EP2735621B1 - Aluminium die casting alloy - Google Patents
Aluminium die casting alloy Download PDFInfo
- Publication number
- EP2735621B1 EP2735621B1 EP12193547.2A EP12193547A EP2735621B1 EP 2735621 B1 EP2735621 B1 EP 2735621B1 EP 12193547 A EP12193547 A EP 12193547A EP 2735621 B1 EP2735621 B1 EP 2735621B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- weight
- aluminium alloy
- elongation
- strength
- mpa
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims description 7
- 229910052782 aluminium Inorganic materials 0.000 title claims description 7
- 239000004411 aluminium Substances 0.000 title claims 2
- 229910045601 alloy Inorganic materials 0.000 title description 27
- 239000000956 alloy Substances 0.000 title description 27
- 238000004512 die casting Methods 0.000 title description 16
- 238000010438 heat treatment Methods 0.000 claims description 18
- 229910000838 Al alloy Inorganic materials 0.000 claims description 17
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 14
- 239000010949 copper Substances 0.000 claims description 12
- 238000005266 casting Methods 0.000 claims description 11
- 229910052802 copper Inorganic materials 0.000 claims description 11
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 10
- 239000011777 magnesium Substances 0.000 claims description 9
- 229910052749 magnesium Inorganic materials 0.000 claims description 8
- 239000011701 zinc Substances 0.000 claims description 8
- 229910052742 iron Inorganic materials 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 229910052725 zinc Inorganic materials 0.000 claims description 7
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 6
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 6
- 239000011651 chromium Substances 0.000 claims description 6
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 5
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 5
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 239000010936 titanium Substances 0.000 claims description 5
- 229910052726 zirconium Inorganic materials 0.000 claims description 5
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 239000011733 molybdenum Substances 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- 229910052712 strontium Inorganic materials 0.000 claims description 4
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 2
- 238000000034 method Methods 0.000 description 11
- 230000000694 effects Effects 0.000 description 7
- 238000005260 corrosion Methods 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000005496 eutectics Effects 0.000 description 5
- 239000011572 manganese Substances 0.000 description 5
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 4
- 238000005275 alloying Methods 0.000 description 4
- 229910052748 manganese Inorganic materials 0.000 description 4
- 230000000171 quenching effect Effects 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 230000002349 favourable effect Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000004881 precipitation hardening Methods 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 230000032683 aging Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 238000003878 thermal aging Methods 0.000 description 2
- 229910000789 Aluminium-silicon alloy Inorganic materials 0.000 description 1
- 241001076195 Lampsilis ovata Species 0.000 description 1
- 229910019018 Mg 2 Si Inorganic materials 0.000 description 1
- 229910019752 Mg2Si Inorganic materials 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000007591 painting process Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000007528 sand casting Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
- C22C21/04—Modified aluminium-silicon alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D21/00—Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
- B22D21/002—Castings of light metals
- B22D21/007—Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/043—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
Definitions
- the present invention relates to an aluminum alloy for components with increased strength with a yield strength Rp 0.2 > 120 MPa and simultaneously high elongation at break A> 7% in the cast state, a yield strength Rp 0.2 > 200 MPa and simultaneous elongation at break A> 6% after a T5 heat treatment, or a yield strength Rp 0.2 > 200 MPa and a simultaneous elongation at break A> 9% after a T6 heat treatment, in particular for structural and chassis parts of a motor vehicle.
- the die casting technique today allows to manufacture complicated components with high strength at high elongation.
- chassis parts are manufactured in many places in other casting processes such as chill casting.
- the reason for this is that these components, produced by die casting, do not reach the required strength or do not reach with sufficient elongation in order to ensure a safe operating case.
- structural and chassis parts made of die-cast alloys of the AlSi10MnMg type are usually heat-treated, for example after T6 (solution-annealed, quenched and warm-aged) or T7 (solution-annealed, quenched and overaged) ,
- T6 solution-annealed, quenched and warm-aged
- T7 solution-annealed, quenched and overaged
- an alloy of this type in the as-cast state has a yield strength Rp 0.2 of about 110 MPa with an elongation at break A of 4-5%
- a T6 heat treatment can increase to over 150 MPa with at least 7% elongation.
- the subsequent thermal aging at 150-250 ° C fine evenly distributed Mg 2 Si precipitates are formed, which in turn increase the material strength.
- the mechanical properties can be optimized to either strengths or elongation at break, whereby a very broad property and thus product portfolio can be imaged by an alloy.
- a T5 heat treatment can be sufficient, that is, a hot aging at 150 - 250 ° C without previous solution annealing. Again, the increase in strength caused by the formation of Mg2Si precipitates, but to a lesser extent, since the quenching effect of a withdrawn from the casting tool component is less strong and thus the proportion of positively dissolved magnesium in ⁇ -Al drops.
- the object of the invention is to provide an aluminum diecasting alloy, which allows by an increased strength at the same time high elongation to map both structural and chassis parts in die casting.
- This preferably includes chassis parts which, due to the high mechanical requirements (eg yield strength Rp 0.2 > 200 MPa at an elongation at break of A> 6%) and the component geometry are produced in other methods than the die casting method.
- the invention has for its object to ensure good castability and mold filling.
- the alloy should allow as many joining techniques, be of high dimensional stability and have a good corrosion resistance.
- the aluminum alloy comprises 9 to 11.5% by weight of silicon, 0.45 to 0.8% by weight of manganese, 0.2 to 1% by weight of magnesium, 0.1 to 1 , 0% by weight copper, max. 0.2% by weight of zinc, max. 0.4% by weight zirconium, max. 0.4% by weight chromium, max. 0.3% by weight of molybdenum, max. 0.2% by weight iron, max. 0.15% by weight of titanium, 0.01 to 0.02% by weight of strontium and balance aluminum and production-related impurities up to a total of max.
- the thermal aging can also be introduced into the component within a further process step, for example a painting process.
