EP0992601A1 - Method for fabricating a component from an aluminium alloy by pressure die-casting - Google Patents

Method for fabricating a component from an aluminium alloy by pressure die-casting Download PDF

Info

Publication number
EP0992601A1
EP0992601A1 EP98810995A EP98810995A EP0992601A1 EP 0992601 A1 EP0992601 A1 EP 0992601A1 EP 98810995 A EP98810995 A EP 98810995A EP 98810995 A EP98810995 A EP 98810995A EP 0992601 A1 EP0992601 A1 EP 0992601A1
Authority
EP
European Patent Office
Prior art keywords
component
weight
alloy
temperature range
max
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98810995A
Other languages
German (de)
French (fr)
Inventor
Reinhard Winkler
Jürgen Wüst
Klaus Währisch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3A Composites International AG
Original Assignee
Alusuisse Lonza Services Ltd
Alusuisse Technology and Management Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8236368&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0992601(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Alusuisse Lonza Services Ltd, Alusuisse Technology and Management Ltd filed Critical Alusuisse Lonza Services Ltd
Priority to EP98810995A priority Critical patent/EP0992601A1/en
Priority to DE59903009T priority patent/DE59903009D1/en
Priority to PT99810313T priority patent/PT997550E/en
Priority to ES99810313T priority patent/ES2181382T3/en
Priority to EP99810313A priority patent/EP0997550B1/en
Priority to SI9930168T priority patent/SI0997550T1/en
Priority to AT99810313T priority patent/ATE225868T1/en
Priority to DK99810313T priority patent/DK0997550T3/en
Publication of EP0992601A1 publication Critical patent/EP0992601A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • C22C21/04Modified aluminium-silicon alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent

Definitions

  • the invention relates to a method for producing a component with high Ductility requirements from an aluminum alloy by die casting. in the An application of the method as well as a Use of a component manufactured using the method.
  • the die-casting process enables the cost-effective production of large quantities Manufacture of thin-walled castings, such as those used in crash-relevant components Automotive engineering can be used.
  • Thin-walled parts place high demands of the castability.
  • Aluminum alloys that adhere to the flow behavior or mold filling requirements, are mainly alloys with a Si eutectic.
  • Suitable alloy based on aluminum-silicon is from EP-B-0687742 known.
  • the alloy corresponds to the type AlSi9Mg with considerable reduced iron content and strontium refinement of the AlSi eutectic.
  • the alloy becomes complete before heat treatment is carried out solution annealed and then quenched.
  • the invention is therefore based on the object of an aluminum alloy specify a heat treatment with which a high elongation at break sufficient yield strength even without high-temperature annealing can be achieved with subsequent water quenching.
  • the alloy essentially corresponds to the alloy known from EP-B-0687742 with an increased iron and reduced manganese content.
  • This variation in the alloy composition has a positive influence on the mechanical properties, since the Al 12 (Mg, Fe) Si 2 phases are significantly finer and more evenly distributed, which ultimately results in improved ductility. Due to the higher iron content, aluminum of lower purity can be used as an alloy base, which reduces the cost of the alloy. In addition, the higher iron content makes it possible to reduce the manganese additive used to reduce the tendency of the alloy to stick in the die.
  • the temperature range and duration of the solution annealing are thus chosen so that on the one hand the strong cast oversaturation of Silicon is broken down to improve the ductility and on the other hand the Yield strength through subsequent heat curing to the required Values can be set.
  • the temperature range for the partial solution treatment is preferably between about 420 and 460 ° C. Accepting a minor mechanical The component can lose strength for certain applications without subsequent Hot curing can be used.
  • the component can also be heat-cured after the partial solution annealing in the temperature range of the precipitation hardening of Mg 2 Si.
  • This heat curing is preferably carried out in a temperature range from approximately 190 to 220 ° C.
  • the preferred field of application of the method according to the invention is in the production of large-area and thin-walled components with high absorption capacity for kinetic energy through plastic deformation, i.e. crash-relevant components such as safety components in vehicle construction and be used in particular in the automotive industry.
  • crash-relevant components such as safety components in vehicle construction and be used in particular in the automotive industry.
  • safety components are space frame nodes and crash elements.
  • alloy B is a comparative alloy and corresponds to an alloy according to EP-B-0687742.
  • alloy Composition (% by weight) Si Mn Fe Mg Ti Sr.
  • A 10.45 0.45 0.24 0.28 0.05 0.014
  • B 10.88 0.58 0.10 0.17 0.05 0.013
  • Alloys A and B became the same, difficult to cast Component manufactured with a vacuum die casting process.
  • the component is a so-called "B-pillar" for vehicle construction, i.e. on large-area and thin-walled component with a wall thickness of 2 mm.
  • the component made from alloy A according to the invention was subjected to the following heat treatment after casting: Partial solution annealing 440 ° C / 60 min in air Cooling in still air Hot aging 220 ° C / 110 min in air
  • the distortion was measured on a component made from alloy A according to the invention after various heat treatments.
  • the distortion was determined as follows: A reference point (zero point) was defined on the cast part in the cast state (ie before the heat treatment) at a certain point. After the heat treatment, the distance to the reference point was then measured. This distance defines the distortion as a measure of the deformation that arises due to the heat treatment carried out.
  • Table 2 Heat treatment / cooling Solution annealing 493 ° C / 60 min water quenching part. Solution annealing 440 ° C / 60 min cooling in still air part. Solution annealing 440 ° C / 60 min cooling with fan Delay (mm) 6.5 ⁇ 0.5 ⁇ 0.5
  • alloy A according to the invention The components made from alloy A according to the invention and comparative alloy B were heat-treated as follows after casting: Partial solution annealing 420 ° C / 20 min Cooling in still air
  • Table 3 clearly shows the improved elongation at break values of alloy A according to the invention compared to comparative alloy B.
  • This improved ductility of alloy A according to the invention becomes the positive influence of the higher iron content and consequently the finer formation and more uniform distribution of Al 12 (Mn, Fe) Si 2 Phases in the alloy A according to the invention compared to the comparative alloy B.
  • the different formation and distribution of the brittle Al 12 (Mn, Fe) Si 2 phases could be confirmed metallographically using micrographs.
  • Orientative tests have further shown that even when the iron content is increased to 0.35% by weight and the manganese content is simultaneously reduced to 0.4% by weight, no ⁇ -AlFeSi phases harmful to the ductility occur.
  • Corrosion tests have also shown that pitting corrosion observed with small iron contents due to the rough precipitation of the Al 12 (Mn, Fe) Si phases, which act as cathodic local elements, is prevented by the increased iron content.

