EP0918095B1 - Process of manufacturing a structural element made of a die-cast aluminium alloy - Google Patents

Process of manufacturing a structural element made of a die-cast aluminium alloy Download PDF

Info

Publication number
EP0918095B1
EP0918095B1 EP97810884A EP97810884A EP0918095B1 EP 0918095 B1 EP0918095 B1 EP 0918095B1 EP 97810884 A EP97810884 A EP 97810884A EP 97810884 A EP97810884 A EP 97810884A EP 0918095 B1 EP0918095 B1 EP 0918095B1
Authority
EP
European Patent Office
Prior art keywords
weight
max
maximum
notgreater
scandium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97810884A
Other languages
German (de)
French (fr)
Other versions
EP0918095A1 (en
Inventor
Reinhard Winkler
Jürgen Wüst
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Magna BDW Technologies GmbH
Original Assignee
Alcan Technology and Management Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP97810884A priority Critical patent/EP0918095B1/en
Application filed by Alcan Technology and Management Ltd filed Critical Alcan Technology and Management Ltd
Priority to DK97810884T priority patent/DK0918095T3/en
Priority to PT97810884T priority patent/PT918095E/en
Priority to ES97810884T priority patent/ES2192257T3/en
Priority to DE59709638T priority patent/DE59709638D1/en
Priority to AT97810884T priority patent/ATE235575T1/en
Priority to HU9802626A priority patent/HU220128B/en
Priority to PL98329760A priority patent/PL186936B1/en
Priority to BR9804709-4A priority patent/BR9804709A/en
Priority to CZ983763A priority patent/CZ376398A3/en
Publication of EP0918095A1 publication Critical patent/EP0918095A1/en
Application granted granted Critical
Publication of EP0918095B1 publication Critical patent/EP0918095B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium

Definitions

  • the invention relates to a method for producing a structural component made of an aluminum alloy by die casting.
  • WO-A-96/10099 are cast aluminum alloys with an additive known from Scandium to increase strength The high strength results warm aging after solution annealing and quenching with Water.
  • the present invention makes use of the knowledge that scandium and zirconium largely remain in supersaturated solution when cooled rapidly and lead to finely dispersed, submicron precipitates at temperatures in the range between approximately 230 and 350 ° C.
  • the strength of the base alloy can be increased by precipitation hardening.
  • Scandium can be partially replaced by zirconium; a combination of both elements leads to the favorable curing effect according to the invention due to the formation of the isomorphic phases Al 3 Sc and Al 3 Zr, both of which are characterized as face-centered cubic superstructure phases in the Al matrix lattice.
  • the alloy in the first alloy system (AlMnFe), preferably consists of 0.15 to 0.25 % By weight silicon 0.5 to 0.7 Wt% iron 1.2 to 1.4 Wt% manganese Max. 1.5 % By weight magnesium Max. 0.3 % By weight titanium Max. 0.1 % By weight zinc 0.05 to 0.2 % By weight of scandium optionally still 0.1 to 0.2 % By weight of zirconium as well as aluminum as the rest with further impurities individually max. 0.02% by weight, max. 0.2% by weight.
  • the alloy preferably consists of 0.15 to 0.25 % By weight silicon 0.05 to 0.15 Wt% iron 0.8 to 1.0 Wt% manganese 2.5 to 3.5 % By weight magnesium Max. 0.2 % By weight titanium Max. 0.1 % By weight zinc 0.05 to 0.2 % By weight of scandium optionally still 0.1 to 0.2 % By weight of zirconium as well as aluminum as the rest with further impurities individually max. 0.02% by weight, max. 0.2% by weight.
  • the strength-increasing effect of the scandium additive results in one small part already during the actual die casting process.
  • a substantial increase in strength can be achieved by a subsequent Heat treatment in a temperature range of 230 to 350 ° C reached become.
  • By choosing the appropriate temperature and duration of the heat treatment can be a desired optimum between high ductility and Strength can be adjusted.
  • the alloys are therefore Particularly suitable for the production of structural components that act as safety components in vehicle construction and in particular in automobile construction, for example as space frame nodes or as crash elements.
  • the Structural components are particularly suitable for applications in which one Temperature load occurs up to about 180 ° C.
  • alloy Composition (% by weight) Si Fe Mn mg Zr Ti sc 1 00:10 00:10 1.2 3.2 0016 00:15 2 0043 0077 1:32 00:01 0089 0099 00:14
  • a die-cast part was produced from alloy 1. Alloy 2 was cast into plates with a thickness of 3 mm to simulate the cooling during die-casting. Test rods for tensile tests were worked out from the cast parts and the mechanical properties in the cast state with and without subsequent heat treatment were measured on them. The results are summarized in Table 2.
  • Rp 0.2 means the yield strength
  • Rm the tensile strength
  • A5 the elongation at break.
  • alloy heat treatment Mechanical properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Body Structure For Vehicles (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Extrusion Of Metal (AREA)
  • Forging (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Measuring Fluid Pressure (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Mounting, Exchange, And Manufacturing Of Dies (AREA)
  • Hybrid Cells (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