- the alloy composition according to the invention with the goal of increased strengths has here a target corridor for the yield strength Rp 0.2 > 200 MPa and an elongation at break A> 10%.
- the alloy has a high curing potential, which is used by a hot aging at temperatures between 150 and 250 ° C.
- a hot aging at temperatures between 150 and 250 ° C.
- the desired effect is achieved by adding 0.1 to 1.0% by weight of copper, preferably 0.15 to 0.5% by weight of copper (and more preferably 0.3 to 0.5% by weight of copper) and up to 0.2% by weight of zinc achieved.
- the addition of zinc also improves casting behavior and mold filling.
- a combined addition of copper and zinc in a favorable ratio within the above proportions allows a further increase in strength with sufficient corrosion resistance.
- the alloy content of silicon is 9 to 11.5 wt.%.
- the alloying of silicon reduces the solidification shrinkage and thus serves a good casting behavior and good mold filling.
- zirconium causes an increase in elongation without a concomitant decrease in strength, as this results in a finer eutectic microstructure.
- the zirconium content of the diecasting alloy according to the invention is at max. 0.4% by weight.
- An addition of up to 0.3% by weight of molybdenum also increases the elongation while maintaining the strength.
- a combined admixture of Molybdenum and zirconium within the specified tolerances has an even greater effect on the achieved elongation at break values.
- strontium avoids coarse and acicular formation of the AlSi eutectic.
- the eutectic is modified so that it forms in a fine and rather lamellar structure and serves to avoid both non-refining and over-refinement.
- chromium causes a further increase in mechanical properties, the content is here at max. 0.4% by weight, preferably at max. 0.3% by weight.
- the combined content of manganese and iron significantly affects the life of the casting tools and the mold release.
- the desired effect is achieved with an addition of max. 0.2% by weight of iron and a manganese content of 0.45 to 0.8% by weight. It is advantageous to keep the iron content low in order to avoid embrittlement of the material by the formation of needle-shaped AlFeSi phases in the microstructure.
- the simultaneous addition of manganese counteracts an excessive attack of the low-iron melt on the casting tool and increases the releasability and thus the dimensional stability by reducing the sticking tendency.
- a favorable ratio must be set in order to avoid the formation of gravitational segregations, since these negatively affect both the flowability and the tendency to adhere.
- titanium causes grain refining of the ⁇ -Al by providing nuclei during the formation of the aluminum dendrites.
- the titanium content is at max. 0.15% by weight.
- a plurality of sample components in the form of a die-cast component and two spherical mold samples were produced in a die-casting process two aluminum alloys with the following alloy compositions: Alloy 1 Alloy 2 Si [% by weight] 10.9 10.5 Fe [% by weight] 0.17 0.1 Mn [% by weight] 0.45 0.46 Cu [% by weight] 0.35 0.26 Zn [% by weight] 0.07 0.1 Mg [% by weight] 0.5 0.53 Ti [% by weight] 0.08 0.12 Cr [% by weight] 0.08 0.1 Sr [% by weight] 0,014 0,014 Mo [% by weight] 0.08 0.15 Zr [% by weight] 0.13 0.15
- the table shows that samples of alloys 1 and 2 after a T5 heat treatment have a yield strength Rp 0.2 > 220 MPa with a simultaneous breaking elongation of A> 6% and after a T6 heat treatment a yield strength Rp 0.2 > 260 MPa at an increased elongation at break> 9%.
- the aluminum alloy according to the invention depending on the heat treatment, is particularly suitable for the production of crash and strength-relevant chassis and structural parts of a motor vehicle by diecasting. In the production of chassis components of a motor vehicle in the die casting process, a yield strength Rp 0.2 of> 200 MPa with simultaneous elongation at break of> 6% should be achieved.
- the abovementioned aluminum alloy makes it possible to image such chassis parts in the die casting process instead of other methods such as mold or sand casting, which are commonly used for such parts, due to the inventive increase in strength at a consistently high elongation.
- the inventive aluminum alloy is particularly suitable for the production of strength and Crashrelevanten components of a motor vehicle.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Body Structure For Vehicles (AREA)
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
Description
Die vorliegende Erfindung betrifft eine Aluminium-Legierung für Bauteile mit erhöhter Festigkeit mit einer Dehngrenze Rp0,2 > 120MPa und gleichzeitig hoher Bruchdehnung A > 7 % im Gusszustand, einer Dehngrenze Rp0,2 > 200 MPa und gleichzeitiger Bruchdehnung A > 6% nach einer T5-Wärmebehandlung, oder einer Dehngrenze Rp0,2 > 200 MPa und gleichzeitiger Bruchdehnung A > 9% nach einer T6-Wärmebehandlung, insbesondere für Struktur- und Fahrwerksteile eines Kraftwagens.The present invention relates to an aluminum alloy for components with increased strength with a yield strength Rp 0.2 > 120 MPa and simultaneously high elongation at break A> 7% in the cast state, a yield strength Rp 0.2 > 200 MPa and simultaneous elongation at break A> 6% after a T5 heat treatment, or a yield strength Rp 0.2 > 200 MPa and a simultaneous elongation at break A> 9% after a T6 heat treatment, in particular for structural and chassis parts of a motor vehicle.
Für im Druckgiessverfahren hergestellte Strukturbauteile, insbesondere dünnwandige Bauteile, als auch bei einer Anwendung des Druckgiessverfahrens für Fahrwerksteile, sind gute Fliess- und Formfülleigenschaften und die Erstarrungscharakteristik entscheidend. Ein besonderes Interesse der Automobilindustrie liegt auf dünnwandigen Strukturbauteilen, da diese bei gleicher Bauteilfunktion durch einen geringeren Materialeinsatz einen Gewichtsvorteil ermöglichen, welcher wiederum eine Senkung der Betriebskosten und eine Minderung der Umweltbelastung bedeutet.For structural components produced in the die casting method, in particular thin-walled components, as well as for an application of the pressure casting method for chassis parts, good flow and form filling properties and the solidification characteristic are decisive. A special interest of the automotive industry is on thin-walled structural components, since they allow for the same component function by a lower use of materials a weight advantage, which in turn means a reduction in operating costs and a reduction in environmental impact.
