EP2041328B1 - Aluminum alloy and the utilization thereof for a cast component, in particular a motor vehicle - Google Patents

Aluminum alloy and the utilization thereof for a cast component, in particular a motor vehicle Download PDF

Info

Publication number
EP2041328B1
EP2041328B1 EP07787546A EP07787546A EP2041328B1 EP 2041328 B1 EP2041328 B1 EP 2041328B1 EP 07787546 A EP07787546 A EP 07787546A EP 07787546 A EP07787546 A EP 07787546A EP 2041328 B1 EP2041328 B1 EP 2041328B1
Authority
EP
European Patent Office
Prior art keywords
cast
weight
component
cast component
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07787546A
Other languages
German (de)
French (fr)
Other versions
EP2041328A1 (en
Inventor
Jürgen Wüst
Markus Wimmer
Richard Weizenbeck
Dirk E. O. Westerheide
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Magna BDW Technologies GmbH
Original Assignee
Magna BDW Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38523382&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2041328(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Magna BDW Technologies GmbH filed Critical Magna BDW Technologies GmbH
Priority to SI200730180T priority Critical patent/SI2041328T1/en
Publication of EP2041328A1 publication Critical patent/EP2041328A1/en
Application granted granted Critical
Publication of EP2041328B1 publication Critical patent/EP2041328B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • C22C21/04Modified aluminium-silicon alloys