A structural component of a die cast aluminum alloy, which contains 0.05-0.4 wt.% Sc and optionally 0.1-0.4 wt.% Zr. Preferred Alloys: The aluminum alloy has the composition (by wt.) NOTGREATER 0.5% Si, NOTGREATER 1.0% Fe, 0.1-1.6% Mn, NOTGREATER 5.0% Mg, NOTGREATER 0.3% Ti, NOTGREATER 0.1% Zn, 0.05-0.4% Sc, optionally 0.1-0.4% Zr, balance Al and NOTGREATER 0.2% total ( NOTGREATER 0.02% each) impurities. The especially preferred composition is (a) 0.1-0.8 (especially 0.15-0.25)% Si, 0.2-0.8 (especially 0.5-0.7)% Fe, 0.5-1.8 (especially 1.2-1.4)% Mn, NOTGREATER 1.5% Mg, NOTGREATER 0.3% Ti, NOTGREATER 0.1% Zn, 0.05-0.4 (especially 0.05-0.2)% Sc, optionally 0.1-0.4 (especially 0.1-0.2)% Zr, balance Al and NOTGREATER 0.2% total ( NOTGREATER 0.02% each) impurities; or (b) 0.05-1.0 (especially 0.15-0.25)% Si, 0.05-0.2 (especially NOTGREATER 0.15)% Fe, 0.5-1.8 (especially 0.8-1.0)% Mn, 2.0-4.5 (especially 2.5-3.5)% Mg, NOTGREATER 0.2% Ti, NOTGREATER 0.1% Zn, 0.05-0.4 (especially 0.05-0.2)% Sc, optionally 0.1-0.4 (especially 0.1-0.2)% Zr, balance Al and NOTGREATER 0.2% total ( NOTGREATER 0.02% each) impurities.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung eines Strukturbauteiles aus einer Aluminiumlegierung durch Druckgiessen.The invention relates to a method for producing a structural component made of an aluminum alloy by die casting.

Mit modernen Giessverfahren können heute hochbelastbare Formteile auch aus Aluminiumlegierungen hergestellt werden. Die eingesetzten Aluminiumwerkstoffe müssen allerdings eine Reihe von Anforderungen erfüllen. Eine wesentliche Voraussetzung für die Eignung eines Werkstoffs ist die Einhaltung bestimmter mechanischer Kennwerte. So bestimmen etwa Mindestwerte von Streckgrenze und Festigkeit die Tragfähigkeit einer Konstruktion. Im Fahrzeugbau kommt die Anforderung hinzu, dass die bei einem Zusammenstoss deformierten Bauteile vor dem Bruch möglichst viel Energie durch plastische Verformung absorbieren sollen, was eine hohe Duktilität des eingesetzten Werkstoffs erfordert. Eine weitere Voraussetzung ist eine kostengünstige Herstellungsmöglichkeit des Formteils. Hier bietet sich der Druckguss an, wobei für höchste Qualitätsansprüche Spezialverfahren zu bevorzugen sind, mit denen eine gute Formfüllung auch bei geringen Wandstärken des Gussteils erreicht und die Bildung von die Duktilität des Bauteils herabsetzenden Gaseinschlüssen vermindert werden kann.With modern casting processes, heavy-duty molded parts can also be used today be made from aluminum alloys. The aluminum materials used however, must meet a number of requirements. An essential one Compliance is a prerequisite for the suitability of a material certain mechanical parameters. For example, minimum values of Yield strength and strength are the load-bearing capacity of a construction. In vehicle construction there is also the requirement that those deformed in a collision Components break as much energy as possible through plastic deformation should absorb what a high ductility of the material used requires. Another requirement is an inexpensive manufacturing option of the molded part. Here the die casting lends itself, whereby for highest quality standards Special processes are to be preferred with which achieves good mold filling even with thin wall thicknesses of the casting and the formation of gas inclusions which reduce the ductility of the component can be reduced.

Zur Herstellung von Druckgussteilen aus Aluminiumwerkstoffen werden heute noch zu einem wesentlichen Teil Aluminiumlegierungen mit einem Anteil von 7 bis 10% Silizium eingesetzt. Diese AlSi-Legierungen mit kleinem Magnesium-Zusatz zeichnen sich durch eine ausserordentlich gute Giessbarkeit bei geringer Klebeneigung des Gussteils in der Form auf. Diese Legierungen erfordern jedoch zur Einformung des Eutektikums eine Hochglühung bei Temperaturen von mindestens 480°C. Damit das Bauteil die geforderten Festigkeitswerte aufweist, muss das derart lösungsgeglühte Bauteil abgeschreckt und nachfolgend warm ausgelagert werden; der kleine Magnesium-Zusatz bis zu 0,4% ist dafür verantwortlich.For the production of die-cast parts from aluminum materials today still a substantial part of aluminum alloys with a share of 7 up to 10% silicon used. These AlSi alloys with a small magnesium additive are characterized by an extraordinarily good castability at low The casting part tends to stick in the mold. These alloys require however, in order to mold the eutectic, a high-temperature glow at temperatures of at least 480 ° C. So that the component has the required strength values the solution-annealed component must be quenched and subsequently be stored warm; the small magnesium additive is up to 0.4% responsible for.