Abstract

Production of an aluminum-based component comprises casting an alloy consisting of (in wt.%): 9.5-11.5 Si, 0.3-0.6 Mn, 0.15-0.35 Fe, 0.1-0.4 Mg, maximum 0.1 Ti, 90-180 ppm Sr, 0.1-0.3 Cr, 0.1-0.3 Ni, 0.1-0.3 Co and a balance of Al with maximum 0.05 wt.% impurities into a component part, partially solution annealing at 400-460o C for 20-120 minutes, and cooling in air.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung eines Bauteiles mit hohen Duktilitätsanforderungen aus einer Aluminiumlegierung durch Druckgiessen. Im Rahmen der Erfindung liegt auch eine Anwendung des Verfahrens sowie eine Verwendung eines mit dem Verfahren hergestellten Bauteiles.The invention relates to a method for producing a component with high Ductility requirements from an aluminum alloy by die casting. in the An application of the method as well as a Use of a component manufactured using the method.

Mit modernen Giessverfahren können heute hoch belastbare Formteile auch aus Aluminiumlegierungen hergestellt werden. Die eingesetzten Aluminiumwerkstoffe müssen allerdings eine Reihe von Anforderungen erfüllen. Eine wesentliche Voraussetzung für die Eignung eines Werkstoffs ist die Einhaltung bestimmter mechanischer Kennwerte. So bestimmen etwa Mindestwerte von Streckgrenze und Festigkeit die Tragfähigkeit einer Konstruktion. Im Fahrzeugbau kommt die Anforderung hinzu, dass die bei einem Zusammenstoss deformierten Bauteile vor dem Bruch möglichst viel Energie durch plastische Verformung absorbieren sollen, was eine hohe Duktilität des eingesetzten Werkstoffs erfordert.With modern casting processes, highly resilient molded parts can also be used today be made from aluminum alloys. The aluminum materials used however, must meet a number of requirements. An essential one Compliance is a prerequisite for the suitability of a material certain mechanical parameters. For example, minimum values of Yield strength and strength the load-bearing capacity of a construction. In vehicle construction there is also the requirement that those deformed in a collision Components break as much energy as possible through plastic deformation should absorb what a high ductility of the material used required.

Das Druckgiessverfahren ermöglicht bei hohen Stückzahlen die kostengünstige Herstellung dünnwandiger Gussstücke, wie sie als crashrelevante Bauteile im Automobilbau eingesetzt werden. Dünnwandige Teile stellen hohe Anforderungen an die Giessbarkeit. Aluminiumlegierungen, welche die an das Fliessverhalten bzw. Formfüllungsvermögen gestellten Anforderungen erfüllen können, sind vor allem Legierungen mit einem Si-Eutektikum.The die-casting process enables the cost-effective production of large quantities Manufacture of thin-walled castings, such as those used in crash-relevant components Automotive engineering can be used. Thin-walled parts place high demands of the castability. Aluminum alloys that adhere to the flow behavior or mold filling requirements, are mainly alloys with a Si eutectic.

Eine zum Druckgiessen von im Fahrzeugbau eingesetzten Sicherheitsbauteilen geeignete Legierung auf der Basis Aluminium-Silizium ist aus der EP-B-0687742 bekannt. Die Legierung entspricht dem Typ AlSi9Mg mit erheblich reduziertem Eisengehalt und einer Strontium-Veredelung des AlSi-Eutektikums. Vor Durchführung einer Wärmebehandlung wird die Legierung vollständig lösungsgeglüht und nachfolgend abgeschreckt.One for die casting of safety components used in vehicle construction Suitable alloy based on aluminum-silicon is from EP-B-0687742 known. The alloy corresponds to the type AlSi9Mg with considerable reduced iron content and strontium refinement of the AlSi eutectic. The alloy becomes complete before heat treatment is carried out solution annealed and then quenched.