Die Druckgiesstechnik erlaubt heute, komplizierte Bauteile mit hoher Festigkeit bei hoher Dehnung herzustellen. Gängigerweise werden Fahrwerksteile vielerorts in anderen Giessverfahren wie beispielsweise dem Kokillenguss gefertigt. Grund hierfür ist, dass diese Bauteile, im Druckgiessverfahren hergestellt, die hierfür geforderten Festigkeiten nicht oder nicht bei genügender Dehnung erreichen, um so einen sicheren Betriebsfall zu gewährleisten.The die casting technique today allows to manufacture complicated components with high strength at high elongation. Usually chassis parts are manufactured in many places in other casting processes such as chill casting. The reason for this is that these components, produced by die casting, do not reach the required strength or do not reach with sufficient elongation in order to ensure a safe operating case.
Um die geforderten mechanischen Eigenschaften, speziell eine hohe Duktilität, zu erreichen, wird bei Struktur- und Fahrwerksteilen aus Druckgusslegierungen vom Typ AlSi10MnMg meist eine Wärmebehandlung, beispielsweise nach T6 (lösungsgeglüht, abgeschreckt und warmausgelagert) oder T7 (lösungsgeglüht, abgeschreckt und überaltert), durchgeführt. Hierdurch ändert sich das Gussgefüge eines beliebigen Bauteils, welches nun höheren Anforderungen bezüglich Festigkeit und Bruchdehnung genügt. Während eine Legierung dieses Typs im Gusszustand eine Dehngrenze Rp0,2 etwa 110 MPa bei einer Bruchdehnung A von 4-5 % aufweist, kann durch eine T6-Wärmebehandlung eine Steigerung auf über 150 MPa bei mindestens 7 % Dehnung erreicht werden. Dies basiert auf der verfestigenden Wirkung der Ausscheidungshärtung, an welcher die Legierungselemente Mg und Si beteiligt sind. Durch eine Einformung des Si-Eutektikums wird ausserdem die Duktilität gesteigert. Eine solche Wärmebehandlung wird beispielsweise wie folgt durchgeführt: einem Lösungsglühen in einem Temperaturbereich von 450 bis 535 °C folgt ein Abschrecken in Wasser oder an Luft auf Temperaturen unterhalb etwa 100 °C. Durch das Lösungsglühen werden die Legierungselemente durch Diffusionsvorgänge homogen fein verteilt und durch das Abschrecken im α-Al zwangsgebunden. Zudem wird das Si-Eutektikum sphäroidisiert. Die Legierung besitzt nun eine hohe Duktilität, aber nur geringe Festigkeit. Durch die anschließende Warmauslagerung bei 150-250 °C werden feine gleichmäßig verteilte Mg2Si-Ausscheidungen gebildet, die wiederum die Materialfestigkeit erhöhen. Je nach Temperaturbild der T6-Wärmebehandlung lassen sich die mechanischen Eigenschaften auf entweder Festigkeiten oder Bruchdehnung optimieren, wodurch ein sehr breites Eigenschafts- und damit Produktfolio durch eine Legierung abgebildet werden kann. Um die Produktionskosten zu mindern, kann auch eine T5-Wärmebehandlung genügen, das heisst eine Warmauslagerung bei 150 - 250 °C ohne vorhergehende Lösungsglühung. Auch hierbei wird der Festigkeitsanstieg durch Bildung von Mg2Si-Ausscheidungen hervorgerufen, allerdings in einem geringeren Maße, da die Abschreckwirkung eines aus dem Giesswerkzeug entnommenen Bauteils weniger stark ist und somit auch der Anteil zwangsgelösten Magnesiums im α-Al herabsinkt.In order to achieve the required mechanical properties, especially a high ductility, structural and chassis parts made of die-cast alloys of the AlSi10MnMg type are usually heat-treated, for example after T6 (solution-annealed, quenched and warm-aged) or T7 (solution-annealed, quenched and overaged) , This changes the cast structure of any component which now meets higher requirements in terms of strength and elongation at break. While an alloy of this type in the as-cast state has a yield strength Rp 0.2 of about 110 MPa with an elongation at break A of 4-5%, For example, a T6 heat treatment can increase to over 150 MPa with at least 7% elongation. This is based on the hardening effect of precipitation hardening, in which the alloying elements Mg and Si are involved. Injection of the Si eutectic also increases the ductility. Such a heat treatment is carried out, for example, as follows: Solution heat treatment in a temperature range of 450 to 535 ° C is followed by quenching in water or in air to temperatures below about 100 ° C. The solution annealing homogeneously finely distributes the alloying elements by diffusion processes and forcibly bonds them by quenching in α-Al. In addition, the Si eutectic is spheroidized. The alloy now has a high ductility, but only low strength. The subsequent thermal aging at 150-250 ° C, fine evenly distributed Mg 2 Si precipitates are formed, which in turn increase the material strength. Depending on the temperature profile of the T6 heat treatment, the mechanical properties can be optimized to either strengths or elongation at break, whereby a very broad property and thus product portfolio can be imaged by an alloy. In order to reduce the production costs, a T5 heat treatment can be sufficient, that is, a hot aging at 150 - 250 ° C without previous solution annealing. Again, the increase in strength caused by the formation of Mg2Si precipitates, but to a lesser extent, since the quenching effect of a withdrawn from the casting tool component is less strong and thus the proportion of positively dissolved magnesium in α-Al drops.