Definitions

  • the invention relates to an aluminum alloy, in particular a die-cast alloy and its use in a cast component, in particular for a motor vehicle. Moreover, the invention relates to a cast component, in particular for a motor vehicle made of such an aluminum alloy.
  • One way describes the use of relatively inexpensive secondary alloys, for example of the type AlSi10Mg, but which have a relatively high iron content of about 0.5 to 1.2 wt .-% Fe and a low manganese content of about 0.1 wt .-% Mn ,
  • the high iron content is required, inter alia, against the background of the relatively low addition of manganese, so that the tendency of the aluminum alloy to adhere within the die is reduced and the finished cast component can be reliably removed from the mold.
  • a cast component made of such a secondary alloy in the form of an oil pan for a motor vehicle is known from EP 0 611 832 B1 to be known, in which a local heat treatment is carried out at a corresponding temperature or a corresponding period of time, so that it is possible to set component regions of different hardness.
  • the oil sump in the region of a flange remains largely untreated and accordingly has a hardness of 85 to 110 HB and a ductility of 0.5 to 2.5%, while this is heat treated in a bottom area accordingly, so that it has a hardness of 55 to 80 HB and a ductility of above 4%.
  • the alternative to the above-described secondary alloy walkable way describes the use of primary alloys, for example, also of the type AlSi10 whose residual aluminum present in addition to the alloying elements individually a maximum of 0.05 wt .-% and a maximum of 0.2 wt .-% production-related impurities.
  • Such a primary alloy is for example already in the EP 0 997 550 B1 as known, which - in contrast to the previously described Secondary alloys - a lower iron content of 0.15 to 0.35 wt .-% Fe and a contrast high manganese content of 0.3 to 0.6 wt .-% Mn.
  • the intermetallic AlFeSi phases customary with secondary alloys do not exist in such a primary alloy. For example, an intermetallic Al 12 (Mn, Fe) Si 2 phase which is more roundish in cross-section is produced, which accordingly has no or no pronounced acicular form.
  • strontium is preferably added to the above-described primary alloy, which stops the acicular growth of the silicon within the AlSi eutectic.
  • the cast components produced by such a primary alloy have only an elongation at break of A 5 of ⁇ 5% after demoulding, they are first used as safety components in the automotive industry in a subsequent heat treatment process at a temperature of 400 to 490 ° C partially solution-annealed for a period of 20 to 120 min and then cooled in air.
  • a significant increase in the ductility of the cast component is achieved, so that sets an elongation at break of A 5 > 12%.
  • the hardness of the cast component drops to a value of about 60 to 65 HB.
  • Object of the present invention is therefore to provide an aluminum alloy and their use for a cast component in particular a motor vehicle of the type mentioned, with which the production of such a cast component can be realized much easier and therefore cheaper. Moreover, it is an object of the invention to produce a cast component made of such an aluminum alloy in particular for the motor vehicle industry with correspondingly high mechanical requirements in a simpler and more cost-effective manner.
  • the aluminum alloy which is to be used in particular as a die-cast alloy, comprises the following alloying elements: 6.5 to ⁇ 9.5 Wt .-% silicon 0.3 to 0.6 Wt .-% manganese 0.15 to 0.35 Wt .-% iron 0.02 to 0.6 Wt .-% magnesium Max. 0.1 %
  • titanium 90 to 180 ppm strontium and the balance aluminum with individually at most 0.05 wt .-% and a maximum of 0.2 wt .-% of production-related impurities.
  • the proportion of AlSi eutectic is significantly reduced and in contrast, the proportion of aluminum mixed crystals significantly increased.
  • the aluminum-silicon alloy according to the invention can be created with the aluminum alloy according to the invention, which have a hardness of> 80 HB, and preferably between 84 HB and 88 HB already in the cast state - ie without additional heat treatment after demoulding. It should be noted that these values are measured inside the cast component, ie below the casting skin of the component.
  • the aluminum alloy according to the invention it is possible, despite the relatively high hardness, to achieve a very high ductility of the cast component, whose elongation at break is determined by the Removal - ie in the cast state and without further heat treatment - has a value of A 5 > 5%, and preferably 8% to 12%.
  • the aluminum alloy according to the invention has - in one embodiment of the invention - compared to those according to EP 0 997 550 B1 a selected range between 0.22 to 0.4 wt .-% magnesium, since the hardness of the cast component produced from the aluminum alloy not only depends on the eutectic, but also on the resulting outsourcing. Due to the specially selected magnesium content, Mg 2 Si ultrafine precipitates are formed by which the strength or hardness of the cast component can be adjusted. In other words, the hardness of the cast component produced from the aluminum alloy according to the invention is also dependent on the magnesium content.
  • a particularly high hardness of the cast component of the aluminum alloy according to the invention can be achieved if the magnesium content is in a selected range of 0.3 to 0.4% by weight, and preferably 0 , 32 to 0.36 wt .-% is.
  • the aluminum alloy according to the invention or the cast component produced therefrom already has the above-described high hardness or high elongation at break in the cast state, this is particularly suitable for use in motor vehicle construction.
  • the use of the aluminum-silicon alloy according to the invention in oil pans for motor vehicles has proven to be particularly advantageous since it must have a relatively high ductility with an elongation at break A 5 of> 5% in order to provide adequate protection against crack formation within the oil pan to be able to, which may arise in particular due to falling rocks below the motor vehicle.
  • the sumps in the connection or flange area must be sealed with a corresponding motor housing, it is necessary that they have a correspondingly high hardness of> 80 HB. Since a cast component produced from the present aluminum-silicon alloy fulfills these requirements already in the cast state without further heat treatment, it is thus possible to create an oil pan or another component for a motor vehicle that is easy to manufacture and therefore cost-effective.
  • the aluminum alloy can be used in a die-casting process for the production of cast components, in particular for a motor vehicle, as a result, a particularly fast and cost-effective production of the cast components is possible.
  • the inventive aluminum-silicon alloy used in the Following the casting process to be subjected to a heat treatment process.
  • the component can additionally be hot-hardened after partial solution annealing in the temperature range of the precipitation hardening of Mg2Si.
  • This thermosetting is preferably carried out in a temperature range of about 190 to 240 ° C, in particular about 190 to 220 ° C.
  • the casting component produced by the new aluminum-silicon alloy is characterized in particular by the fact that it has an at least approximately uniform hardness of> 80 HB and preferably between 84 and 88 HB in the cast state in all component regions.
  • the cast component advantageously has an at least approximately uniform elongation at break A 5 of> 5% and preferably 8% to 12% in all component regions.
  • a plurality of cast components in the form of oil pans for a motor vehicle have been produced in a die casting process from an aluminum-silicon casting alloy, which has the following composition: 6.5 to ⁇ 9.5 Wt .-% silicon 0.3 to 0.6 Wt .-% manganese 0.15 to 0.35 Wt .-% iron 0.22 to 0.4 Wt .-% magnesium Max. 0.1 %
  • the silicon content is between 7 and 9 wt .-% and the magnesium content between 0.32 and 0.36 wt .-%.
  • the present aluminum alloy is eminently suitable for use in die-casting of oil pans where an elongation at break A 5 of> 5% has to be achieved, in particular to prevent cracking when rockfall occurs during driving of the motor vehicle.
  • the oil pans cast by means of the above aluminum-silicon alloy have a hardness of> 80 HB, and in particular between 84 and 88 HB, so that the oil pans in the connection or flange area correspond to one another Motor housing of the motor vehicle can be tightly closed.
  • the casting skin of the as-cast condition The existing oil pans were correspondingly removed by a machining process, for example by milling, so that realistic hardness values of the oil pans in the cast state could be determined.
  • a plurality of cast components in the form of oil pans for a motor vehicle have been produced in a die-casting method from an aluminum-silicon casting alloy, which has the following composition: 7.8 to 8.2 Wt .-% silicon 0.5 to 0.6 Wt .-% manganese 0.15 to 0.2 Wt .-% iron 0.27 to 0.33 Wt .-% magnesium 0.04 to 0.08 %
  • an aluminum-silicon casting alloy which has the following composition: 7.8 to 8.2 Wt .-% silicon 0.5 to 0.6 Wt .-% manganese 0.15 to 0.2 Wt .-% iron 0.27 to 0.33 Wt .-% magnesium 0.04 to 0.08 %
  • the magnesium content is in particular about 0.3 wt .-%.
  • the present aluminum alloy in turn, is particularly well suited for use in die casting of oil pans where an elongation at break A 5 of> 5% must be achieved. Also in this alloy composition, a hardness of> 80 HB could be achieved.
  • the B-pillars have been produced in a die casting process from an aluminum-silicon casting alloy in two variants, which have the following compositions: Version 1: 7.8 to 8.2 Wt .-% silicon 0.5 to 0.6 Wt .-% manganese 0.15 to 0.2 Wt .-% iron 0.27 to 0.33 Wt .-% magnesium 0.04 to 0.08 %
  • Version 1 7.8 to 8.2 Wt .-% silicon 0.5 to 0.6 Wt .-% manganese 0.15 to 0.2 Wt .-% iron 0.27 to 0.33 Wt .-% magnesium 0.04 to 0.08 %
  • titanium 140 to 180 ppm strontium and the balance aluminum with individually at most 0.05 wt .-% and a maximum of 0.2 wt .-% of production-related impurities.
  • Variant 2 7.8 to 8.2 Wt .-% silicon 0.5 to 0.6 Wt .-% manganese 0.15 to 0.2 Wt .-% iron 0.5 to 0.6 Wt .-% magnesium 0.04 to 0.08 %
  • titanium 140 to 180 ppm strontium and the balance aluminum with individually at most 0.05 wt .-% and a maximum of 0.2 wt .-% of production-related impurities.
  • the component After the solution heat treatment in step 2, the component is still relatively soft or ductile and can therefore be deburred in step 3. In this case, the sprue A or other casting residues are removed from the product P. The product P remains soft.
  • the B-pillar or product P is straightened in step 4.
  • the product P is further soft for this purpose.
  • step 5 the product P is removed in step 5, specifically at one of the aging temperatures which will be described in more detail below. Thereafter, the product which is soft until after step 4 is adjusted according to its desired material properties.
  • the Fig. 2 shows a method which differs from that according to Fig. 1 in particular distinguished by the fact that the steps 2 and 3 are reversed in their sequence and thus in the present case, no utilization of a portion of the casting heat takes place.
  • step 1 the product P in the present case after step 1 is cooled together with the sprue A or other casting residues to room temperature or to about 20 ° C. Thereafter, the deburring 3 and the removal of the sprue and the casting remains, wherein the product is still soft.
  • the solution annealing 2 and the subsequent cooling takes place for example in the air by means of a fan.
  • the product P remains soft.
  • Steps 4 and 5 so the straightening of the B-pillar or the product P and the outsourcing in one of the hereinafter described in more detail Auslagerstemperaturen, then turn again analogous to the method according to Fig.1 , After step 5, the product which is soft until after step 4 is in turn adjusted in accordance with its desired material properties.
  • step 2 of the two methods according to Fig. 1 and Fig. 2 carried out solution annealing was carried out in different experiments at different temperatures between 460 and 490 ° C and during different annealing times of 15 to 120 min.
  • step 5 of the two methods according to Fig. 1 and Fig. 2 performed outsourcing was also carried out in different experiments at different temperatures between 160 and 240 ° C and during different aging times of 20 to 240 min.
  • the heat treatment components were created for use, for example, in the body, in the chassis or in the drive train of the motor vehicle, which has a yield strength R p0,2 between 90 and 180 MPa, a tensile strength R m between 180 and 250 MPa and an elongation at break A 5 in the range between 8 and 22%.
  • the present aluminum alloy is again particularly well suited for use in the motor vehicle.
  • the high-strength components of a T5 annealing were subjected to different temperatures between 160 and 240 ° C and for different times from 20 to 240 min.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Motor Or Generator Frames (AREA)
  • Body Structure For Vehicles (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Induction Machinery (AREA)

