eisengehalt gering zu halten, um ein Versprödung des Materials durch die Bildung nadelförmiger AlFeSi-Phasen im Gefüge zu vermeiden. Durch gleichzeitige Zugabe von Mangan wird einem übermäßigen Angriff der eisenarmen Schmelze auf das Giesswerkzeug entgegengewirkt und durch eine Minderung der Klebeneigung die Entformbarkeit und damit die Maßhaltigkeit erhöht. Allerdings ist bei einer gleichzeitigen Zugabe von Eisen, Mangan und Chrom ein günstiges Verhältnis einzustellen, um die Bildung von Schwerkraftseigerungen zu vermeiden, da diese sowohl das Fliessvermögen als auch die Klebeneigung negativ beeinflussen.The combined content of manganese and iron significantly affects the life of the casting tools and the mold release. The desired effect is achieved with an addition of max. 0.2% by weight of iron and a manganese content of 0.45 to 0.8% by weight. It is advantageous to keep the iron content low in order to avoid embrittlement of the material by the formation of needle-shaped AlFeSi phases in the microstructure. The simultaneous addition of manganese counteracts an excessive attack of the low-iron melt on the casting tool and increases the releasability and thus the dimensional stability by reducing the sticking tendency. However, with a simultaneous addition of iron, manganese and chromium, a favorable ratio must be set in order to avoid the formation of gravitational segregations, since these negatively affect both the flowability and the tendency to adhere.

Die Zugabe von Titan bewirkt eine Kornfeinung des α-Al durch das Bereitstellen von Nuclei während der Bildung der Aluminium-Dendriten. Der Titangehalt liegt bei max. 0,15 Gew. %.The addition of titanium causes grain refining of the α-Al by providing nuclei during the formation of the aluminum dendrites. The titanium content is at max. 0.15% by weight.

Weitere Vorteile und Merkmale der neuen Aluminium-Legierung zeigen sich in den nachfolgenden Ausführungsbeispielen, wobei sich die Erfindung nicht nur auf die Ausführungsbeispiele beschränkt.Further advantages and features of the new aluminum alloy are shown in the following embodiments, wherein the invention is not limited to the embodiments.

Eine Mehrzahl an Probebauteilen in Form eines Druckguss-Bauteils und zweier Kugelformproben wurden in einem Druckgiessverfahren zwei AluminiumLegierungen mit folgenden Legierungszusammensetzungen hergestellt: Legierung 1 Legierung 2 Si [Gew.-%] 10,9 10,5 Fe [Gew.-%] 0,17 0,1 Mn [Gew.-%] 0,45 0,46 Cu [Gew.-%] 0,35 0,26 Zn [Gew.-%] 0,07 0,1 Mg [Gew.-%] 0,5 0,53 Ti [Gew.-%] 0,08 0,12 Cr [Gew.-%] 0,08 0,1 Sr [Gew.-%] 0,014 0,014 Mo [Gew.-%] 0,08 0,15 Zr [Gew.-%] 0,13 0,15 A plurality of sample components in the form of a die-cast component and two spherical mold samples were produced in a die-casting process two aluminum alloys with the following alloy compositions: Alloy 1 Alloy 2 Si [% by weight] 10.9 10.5 Fe [% by weight] 0.17 0.1 Mn [% by weight] 0.45 0.46 Cu [% by weight] 0.35 0.26 Zn [% by weight] 0.07 0.1 Mg [% by weight] 0.5 0.53 Ti [% by weight] 0.08 0.12 Cr [% by weight] 0.08 0.1 Sr [% by weight] 0,014 0,014 Mo [% by weight] 0.08 0.15 Zr [% by weight] 0.13 0.15