Weitaus höhere Festigkeiten von bis zu 600 MPa für die Dehngrenze Rp0,2 werden aufgrund ihres höheren Aushärtungspotentials von AlZnMg- und AlMgCu-Knetlegierungen erreicht. Bei diesen Legierungstypen beruht die verfestigende Wirkung auf der Ausscheidungshärtung der Legierungselemente Mg, Cu und Zn (
Als weitere Anforderungen eines im Druckgiessverfahren hergestellten Struktur- oder Fahrwerksteil sind neben den hohen Ansprüchen an Festigkeit und Dehnung auch Korrosionsbeständigkeit, Schweisseignung und Lebensdauer der Giesswerkzeuge zu nennen. Eine weitere Vorgabe besteht in der Maßhaltigkeit der Bauteile nach einer Wärmebehandlung, um einen problemfreien Zusammenbau der Karosserie gewährleisten zu können.As further requirements of a structure or chassis part produced by die casting, apart from the high demands on strength and elongation, too Corrosion resistance, welding suitability and lifetime of the casting tools. Another requirement is the dimensional accuracy of the components after a heat treatment in order to ensure trouble-free assembly of the body can.
Aufwendige Lösungsglühbehandlungen haben neben wirtschaftlichen Mehrkosten der Wärmebehandlung selbst auch den Nachteil, dass Bauteile durch die schroffe Abschreckung zu Verzug neigen, welcher zu mechanischer Nacharbeit und erhöhtem Ausschuss führen kann.Elaborate solution annealing treatments have in addition to economic additional costs of heat treatment itself also the disadvantage that components tend by the abrupt quenching to delay, which can lead to mechanical rework and increased rejects.
Aufgabe der Erfindung ist es, eine Aluminium-Druckgusslegierung zu schaffen, welche durch eine erhöhte Festigkeit bei gleichzeitig hoher Dehnung ermöglicht, sowohl Struktur- als auch Fahrwerksteile im Druckgiessverfahren abzubilden. Dies beinhaltet bevorzugt Fahrwerksteile, welche aufgrund der hohen mechanischen Anforderungen (z.B. Dehngrenze Rp0,2 > 200 MPa bei einer Bruchdehnung von A > 6 %) und der Bauteilgeometrie eher in anderen Verfahren denn dem Druckgiessverfahren hergestellt werden. Zudem liegt der Erfindung die Aufgabe zugrunde, eine gute Giessbarkeit und Formfüllung zu gewährleisten. Weiterhin soll die Legierung möglichst viele Fügetechniken erlauben, von hoher Maßhaltigkeit sein und eine gute Korrosionsbeständigkeit aufweisen.The object of the invention is to provide an aluminum diecasting alloy, which allows by an increased strength at the same time high elongation to map both structural and chassis parts in die casting. This preferably includes chassis parts which, due to the high mechanical requirements (eg yield strength Rp 0.2 > 200 MPa at an elongation at break of A> 6%) and the component geometry are produced in other methods than the die casting method. In addition, the invention has for its object to ensure good castability and mold filling. Furthermore, the alloy should allow as many joining techniques, be of high dimensional stability and have a good corrosion resistance.
Die Aufgabe wird erfindungsgemäss dadurch gelöst, dass die Aluminium-Legierung aus 9 bis 11,5 Gew. % Silizium, 0,45 bis 0,8 Gew. % Mangan, 0,2 bis 1 Gew. % Magnesium, 0,1 bis 1,0 Gew. % Kupfer, max. 0,2 Gew. % Zink, max. 0,4 Gew. % Zirkon, max. 0,4 Gew. % Chrom, max. 0,3 Gew. % Molybdän, max. 0,2 Gew. % Eisen, max. 0,15 Gew. % Titan, 0,01 bis 0,02 Gew. % Strontium und als Rest Aluminium und herstellungsbedingte Verunreinigungen bis insgesamt max. 0,5 Gew. % besteht, wodurch die erhöhten Festigkeiten bei gleichzeitig hoher Dehnung gewährleistet sind, sei es im Gusszustand oder nach einer Wärmebehandlung, beispielsweise nach einer T5, T6, T7 oder anderen bekannten Wärmebehandlungen. Die Warmauslagerung kann auch innerhalb eines weiteren Prozessschrittes, beispielsweise einem Lackiervorgang, in das Bauteil eingebracht werden.The object is achieved according to the invention in that the aluminum alloy comprises 9 to 11.5% by weight of silicon, 0.45 to 0.8% by weight of manganese, 0.2 to 1% by weight of magnesium, 0.1 to 1 , 0% by weight copper, max. 0.2% by weight of zinc, max. 0.4% by weight zirconium, max. 0.4% by weight chromium, max. 0.3% by weight of molybdenum, max. 0.2% by weight iron, max. 0.15% by weight of titanium, 0.01 to 0.02% by weight of strontium and balance aluminum and production-related impurities up to a total of max. 0.5 wt.%, Whereby the increased strength while ensuring high elongation are ensured, whether in the cast state or after a heat treatment, for example after a T5, T6, T7 or other known heat treatments. The thermal aging can also be introduced into the component within a further process step, for example a painting process.
Das Erreichen der geforderten Qualität, u.a. hinsichtlich Festigkeit und Dehnung, lässt sich massiv durch die Wahl der Legierung beeinflussen. Die erfindungsgemäße Legierungszusammensetzung mit dem Ziel erhöhter Festigkeiten hat hier einen Zielkorridor für die Dehngrenze Rp0,2 > 200 MPa und einer Bruchdehnung A > 10 %.Achieving the required quality, including strength and elongation, can be massively influenced by the choice of alloy. The alloy composition according to the invention with the goal of increased strengths has here a target corridor for the yield strength Rp 0.2 > 200 MPa and an elongation at break A> 10%.