Bauteile mit teilweise geringen Wandstärken, wie sie beispielsweise als Strukturbauteile im Automobilbau eingesetzt werden, verziehen sich beim Abschrecken und müssen daher gerichtet werden. Zudem kann die hohe Glühtemperatur infolge einer Restgasporosität zu Blasenbildung an der Oberfläche der Bauteile führen. Zur Herstellung von Strukturbauteilen der genannten Art durch Druckgiessen wurde deshalb nach Möglichkeiten gesucht, die geforderten Festigkeits- und Dehnungswerte auch mit naturharten Legierungen ohne Durchführung einer Lösungsglühung zu erzielen. Um das Kleben des Gussteils in der Form zu vermindern, wurden unter Inkaufnahme einer Duktilitätseinbusse Legierungen mit bis zu 1% Eisen eingesetzt.Components with thin walls, such as those used as structural components used in automotive engineering warp when quenched and therefore must be judged. In addition, the high Annealing temperature due to residual gas porosity to form bubbles on the surface of the components. For the production of structural components of the above Art by die casting was therefore searched for opportunities that required strength and elongation values even with naturally hard alloys to achieve without performing solution annealing. To stick the Reduce casting in the mold were at the expense of a loss of ductility Alloys with up to 1% iron used.

Zur Erzielung der heute an Sicherheitsbauteile im Fahrzeug- und insbesondere im Automobilbau gestellten Anforderungen bezüglich Festigkeit und Duktilität ist ein wesentlicher Fortschritt durch die Einführung von Werkstoffen mit niedrigem Eisengehalt gelungen. Mit dieser Massnahme wird der Volumenanteil spröder intermetallischer Phasen des Eisen mit dem Aluminium verringert. Das bei tiefen Eisengehalten auftretende Kleben des Gussteils an der Formwand wird mit einem höheren Gehalt an Mangan, das eine ähnliche Wirkung wie Eisen zeigt, kompensiert. Mit der Zugabe von Mangan wird allerdings der Anteil intermetallischer Phasen des Typs Al(MnFe) wiederum vergrössert. Da die Verteilung und Grösse der manganhaltigen intermetallischen Partikel im Vergleich zu den eisenhaltigen Phasen aber weitaus günstiger ist, ergibt sich bei etwa gleichem Festigkeitsniveau eine erhöhte Duktilität. Derartige Werkstoffe mit niedrigem Eisengehalt, d.h. Legierungen, bei denen Eisen durch Mangan substituiert ist, sind in letzter Zeit mit Erfolg in der Produktion eingeführt worden. To achieve today's safety components in the vehicle and in particular Requirements regarding strength and ductility in automotive engineering is a major advance through the introduction of low-cost materials Successful iron content. With this measure, the volume fraction brittle intermetallic phases of iron with aluminum are reduced. The if the iron content is low, the casting will stick to the mold wall is having a higher manganese content, which has a similar effect as Iron shows, compensates. With the addition of manganese, however, the proportion intermetallic phases of the type Al (MnFe) again enlarged. Since the Comparison and distribution of the manganese-containing intermetallic particles in comparison is much more favorable to the iron-containing phases about the same strength level an increased ductility. Such materials with low iron content, i.e. Alloys in which iron is replaced by manganese has recently been successfully introduced into production.

Aus der WO-A-96/10099 sind Aluminium-Gusslegierungen mit einem Zusatz von Scandium zur Erhöhung der Festigkeit bekannt Die hohe Festigkeit ergibt sich durch eine Warmauslagerung nach Lösungsglühung und Abschrecken mit Wasser. WO-A-96/10099 are cast aluminum alloys with an additive known from Scandium to increase strength The high strength results warm aging after solution annealing and quenching with Water.

Der Erfindung liegt die Aufgabe zugrunde, für im Druckguss hergestellte Strukturbauteile der eingangs genannten Art geeignete Werkstoffe mit weiter verbesserten mechanischen Eigenschaften bereitzustellen. Insbesondere sollen die für das Druckgiessen bekannten naturharten Legierungen bezüglich ihrer Eigenschaftskombination von Festigkeit und Bruchdehnung weiter verbessert werden. Für Sicherheitsteile im Automobilbau sollten die folgenden Minimalwerte im Gusszustand bzw. nach einer Wärmebehandlung ohne Lösungsglühung erreicht werden:

Dehngrenze (Rp0.2):
120 MPa
Zugfestigkeit (Rm):
180 MPa
Dehnung (A5):
10%.
The invention has for its object to provide suitable materials with further improved mechanical properties for structural components of the type mentioned manufactured in die casting. In particular, the natural hard alloys known for die casting are to be further improved with regard to their combination of properties of strength and elongation at break. For safety parts in automotive engineering, the following minimum values should be achieved in the as-cast state or after heat treatment without solution treatment:
Yield strength (Rp0.2):
120 MPa
Tensile strength (Rm):
180 MPa
Elongation (A5):
10%.

Zur erfindungsgemässen Lösung der Aufgabe führen Verfahren mit den Merkmalen der unabhängigen Ausprüche 1 und 3.Methods with the features of independent claims 1 and 3 lead to the achievement of the object according to the invention.