Im Anschluss an das Druckgiessen wurden verschiedene Wärmebehandlungen, sowohl T5 als auch T6 wie beschrieben, durchgeführt und Zugproben aus dem Druckguss-Bauteil entnommen. Die ermittelten Kennwerte der mechanischen Eigenschaften nach diesen Wärmebehandlungen und im Gusszustand sind der nachfolgenden Tabelle zu entnehmen: Rp0,2 [MPa] Rm [MPa] A [%] Legierung 1 As cast 147 306 7,9 Legierung 1 T5 225 338 6,2 Legierung 1 T6 262 363 9,3 Legierung 2 As cast 145 301 8,7 Legierung 2 T5 223 332 6,4 Legierung 2 T6 261 355 11,3 Following die casting, various heat treatments, both T5 and T6, were performed as described and tensile samples taken from the die cast component. The determined characteristic values of the mechanical properties after these heat treatments and in the cast state are shown in the following table: Rp 0.2 [MPa] R m [MPa] A [%] Alloy 1 As cast 147 306 7.9 Alloy 1 T5 225 338 6.2 Alloy 1 T6 262 363 9.3 Alloy 2 As cast 145 301 8.7 Alloy 2 T5 223 332 6.4 Alloy 2 T6 261 355 11.3

Aus der Tabelle geht hervor, dass Proben der Legierungen 1 und 2 nach einer T5-Wärmebehandlung eine Dehngrenze Rp0,2 > 220 MPa bei einer gleichzeitigen Bruchdehnung von A > 6 % und nach einer T6-Wärmebehandlung eine Dehngrenze Rp0,2 > 260 MPa bei einer erhöhten Bruchdehnung > 9 % aufweisen. Es ist offensichtlich, dass die erfindungsgemässe Aluminium-Legierung je nach Wärmebehandlung insbesondere für die Herstellung von crash- und festigkeitsrelevanten Fahrwerks- und Strukturteilen eines Kraftwagens im Druckgiessverfahren geeignet ist. Bei der Herstellung von Fahrwerksbauteilen eines Kraftwagens im Druckgiessverfahren sollte eine Dehngrenze Rp0,2 von > 200 MPa bei gleichzeitiger Bruchdehnung von > 6 % erreicht werden. Die oben genannte Aluminium-Legierung ermöglicht die Abbildung solcher Fahrwerksteile im Druckgiessverfahren anstelle anderer Verfahren wie Kokillen- oder Sandguss, welche gängigerweise für solche Teile genutzt werden, aufgrund der erfindungsgemässen Steigerung der Festigkeit bei gleichbleibend hoher Dehnung.The table shows that samples of alloys 1 and 2 after a T5 heat treatment have a yield strength Rp 0.2 > 220 MPa with a simultaneous breaking elongation of A> 6% and after a T6 heat treatment a yield strength Rp 0.2 > 260 MPa at an increased elongation at break> 9%. It is obvious that the aluminum alloy according to the invention, depending on the heat treatment, is particularly suitable for the production of crash and strength-relevant chassis and structural parts of a motor vehicle by diecasting. In the production of chassis components of a motor vehicle in the die casting process, a yield strength Rp 0.2 of> 200 MPa with simultaneous elongation at break of> 6% should be achieved. The abovementioned aluminum alloy makes it possible to image such chassis parts in the die casting process instead of other methods such as mold or sand casting, which are commonly used for such parts, due to the inventive increase in strength at a consistently high elongation.

In weiteren Untersuchungen haben sich ausserdem die gute Korrosionsbeständigkeit und Schweißbarkeit solcher Legierungen gezeigt.Further studies have also shown the good corrosion resistance and weldability of such alloys.

Die erfindungsgemässe Aluminium-Legierung eignet sich speziell zur Herstellung von festigkeits- und crashrelevanten Bauteilen eines Kraftwagens.The inventive aluminum alloy is particularly suitable for the production of strength and Crashrelevanten components of a motor vehicle.