Abstract

The invention relates to an aluminum alloy, in particular a pressure casting alloy, preferably for a cast component of a motor vehicle, with the following alloy elements: 6.5 to <9.5% by weight of silicon, 0.3 to 0.6% by weight of manganese, 0.15 to 0.35% by weight of iron, 0.02 to 0.6% by weight of magnesium, a maximum of 0.1% by weight of titanium, 90 to 180 ppm strontium and aluminum as the remainder, with a maximum of 0.05% by weight, and a total maximum of 0.2% by weight of production-related contaminants. The alloy is particularly suitable for the pressure casting of the cast components of a motor vehicle such as oil pans, for example.

Description

Die Erfindung betrifft eine Aluminiumlegierung, insbesondere eine Druckgusslegierung sowie deren Verwendung bei einem Gussbauteil insbesondere für einen Kraftwagen. Darüber hinaus betrifft die Erfindung ein Gussbauteil insbesondere für einen Kraftwagen aus einer derartigen Aluminiumlegierung.The invention relates to an aluminum alloy, in particular a die-cast alloy and its use in a cast component, in particular for a motor vehicle. Moreover, the invention relates to a cast component, in particular for a motor vehicle made of such an aluminum alloy.

Bei der Herstellung von Gussbauteilen aus Aluminium-Silizium-Gusslegierungen insbesondere zum Einsatz in der Automobilindustrie werden heute grundsätzlich zwei Wege begangen.In the production of cast components made of aluminum-silicon casting alloys, in particular for use in the automotive industry, basically two paths are taken today.

Der eine Weg beschreibt den Einsatz von relativ kostengünstigen Sekundärlegierungen beispielsweise des Typs AlSi10Mg, welche jedoch einen relativ hohen Eisengehalt von etwa 0,5 bis 1,2 Gew.-% Fe und einen geringen Mangangehalt von etwa 0,1 Gew.-% Mn aufweisen. Der hohe Eisengehalt ist dabei unter anderem vor dem Hintergrund des relativ geringen Manganzusatzes erforderlich, so dass die Klebeneigung der Aluminiumlegierung innerhalb der Druckgussform reduziert wird und das gefertigte Gussbauteil prozesssicher entformt werden kann.One way describes the use of relatively inexpensive secondary alloys, for example of the type AlSi10Mg, but which have a relatively high iron content of about 0.5 to 1.2 wt .-% Fe and a low manganese content of about 0.1 wt .-% Mn , The high iron content is required, inter alia, against the background of the relatively low addition of manganese, so that the tendency of the aluminum alloy to adhere within the die is reduced and the finished cast component can be reliably removed from the mold.

Als problematisch bei derartigen Sekundärlegierungen ist jedoch der Umstand anzusehen, dass sich bedingt durch den hohen Eisengehalt eine intermetallische AlFeSi-Phase im Gefüge ausbildet, welche eine äußerst große nadelförmige Struktur aufweist und dem Gussbauteil demzufolge äußerst spröde Materialeigenschaften verleiht. Des Weiteren ergibt sich bei derartigen hochsiliziumhaltigen AluminiumGußlegierung eine relativ grobe und nadelförmige Ausbildung von Silizium innerhalb des AlSi-Eutektikums, durch welches die Duktilität des Gussbauteils in erheblichem Maße reduziert wird. Daher müssen derartige Sekundärlegierungen im Anschluss an das Entformen wärmebehandelt werden, um entsprechend hinreichende mechanische Eigenschaften, beispielsweise hinsichtlich ihrer Härte und Duktilität, erreichen zu können. Dies kann gegebenenfalls jedoch zu einem Verzug der Gussbauteile führen.A problem with such secondary alloys, however, is the fact that due to the high iron content an intermetallic AlFeSi phase forms in the microstructure, which is an extremely large needle-shaped structure Consequently, and gives the cast component extremely brittle material properties. Furthermore, with such high-silicon-containing cast aluminum alloy, a relatively coarse and needle-shaped formation of silicon within the AlSi eutectic, by means of which the ductility of the cast component is reduced to a considerable extent, results. Therefore, such secondary alloys must be heat-treated following removal from the mold in order to be able to achieve adequate mechanical properties, for example with regard to their hardness and ductility. However, this may possibly lead to a delay of the cast components.