Die vorliegende Erfindung macht sich die Erkenntnis zunutze, dass Scandium und Zirkonium bei rascher Abkühlung zum grössten Teil in übersättigter Lösung bleiben und bei Temperaturen im Bereich zwischen etwa 230 und 350°C zu feindispersen, submikronen Ausscheidungen führen. Mit einem Zusatz von Scandium kann daher die Festigkeit der Grundlegierung durch eine Ausscheidungshärtung erhöht werden. Scandium kann teilweise durch Zirkonium ersetzt werden; eine Kombination beider Elemente führt infolge der Bildung der isomorphen Phasen Al3Sc und Al3Zr, die beide als kubisch flächenzentrierte Überstrukturphasen im Al-Matrixgitter gekennzeichnet sind, zu dem erfindungsgemässen günstigen Aushärtungseffekt. The present invention makes use of the knowledge that scandium and zirconium largely remain in supersaturated solution when cooled rapidly and lead to finely dispersed, submicron precipitates at temperatures in the range between approximately 230 and 350 ° C. With the addition of scandium, the strength of the base alloy can be increased by precipitation hardening. Scandium can be partially replaced by zirconium; a combination of both elements leads to the favorable curing effect according to the invention due to the formation of the isomorphic phases Al 3 Sc and Al 3 Zr, both of which are characterized as face-centered cubic superstructure phases in the Al matrix lattice.

Aufgrund der Wirkungsweise von Scandium darf angenommen werden, dass sich der festigkeitssteigernde Effekt bei allen naturharten Aluminium-Druckgusslegierungen auswirkt, welche einen geringen Gehalt an Silizium aufweisen und die verfahrensbedingt durch rasche Erstarrung und damit Übersättigung der Elemente Scandium und Zirkonium erzeugt werden.Due to the way Scandium works, it can be assumed that the strength-increasing effect of all naturally hard aluminum die-casting alloys effects, which have a low silicon content and the process-related by rapid solidification and thus oversaturation of the elements scandium and zirconium.

Bei dem ersten Legierungssystem (AlMnFe) besteht die Legierung bevorzugt aus 0,15 bis 0,25 Gew.-% Silizium 0,5 bis 0,7 Gew.-% Eisen 1,2 bis 1,4 Gew.-% Mangan max. 1,5 Gew.-% Magnesium max. 0,3 Gew.-% Titan max. 0,1 Gew.-% Zink 0,05 bis 0,2 Gew.-% Scandium wahlweise noch 0,1 bis 0,2 Gew.-% Zirkonium sowie Aluminium als Rest mit weiteren Verunreinigungen einzeln max. 0,02 Gew.-%, insgesamt max. 0,2 Gew.-%.In the first alloy system (AlMnFe), the alloy preferably consists of 0.15 to 0.25 % By weight silicon 0.5 to 0.7 Wt% iron 1.2 to 1.4 Wt% manganese Max. 1.5 % By weight magnesium Max. 0.3 % By weight titanium Max. 0.1 % By weight zinc 0.05 to 0.2 % By weight of scandium optionally still 0.1 to 0.2 % By weight of zirconium as well as aluminum as the rest with further impurities individually max. 0.02% by weight, max. 0.2% by weight.

Bei dem zweiten Legierungssystem (AlMgMn) besteht die Legierung bevorzugt aus 0,15 bis 0,25 Gew.-% Silizium 0,05 bis 0,15 Gew.-% Eisen 0,8 bis 1,0 Gew.-% Mangan 2,5 bis 3,5 Gew.-% Magnesium max. 0,2 Gew.-% Titan max. 0,1 Gew.-% Zink 0,05 bis 0,2 Gew.-% Scandium wahlweise noch 0,1 bis 0,2 Gew.-% Zirkonium sowie Aluminium als Rest mit weiteren Verunreinigungen einzeln max. 0,02 Gew.-%, insgesamt max. 0,2 Gew.-%.In the second alloy system (AlMgMn), the alloy preferably consists of 0.15 to 0.25 % By weight silicon 0.05 to 0.15 Wt% iron 0.8 to 1.0 Wt% manganese 2.5 to 3.5 % By weight magnesium Max. 0.2 % By weight titanium Max. 0.1 % By weight zinc 0.05 to 0.2 % By weight of scandium optionally still 0.1 to 0.2 % By weight of zirconium as well as aluminum as the rest with further impurities individually max. 0.02% by weight, max. 0.2% by weight.

Die festigkeitsteigemde Wirkung des Scandiumzusatzes ergibt sich zu einem geringen Teil bereits während des eigentlichen Druckgiessvorganges. Eine wesentliche Erhöhung der Festigkeit kann jedoch durch eine nachfolgende Wärmebehandlung in einem Temperaturbereich von 230 bis 350°C erreicht werden. Durch entsprechende Wahl von Temperatur und Zeitdauer der Wärmebehandlung kann ein gewünschtes Optimum zwischen hoher Duktilität und Festigkeit eingestellt werden. Durch diese gezielte Steuerung des Aushärtungseffektes von Scandium bzw. Scandium und Zirkonium wird die Einstellung massgeschneiderter mechanischer Eigenschaften an einem Strukturbauteil möglich.The strength-increasing effect of the scandium additive results in one small part already during the actual die casting process. A However, a substantial increase in strength can be achieved by a subsequent Heat treatment in a temperature range of 230 to 350 ° C reached become. By choosing the appropriate temperature and duration of the heat treatment can be a desired optimum between high ductility and Strength can be adjusted. Through this targeted control of the curing effect of scandium or scandium and zirconium becomes the setting tailor-made mechanical properties on a structural component possible.