Claims (6)

Aluminium-Legierung für Bauteile mit erhöhter Festigkeit mit einer Dehngrenze Rp0,2 > 120 MPa und gleichzeitiger Bruchdehnung A > 7 % im Gusszustand, einer Dehngrenze Rp0,2 > 200 MPa und gleichzeitiger Bruchdehnung A > 6 % nach einer T5-Wärmebehandlung oder einer Dehngrenze Rp0,2 > 200 Mpa und gleichzeitig hoher Bruchdehnung A > 9 % nach einer T6-Wärmebehandlung, insbesondere für Struktur- und Fahrwerksteile eines Kraftwagens, enthaltend 9 bis 11,5 Gew. % Silizium, 0,45 bis 0,8 Gew. % Mangan, 0,2 bis 1,0 Gew. % Magnesium, 0,1 bis 1,0 Gew.% Kupfer, max. 0,2 Gew. % Zink, max. 0,4 Gew.% Zirkon, max. 0,4 Gew. % Chrom, max. 0,3 Gew. % Molybdän, max. 0,2 Gew. % Eisen, max. 0,15 Gew. % Titan, 0,01 bis 0,02 Gew. % Strontium und als Rest Aluminium und herstellungsbedingte Verunreinigungen von insgesamt max. 0,5 Gew. %.Aluminum alloy for higher strength components with a yield strength Rp 0.2 > 120 MPa and simultaneous elongation at break A> 7% as cast, a yield strength Rp 0.2 > 200 MPa and a simultaneous elongation at break A> 6% after a T5 heat treatment or a yield strength Rp 0.2 > 200 Mpa and simultaneously high elongation at break A> 9% after a T6 heat treatment, in particular for structural and chassis parts of a motor vehicle, containing 9 to 11.5 wt.% Silicon, 0.45 to 0.8 % By weight of manganese, 0.2 to 1.0% by weight of magnesium, 0.1 to 1.0% by weight of copper, max. 0.2% by weight of zinc, max. 0.4% by weight zirconium, max. 0.4% by weight chromium, max. 0.3% by weight of molybdenum, max. 0.2% by weight iron, max. 0.15% by weight of titanium, 0.01 to 0.02% by weight of strontium and the remainder aluminum and production-related impurities totaling max. 0.5% by weight. Aluminium-Legierung nach Anspruch 1, dadurch gekennzeichnet, dass die Aluminium-Legierung 0,15 bis 0,5 Gew. % Kupfer aufweist.Aluminum alloy according to claim 1, characterized in that the aluminum alloy has 0.15 to 0.5 wt.% Copper. Aluminium-Legierung nach Anspruch 1, dadurch gekennzeichnet, dass die Aluminium-Legierung 0,3 bis 0,5 Gew. % Kupfer aufweist.Aluminum alloy according to claim 1, characterized in that the aluminum alloy has 0.3 to 0.5 wt.% Copper. Aluminium-Legierung nach Anspruch 1, dadurch gekennzeichnet, dass die Aluminium-Legierung 0,2 bis 0,8 Gew. % Magnesium aufweist.Aluminum alloy according to claim 1, characterized in that the aluminum alloy has 0.2 to 0.8 wt.% Magnesium. Aluminium-Legierung nach Anspruch 1, dadurch gekennzeichnet, dass die Aluminium-Legierung max. 0,3 Gew. % Chrom aufweist.Aluminum alloy according to claim 1, characterized in that the aluminum alloy is max. 0.3 wt.% Chromium. Verwendung einer Aluminium-Legierung nach Anspruch 1 zum Druckgiessen von crash- und festigkeitsrelevanten Struktur- und Fahrwerksbauteilen eines Kraftwagens.Use of an aluminum alloy according to claim 1 for die casting of crash and strength relevant structure and chassis components of a motor vehicle.
EP12193547.2A 2012-11-21 2012-11-21 Aluminium die casting alloy Active EP2735621B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12193547.2A EP2735621B1 (en) 2012-11-21 2012-11-21 Aluminium die casting alloy
US14/083,990 US9322086B2 (en) 2012-11-21 2013-11-19 Aluminum pressure casting alloy
CN201310643333.1A CN103834835A (en) 2012-11-21 2013-11-21 Aluminum pressure casting alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP12193547.2A EP2735621B1 (en) 2012-11-21 2012-11-21 Aluminium die casting alloy