Ein aus einer derartigen Sekundärlegierung hergestelltes Gussbauteil in Form einer Ölwanne für ein Kraftfahrzeug ist aus der EP 0 611 832 B1 als bekannt zu entnehmen, bei welchem eine lokale Wärmebehandlung bei einer entsprechenden Temperatur bzw. einem entsprechenden Zeitraum durchgeführt wird, so dass sich Bauteilbereiche unterschiedlicher Härte einstellen lassen. Insbesondere ist es dabei vorgesehen, dass die Ölwanne im Bereich eines Flansches weitestgehend unbehandelt bleibt und demgemäß eine Härte von 85 bis 110 HB und eine Duktilität von 0,5 bis 2,5 % aufweist, während diese in einem Bodenbereich entsprechend wärmebehandelt wird, so dass sie eine Härte von 55 bis 80 HB und eine Duktilität von oberhalb 4 % aufweist. Mit anderen Worten soll hierdurch erreicht werden, dass im Bereich des Flansches die bereits im Gusszustand vorhandene hohe Härte bzw. geringe Duktilität beibehalten wird, wogegen im Bodenbereich die Härte reduziert bzw. die Duktilität erhöht wird, um die Gefahr von durch Steinschlag bedingten Rissen oder dergleichen Beschädigungen der Ölwanne zu reduzieren. Allerdings ist eine derartige Wärmebehandlung zeitintensiv und dementsprechend kostspielig, so dass die durch den Einsatz einer Sekundärlegierung ermöglichte Kosteneinsparung mehr als aufgezehrt wird.A cast component made of such a secondary alloy in the form of an oil pan for a motor vehicle is known from EP 0 611 832 B1 to be known, in which a local heat treatment is carried out at a corresponding temperature or a corresponding period of time, so that it is possible to set component regions of different hardness. In particular, it is provided that the oil sump in the region of a flange remains largely untreated and accordingly has a hardness of 85 to 110 HB and a ductility of 0.5 to 2.5%, while this is heat treated in a bottom area accordingly, so that it has a hardness of 55 to 80 HB and a ductility of above 4%. In other words, this is to be achieved that in the region of the flange existing in the cast state high hardness or low ductility is maintained, whereas in the bottom area reduces the hardness and ductility is increased to the risk of rockfall caused by cracks or the like Damage to the oil sump to reduce. However, such a heat treatment is time-consuming and therefore expensive, so that the cost savings made possible by the use of a secondary alloy are more than consumed.

Der alternativ zur oben beschriebenen Sekundärlegierung begehbare Weg beschreibt den Einsatz von Primärlegierungen beispielsweise ebenfalls des Typs AlSi10, deren neben den Legierungselementen vorhandenes Restaluminium einzeln maximal 0,05 Gew.-% und insgesamt maximal 0,2 Gew.-% herstellungsbedingte Verunreinigungen aufweist.The alternative to the above-described secondary alloy walkable way describes the use of primary alloys, for example, also of the type AlSi10 whose residual aluminum present in addition to the alloying elements individually a maximum of 0.05 wt .-% and a maximum of 0.2 wt .-% production-related impurities.

Eine solche Primärlegierung ist beispielsweise bereits aus der EP 0 997 550 B1 als bekannt zu entnehmen, welche - im Unterschied zu den vorbeschriebenen Sekundärlegierungen - einen geringeren Eisengehalt von 0,15 bis 0,35 Gew.-% Fe und einen demgegenüber hohen Mangangehalt von 0,3 bis 0,6 Gew.-% Mn aufweist. Neben der Tatsache, dass eine derartige Primärlegierung eine verminderte Klebeneigung in der Druckgussform aufweist und dementsprechend gut entformbar ist, existieren die bei Sekundärlegierungen üblichen intermetallischen AlFeSi-Phasen bei einer derartigen Primärlegierung nicht. Dafür entsteht beispielsweise eine im Querschnitt eher rundliche, intermetallische Al12(Mn, Fe)Si2-Phase, die dementsprechend keine bzw. keine ausgeprägte nadelförmige Ausbildung hat. Hierdurch ergibt sich eine deutlich verbesserte Morphologie, so dass sich ein Werkstoff mit einer Härte von etwa 80 - 100 HB im Gusszustand realisieren lässt. Um die grobe bzw. nadelförmige Ausbildung von Silizium im AlSi-Eutektikum zu reduzieren, wird bei der vorbeschriebenen Primärlegierung bevorzugt Strontium beigefügt, welches das nadelförmige Wachstum des Siliziums innerhalb des AlSi-Eutektikums aufhält.Such a primary alloy is for example already in the EP 0 997 550 B1 as known, which - in contrast to the previously described Secondary alloys - a lower iron content of 0.15 to 0.35 wt .-% Fe and a contrast high manganese content of 0.3 to 0.6 wt .-% Mn. In addition to the fact that such a primary alloy has a reduced tendency to stick in the die casting mold and is therefore correspondingly easy to demold, the intermetallic AlFeSi phases customary with secondary alloys do not exist in such a primary alloy. For example, an intermetallic Al 12 (Mn, Fe) Si 2 phase which is more roundish in cross-section is produced, which accordingly has no or no pronounced acicular form. This results in a significantly improved morphology, so that a material with a hardness of about 80 - 100 HB can be realized in the cast state. In order to reduce the coarse or needle-shaped formation of silicon in the AlSi eutectic, strontium is preferably added to the above-described primary alloy, which stops the acicular growth of the silicon within the AlSi eutectic.