Erfindungsgemäß besitzt die Legierung ein hohes Aushärtungspotential, welches durch eine Warmauslagerung bei Temperaturen zwischen 150 und 250 °C genutzt wird. Als Ergebnis der Entwicklung stellte sich heraus, dass durch die Beimengung geringer Mengen an Kupfer oder Zink eine signifikante festigkeitssteigernde Wirkung ohne Einbussen der Dehnung bei ausreichender Korrosionsbeständigkeit erreicht wird. Die gewünschte Wirkung wird durch eine Zugabe von 0,1 bis 1,0 Gew. % Kupfer vorzugsweise 0,15 bis 0,5 Gew. % Kupfer (und nochmals bevorzugt 0,3 bis 0,5 Gew. % Kupfer) und bis zu 0,2 Gew. % Zink erzielt. Die Zugabe von Zink verbessert zudem das Giessverhalten und die Formfüllung.According to the invention, the alloy has a high curing potential, which is used by a hot aging at temperatures between 150 and 250 ° C. As a result of the development, it has been found that the addition of small amounts of copper or zinc achieves a significant strength-enhancing effect without sacrificing elongation with sufficient corrosion resistance. The desired effect is achieved by adding 0.1 to 1.0% by weight of copper, preferably 0.15 to 0.5% by weight of copper (and more preferably 0.3 to 0.5% by weight of copper) and up to 0.2% by weight of zinc achieved. The addition of zinc also improves casting behavior and mold filling.
Eine kombinierte Zugabe von Kupfer und Zink in günstigem Verhältnis innerhalb der oben genannten Anteile erlaubt eine nochmalige Steigerung der Festigkeit bei ausreichender Korrosionsbeständigkeit.A combined addition of copper and zinc in a favorable ratio within the above proportions allows a further increase in strength with sufficient corrosion resistance.
Der Legierungsanteil an Silizium beträgt 9 bis 11,5 Gew. %. Das Zulegieren von Silizium mindert die Erstarrungsschwindung und dient somit einem guten Giessverhalten und guter Formfüllung.The alloy content of silicon is 9 to 11.5 wt.%. The alloying of silicon reduces the solidification shrinkage and thus serves a good casting behavior and good mold filling.
Die Zugabe von 0,2 bis 1,0 Gew. % Magnesium, vorzugsweise 0,2 bis 0,8 Gew. % Magnesium, bewirkt eine festigkeitssteigernde Wirkung aufgrund der oben beschriebenen Ausscheidungshärtung. Zudem senkt eine Zugabe in günstigem Verhältnis zu Kupfer die Korrosionsanfälligkeit der erfindungsgemäßen Aluminium-Druckgusslegierung.The addition of 0.2 to 1.0% by weight of magnesium, preferably 0.2 to 0.8% by weight of magnesium, causes a strength-enhancing effect due to the precipitation hardening described above. In addition, an addition in favorable ratio to copper lowers the susceptibility to corrosion of the aluminum diecasting alloy according to the invention.
Eine Beimengung von Zirkonium bewirkt eine Steigerung der Dehnung ohne gleichzeitigen Abfall der Festigkeit, da hierdurch ein feineres eutektisches Gefüge vorliegt. Der Zirkoniumgehalt der erfindungsgemäßen Druckgusslegierung liegt bei max. 0,4 Gew. %. Auch eine Zugabe von bis zu 0,3 Gew. % Molybdän erhöht die Dehnung bei gleichbleibender Festigkeit. Eine kombinierte Beimengung von Molybdän und Zirkonium innerhalb der angegebenen Toleranzen wirkt sich nochmals steigernd auf die erreichten Bruchdehnungswerte aus.An admixture of zirconium causes an increase in elongation without a concomitant decrease in strength, as this results in a finer eutectic microstructure. The zirconium content of the diecasting alloy according to the invention is at max. 0.4% by weight. An addition of up to 0.3% by weight of molybdenum also increases the elongation while maintaining the strength. A combined admixture of Molybdenum and zirconium within the specified tolerances has an even greater effect on the achieved elongation at break values.
Durch Zugabe von Strontium wird eine grobe und nadelförmige Ausbildung des AlSi-Eutektikums vermieden. Durch eine Beimengung von 0,01 bis 0,02 Gew. % Strontium wird das Eutektikum dahingehend modifiziert, dass es sich in einer feinen und eher lamellaren Struktur ausbildet sowie zur Vermeidung einer Nicht- wie auch einer Überveredelung dient.The addition of strontium avoids coarse and acicular formation of the AlSi eutectic. By adding 0.01 to 0.02% by weight of strontium, the eutectic is modified so that it forms in a fine and rather lamellar structure and serves to avoid both non-refining and over-refinement.
Eine Zugabe von Chrom bewirkt eine weitere Steigerung der mechanischen Eigenschaften, der Gehalt liegt hier bei max. 0,4 Gew. %, vorzugsweise bei max. 0,3 Gew. %.An addition of chromium causes a further increase in mechanical properties, the content is here at max. 0.4% by weight, preferably at max. 0.3% by weight.
Der kombinierte Gehalt von Mangan und Eisen beeinflusst wesentlich die Lebensdauer der Giesswerkzeuge und die Entformbarkeit. Die gewünschte Wirkung wird mit einer Zugabe von max. 0,2 Gew. % Eisen und einem Mangangehalt von 0,45 bis 0,8 Gew. % erreicht. Es ist von Vorteil, den Eisengehalt gering zu halten, um ein Versprödung des Materials durch die Bildung nadelförmiger AlFeSi-Phasen im Gefüge zu vermeiden. Durch gleichzeitige Zugabe von Mangan wird einem übermäßigen Angriff der eisenarmen Schmelze auf das Giesswerkzeug entgegengewirkt und durch eine Minderung der Klebeneigung die Entformbarkeit und damit die Maßhaltigkeit erhöht. Allerdings ist bei einer gleichzeitigen Zugabe von Eisen, Mangan und Chrom ein günstiges Verhältnis einzustellen, um die Bildung von Schwerkraftseigerungen zu vermeiden, da diese sowohl das Fliessvermögen als auch die Klebeneigung negativ beeinflussen.The combined content of manganese and iron significantly affects the life of the casting tools and the mold release. The desired effect is achieved with an addition of max. 0.2% by weight of iron and a manganese content of 0.45 to 0.8% by weight. It is advantageous to keep the iron content low in order to avoid embrittlement of the material by the formation of needle-shaped AlFeSi phases in the microstructure. The simultaneous addition of manganese counteracts an excessive attack of the low-iron melt on the casting tool and increases the releasability and thus the dimensional stability by reducing the sticking tendency. However, with a simultaneous addition of iron, manganese and chromium, a favorable ratio must be set in order to avoid the formation of gravitational segregations, since these negatively affect both the flowability and the tendency to adhere.