Publications (2)

Publication Number Publication Date
EP2735621A1 true EP2735621A1 (en) 2014-05-28
EP2735621B1 EP2735621B1 (en) 2015-08-12

Family

ID=47257520

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12193547.2A Active EP2735621B1 (en) 2012-11-21 2012-11-21 Aluminium die casting alloy

Country Status (3)

Country Link
US (1) US9322086B2 (en)
EP (1) EP2735621B1 (en)
CN (1) CN103834835A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3176275A1 (en) 2015-12-03 2017-06-07 Audi Ag Aluminium-silicon die casting alloy method for producing a die casting component made of the alloy, and a body component with a die casting component
WO2017174185A1 (en) * 2016-04-07 2017-10-12 Daimler Ag Aluminum alloy, in particular for a casting method, and method for producing a component from such an aluminum alloy
EP3235917A1 (en) 2016-04-19 2017-10-25 Rheinfelden Alloys GmbH & Co. KG Alloy for pressure die casting
WO2018046368A1 (en) * 2016-09-06 2018-03-15 Jaguar Land Rover Limited A casting alloy
EP3334850A4 (en) * 2015-08-13 2019-03-13 Alcoa USA Corp. Improved 3xx aluminum casting alloys, and methods for making the same
DE102019205267B3 (en) * 2019-04-11 2020-09-03 Audi Ag Die-cast aluminum alloy
US11421305B2 (en) 2016-04-19 2022-08-23 Rheinfelden Alloys Gmbh & Co. Kg Cast alloy