Bauteile mit teilweise geringen Wandstärken, wie sie beispielsweise als Strukturbauteile im Automobilbau eingesetzt werden, verziehen sich beim schroffen Abschrecken mit Wasser und müssen daher nachträglich aufwendigen Richtoperationen unterzogen werden. Zudem kann die hohe Lösungsglühtemperatur infolge einer Restgasporosität zu Blasenbildung an der Oberfläche der Bauteile führen. Zur Herstellung von Bauteilen der genannten Art durch Druckgiessen wurde deshalb nach Möglichkeiten gesucht, die geforderten Festigkeits- und Dehungswerte auch ohne Durchführung einer Hochtemperaturglühung mit nachfolgender Wasserabschreckung zu erzielen.Components with sometimes thin walls, such as structural components used in automobile construction warp when rugged Quenching with water and must therefore be expensive afterwards Straightening operations are subjected. In addition, the high solution annealing temperature due to residual gas porosity to bubble formation on the surface of the Guide components. For the production of components of the type mentioned by die casting Therefore, possibilities were sought, the required strength and elongation values even without high-temperature annealing to achieve with subsequent water quenching.

Für crashrelevante Bauteile im Automobilbau wird der Schwerpunkt auf die Duktilität, also auf das Verformungsvermögen und auf den duktilen Bruch, ausgedrückt durch die Bruchdehnung, gelegt. Die Festigkeit, ausgedrückt durch die Streckgrenze, kann dabei relativ tiefe Werte annehmen. Für Sicherheitsbauteile im Automobilbau sollten die folgenden Minimalwerte erreicht werden:

Dehngrenze (Rp0.2):
120 MPa
Zugfestigkeit (Rm):
180 MPa
Dehnung (A5)
15%
For crash-relevant components in automotive engineering, the focus is on ductility, i.e. on the deformability and on the ductile fracture, expressed by the elongation at break. The strength, expressed by the yield strength, can take on relatively low values. The following minimum values should be achieved for safety components in automotive engineering:
Yield strength (Rp0.2):
120 MPa
Tensile strength (Rm):
180 MPa
Elongation (A5)
15%

Der Erfindung liegt daher die Aufgabe zugrunde, eine Aluminiumlegierung und eine Wärmebehandlung anzugeben, mit welcher eine hohe Bruchdehnung bei ausreichender Streckgrenze auch ohne Durchführung einer Hochtemperaturglühung mit nachfolgender Wasserabschreckung erreicht werden kann.The invention is therefore based on the object of an aluminum alloy specify a heat treatment with which a high elongation at break sufficient yield strength even without high-temperature annealing can be achieved with subsequent water quenching.

Zur erfindungsgemässen Lösung der Aufgabe führt, dass eine Legierung mit

9.5 bis 11.5
Gew.-% Silizium
0.3 bis 0.6
Gew.-% Mangan
0.15 bis 0.35
Gew.-% Eisen
0.1 bis 0.4
Gew.-% Magnesium
max. 0.1
Gew.-% Titan
90 bis 180
ppm Strontium
wahlweise noch
0.1 bis 0.3
Gew.-% Chrom
0.1 bis 0.3
Gew.-% Nickel
0.1 bis 0.3
Gew.-% Kobolt
und als Rest Aluminium mit herstellungsbedingten Verunreinigungen, einzeln max. 0.05 Gew.-%, insgesamt max. 0.2 Gew.-%, zum Bauteil gegossen, das gegossene Bauteil nachfolgend in einem Temperaturbereich von 400 bis 460°C während einer Zeitdauer von 20 bis 120 min partiell lösgungsgeglüht und anschliessend an Luft abgekühlt wird.To achieve the object according to the invention, an alloy with
9.5 to 11.5
% By weight silicon
0.3 to 0.6
Wt% manganese
0.15 to 0.35
Wt% iron
0.1 to 0.4
% By weight magnesium
Max. 0.1
% By weight titanium
90 to 180
ppm strontium
optionally still
0.1 to 0.3
Wt% chromium
0.1 to 0.3
% By weight nickel
0.1 to 0.3
% By weight of Kobolt
and the rest aluminum with production-related impurities, individually max. 0.05% by weight, total max. 0.2% by weight, cast to the component, the cast component is subsequently partially solution-annealed in a temperature range from 400 to 460 ° C. for a period of 20 to 120 min and then cooled in air.

Die Legierung entspricht im wesentlichen der aus EP-B-0687742 bekannten Legierung mit gegenüber dieser erhöhtem Eisen- und erniedrigtem Mangangehalt. Diese Variation in der Legierungszusammensetzung hat einen positiven Einfluss auf die mechanischen Eigenschaften, da die Al12(Mg,Fe)Si2-Phasen deutlich feiner ausgebildet und gleichmässiger verteilt sind, was sich letztlich in einer verbesserten Duktilität niederschlägt. Durch den höheren Eisengehalt kann als Legierungsbasis Aluminium von geringerer Reinheit verwendet werden, wodurch sich die Gestehungskosten für die Legierung reduzieren. Zudem erlaubt der höhere Eisengehalt, den zur Verminderung der Klebeneigung der Legierung in der Druckgiessform verwendeten Manganzusatz herabzusetzen.The alloy essentially corresponds to the alloy known from EP-B-0687742 with an increased iron and reduced manganese content. This variation in the alloy composition has a positive influence on the mechanical properties, since the Al 12 (Mg, Fe) Si 2 phases are significantly finer and more evenly distributed, which ultimately results in improved ductility. Due to the higher iron content, aluminum of lower purity can be used as an alloy base, which reduces the cost of the alloy. In addition, the higher iron content makes it possible to reduce the manganese additive used to reduce the tendency of the alloy to stick in the die.