Mit dem erfindungsgemässen Zusatz von Scandium und ggf. Zirkonium lassen sich die bekannten naturharten Aluminium-Druckgusslegierungen bezüglich Festigkeit und Duktilität entscheidend verbessern. Die Legierungen sind daher besonders geeignet zur Herstellung von Strukturbauteilen, die als Sicherheitsbauteile im Fahrzeugbau und insbesondere im Automobilbau, beispielsweise als Space Frame Knoten oder als Crashelemente, eingesetzt werden. Die Strukturbauteile eignen sich insbesondere für Anwendungen, bei welchen eine Temperaturbelastung bis etwa 180°C auftritt.Leave with the addition of scandium and, if necessary, zirconium the well-known naturally hard aluminum die-casting alloys Improve strength and ductility significantly. The alloys are therefore Particularly suitable for the production of structural components that act as safety components in vehicle construction and in particular in automobile construction, for example as space frame nodes or as crash elements. The Structural components are particularly suitable for applications in which one Temperature load occurs up to about 180 ° C.

Die vorteilhafte Wirkung eines Zusatzes von Scandium bzw. Scandium und Zirkonium zu naturharten Aluminium-Druckgusslegierungen ergibt sich aus den nachfolgend zusammengestellten Versuchsergebnissen beispielhafter Legierungen.The advantageous effect of adding scandium or scandium and Zirconium to naturally hard die-cast aluminum alloys results from the The test results of exemplary alloys summarized below.

BeispieleExamples

Die untersuchten Legierungen sind in Tabelle 1 zusammengestellt. Legierung Zusammensetzung (Gew.-%) Si Fe Mn Mg Zr Ti Sc 1 0.10 0.10 1.2 3.2 0.016 0.15 2 0.043 0.077 1.32 0.01 0.089 0.099 0.14 The alloys examined are listed in Table 1. alloy Composition (% by weight) Si Fe Mn mg Zr Ti sc 1 00:10 00:10 1.2 3.2 0016 00:15 2 0043 0077 1:32 00:01 0089 0099 00:14

Aus der Legierung 1 wurde ein Druckgussteil hergestellt. Die Legierung 2 wurde zur Simulation der Abkühlung beim Druckgiessen im Kokillengiessverfahren zu Platten von 3 mm Dicke vergossen. Aus den Gussteilen wurden Probestäbe für Zugversuche herausgearbeitet und an diesen die mechanischen Eigenschaften im Gusszustand mit und ohne nachfolgende Wärmebehandlung gemessen. Die Ergebnisse sind in Tabelle 2 zusammengefasst. Hierbei bedeuten Rp 0.2 die Dehngrenze, Rm die Zugfestigkeit und A5 die Bruchdehnung. Legierung Wärmebehandlung Mechanische Eigenschaften Rp0.2 (MPa) Rm (MPa) A5 (%) 1 140 260 18 1 270°C/5h 210 300 8 2 60 130 32 2 350°C/6 h 120 180 16 A die-cast part was produced from alloy 1. Alloy 2 was cast into plates with a thickness of 3 mm to simulate the cooling during die-casting. Test rods for tensile tests were worked out from the cast parts and the mechanical properties in the cast state with and without subsequent heat treatment were measured on them. The results are summarized in Table 2. Rp 0.2 means the yield strength, Rm the tensile strength and A5 the elongation at break. alloy heat treatment Mechanical properties Rp0.2 (MPa) Rm (MPa) A5 (%) 1 140 260 18 1 270 ° C / 5h 210 300 8th 2 60 130 32 2 350 ° C / 6 h 120 180 16

Die Versuche zeigen deutlich das Potential von Scandium bzw. von Scandium und Zirkonium bezüglich der Einstellungsmöglichkeiten von Festigkeit und Duktilität am gegossenen Bauteil mittels einer entsprechend angepassten Wärmebehandlung.The experiments clearly show the potential of scandium or scandium and zirconium regarding the adjustment options for strength and Ductility on the cast component using an appropriately adapted Heat treatment.

Claims (7)