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6034333B2 (en) * 2014-06-04 2016-11-30 ヤマハ発動機株式会社 Aluminum wheel manufacturing method and aluminum wheel
CN104233014B (en) * 2014-09-30 2016-08-24 南通迪瓦特节能风机有限公司 A kind of axial compressor rotor sheet alloy material and preparation method thereof
FR3044326B1 (en) * 2015-12-01 2017-12-01 Constellium Neuf-Brisach HIGH-RIGIDITY THIN SHEET FOR AUTOMOTIVE BODYWORK
CN105483462A (en) * 2015-12-17 2016-04-13 太仓市美斯门窗有限公司 High-hardness aluminum alloy
CN106011558B (en) * 2016-07-06 2018-03-02 宁国市中泰汽车零部件有限公司 A kind of shackle bracket
WO2018161311A1 (en) * 2017-03-09 2018-09-13 GM Global Technology Operations LLC Aluminum alloys
CN107217179B (en) * 2017-05-31 2019-03-19 中信戴卡股份有限公司 A kind of aluminum alloy materials, preparation method and use
CN107447134B (en) * 2017-08-07 2019-06-25 苏州慧驰轻合金精密成型科技有限公司 A kind of high intensity can anodic oxidation pack alloy and preparation method thereof
CN108251714B (en) * 2017-12-25 2020-05-08 广州金邦液态模锻技术有限公司 Extrusion casting high-strength and high-toughness aluminum alloy and extrusion casting method thereof
CN108179334B (en) * 2017-12-29 2020-03-27 无锡天宝电机有限公司 Material for motor shell and preparation method thereof
CN109811206B (en) * 2019-03-28 2021-07-16 帅翼驰新材料集团有限公司 Cast aluminum alloy
CN110512100A (en) * 2019-09-06 2019-11-29 中北大学 A kind of method of smelting of V-N steel pack alloy
PL3825428T3 (en) * 2019-11-25 2023-03-20 Amag Casting Gmbh Die cast component and method for producing a die cast component
DE102021131973A1 (en) 2021-12-03 2023-06-07 Audi Aktiengesellschaft Die-cast aluminum alloy
CN115287507A (en) * 2022-08-02 2022-11-04 乔治费歇尔金属成型科技(苏州)有限公司 Heat treatment-free aluminum alloy, and preparation method, structural member and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0997550A1 (en) * 1998-10-05 2000-05-03 Alusuisse Technology & Management AG Method for fabricating a component from an aluminium alloy by pressure die-casting
EP1331281A1 (en) * 2002-01-18 2003-07-30 Nissan Motor Company, Limited Aluminum alloy for die casting, die casting method using same alloy, and die casting product by same method
US20120148444A1 (en) * 2009-09-10 2012-06-14 Yusuke Nagaishi Aluminum alloy casting and production method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050167012A1 (en) * 2004-01-09 2005-08-04 Lin Jen C. Al-Si-Mn-Mg alloy for forming automotive structural parts by casting and T5 heat treatment
PT1612286E (en) * 2004-06-29 2011-09-19 Rheinfelden Aluminium Gmbh Aluminium alloy for pressure die casting
JP2007070716A (en) * 2005-09-09 2007-03-22 Daiki Aluminium Industry Co Ltd Aluminum alloy for pressure casting, and aluminum alloy casting made thereof
JP5344527B2 (en) * 2007-03-30 2013-11-20 株式会社豊田中央研究所 Aluminum alloy for casting, aluminum alloy casting and method for producing the same
AU2009242962A1 (en) * 2008-04-30 2009-11-05 Commonwealth Scientific And Industrial Research Organisation Improved aluminium based casting alloy
DE102010055011A1 (en) * 2010-12-17 2012-06-21 Trimet Aluminium Ag Readily castable ductile aluminum-silicon alloy comprises silicon, magnesium, manganese, copper, titanium, iron, molybdenum, zirconium, strontium, and aluminum and unavoidable impurities, and phosphorus for suppressing primary silicon phase
CN102051505B (en) * 2010-12-28 2012-06-20 浙江金盾风机股份有限公司 High-strength casting aluminum alloy
EP2653579B1 (en) * 2012-04-17 2014-10-15 Georg Fischer Druckguss GmbH & Co. KG Aluminium alloy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0997550A1 (en) * 1998-10-05 2000-05-03 Alusuisse Technology & Management AG Method for fabricating a component from an aluminium alloy by pressure die-casting
EP1331281A1 (en) * 2002-01-18 2003-07-30 Nissan Motor Company, Limited Aluminum alloy for die casting, die casting method using same alloy, and die casting product by same method
US20120148444A1 (en) * 2009-09-10 2012-06-14 Yusuke Nagaishi Aluminum alloy casting and production method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
W. HUFNAGEL ET AL.: "Aluminium-Taschenbuch 14. Auflage", 1988, ALUMINIUM-VERLAG DÜSSELDORF, pages: 46FF

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3334850A4 (en) * 2015-08-13 2019-03-13 Alcoa USA Corp. Improved 3xx aluminum casting alloys, and methods for making the same
EP3176275B1 (en) 2015-12-03 2018-10-10 Audi Ag Aluminium-silicon die casting alloy method for producing a die casting component made of the alloy, and a body component with a die casting component
DE102015015610A1 (en) 2015-12-03 2017-06-08 Audi Ag Aluminum-silicon diecasting alloy, method of making a die cast component of the alloy and body component with a die cast component
EP3176275A1 (en) 2015-12-03 2017-06-07 Audi Ag Aluminium-silicon die casting alloy method for producing a die casting component made of the alloy, and a body component with a die casting component
EP3176275B2 (en) 2015-12-03 2023-12-13 Audi Ag Aluminium-silicon die casting alloy method for producing a die casting component made of the alloy, and a body component with a die casting component
WO2017174185A1 (en) * 2016-04-07 2017-10-12 Daimler Ag Aluminum alloy, in particular for a casting method, and method for producing a component from such an aluminum alloy
CN109072354A (en) * 2016-04-07 2018-12-21 戴姆勒股份公司 Aluminium alloy for casting and the method that manufactures component with this aluminium alloy
EP3235917A1 (en) 2016-04-19 2017-10-25 Rheinfelden Alloys GmbH & Co. KG Alloy for pressure die casting
KR20180132140A (en) * 2016-04-19 2018-12-11 라인펠덴 알로이스 게엠베하 운트 콤파니 코만디드게젤샤프트 Die casting alloy
EP3235917B1 (en) 2016-04-19 2018-08-15 Rheinfelden Alloys GmbH & Co. KG Alloy for pressure die casting
US11421305B2 (en) 2016-04-19 2022-08-23 Rheinfelden Alloys Gmbh & Co. Kg Cast alloy
WO2017182102A1 (en) 2016-04-19 2017-10-26 Rheinfelden Alloys Gmbh & Co. Kg Die casting alloy
GB2565984A (en) * 2016-09-06 2019-02-27 Jaguar Land Rover Ltd A casting alloy
WO2018046368A1 (en) * 2016-09-06 2018-03-15 Jaguar Land Rover Limited A casting alloy
DE102019205267B3 (en) * 2019-04-11 2020-09-03 Audi Ag Die-cast aluminum alloy