Anstelle der bei AlSi-Druckgusslegierungen üblichen Lösungsglühung bzw. Einformungsglühung des Eutektikums bei Temperaturen um 500°C mit nachfolgender Wasserabschreckung wird erfindungsgemäss die partielle Lösungsglühung bei tieferen Temperaturen eingeführt. Die gewählten Glühbedingungen gewährleisten eine ausreichende Einformung des eutektischen Siliziums. Die Abkühlung kann an ruhender Luft, allenfalls unterstützt durch Ventilatoren, erfolgen. Durch die gegenüber üblichen Lösungsglühtemperaturen erniedrigte Gussglühung kann die Blasenbildung infolge Gasporosität verhindert werden.Instead of the solution annealing or customary for AlSi die casting alloys Annealing of the eutectic at temperatures around 500 ° C with subsequent According to the invention, water quenching is the partial solution annealing introduced at lower temperatures. The chosen annealing conditions ensure adequate molding of the eutectic silicon. The cooling can take place in still air, if necessary supported by fans, respectively. Lowered by the usual solution annealing temperatures Cast annealing can prevent the formation of bubbles due to gas porosity.

Erfindungsgemäss werden somit Temperaturbereich und Zeitdauer der Lösungsglühung so gewählt, dass einerseits die starke Gussübersättigung von Silizium zur Verbesserung der Duktilität abgebaut wird und andrerseits die Streckgrenze durch eine anschliessende Warmaushärtung auf die geforderten Werte eingestellt werden kann.According to the invention, the temperature range and duration of the solution annealing are thus chosen so that on the one hand the strong cast oversaturation of Silicon is broken down to improve the ductility and on the other hand the Yield strength through subsequent heat curing to the required Values can be set.

Der Temperaturbereich für die partielle Lösungsglühung liegt bevorzugt zwischen etwa 420 und 460°C. Unter Inkaufnahme eines geringen mechanischen Festigkeitsverlustes kann das Bauteil für gewissen Anwendungen ohne nachfolgende Warmaushärtung eingesetzt werden.The temperature range for the partial solution treatment is preferably between about 420 and 460 ° C. Accepting a minor mechanical The component can lose strength for certain applications without subsequent Hot curing can be used.

Zur Einstellung des gewünschten Festigkeitsniveaus kann das Bauteil nach der partiellen Lösungsglühung im Temperaturbereich der Ausscheidungshärtung von Mg2Si zusätzlich warmausgehärtet werden. Diese Warmaushärtung wird bevorzugt in einem Temperaturbereich von etwa 190 bis 220°C durchgeführt.In order to set the desired strength level, the component can also be heat-cured after the partial solution annealing in the temperature range of the precipitation hardening of Mg 2 Si. This heat curing is preferably carried out in a temperature range from approximately 190 to 220 ° C.

Das bevorzugte Anwendungsgebiet des erfindungsgemässen Verfahrens liegt in der Herstellung grossflächiger und dünnwandiger Bauteile mit hohem Aufnahmevermögen für kinetische Energie durch plastische Verformung, d.h. crashrelevanter Bauteile, wie sie als Sicherheitsbauteile im Fahrzeugbau und insbesondere im Automobilbau eingesetzt werden. Beispiele für Sicherheitsbauteile sind Space Frame Knoten und Crashelemente.The preferred field of application of the method according to the invention is in the production of large-area and thin-walled components with high absorption capacity for kinetic energy through plastic deformation, i.e. crash-relevant components such as safety components in vehicle construction and be used in particular in the automotive industry. Examples of safety components are space frame nodes and crash elements.

Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele. Further advantages, features and details of the invention result from the following description of preferred exemplary embodiments.

BeispieleExamples

Die chemischen Analysen der untersuchten Legierungen sind aus der Tabelle 1 ersichtlich. Die Legierung A ist erfindungsgemäss, die Legierung B ist eine Vergleichsiegierung und entspricht einer Legierung gemäss EP-B-0687742. Legierung Zusammensetzung (Gew.-%) Si Mn Fe Mg Ti Sr A 10.45 0.45 0.24 0.28 0.05 0.014 B 10.88 0.58 0.10 0.17 0.05 0.013 The chemical analyzes of the alloys examined are shown in Table 1. Alloy A is according to the invention, alloy B is a comparative alloy and corresponds to an alloy according to EP-B-0687742. alloy Composition (% by weight) Si Mn Fe Mg Ti Sr. A 10.45 0.45 0.24 0.28 0.05 0.014 B 10.88 0.58 0.10 0.17 0.05 0.013

Aus den Legierungen A und B wurde je ein gleiches, schwer zu giessendes Bauteil mit einem Vakuumdruckgiessverfahren hergestellt. Bei dem Bauteil handelt es sich um eine sogenannte "B-Säule" für den Fahrzeugbau, d.h. ein grossflächiges und dünnwandiges Bauteil mit einer Wandstärke von 2 mm.Alloys A and B became the same, difficult to cast Component manufactured with a vacuum die casting process. With the component is a so-called "B-pillar" for vehicle construction, i.e. on large-area and thin-walled component with a wall thickness of 2 mm.