  1. Method of producing a structural component from an aluminium alloy by die casting, characterised in that the alloy consists of 0.1 to 0.8 % by weight silicon 0.2 to 0.8 % by weight iron 0.5 to 1.8 % by weight manganese max. 1.5 % by weight magnesium max. 0.3 % by weight titanium max. 0.1 % by weight zinc 0.05 to 0.4 % by weight scandium and optionally also 0.1 to 0.4 % by weight zirconium
    with the remainder aluminium with further impurities individually to a maximum of 0.02 % by weight and in total to a maximum of 0.2 % by weight, and the die-cast structural component is used in the as-cast condition or is subjected to heat treatment at a temperature within the range of 200 to 400°C in order to increase strength without high-temperature annealing.
  2. Method according to claim 1, characterised in that the alloy consists of 0.15 to 0.25 % by weight silicon 0.5 to 0.7 % by weight iron 1.2 to 1.4 % by weight manganese max. 1.5 % by weight magnesium max. 0.3 % by weight titanium max. 0.1 % by weight zinc 0.05 to 0.2 % by weight scandium and optionally also 0.1 to 0.2 % by weight zirconium
    with the remainder aluminium with further impurities individually to a maximum of 0.02 % by weight and in total to a maximum of 0.2 % by weight.
  3. Method of producing a structural component from an aluminium alloy by die casting, characterised in that the alloy consists of 0.05 to 1.0 % by weight silicon 0.05 to 0.2 % by weight iron 0.5 to 1.8 % by weight manganese 2.0 to 4.5 % by weight magnesium max. 0.2 % by weight titanium max. 0.1 % by weight zinc 0.05 to 0.4 % by weight scandium and optionally also 0.1 to 0.4 % by weight zirconium
    with the remainder aluminium with further impurities individually to a maximum of 0.02 % by weight and in total to a maximum of 0.2 % by weight, and the die-cast structural component is used in the as-cast condition or is subjected to heat treatment at a temperature within the range of 200 to 400°C in order to increase strength without high-temperature annealing.
  4. Method according to claim 3, characterised in that the alloy consists of 0.15 to 0.25 % by weight silicon 0.05 to 0.15 % by weight iron 0.8 to 1.0 % by weight manganese 2.5 to 3.5 % by weight magnesium max. 0.2 % by weight titanium max. 0.1 % by weight zinc 0.05 to 0.2 % by weight scandium and optionally also 0.1 to 0.2 % by weight zirconium
    with the remainder aluminium with further impurities individually to a maximum of 0.02 % by weight and in total to a maximum of 0.2 % by weight.
  5. Method according to one of claims 1 to 4, characterised in that the heat treatment is carried out at a temperature within the range of 230 to 350°C.
  6. Method according to one of claims 1 to 5, in which the structural component is used as a safety component in vehicle construction.
  7. Method according to one of claims 1 to 6, in which the structural component is used for applications at temperatures of up to approximately 180°C.
EP97810884A 1997-11-20 1997-11-20 Process of manufacturing a structural element made of a die-cast aluminium alloy Expired - Lifetime EP0918095B1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
DK97810884T DK0918095T3 (en) 1997-11-20 1997-11-20 Process for preparing a structural component of an aluminum die casting alloy
PT97810884T PT918095E (en) 1997-11-20 1997-11-20 METHOD FOR OBTAINING A STRUCTURAL COMPONENT FROM A PRESSURE MOLDING ALUMINUM LEAD
ES97810884T ES2192257T3 (en) 1997-11-20 1997-11-20 PROCEDURE FOR MANUFACTURE OF A STRUCTURAL COMPONENT PART BASED ON AN ALUMINUM ALLOY MOLDED BY PRESSURE COLADA.
DE59709638T DE59709638D1 (en) 1997-11-20 1997-11-20 Process for the production of a structural component from an aluminum die-casting alloy
AT97810884T ATE235575T1 (en) 1997-11-20 1997-11-20 METHOD FOR PRODUCING A STRUCTURAL COMPONENT FROM AN ALUMINUM DIE-CASTING ALLOY
EP97810884A EP0918095B1 (en) 1997-11-20 1997-11-20 Process of manufacturing a structural element made of a die-cast aluminium alloy
HU9802626A HU220128B (en) 1997-11-20 1998-11-12 Aluminium alloy for a structural unit made by pressure die casting
PL98329760A PL186936B1 (en) 1997-11-20 1998-11-18 Structural component made of aluminium alloy by die casting
BR9804709-4A BR9804709A (en) 1997-11-20 1998-11-19 Structural component of a die-cast aluminum alloy
CZ983763A CZ376398A3 (en) 1997-11-20 1998-11-19 Structured structural part of aluminium alloy for pressure die casting process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP97810884A EP0918095B1 (en) 1997-11-20 1997-11-20 Process of manufacturing a structural element made of a die-cast aluminium alloy

Publications (2)

Publication Number Publication Date
EP0918095A1 EP0918095A1 (en) 1999-05-26
EP0918095B1 true EP0918095B1 (en) 2003-03-26

Family

ID=8230477

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97810884A Expired - Lifetime EP0918095B1 (en) 1997-11-20 1997-11-20 Process of manufacturing a structural element made of a die-cast aluminium alloy

Country Status (10)

Country Link
EP (1) EP0918095B1 (en)
AT (1) ATE235575T1 (en)
BR (1) BR9804709A (en)
CZ (1) CZ376398A3 (en)
DE (1) DE59709638D1 (en)
DK (1) DK0918095T3 (en)
ES (1) ES2192257T3 (en)
HU (1) HU220128B (en)
PL (1) PL186936B1 (en)
PT (1) PT918095E (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009032588A1 (en) * 2009-07-10 2011-02-17 Bayerische Motoren Werke Aktiengesellschaft Method for producing a cast component from an aluminum casting alloy, comprises subjecting the cast component after the casting without solution annealing to a heat treatment for two to five hours
CN111363960A (en) * 2020-04-28 2020-07-03 华南理工大学 Anodized thin-wall die-casting aluminum alloy material, preparation method thereof and thin-wall appearance part
CN111378878A (en) * 2018-12-29 2020-07-07 嘉丰工业科技(惠州)有限公司 High-ductility non-heat-treatment die-casting aluminum alloy and preparation method thereof