Da jedoch zumindest ein Teil der durch eine derartige Primärlegierung hergestellten Gussbauteile nach dem Entformen in ihrem Gusszustand lediglich eine Bruchdehnung von A5 von < 5 % aufweisen, werden diese zum Einsatz als Sicherheitsbauteile in der Automobilindustrie in einem nachfolgenden Wärmebehandlungsverfahren zunächst auf eine Temperatur von 400 bis 490°C während einer Zeitdauer von 20 bis 120 min partiell lösungsgeglüht und anschließend an der Luft abgekühlt. Hierdurch wird eine deutliche Erhöhung der Duktilität des Gussbauteils erreicht, so dass sich eine Bruchdehnung von A5 > 12 % einstellt. Mit der Wärmebehandlung sinkt die Härte des Gussbauteils auf einen Wert von etwa 60 bis 65 HB.However, since at least some of the cast components produced by such a primary alloy have only an elongation at break of A 5 of <5% after demoulding, they are first used as safety components in the automotive industry in a subsequent heat treatment process at a temperature of 400 to 490 ° C partially solution-annealed for a period of 20 to 120 min and then cooled in air. As a result, a significant increase in the ductility of the cast component is achieved, so that sets an elongation at break of A 5 > 12%. With the heat treatment, the hardness of the cast component drops to a value of about 60 to 65 HB.

Aufgabe der vorliegenden Erfindung ist es daher, eine Aluminiumlegierung sowie deren Verwendung für ein Gussbauteil insbesondere eines Kraftwagens der eingangs genannten Art zu schaffen, mit welchen sich die Herstellung eines derartigen Gussbauteils deutlich einfacher und dementsprechend kostengünstiger realisieren lässt. Darüber hinaus ist es Aufgabe der Erfindung, ein aus einer derartigen Aluminiumlegierung hergestelltes Gussbauteil insbesondere für die Kraftwagenindustrie mit entsprechend hohen mechanischen Anforderungen einfacher und kostengünstiger herzustellen.Object of the present invention is therefore to provide an aluminum alloy and their use for a cast component in particular a motor vehicle of the type mentioned, with which the production of such a cast component can be realized much easier and therefore cheaper. Moreover, it is an object of the invention to produce a cast component made of such an aluminum alloy in particular for the motor vehicle industry with correspondingly high mechanical requirements in a simpler and more cost-effective manner.

Diese Aufgabe wird erfindungsgemäß durch eine Aluminiumlegierung mit den Merkmalen des Patentanspruchs 1, mit deren Verwendung bei einem Gussbauteil insbesondere eines Kraftwagens mit den Merkmalen des Patentanspruchs 6 sowie durch ein Gussbauteil aus einer derartigen Aluminiumlegierung insbesondere für einen Kraftwagen mit den Merkmalen des Anspruchs 10 gelöst. Vorteilhafte Ausgestaltungen mit zweckmäßigen und nicht-trivialen Weiterbildungen der Erfindung sind in den abhängigen Patentansprüchen angegeben.This object is achieved by an aluminum alloy with the features of claim 1, with their use in a cast component in particular a motor vehicle with the features of claim 6 and by a cast component of such an aluminum alloy in particular for a motor vehicle with the features of claim 10. Advantageous embodiments with expedient and non-trivial developments of the invention are specified in the dependent claims.

Zur Lösung der erfindungsgemäßen Aufgabe umfasst die Aluminiumlegierung, welche insbesondere als Druckgusslegierung einzusetzen ist, folgende Legierungselemente: 6,5 bis <9,5 Gew.-% Silizium 0,3 bis 0,6 Gew.-% Mangan 0,15 bis 0,35 Gew.-% Eisen 0,02 bis 0,6 Gew.-% Magnesium max. 0,1 Gew.-% Titan 90 bis 180 ppm Strontium und als Rest Aluminium mit einzeln maximal 0,05 Gew.-% und insgesamt maximal 0,2 Gew.-% herstellungsbedingten Verunreinigungen.To achieve the object according to the invention, the aluminum alloy, which is to be used in particular as a die-cast alloy, comprises the following alloying elements: 6.5 to <9.5 Wt .-% silicon 0.3 to 0.6 Wt .-% manganese 0.15 to 0.35 Wt .-% iron 0.02 to 0.6 Wt .-% magnesium Max. 0.1 % By weight of titanium 90 to 180 ppm strontium and the balance aluminum with individually at most 0.05 wt .-% and a maximum of 0.2 wt .-% of production-related impurities.