Beispiel 1example 1

Das Bauteil aus der erfindungsgemässen Legierung A wurde nach dem Giessen der folgenden Wärmebehandlung unterworfen: Partielle Lösungsglühung 440°C/60 min an Luft Abkühlung an ruhender Luft Warmauslagerung 220°C/110 min an Luft The component made from alloy A according to the invention was subjected to the following heat treatment after casting: Partial solution annealing 440 ° C / 60 min in air Cooling in still air Hot aging 220 ° C / 110 min in air

Nach dieser Wärmebehandlung wurden Zugproben aus den Gussteilen herausgearbeitet und an diesen die folgenden mechanischen Eigenschaften ermittelt:

Rm
200 MPa
Rp0.2
120 MPa
A5
17%
After this heat treatment, tensile specimens were worked out from the castings and the following mechanical properties were determined on them:
Rm
200 MPa
Rp0.2
120 MPa
A5
17%

Beispiel 2Example 2

An einem Bauteil aus der erfindungsgemässen Legierung A wurde der Verzug nach verschiedenen Wärmebehandlungen gemessen. Der Verzug wurde wie folgt ermittelt: Am Gussteil wurde im Gusszustand (d.h. vor der Wärmebehandlung) an einer bestimmten Stelle ein Referenzpunkt (Null Punkt) definiert. Nach erfolgter Wärmebehandlung wurde sodann der Abstand zum Referenzpunkt ausgemessen. Dieser Abstand definiert den Verzug als Mass für die aufgrund der durchgeführten Wärmebehandlung sich einstellende Deformation. Die Ergebnisse dieser Verzugsmessungen sind in Tabelle 2 zusammengefasst. Wärmebehandlung / Abkühlung Lösungsglühung 493°C/60 min Wasserabschreckung part. Lösungsglühung 440°C/60 min Abkühlung an ruhender Luft part. Lösungsglühung 440°C/60 min Abkühlung mit Ventilator Verzug (mm) 6.5 <0.5 <0.5 The distortion was measured on a component made from alloy A according to the invention after various heat treatments. The distortion was determined as follows: A reference point (zero point) was defined on the cast part in the cast state (ie before the heat treatment) at a certain point. After the heat treatment, the distance to the reference point was then measured. This distance defines the distortion as a measure of the deformation that arises due to the heat treatment carried out. The results of these distortion measurements are summarized in Table 2. Heat treatment / cooling Solution annealing 493 ° C / 60 min water quenching part. Solution annealing 440 ° C / 60 min cooling in still air part. Solution annealing 440 ° C / 60 min cooling with fan Delay (mm) 6.5 <0.5 <0.5

Der Vorteil der partiellen Lösungsglühung mit Luftabkühlung ist im Vergleich zu der üblichen vollständigen Lösungsglühung bei höherer Temperatur und Wasserabschreckung deutlich erkennbar.The advantage of partial solution annealing with air cooling is compared to the usual complete solution heat treatment at higher temperatures and water quenching clearly.

Beispiel 3Example 3

Die Bauteile aus der erfindungsgemässen Legierung A und der Vergleichslegierung B wurden nach dem Giessen wie folgt wärmebehandelt: Partielle Lösungsglühung 420°C/20 min Abkühlung an ruhender Luft The components made from alloy A according to the invention and comparative alloy B were heat-treated as follows after casting: Partial solution annealing 420 ° C / 20 min Cooling in still air

Nach dieser Wärmebehandlung wurden an vier verschiedenen Stellen Zugproben aus den Bauteilen herausgearbeitet und die mechanischen Eigenschaften ermittelt. Die Ergebnisse sind in Tabelle 3 zusammengestellt. Probenahmestelle Legierung A Legierung B Rm (MPa) Rp0.2 (MPa) A5 (%) Rm (MPa) Rp0.2 (MPa) A5 (%) 1 202.2 101.4 16.5 202.8 100.7 13.0 2 200.5 101.7 19.1 202.3 97.4 11.9 3 199.4 100.2 15.6 198.2 98.6 12.9 4 201.6 102.0 15.4 196.9 99.7 14.2 After this heat treatment, tensile specimens were worked out from the components at four different points and the mechanical properties determined. The results are summarized in Table 3. Sampling point Alloy A Alloy B Rm (MPa) Rp0.2 (MPa) A5 (%) Rm (MPa) Rp0.2 (MPa) A5 (%) 1 202.2 101.4 16.5 202.8 100.7 13.0 2nd 200.5 101.7 19.1 202.3 97.4 11.9 3rd 199.4 100.2 15.6 198.2 98.6 12.9 4th 201.6 102.0 15.4 196.9 99.7 14.2

Aus Tabelle 3 deutlich erkennbar sind die gegenüber der Vergleichslegierung B verbesserten Bruchdehnungswerte der erfindungsgemässen Legierung A. Diese verbesserte Duktilität der erfindungsgemässen Legierung A wird dem positiven Einfluss des höheren Eisengehaltes und demzufolge der feineren Ausbildung und gleichmässigeren Verteilung der Al12(Mn,Fe)Si2-Phasen in der erfindungsgemässen Legierung A gegenüber der Vergleichslegierung B zugeschrieben. Die unterschiedliche Ausbildung und Verteilung der spröden Al12(Mn,Fe)Si2-Phasen konnte metallographisch anhand von Schliffbildern bestätigt werden. Orientierende Versuche haben weiter gezeigt, dass selbst bei Erhöhung des Eisengehaltes auf 0.35 Gew.-% und gleichzeitiger Erniedrigung des Mangangehaltes auf 0.4 Gew.-% noch keine für die Duktilität schädlichen β-AlFeSi-Phasen auftreten. Korrosionsuntersuchungen haben zudem gezeigt, dass die bei kleinen Eisengehalten wegen der groben Ausscheidung der als kathodische Lokalelemente wirksamen Al12(Mn,Fe)Si-Phasen beobachtete Lochfrasskorrosion durch den erhöhten Eisengehalt verhindert wird.Table 3 clearly shows the improved elongation at break values of alloy A according to the invention compared to comparative alloy B. This improved ductility of alloy A according to the invention becomes the positive influence of the higher iron content and consequently the finer formation and more uniform distribution of Al 12 (Mn, Fe) Si 2 Phases in the alloy A according to the invention compared to the comparative alloy B. The different formation and distribution of the brittle Al 12 (Mn, Fe) Si 2 phases could be confirmed metallographically using micrographs. Orientative tests have further shown that even when the iron content is increased to 0.35% by weight and the manganese content is simultaneously reduced to 0.4% by weight, no β-AlFeSi phases harmful to the ductility occur. Corrosion tests have also shown that pitting corrosion observed with small iron contents due to the rough precipitation of the Al 12 (Mn, Fe) Si phases, which act as cathodic local elements, is prevented by the increased iron content.