Die Zugabe von Titan bewirkt eine Kornfeinung des α-Al durch das Bereitstellen von Nuclei während der Bildung der Aluminium-Dendriten. Der Titangehalt liegt bei max. 0,15 Gew. %.The addition of titanium causes grain refining of the α-Al by providing nuclei during the formation of the aluminum dendrites. The titanium content is at max. 0.15% by weight.
Weitere Vorteile und Merkmale der neuen Aluminium-Legierung zeigen sich in den nachfolgenden Ausführungsbeispielen, wobei sich die Erfindung nicht nur auf die Ausführungsbeispiele beschränkt.Further advantages and features of the new aluminum alloy are shown in the following embodiments, wherein the invention is not limited to the embodiments.
Eine Mehrzahl an Probebauteilen in Form eines Druckguss-Bauteils und zweier Kugelformproben wurden in einem Druckgiessverfahren zwei AluminiumLegierungen mit folgenden Legierungszusammensetzungen hergestellt:
Im Anschluss an das Druckgiessen wurden verschiedene Wärmebehandlungen, sowohl T5 als auch T6 wie beschrieben, durchgeführt und Zugproben aus dem Druckguss-Bauteil entnommen. Die ermittelten Kennwerte der mechanischen Eigenschaften nach diesen Wärmebehandlungen und im Gusszustand sind der nachfolgenden Tabelle zu entnehmen:
Aus der Tabelle geht hervor, dass Proben der Legierungen 1 und 2 nach einer T5-Wärmebehandlung eine Dehngrenze Rp0,2 > 220 MPa bei einer gleichzeitigen Bruchdehnung von A > 6 % und nach einer T6-Wärmebehandlung eine Dehngrenze Rp0,2 > 260 MPa bei einer erhöhten Bruchdehnung > 9 % aufweisen. Es ist offensichtlich, dass die erfindungsgemässe Aluminium-Legierung je nach Wärmebehandlung insbesondere für die Herstellung von crash- und festigkeitsrelevanten Fahrwerks- und Strukturteilen eines Kraftwagens im Druckgiessverfahren geeignet ist. Bei der Herstellung von Fahrwerksbauteilen eines Kraftwagens im Druckgiessverfahren sollte eine Dehngrenze Rp0,2 von > 200 MPa bei gleichzeitiger Bruchdehnung von > 6 % erreicht werden. Die oben genannte Aluminium-Legierung ermöglicht die Abbildung solcher Fahrwerksteile im Druckgiessverfahren anstelle anderer Verfahren wie Kokillen- oder Sandguss, welche gängigerweise für solche Teile genutzt werden, aufgrund der erfindungsgemässen Steigerung der Festigkeit bei gleichbleibend hoher Dehnung.The table shows that samples of alloys 1 and 2 after a T5 heat treatment have a yield strength Rp 0.2 > 220 MPa with a simultaneous breaking elongation of A> 6% and after a T6 heat treatment a yield strength Rp 0.2 > 260 MPa at an increased elongation at break> 9%. It is obvious that the aluminum alloy according to the invention, depending on the heat treatment, is particularly suitable for the production of crash and strength-relevant chassis and structural parts of a motor vehicle by diecasting. In the production of chassis components of a motor vehicle in the die casting process, a yield strength Rp 0.2 of> 200 MPa with simultaneous elongation at break of> 6% should be achieved. The abovementioned aluminum alloy makes it possible to image such chassis parts in the die casting process instead of other methods such as mold or sand casting, which are commonly used for such parts, due to the inventive increase in strength at a consistently high elongation.
In weiteren Untersuchungen haben sich ausserdem die gute Korrosionsbeständigkeit und Schweißbarkeit solcher Legierungen gezeigt.Further studies have also shown the good corrosion resistance and weldability of such alloys.
Die erfindungsgemässe Aluminium-Legierung eignet sich speziell zur Herstellung von festigkeits- und crashrelevanten Bauteilen eines Kraftwagens.The inventive aluminum alloy is particularly suitable for the production of strength and Crashrelevanten components of a motor vehicle.
Claims (6)
- Aluminium alloy for components having increased strength with a yield point Rp0.2 > 120 MPa and at the same time an elongation at break A > 7% in the cast state, a yield point Rp0.2 > 200 MPa and at the same time an elongation at break A > 6% after a T5 heat treatment or a yield point Rp0.2 > 200 MPa and at the same time a high elongation at break A > 9% after a T6 heat treatment, in particular for structural and chassis parts of a motor vehicle containing from 9 to 11.5% by weight of silicon, from 0.45 to 0.8% by weight of manganese, from 0.2 to 1.0% by weight of magnesium, from 0.1 to 1.0% by weight of copper, not more than 0.2% by weight of zinc, not more than 0.4% by weight of zirconium, not more than 0.4% by weight of chromium, not more than 0.3% by weight of molybdenum, not more than 0.2% by weight of iron, not more than 0.15% by weight of titanium, from 0.01 to 0.02% by weight of strontium and as balance aluminium and production-related impurities up to a total of not more than 0.5% by weight.