Durch den gegenüber der bisher bekannten Primärlegierung gemäß EP 0 997 550 B1 reduzierten Gehalt an Silizium wird der Anteil an AlSi-Eutektikum deutlich reduziert und demgegenüber der Anteil an Aluminium-Mischkristallen deutlich erhöht. Somit ist es mit der erfindungsgemäßen Aluminium-Silizium-Legierung möglich, zwei an sich gegenläufige Eigenschaften miteinander zu kombinieren. Zum einen können mit der erfindungsgemäßen Aluminiumlegierung Gussbauteile geschaffen werden, welche bereits im Gusszustand - also ohne zusätzliche Wärmebehandlung nach der Entformung - eine Härte von > 80 HB, und vorzugsweise zwischen 84 HB und 88 HB aufweisen. Dabei ist zu berücksichtigen, dass diese Werte im Inneren des Gussbauteils - also unterhalb der Gießhaut des Bauteils - gemessen sind. Zum anderen ist es mit der erfindungsgemäßen Aluminiumlegierung möglich, trotz der relativ hohen Härte eine sehr hohe Duktilität des Gussbauteils zu erreichen, deren Bruchdehnung nach dem Entformen - also im Gusszustand und ohne weitere Wärmebehandlung - einen Wert von A5 > 5 %, und vorzugsweise 8 % bis 12 % aufweist.By compared to the previously known primary alloy according to EP 0 997 550 B1 reduced content of silicon, the proportion of AlSi eutectic is significantly reduced and in contrast, the proportion of aluminum mixed crystals significantly increased. Thus, it is possible with the aluminum-silicon alloy according to the invention to combine two mutually opposite properties with each other. On the one hand cast components can be created with the aluminum alloy according to the invention, which have a hardness of> 80 HB, and preferably between 84 HB and 88 HB already in the cast state - ie without additional heat treatment after demoulding. It should be noted that these values are measured inside the cast component, ie below the casting skin of the component. On the other hand, with the aluminum alloy according to the invention it is possible, despite the relatively high hardness, to achieve a very high ductility of the cast component, whose elongation at break is determined by the Removal - ie in the cast state and without further heat treatment - has a value of A 5 > 5%, and preferably 8% to 12%.

Während also bei einem aus einer Aluminiumlegierung gemäß der EP 0 997 550 B1 geschaffenen Gussbauteil, welches im Gusszustand eine relativ geringe Bruchdehnung von A5 bei etwa 4 % aufweisen kann, eine Wärmebehandlung erforderlich ist, um die insbesondere im Kraftwagenbau erforderlichen mechanischen Kennwerte zu erreichen, kann bei aus der erfindungsgemäßen Aluminiumlegierung geschaffenen Gussbauteilen auf eine derartige Nachbehandlung verzichtet werden. Vielmehr ist mit der erfindungsgemäßen Aluminiumlegierung eine hinreichende Duktilität gewährleistet, bei welcher die Bruchdehnung A5 des Gussbauteils größer von 5 % liegt. Gleichermaßen ist gewährleistet, dass die Härte des Gussbauteils mit > 80 HB hinreichend hoch ist. Im Ergebnis ist somit eine Legierung geschaffen, mit welcher Gussbauteile insbesondere für den Kraftwagenbau hergestellt werden können, welche bereits ohne eine Wärmenachbehandlung sehr gute mechanische Eigenschaften aufweisen und demgemäß äußerst einfach und kostengünstig herzustellen sind.Thus, while one of an aluminum alloy according to the EP 0 997 550 B1 A cast component which may have a relatively low elongation at break of A 5 at about 4% in the cast state, a heat treatment is required to achieve the mechanical characteristics required in particular in motor vehicle construction, can be dispensed with such a treatment in cast components created from the aluminum alloy according to the invention , Rather, a sufficient ductility is ensured with the aluminum alloy according to the invention, in which the breaking elongation A 5 of the cast component is greater than 5%. Equally, it is ensured that the hardness of the cast component with> 80 HB is sufficiently high. As a result, an alloy is thus created, with which cast components can be produced, in particular for motor vehicle construction, which already have a very good mechanical properties without heat post-treatment and are therefore extremely easy and inexpensive to produce.

Die erfindungsgemäße Aluminiumlegierung weist dabei - in einer Ausgestaltung der Erfindung - gegenüber derjenigen gemäß EP 0 997 550 B1 einen ausgewählten Bereich zwischen 0,22 bis 0,4 Gew.-% Magnesium auf, da die Härte des aus der Aluminiumlegierung hergestellten Gussbauteils nicht nur vom Eutektikum, sondern auch von den entstehenden Auslagerungen abhängt. Durch den speziell gewählten Gehalt an Magnesium entstehen Mg2Si-Feinstausscheidungen, durch welche die Festigkeit bzw. die Härte des Gussbauteils eingestellt werden kann. Mit anderen Worten ist die Härte des aus der erfindungsgemäßen Aluminiumlegierung hergestellten Gussbauteils auch vom Magnesiumgehalt abhängig. Hierbei kann - unter Gewährleistung einer Bruchdehnung A5 von > 5 % - eine besonders hohe Härte des Gussbauteils aus der erfindungsgemäßen Aluminiumlegierung geschaffen werden, wenn der Magnesiumgehalt in einem ausgewählten Bereich von 0,3 bis 0,4 Gew.-%, und vorzugsweise 0,32 bis 0,36 Gew.-% liegt.The aluminum alloy according to the invention has - in one embodiment of the invention - compared to those according to EP 0 997 550 B1 a selected range between 0.22 to 0.4 wt .-% magnesium, since the hardness of the cast component produced from the aluminum alloy not only depends on the eutectic, but also on the resulting outsourcing. Due to the specially selected magnesium content, Mg 2 Si ultrafine precipitates are formed by which the strength or hardness of the cast component can be adjusted. In other words, the hardness of the cast component produced from the aluminum alloy according to the invention is also dependent on the magnesium content. Here, while ensuring an elongation at break A 5 of> 5%, a particularly high hardness of the cast component of the aluminum alloy according to the invention can be achieved if the magnesium content is in a selected range of 0.3 to 0.4% by weight, and preferably 0 , 32 to 0.36 wt .-% is.

Durch den Einsatz von Strontium mit einem Gehalt von 90 bis 180 ppm wird bei der erfindungsgemäßen Aluminiumlegierung darüber hinaus erreicht, dass bei deren Erstarrung das nadelförmige Siliziumwachstum innerhalb des AlSi-Eutektikums aufgehalten wird, so dass die Siliziumkristalle keine extreme Nadelform annehmen.Through the use of strontium with a content of 90 to 180 ppm is achieved in the aluminum alloy according to the invention beyond that in their Solidification is the needle-shaped silicon growth is stopped within the AlSi eutectic, so that the silicon crystals assume no extreme needle shape.