Claims (6)

Verfahren zur Herstellung eines Bauteiles mit hohen Duktilitätsanforderungen aus einer Aluminiumlegierung durch Druckgiessen,
dadurch gekennzeichnet, dass eine Legierung mit
9.5 bis 11.5
Gew.-% Silizium
0.3 bis 0.6
Gew.-% Mangan
0.15 bis 0.35
Gew.-% Eisen
0.1 bis 0.4
Gew.-% Magnesium
max. 0.1
Gew.-% Titan
90 bis 180
ppm Strontium
wahlweise noch
0.1 bis 0.3
Gew.-% Chrom
0.1 bis 0.3
Gew.-% Nickel
0.1 bis 0.3
Gew.-% Kobolt
und als Rest Aluminium mit herstellungsbedingten Verunreinigungen, einzeln max. 0.05 Gew.-%, insgesamt max. 0.2 Gew.-%, zum Bauteil gegossen, das gegossene Bauteil nachfolgend in einem Temperaturbereich von 400 bis 460°C während einer Zeitdauer von 20 bis 120 min partiell lösungsgeglüht und anschliessend an Luft abgekühlt wird.
Process for producing a component with high ductility requirements from an aluminum alloy by die casting,
characterized in that an alloy with
9.5 to 11.5
% By weight silicon
0.3 to 0.6
Wt% manganese
0.15 to 0.35
Wt% iron
0.1 to 0.4
% By weight magnesium
Max. 0.1
% By weight titanium
90 to 180
ppm strontium
optionally still
0.1 to 0.3
Wt% chromium
0.1 to 0.3
% By weight nickel
0.1 to 0.3
% By weight of Kobolt
and the rest aluminum with production-related impurities, individually max. 0.05% by weight, total max. 0.2% by weight, cast to the component, the cast component is subsequently partially solution-annealed in a temperature range from 400 to 460 ° C. for a period of 20 to 120 min and then cooled in air.
Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die partielle Lösungsglühung in einem Temperaturbereich von etwa 420 bis 460°C durchgeführt wird.A method according to claim 1, characterized in that the partial Solution annealing in a temperature range of around 420 to 460 ° C is carried out. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Bauteil nach der partiellen Lösungsglühung zur Einstellung des gewünschten Festigkeitsniveaus im Temperaturbereich der Ausscheidungshärtung von Mg2Si warmausgehärtet wird.Method according to Claim 1 or 2, characterized in that the component is heat-cured after the partial solution annealing to set the desired strength level in the temperature range of the precipitation hardening of Mg 2 Si. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die Warmaushärtung in einem Temperaturbereich von etwa 190 bis 220°C durchgeführt wird.A method according to claim 3, characterized in that the heat curing carried out in a temperature range of about 190 to 220 ° C. becomes. Anwendung des Verfahrens nach einem der Ansprüche 1 bis 4 zur Herstellung grossflächiger und dünnwandiger Bauteile mit hohem Aufnahmevermögen für kinetische Energie durch plastische Verformung.Application of the method according to one of claims 1 to 4 for production large-area and thin-walled components with high absorption capacity for kinetic energy through plastic deformation. Verwendung eines mit dem Verfahren nach einem der Ansprüche 1 bis 4 hergestellten Bauteiles als Sicherheitsbauteil im Fahrzeugbau.Use of a with the method according to any one of claims 1 to 4 manufactured component as a safety component in vehicle construction.
EP98810995A 1998-10-05 1998-10-05 Method for fabricating a component from an aluminium alloy by pressure die-casting Withdrawn EP0992601A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP98810995A EP0992601A1 (en) 1998-10-05 1998-10-05 Method for fabricating a component from an aluminium alloy by pressure die-casting
DE59903009T DE59903009D1 (en) 1998-10-05 1999-04-15 Process for producing a component from an aluminum alloy by die casting
PT99810313T PT997550E (en) 1998-10-05 1999-04-15 PROCESS FOR THE PRODUCTION OF A COMPONENT OF AN ALUMINUM ALLOY THROUGH PRESSURE FOUNDATION
ES99810313T ES2181382T3 (en) 1998-10-05 1999-04-15 PROCEDURE FOR MANUFACTURING A MOUNTING PART FROM AN ALUMINUM ALLOY BY PRESSURE COLADA.
EP99810313A EP0997550B1 (en) 1998-10-05 1999-04-15 Method for fabricating a component from an aluminium alloy by pressure die-casting
SI9930168T SI0997550T1 (en) 1998-10-05 1999-04-15 Method for fabricating a component from an aluminium alloy by pressure die-casting
AT99810313T ATE225868T1 (en) 1998-10-05 1999-04-15 METHOD FOR PRODUCING A COMPONENT FROM AN ALUMINUM ALLOY BY DIE CASTING
DK99810313T DK0997550T3 (en) 1998-10-05 1999-04-15 Process for manufacturing a structural part of an aluminum alloy by die casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP98810995A EP0992601A1 (en) 1998-10-05 1998-10-05 Method for fabricating a component from an aluminium alloy by pressure die-casting