- Aluminium alloy according to Claim 1, characterized in that the aluminium alloy comprises from 0.15 to 0.5% by weight of copper.
- Aluminium alloy according to Claim 1, characterized in that the aluminium alloy comprises from 0.3 to 0.5% by weight of copper.
- Aluminium alloy according to Claim 1, characterized in that the aluminium alloy comprises from 0.2 to 0.8% by weight of magnesium.
- Aluminium alloy according to Claim 1, characterized in that the aluminium alloy comprises not more than 0.3% by weight of chromium.
- Use of an aluminium alloy according to Claim 1 for the pressure casting of crash- and strength-relevant structural and chassis components of a motor vehicle.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12193547.2A EP2735621B1 (en) | 2012-11-21 | 2012-11-21 | Aluminium die casting alloy |
US14/083,990 US9322086B2 (en) | 2012-11-21 | 2013-11-19 | Aluminum pressure casting alloy |
CN201310643333.1A CN103834835A (en) | 2012-11-21 | 2013-11-21 | Aluminum pressure casting alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12193547.2A EP2735621B1 (en) | 2012-11-21 | 2012-11-21 | Aluminium die casting alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2735621A1 EP2735621A1 (en) | 2014-05-28 |
EP2735621B1 true EP2735621B1 (en) | 2015-08-12 |
Family
ID=47257520
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12193547.2A Active EP2735621B1 (en) | 2012-11-21 | 2012-11-21 | Aluminium die casting alloy |
Country Status (3)
Country | Link |
---|---|
US (1) | US9322086B2 (en) |
EP (1) | EP2735621B1 (en) |
CN (1) | CN103834835A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102021131973A1 (en) | 2021-12-03 | 2023-06-07 | Audi Aktiengesellschaft | Die-cast aluminum alloy |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6034333B2 (en) * | 2014-06-04 | 2016-11-30 | ヤマハ発動機株式会社 | Aluminum wheel manufacturing method and aluminum wheel |
CN104233014B (en) * | 2014-09-30 | 2016-08-24 | 南通迪瓦特节能风机有限公司 | A kind of axial compressor rotor sheet alloy material and preparation method thereof |
MX2018001765A (en) * | 2015-08-13 | 2018-11-22 | Alcoa Usa Corp | Improved 3xx aluminum casting alloys, and methods for making the same. |
FR3044326B1 (en) * | 2015-12-01 | 2017-12-01 | Constellium Neuf-Brisach | HIGH-RIGIDITY THIN SHEET FOR AUTOMOTIVE BODYWORK |
DE102015015610A1 (en) | 2015-12-03 | 2017-06-08 | Audi Ag | Aluminum-silicon diecasting alloy, method of making a die cast component of the alloy and body component with a die cast component |
CN105483462A (en) * | 2015-12-17 | 2016-04-13 | 太仓市美斯门窗有限公司 | High-hardness aluminum alloy |
DE102016004216A1 (en) * | 2016-04-07 | 2016-09-29 | Daimler Ag | Aluminum alloy, in particular for a casting method, and method for producing a component from such an aluminum alloy |
EP3235916B1 (en) | 2016-04-19 | 2018-08-15 | Rheinfelden Alloys GmbH & Co. KG | Cast alloy |
EP3235917B1 (en) | 2016-04-19 | 2018-08-15 | Rheinfelden Alloys GmbH & Co. KG | Alloy for pressure die casting |
CN106011558B (en) * | 2016-07-06 | 2018-03-02 | 宁国市中泰汽车零部件有限公司 | A kind of shackle bracket |
WO2018046368A1 (en) * | 2016-09-06 | 2018-03-15 | Jaguar Land Rover Limited | A casting alloy |
WO2018161311A1 (en) * | 2017-03-09 | 2018-09-13 | GM Global Technology Operations LLC | Aluminum alloys |
CN107217179B (en) * | 2017-05-31 | 2019-03-19 | 中信戴卡股份有限公司 | A kind of aluminum alloy materials, preparation method and use |
CN107447134B (en) * | 2017-08-07 | 2019-06-25 | 苏州慧驰轻合金精密成型科技有限公司 | A kind of high intensity can anodic oxidation pack alloy and preparation method thereof |
CN108251714B (en) * | 2017-12-25 | 2020-05-08 | 广州金邦液态模锻技术有限公司 | Extrusion casting high-strength and high-toughness aluminum alloy and extrusion casting method thereof |
CN108179334B (en) * | 2017-12-29 | 2020-03-27 | 无锡天宝电机有限公司 | Material for motor shell and preparation method thereof |
CN109811206B (en) * | 2019-03-28 | 2021-07-16 | 帅翼驰新材料集团有限公司 | Cast aluminum alloy |
DE102019205267B3 (en) * | 2019-04-11 | 2020-09-03 | Audi Ag | Die-cast aluminum alloy |
CN110512100A (en) * | 2019-09-06 | 2019-11-29 | 中北大学 | A kind of method of smelting of V-N steel pack alloy |
PL3825428T3 (en) * | 2019-11-25 | 2023-03-20 | Amag Casting Gmbh | Die cast component and method for producing a die cast component |
CN115287507A (en) * | 2022-08-02 | 2022-11-04 | 乔治费歇尔金属成型科技(苏州)有限公司 | Heat treatment-free aluminum alloy, and preparation method, structural member and application thereof |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0992601A1 (en) * | 1998-10-05 | 2000-04-12 | Alusuisse Technology & Management AG | Method for fabricating a component from an aluminium alloy by pressure die-casting |
JP4007488B2 (en) | 2002-01-18 | 2007-11-14 | 日本軽金属株式会社 | Aluminum alloy for die casting, manufacturing method of die casting product and die casting product |
US20050167012A1 (en) * | 2004-01-09 | 2005-08-04 | Lin Jen C. | Al-Si-Mn-Mg alloy for forming automotive structural parts by casting and T5 heat treatment |
PT1612286E (en) * | 2004-06-29 | 2011-09-19 | Rheinfelden Aluminium Gmbh | Aluminium alloy for pressure die casting |
JP2007070716A (en) * | 2005-09-09 | 2007-03-22 | Daiki Aluminium Industry Co Ltd | Aluminum alloy for pressure casting, and aluminum alloy casting made thereof |
JP5344527B2 (en) * | 2007-03-30 | 2013-11-20 | 株式会社豊田中央研究所 | Aluminum alloy for casting, aluminum alloy casting and method for producing the same |
AU2009242962A1 (en) * | 2008-04-30 | 2009-11-05 | Commonwealth Scientific And Industrial Research Organisation | Improved aluminium based casting alloy |
JP5355320B2 (en) * | 2009-09-10 | 2013-11-27 | 日産自動車株式会社 | Aluminum alloy casting member and manufacturing method thereof |
DE102010055011A1 (en) * | 2010-12-17 | 2012-06-21 | Trimet Aluminium Ag | Readily castable ductile aluminum-silicon alloy comprises silicon, magnesium, manganese, copper, titanium, iron, molybdenum, zirconium, strontium, and aluminum and unavoidable impurities, and phosphorus for suppressing primary silicon phase |
CN102051505B (en) * | 2010-12-28 | 2012-06-20 | 浙江金盾风机股份有限公司 | High-strength casting aluminum alloy |
EP2653579B1 (en) * | 2012-04-17 | 2014-10-15 | Georg Fischer Druckguss GmbH & Co. KG | Aluminium alloy |