Als weiter vorteilhaft hat es sich gezeigt, der erfindungsgemäßen Aluminiumlegierung als weiteres Legierungselement 0,1 bis 0,4 Gew.-% Kupfer beizugeben. Hierdurch wird die Kaltauslagerung verstärkt, über welche die Härte des aus der Aluminiumlegierung hergestellten Gussbauteils zusätzlich beeinflusst werden kann.As a further advantage, it has been shown to add 0.1 to 0.4 wt .-% copper as a further alloying element of the aluminum alloy according to the invention. As a result, the cold swaging is enhanced, over which the hardness of the cast component produced from the aluminum alloy can be additionally influenced.

Da die erfindungsgemäße Aluminiumlegierung bzw. das aus dieser hergestellte Gussbauteil bereits im Gusszustand die oben beschriebene hohe Härte bzw. die hohe Bruchdehnung aufweist, ist diese in besonders hohem Maße zur Verwendung im Kraftwagenbau geeignet. Als insbesondere vorteilhaft hat sich dabei die Verwendung der erfindungsgemäßen Aluminium-Silizium-Legierung bei Ölwannen für Kraftwagen gezeigt, da diese dort eine relativ hohe Duktilität mit einer Bruchdehnung A5 von > 5 % aufweisen muss, um eine hinreichende Sicherheit gegen Rissbildungen innerhalb der Ölwanne bieten zu können, welche insbesondere aufgrund von Steinschlag unterhalb des Kraftwagens entstehen können. Da die Ölwannen im Anschluss- bzw. Flanschbereich mit einem jeweils korrespondierenden Motorgehäuse abgedichtet befestigt werden müssen, ist es erforderlich, dass sie eine entsprechend hohe Härte von > 80 HB aufweisen. Da ein aus der vorliegenden Aluminium-Silizium-Legierung hergestelltes Gussbauteil diese Anforderungen bereits im Gusszustand ohne weitere Wärmebehandlung erfüllt, kann somit eine einfach zu fertigende und demgemäß kostengünstige Ölwanne bzw. ein anderes Bauteil für einen Kraftwagen geschaffen werden.Since the aluminum alloy according to the invention or the cast component produced therefrom already has the above-described high hardness or high elongation at break in the cast state, this is particularly suitable for use in motor vehicle construction. The use of the aluminum-silicon alloy according to the invention in oil pans for motor vehicles has proven to be particularly advantageous since it must have a relatively high ductility with an elongation at break A 5 of> 5% in order to provide adequate protection against crack formation within the oil pan to be able to, which may arise in particular due to falling rocks below the motor vehicle. Since the sumps in the connection or flange area must be sealed with a corresponding motor housing, it is necessary that they have a correspondingly high hardness of> 80 HB. Since a cast component produced from the present aluminum-silicon alloy fulfills these requirements already in the cast state without further heat treatment, it is thus possible to create an oil pan or another component for a motor vehicle that is easy to manufacture and therefore cost-effective.

Da bei einer Vielzahl von im Kraftwagenbau eingesetzten Gussbauteilen die bei der Verwendung der vorliegenden Aluminiumlegierung erzielbaren mechanischen Eigenschaften hinsichtlich der Härte und der Duktilität ausreichen, können diese nunmehr ohne weitere Wärmebehandlung eingesetzt werden. Dies hat nicht nur den Vorteil einer einfacheren und kostengünstigeren Herstellung, sondern darüber hinaus kann der bei der Wärmebehandlung gegebenenfalls einhergehende Verzug der Gussbauteile auf einfache Weise dadurch vermieden werden, dass gerade keine Nachbehandlung notwendig ist.Since in a variety of cast components used in the automotive industry sufficient in the use of the present aluminum alloy mechanical properties in terms of hardness and ductility, they can now be used without further heat treatment. This not only has the advantage of a simpler and cheaper production, but also can be avoided in the heat treatment optionally accompanying distortion of the cast components in a simple manner that just no aftertreatment is necessary.

Besonders vorteilhaft kann die Aluminiumlegierung in einem Druckgussverfahren zur Herstellung der Gussbauteile insbesondere für einen Kraftwagen eingesetzt werden, da hierdurch eine besonders schnelle und kostengünstige Herstellung der Gussbauteile möglich ist.Particularly advantageously, the aluminum alloy can be used in a die-casting process for the production of cast components, in particular for a motor vehicle, as a result, a particularly fast and cost-effective production of the cast components is possible.

Sollten Gussbauteile mit gegenüber deren Gusszustand anderen mechanischen Eigenschaften insbesondere hinsichtlich deren Duktilität bzw. Härte erforderlich sein, um beispielsweise in der Karosserie, im Fahrwerk oder als Bauteil des Antriebsstrangs des Kraftwagens eingesetzt werden zu können, kann die erfindungsgemäße hierzu verwendete Aluminium-Silizium-Legierung im Anschluss an den Gießprozess einem Wärmebehandlungsverfahren unterzogen werden.If cast components with respect to their cast state other mechanical properties, in particular with regard to their ductility or hardness required to be used for example in the body, in the chassis or as a component of the powertrain of the motor vehicle, the inventive aluminum-silicon alloy used in the Following the casting process to be subjected to a heat treatment process.