Publications (1)

Publication Number Publication Date
EP0992601A1 true EP0992601A1 (en) 2000-04-12

Family

ID=8236368

Family Applications (2)

Application Number Title Priority Date Filing Date
EP98810995A Withdrawn EP0992601A1 (en) 1998-10-05 1998-10-05 Method for fabricating a component from an aluminium alloy by pressure die-casting
EP99810313A Expired - Lifetime EP0997550B1 (en) 1998-10-05 1999-04-15 Method for fabricating a component from an aluminium alloy by pressure die-casting

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP99810313A Expired - Lifetime EP0997550B1 (en) 1998-10-05 1999-04-15 Method for fabricating a component from an aluminium alloy by pressure die-casting

Country Status (7)

Country Link
EP (2) EP0992601A1 (en)
AT (1) ATE225868T1 (en)
DE (1) DE59903009D1 (en)
DK (1) DK0997550T3 (en)
ES (1) ES2181382T3 (en)
PT (1) PT997550E (en)
SI (1) SI0997550T1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2522716A (en) * 2014-02-04 2015-08-05 Jbm Internat Ltd Method of manufacture
CN104962790A (en) * 2015-08-01 2015-10-07 李白 Information acquisition device for IOT (Internet of Things)
WO2017135463A1 (en) * 2016-02-05 2017-08-10 学校法人芝浦工業大学 Aluminum alloy for casting, aluminum alloy member and method for producing aluminum alloy member
CN112662920A (en) * 2020-12-02 2021-04-16 成都慧腾创智信息科技有限公司 High-thermal-conductivity high-toughness die-casting aluminum-silicon alloy and preparation method thereof

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6921512B2 (en) * 2003-06-24 2005-07-26 General Motors Corporation Aluminum alloy for engine blocks
PT1612286E (en) * 2004-06-29 2011-09-19 Rheinfelden Aluminium Gmbh Aluminium alloy for pressure die casting
JP2006183122A (en) * 2004-12-28 2006-07-13 Denso Corp Aluminum alloy for die casting and method for producing aluminum alloy casting
DE102006032699B4 (en) * 2006-07-14 2010-09-09 Bdw Technologies Gmbh & Co. Kg Aluminum alloy and its use for a cast component, in particular a motor vehicle
WO2009059591A2 (en) 2007-11-08 2009-05-14 Ksm Castings Gmbh Front axle carrier for motor vehicles
DE102008024524A1 (en) 2008-05-21 2009-11-26 Bdw Technologies Gmbh Method and plant for producing a cast component
DE102008029864B4 (en) * 2008-06-24 2011-02-24 Bdw Technologies Gmbh Cast component and method for its manufacture
DE102009019269A1 (en) * 2009-04-28 2010-11-11 Audi Ag Aluminum-silicon die casting alloy for thin-walled structural components
DE102010061895A1 (en) * 2010-07-21 2012-01-26 Bdw Technologies Gmbh Method for heat treating a cast component
EP2471967B1 (en) * 2010-12-28 2014-07-09 Casa Maristas Azterlan Method for obtaining improved mechanical properties in recycled aluminium castings free of platelet-shaped beta-phases
EP2735621B1 (en) 2012-11-21 2015-08-12 Georg Fischer Druckguss GmbH & Co. KG Aluminium die casting alloy
DE102018214739A1 (en) * 2018-08-30 2020-03-05 Magna BDW technologies GmbH High-strength housing, as well as processes for the production of high-strength cast housings

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5938388A (en) * 1982-08-26 1984-03-02 Okuno Seiyaku Kogyo Kk Surface treatment of aluminum alloy casting or aluminum alloy die casting
EP0630982A1 (en) * 1993-06-22 1994-12-28 M J Grootes Investments Cc Steering wheel
JPH0791624B2 (en) * 1988-05-11 1995-10-04 本田技研工業株式会社 Method for manufacturing aluminum alloy cast article
EP0687742A1 (en) * 1994-06-16 1995-12-20 ALUMINIUM RHEINFELDEN GmbH Die casting alloy
JPH09272957A (en) * 1996-04-08 1997-10-21 Nippon Light Metal Co Ltd Production of automobile wheel made of die-cast aluminum excellent in brightness

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5938388A (en) * 1982-08-26 1984-03-02 Okuno Seiyaku Kogyo Kk Surface treatment of aluminum alloy casting or aluminum alloy die casting
JPH0791624B2 (en) * 1988-05-11 1995-10-04 本田技研工業株式会社 Method for manufacturing aluminum alloy cast article
EP0630982A1 (en) * 1993-06-22 1994-12-28 M J Grootes Investments Cc Steering wheel
EP0687742A1 (en) * 1994-06-16 1995-12-20 ALUMINIUM RHEINFELDEN GmbH Die casting alloy
JPH09272957A (en) * 1996-04-08 1997-10-21 Nippon Light Metal Co Ltd Production of automobile wheel made of die-cast aluminum excellent in brightness