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6531004B1 (en) * 1998-08-21 2003-03-11 Eads Deutschland Gmbh Weldable anti-corrosive aluminium-magnesium alloy containing a high amount of magnesium, especially for use in aviation
DE19838017C2 (en) * 1998-08-21 2003-06-18 Eads Deutschland Gmbh Weldable, corrosion resistant AIMg alloys, especially for traffic engineering
DE19838015C2 (en) * 1998-08-21 2002-10-17 Eads Deutschland Gmbh Rolled, extruded, welded or forged component made of a weldable, corrosion-resistant, high-magnesium aluminum-magnesium alloy
US6602363B2 (en) * 1999-12-23 2003-08-05 Alcoa Inc. Aluminum alloy with intergranular corrosion resistance and methods of making and use
DE60141789D1 (en) 2000-06-27 2010-05-27 Corus Aluminium Voerde Gmbh Cast aluminum alloy
DE10248594B4 (en) * 2001-12-14 2006-04-27 Eads Deutschland Gmbh Making aluminum sheet alloyed with scandium and zirconium and having high fracture resistance in e.g. aerospace applications, employs roller casting process and specified hot-working
WO2003052154A1 (en) * 2001-12-14 2003-06-26 Eads Deutschland Gmbh Method for the production of a highly fracture-resistant aluminium sheet material alloyed with scandium (sc) and/or zirconium (zr)
EP1508627B1 (en) * 2002-05-30 2012-02-01 Honda Giken Kogyo Kabushiki Kaisha High toughness die-cast product
DE10310453A1 (en) * 2003-03-07 2004-09-23 Drm Druckguss Gmbh Die-cast component and process for its manufacture
AT412726B (en) * 2003-11-10 2005-06-27 Arc Leichtmetallkompetenzzentrum Ranshofen Gmbh ALUMINUM ALLOY, COMPONENT FROM THIS AND METHOD FOR PRODUCING THE COMPONENT
AT413035B (en) * 2003-11-10 2005-10-15 Arc Leichtmetallkompetenzzentrum Ranshofen Gmbh ALUMINUM ALLOY
DE10352932B4 (en) * 2003-11-11 2007-05-24 Eads Deutschland Gmbh Cast aluminum alloy
AT501867B1 (en) * 2005-05-19 2009-07-15 Aluminium Lend Gmbh & Co Kg ALUMINUM ALLOY
DE102007018123B4 (en) 2007-04-16 2009-03-26 Eads Deutschland Gmbh Method for producing a structural component from an aluminum-based alloy
DE102007041775B3 (en) * 2007-09-04 2008-10-02 Eads Deutschland Gmbh Production of metal castings with foam structure uses e.g. laser to melt to melt metal wire positioned near surface of casting, foaming agent being added to molten area and process continued in controlled way to produce whole structure
DE102010016323A1 (en) 2010-04-04 2011-10-06 Tim Frey New reporter system, arrangements and procedures for video-sharing platforms
DE102010016324A1 (en) 2010-04-05 2011-10-06 Tim Frey System, method and arrangements for securing resources
DE102010032768A1 (en) 2010-07-29 2012-02-02 Eads Deutschland Gmbh High-temperature scandium alloyed aluminum material with improved extrudability
AT511207B1 (en) 2011-09-20 2012-10-15 Salzburger Aluminium Ag ALUMINUM ALLOY WITH SCANDIUM AND ZIRCON
WO2016130426A1 (en) 2015-02-11 2016-08-18 Scandium International Mining Corporation Scandium-containing master alloys and methods for making the same
CN106282696A (en) * 2015-05-19 2017-01-04 沈阳万龙源冶金新材料科技有限公司 A kind of high-strength/tenacity aluminum alloy
CN105648291B (en) * 2016-01-27 2017-12-22 山东元昊机械有限公司 High-strength alloy cast aluminium spiral flow constant-pressure pump material and its preparation method and application
US11471984B2 (en) 2018-06-28 2022-10-18 Scandium International Mining Corporation Control of recrystallization in cold-rolled AlMn(Mg)ScZr sheets for brazing applications
CN109536789A (en) * 2018-12-29 2019-03-29 安徽鑫发铝业有限公司 A kind of ultra-thin hollow high-speed rail aluminum profile
CN111378880A (en) * 2020-02-24 2020-07-07 广东润华材料科技有限公司 Rare earth cast aluminum alloy mobile phone shell and preparation method thereof
CN113909448A (en) * 2021-10-09 2022-01-11 润星泰(常州)技术有限公司 Preparation method of aluminum alloy die casting for riveting of new energy vehicle and die casting

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2051048C1 (en) * 1992-12-28 1995-12-27 Шевелева Людмила Митрофановна Vehicle wheel
AU3813795A (en) * 1994-09-26 1996-04-19 Ashurst Technology Corporation (Ireland) Limited High strength aluminum casting alloys for structural applications
US5573606A (en) * 1995-02-16 1996-11-12 Gibbs Die Casting Aluminum Corporation Aluminum alloy and method for making die cast products

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009032588A1 (en) * 2009-07-10 2011-02-17 Bayerische Motoren Werke Aktiengesellschaft Method for producing a cast component from an aluminum casting alloy, comprises subjecting the cast component after the casting without solution annealing to a heat treatment for two to five hours
CN111378878A (en) * 2018-12-29 2020-07-07 嘉丰工业科技(惠州)有限公司 High-ductility non-heat-treatment die-casting aluminum alloy and preparation method thereof
CN111378878B (en) * 2018-12-29 2021-10-26 嘉丰工业科技(惠州)有限公司 High-ductility non-heat-treatment die-casting aluminum alloy and preparation method thereof
CN111363960A (en) * 2020-04-28 2020-07-03 华南理工大学 Anodized thin-wall die-casting aluminum alloy material, preparation method thereof and thin-wall appearance part