-
2012
- 2012-11-21 EP EP12193547.2A patent/EP2735621B1/en active Active
-
2013
- 2013-11-19 US US14/083,990 patent/US9322086B2/en active Active
- 2013-11-21 CN CN201310643333.1A patent/CN103834835A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102021131973A1 (en) | 2021-12-03 | 2023-06-07 | Audi Aktiengesellschaft | Die-cast aluminum alloy |
WO2023099080A1 (en) | 2021-12-03 | 2023-06-08 | Audi Ag | Aluminium die casting alloy |
Also Published As
Publication number | Publication date |
---|---|
US9322086B2 (en) | 2016-04-26 |
CN103834835A (en) | 2014-06-04 |
EP2735621A1 (en) | 2014-05-28 |
US20140140886A1 (en) | 2014-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2735621B1 (en) | Aluminium die casting alloy | |
EP2653579B1 (en) | Aluminium alloy | |
DE102016118729B4 (en) | Aluminium alloy, suitable for high pressure casting | |
EP1682688B1 (en) | Al-Mg-Si cast aluminium alloy containing scandium | |
EP3235917B1 (en) | Alloy for pressure die casting | |
DE112015000499B4 (en) | Method for producing a plastically deformed aluminum alloy product | |
EP1718778B1 (en) | Material based on an aluminum alloy, method for the production thereof and its use | |
AT413035B (en) | ALUMINUM ALLOY | |
WO2016207274A1 (en) | High-strength and easily formable almg-strip, and method for producing the same | |
DE102016219711B4 (en) | Aluminum alloy for die casting and process for its heat treatment | |
DE102017114162A1 (en) | HIGH STRENGTH AND HIGH CRYAN RESISTANT ALUMINUM ALLOY ALLOYS AND HPDC MOTOR BLOCKS | |
DE102013212439A1 (en) | Cast aluminum alloy for structural components | |
DE69825414T3 (en) | Aluminum alloy and process for its preparation | |
DE102009012073A1 (en) | Aluminum alloy, useful for producing casting a component of motor vehicle e.g. cylinder heads for internal combustion engines of automobiles, comprises e.g. silicon, magnesium, copper, zirconium, titanium, strontium, sodium and iron | |
EP1719820A2 (en) | Aluminium cast alloy | |
AT412726B (en) | ALUMINUM ALLOY, COMPONENT FROM THIS AND METHOD FOR PRODUCING THE COMPONENT | |
EP2471966B1 (en) | Easily castable, ductile AlSi alloy and method for producing a cast component using the AlSi cast alloy | |
EP2041328B1 (en) | Aluminum alloy and the utilization thereof for a cast component, in particular a motor vehicle | |
DE102014102817A1 (en) | Aluminum alloy suitable for high pressure casting | |
DE102011112005A1 (en) | Alloy, preferably aluminum casting alloy, useful e.g. as a sand or die casting alloy, comprises a specified range of silicon, zinc, iron, copper, magnesium, strontium, sodium, antimony and aluminum | |
DE602004005529T2 (en) | Wrought aluminum alloy | |
EP1802781A1 (en) | Aluminium-based alloy and moulded part consisting of said alloy | |
EP1234893B1 (en) | Cast alloy of the type AlMgSi | |
DE102019202676B4 (en) | Cast components with high strength and ductility and low tendency to hot crack | |
AT507490B1 (en) | ALUMINUM ALLOY, PROCESS FOR THEIR PRODUCTION AND THEIR USE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20121121 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
R17P | Request for examination filed (corrected) |
Effective date: 20141014 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20150305 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 742234 Country of ref document: AT Kind code of ref document: T Effective date: 20150815 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502012004093 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20150812 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150812 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151112 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151113 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150812 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150812 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150812 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151212 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150812 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150812 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150812 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150812 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151214 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150812 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150812 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150812 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150812 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150812 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150812 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502012004093 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150812 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150812 Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151121 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
26N | No opposition filed |
Effective date: 20160513 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151130 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151130 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20160729 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150812 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151121 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150812 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150812 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20121121 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150812 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20161121 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150812 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161121 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150812 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150812 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150812 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 742234 Country of ref document: AT Kind code of ref document: T Effective date: 20171121 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171121 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230529 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231121 Year of fee payment: 12 |