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 98, no. 20, 16 May 1983, Columbus, Ohio, US; abstract no. 165221, SEMENOVA, O. N. ET AL: "Effect of chemical composition and conditions for production of the AL4SK alloy on its properties" XP002087899 *
DATABASE WPI Section Ch Week 9544, Derwent World Patents Index; Class A32, AN 89-375716, XP002087900 *
LITEINOE PROIZVOD. (1982), (12), 19-20 CODEN: LIPRAX;ISSN: 0024-449X, 1982 *
PATENT ABSTRACTS OF JAPAN vol. 008, no. 126 (C - 228) 13 June 1984 (1984-06-13) *
PATENT ABSTRACTS OF JAPAN vol. 098, no. 002 30 January 1998 (1998-01-30) *
SCHNEIDER W ET AL: "WAERMEBEHANDLUNG VON ALUMINIUM-GUSSLEGIERUNGEN FUR DAS VAKUUM- DRUCKGIESSEN TEIL 3: VERSUCHSERGEBNISSE NACH LOSUNGSGLUHEN UND ABSCHRECKEN", GIESSEREI, vol. 83, no. 15, 29 July 1996 (1996-07-29), pages 17 - 22, XP002087898 *
SCHNEIDER W ET AL: "WAERMEBEHANDLUNG VON ALUMINIUM-GUSSLEGIERUNGEN FUR DAS VAKUUM- DRUCKGIESSEN TEIL 4: ERGEBNISSE VON AUSLAGERUNGSVERSUCHEN", GIESSEREI, vol. 83, no. 19, 30 September 1996 (1996-09-30), pages 23 - 27, XP000627093 *
SCHNEIDER W ET AL: "WAERMEBEHANDLUNG VON ALUMINIUM-GUSSLEGIERUNGEN FUR DAS VAKUUM-DRUCKGIESSEN", GIESSEREI, vol. 84, no. 8, 21 April 1997 (1997-04-21), pages 30, 33 - 42, XP000698127 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2522716A (en) * 2014-02-04 2015-08-05 Jbm Internat Ltd Method of manufacture
GB2522716B (en) * 2014-02-04 2016-09-14 Jbm Int Ltd Method of manufacture
CN104962790A (en) * 2015-08-01 2015-10-07 李白 Information acquisition device for IOT (Internet of Things)
WO2017135463A1 (en) * 2016-02-05 2017-08-10 学校法人芝浦工業大学 Aluminum alloy for casting, aluminum alloy member and method for producing aluminum alloy member
CN112662920A (en) * 2020-12-02 2021-04-16 成都慧腾创智信息科技有限公司 High-thermal-conductivity high-toughness die-casting aluminum-silicon alloy and preparation method thereof

Also Published As

Publication number Publication date
SI0997550T1 (en) 2003-04-30
EP0997550B1 (en) 2002-10-09
DE59903009D1 (en) 2002-11-14
DK0997550T3 (en) 2003-02-10
ATE225868T1 (en) 2002-10-15
PT997550E (en) 2003-02-28
ES2181382T3 (en) 2003-02-16
EP0997550A1 (en) 2000-05-03

Similar Documents

Publication Publication Date Title
EP0918095B1 (en) Process of manufacturing a structural element made of a die-cast aluminium alloy
EP0997550B1 (en) Method for fabricating a component from an aluminium alloy by pressure die-casting
DE102013012259B3 (en) Aluminum material with improved precipitation hardening, process for its production and use of the aluminum material
EP1718778B1 (en) Material based on an aluminum alloy, method for the production thereof and its use
DE102006005250B4 (en) Iron-nickel alloy
DE10352932A1 (en) Cast aluminum alloy
DE102017125971A1 (en) INCREASING THE STRENGTH OF AN ALUMINUM ALLOY
DE60020263T2 (en) USE OF A DESIGN-HARDENED MARTENSITIC STAINLESS STEEL
DE112011103667T5 (en) Automobile molding of aluminum alloy product and process for its production
EP3235917A1 (en) Alloy for pressure die casting
EP1118685A1 (en) Aluminium cast alloy
EP3176275A1 (en) Aluminium-silicon die casting alloy method for producing a die casting component made of the alloy, and a body component with a die casting component
EP1218561B1 (en) Method for the heat treatment of structure castings from an aluminium alloy to be used therefor
EP2061912B1 (en) ALUMINIUM ALLOY OF THE AlZnMg TYPE AND METHOD OF PRODUCING IT
DE102013002632B4 (en) Aluminum-silicon diecasting alloy and method of making a die cast component
DE2421680A1 (en) NICKEL-COBALT-IRON CAST ALLOY WITH LOW COEFFICIENT OF EXTENSION AND HIGH YIELD LIMIT
DE10002021C2 (en) Process for the heat treatment of structural castings from an aluminum alloy to be used for this
DE69907896T4 (en) COLD STEEL
EP1234893B1 (en) Cast alloy of the type AlMgSi
EP0918096B1 (en) Process of manufacturing a structural element made of a die-cast aluminium alloy
DE2023446B2 (en) Cast aluminum alloy with high strength
EP0933441B1 (en) Process for producing an aluminium alloy pressure die cast component
DE102019202676B4 (en) Cast components with high strength and ductility and low tendency to hot crack
DE69938617T2 (en) Steel for casting molds and method of manufacture
DE102015007929A1 (en) Cast aluminum alloy, method of manufacturing an aluminum cast alloy component and using an aluminum casting alloy

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

AKX Designation fees paid
REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20001013