Also Published As

Publication number Publication date
US9322086B2 (en) 2016-04-26
EP2735621B1 (en) 2015-08-12
CN103834835A (en) 2014-06-04
US20140140886A1 (en) 2014-05-22

Similar Documents

Publication Publication Date Title
EP2735621B1 (en) Aluminium die casting alloy
EP2653579B1 (en) Aluminium alloy
DE102016118729B4 (en) Aluminium alloy, suitable for high pressure casting
EP1682688B1 (en) Al-Mg-Si cast aluminium alloy containing scandium
EP3235917B1 (en) Alloy for pressure die casting
EP1718778B1 (en) Material based on an aluminum alloy, method for the production thereof and its use
US20060157172A1 (en) Aluminum alloy that is not sensitive to quenching, as well as method for the production of a semi-finished product therefrom
AT413035B (en) ALUMINUM ALLOY
WO2016207274A1 (en) High-strength and easily formable almg-strip, and method for producing the same
EP3176275B2 (en) Aluminium-silicon die casting alloy method for producing a die casting component made of the alloy, and a body component with a die casting component
DE102016219711B4 (en) Aluminum alloy for die casting and process for its heat treatment
DE112015000499T5 (en) Plastic deformed aluminum alloy product, process for producing the same and automobile component
DE102017114162A1 (en) HIGH STRENGTH AND HIGH CRYAN RESISTANT ALUMINUM ALLOY ALLOYS AND HPDC MOTOR BLOCKS
DE3541781A1 (en) HEAT-RESISTANT, HIGH-STRENGTH ALUMINUM ALLOY AND METHOD FOR PRODUCING A COMPONENT MADE FROM THIS ALLOY
DE69825414T3 (en) Aluminum alloy and process for its preparation
DE102009012073A1 (en) Aluminum alloy, useful for producing casting a component of motor vehicle e.g. cylinder heads for internal combustion engines of automobiles, comprises e.g. silicon, magnesium, copper, zirconium, titanium, strontium, sodium and iron
EP1719820A2 (en) Aluminium cast alloy
AT412726B (en) ALUMINUM ALLOY, COMPONENT FROM THIS AND METHOD FOR PRODUCING THE COMPONENT
EP2041328B1 (en) Aluminum alloy and the utilization thereof for a cast component, in particular a motor vehicle
DE102014102817A1 (en) Aluminum alloy suitable for high pressure casting
DE102011112005A1 (en) Alloy, preferably aluminum casting alloy, useful e.g. as a sand or die casting alloy, comprises a specified range of silicon, zinc, iron, copper, magnesium, strontium, sodium, antimony and aluminum
DE602004005529T2 (en) Wrought aluminum alloy
EP2103701B1 (en) Aluminium alloy and method for producing a product from same
EP1234893B1 (en) Cast alloy of the type AlMgSi
DE102019202676B4 (en) Cast components with high strength and ductility and low tendency to hot crack

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121121

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20141014

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150305

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 742234

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012004093

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20150812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151112

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151113

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151212

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012004093

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151121

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20160513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 742234

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171121

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230529

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231121

Year of fee payment: 12