Also Published As

Publication number Publication date
ATE235575T1 (en) 2003-04-15
DK0918095T3 (en) 2003-07-21
HUP9802626A1 (en) 1999-09-28
BR9804709A (en) 1999-11-09
HU220128B (en) 2001-11-28
HU9802626D0 (en) 1999-01-28
CZ376398A3 (en) 1999-12-15
EP0918095A1 (en) 1999-05-26
ES2192257T3 (en) 2003-10-01
PL329760A1 (en) 1999-05-24
DE59709638D1 (en) 2003-04-30
PL186936B1 (en) 2004-04-30
PT918095E (en) 2003-06-30

Similar Documents

Publication Publication Date Title
EP0918095B1 (en) Process of manufacturing a structural element made of a die-cast aluminium alloy
EP1682688B1 (en) Al-Mg-Si cast aluminium alloy containing scandium
DE60120987T2 (en) HIGH-ALUMINUM BASE ALLOY AND A PRODUCT MANUFACTURED THEREOF
EP1718778B1 (en) Material based on an aluminum alloy, method for the production thereof and its use
DE68918377T2 (en) Reinforced composite material with aluminum matrix.
DE69836569T3 (en) Process for increasing the fracture toughness in aluminum-lithium alloys
DE2517275B2 (en) Process for the production and further processing of a plastically deformable cast product based on an aluminum-silicon alloy and the use of the further processed cast product
DE69825414T3 (en) Aluminum alloy and process for its preparation
EP1118685A1 (en) Aluminium cast alloy
EP0997550B1 (en) Method for fabricating a component from an aluminium alloy by pressure die-casting
EP0853133B1 (en) Use of an aluminium alloy for pressure die casting
DE60114281T2 (en) Cast and forged product using a copper-based alloy
EP2061912B1 (en) ALUMINIUM ALLOY OF THE AlZnMg TYPE AND METHOD OF PRODUCING IT
EP0989195B1 (en) Heat resisting aluminium alloy of the type AlCuMg
DE1483228B2 (en) ALUMINUM ALLOY WITH HIGH PERFORMANCE
EP0918096B1 (en) Process of manufacturing a structural element made of a die-cast aluminium alloy
DE3486352T2 (en) Aluminum-lithium alloy.
EP0982410A1 (en) Aluminium alloy with good machinability
DE69105823T2 (en) Process for the treatment of metal matrix composites.
EP1234893B1 (en) Cast alloy of the type AlMgSi
EP0933441B1 (en) Process for producing an aluminium alloy pressure die cast component
EP1442150B1 (en) Aluminum-silicon alloys having improved mechanical properties
EP1118686B1 (en) Aluminium cast alloy
DE19832489A1 (en) Wrought aluminium-magnesium-silicon alloy
DE1483228C (en) Aluminum alloy with high creep strength

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19991126

AKX Designation fees paid

Free format text: AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCAN TECHNOLOGY & MANAGEMENT AG

17Q First examination report despatched

Effective date: 20011102

RTI1 Title (correction)

Free format text: PROCESS OF MANUFACTURING A STRUCTURAL ELEMENT MADE OF A DIE-CAST ALUMINIUM ALLOY

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RTI1 Title (correction)

Free format text: PROCESS OF MANUFACTURING A STRUCTURAL ELEMENT MADE OF A DIE-CAST ALUMINIUM ALLOY

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59709638

Country of ref document: DE

Date of ref document: 20030430

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030507

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20030512

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20030402367

Country of ref document: GR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2192257

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031120

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031120

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031121

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031201

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20031230

BERE Be: lapsed

Owner name: *ALCAN TECHNOLOGY & MANAGEMENT A.G.

Effective date: 20031130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040531

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20040531

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20031121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030326

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: BDW TECHNOLOGIES GMBH

Free format text: ALCAN TECHNOLOGY & MANAGEMENT AG#BADISCHE BAHNHOFSTRASSE 16#8212 NEUHAUSEN AM RHEINFALL (CH) -TRANSFER TO- BDW TECHNOLOGIES GMBH#IM WIEGENFELD 10#85570 MARKT SCHWABEN (DE)

Ref country code: CH

Ref legal event code: NV

Representative=s name: KELLER & PARTNER PATENTANWAELTE AG WINTERTHUR

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20091105 AND 20091111

NLS Nl: assignments of ep-patents

Owner name: BDW TECHNOLOGIES GMBH

Effective date: 20091029

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20091127

Year of fee payment: 13

Ref country code: CH

Payment date: 20091124

Year of fee payment: 13

Ref country code: AT

Payment date: 20091103

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20091123

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20091126

Year of fee payment: 13

Ref country code: GB

Payment date: 20091123

Year of fee payment: 13

Ref country code: FR

Payment date: 20091201

Year of fee payment: 13

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20110601

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20101120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59709638

Country of ref document: DE

Effective date: 20110601

Ref country code: DE

Ref legal event code: R119

Ref document number: 59709638

Country of ref document: DE

Effective date: 20110531

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101120

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101120