Dabei hat es sich insbesondere als vorteilhaft gezeigt, wenn das Gussbauteil in einem Temperaturbereich von 400 bis 490° C, und insbesondere zwischen 420 bis 460° C während einer Zeitdauer von 20 bis 120 min lösungsgeglüht und anschließend an der Luft abgekühlt wird. Durch diese äußerst schonende Wärmebehandlung mit der Abkühlung des Gussbauteils an der Luft wird dabei insbesondere erreicht, dass sich die Gussteile nicht bzw. nicht übermäßig verziehen.It has proven to be particularly advantageous if the cast component solution-annealed in a temperature range of 400 to 490 ° C, and in particular between 420 to 460 ° C for a period of 20 to 120 min and then cooled in the air. By this extremely gentle heat treatment with the cooling of the cast component in the air is achieved in particular that the castings do not or not excessively forgiven.

Zur Einstellung des gewünschten Festigkeitsniveaus kann das Bauteil nach der partiellen Lösungsglühung im Temperaturbereich der Ausscheidungshärtung von Mg2Si zusätzlich warmausgehärtet werden. Diese Warmaushärtung wird bevorzugt in einem Temperaturbereich von etwa 190 bis 240° C, insbesondere etwa 190 bis 220° C, durchgeführt.To set the desired strength level, the component can additionally be hot-hardened after partial solution annealing in the temperature range of the precipitation hardening of Mg2Si. This thermosetting is preferably carried out in a temperature range of about 190 to 240 ° C, in particular about 190 to 220 ° C.

Das durch die neue Aluminium-Silizium-Legierung entstehende Gussbauteil zeichnet sich insbesondere dadurch aus, dass dieses im Gusszustand in allen Bauteilbereichen eine zumindest annähernd einheitliche Härte von > 80 HB und vorzugsweise zwischen 84 und 88 HB aufweist. Darüber hinaus hat das Gussbauteil vorteilhafter Weise in allen Bauteilbereichen eine zumindest annähernd einheitliche Bruchdehnung A5 von > 5 % und vorzugsweise 8 % bis 12 %.The casting component produced by the new aluminum-silicon alloy is characterized in particular by the fact that it has an at least approximately uniform hardness of> 80 HB and preferably between 84 and 88 HB in the cast state in all component regions. In addition, the cast component advantageously has an at least approximately uniform elongation at break A 5 of> 5% and preferably 8% to 12% in all component regions.

Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele sowie anhand der Zeichnungen; diese zeigen in:

Fig. 1
ein Prozessablaufschema einer Wärmebehandlung eines Bauteils eines Kraftwagens; und in
Fig. 2
ein weiteres Prozessablaufschema einer Wärmebehandlung eines Bauteils eines Kraftwagens.
Further advantages, features and details of the invention will become apparent from the following description of preferred embodiments and from the drawings; these show in:
Fig. 1
a process flow diagram of a heat treatment of a component of a motor vehicle; and in
Fig. 2
another process flow diagram of a heat treatment of a component of a motor vehicle.

Beispiel 1:Example 1:

Dabei sind eine Mehrzahl von Gussbauteilen in Form von Ölwannen für einen Kraftwagen in einem Druckgussverfahren aus einer Aluminium-Silizium-Gusslegierung hergestellt worden, welche folgende Zusammensetzung aufweist: 6,5 bis <9,5 Gew.-% Silizium 0,3 bis 0,6 Gew.-% Mangan 0,15 bis 0,35 Gew.-% Eisen 0,22 bis 0,4 Gew.-% Magnesium max. 0,1 Gew.-% Titan 90 bis 180 ppm Strontium und als Rest Aluminium mit einzeln maximal 0,05 Gew.-% und insgesamt maximal 0,2 Gew.-% herstellungsbedingten Verunreinigungen, wobei wahlweise noch 0,1 bis 0,4 Gew.-% Kupfer vorgesehen sein können. Im vorliegenden Ausführungsbeispiel liegt der Siliziumgehalt dabei zwischen 7 und 9 Gew.-% und der Magnesiumgehalt zwischen 0,32 und 0,36 Gew.-%.In this case, a plurality of cast components in the form of oil pans for a motor vehicle have been produced in a die casting process from an aluminum-silicon casting alloy, which has the following composition: 6.5 to <9.5 Wt .-% silicon 0.3 to 0.6 Wt .-% manganese 0.15 to 0.35 Wt .-% iron 0.22 to 0.4 Wt .-% magnesium Max. 0.1 % By weight of titanium 90 to 180 ppm strontium and the remainder being aluminum with a maximum of 0.05% by weight and a maximum of 0.2% by weight in total of production-related impurities, it being possible optionally to provide 0.1 to 0.4% by weight of copper. In the present embodiment, the silicon content is between 7 and 9 wt .-% and the magnesium content between 0.32 and 0.36 wt .-%.

Nach dem Druckgießen wurden Zugproben aus den Gussteilen bzw. Ölwannen herausgearbeitet und an diesen die in der nachfolgenden Tabelle abgetragenen mechanischen Eigenschaften ermittelt: Nr. Rp0,2 Rm A5 Öl-Wanne N/mm2 N/mm2 % Nr. 1 138,91 283,81 8,98 35 2 136,06 282,10 10,43 35 3 138,22 281,96 9,63 35 4 137,98 285,06 9,85 35 5 136,79 283,33 10,40 37 6 135,41 282,34 10,86 37 7 132,61 272,33 9,58 37 8 135,34 280,79 8,64 37 9 133,01 280,27 10,48 52 10 135,23 281,67 11,96 52 11 137,56 278,42 9,00 52 12 133,48 278,28 8,62 52 13 133,80 274,62 8,13 54 14 134,47 280,03 11,60 54 15 136,96 280,18 10,50 54 16 132,54 276,22 8,69 54 After die casting, tensile specimens from the castings or oil pans were worked out and the mechanical properties ablated in the table below were determined thereon: No. R p0,2 R m A 5 Oil-well N / mm 2 N / mm 2 % No. 1 138.91 283.81 8.98 35 2 136.06 282.10 10.43 35 3 138.22 281.96 9.63 35 4 137.98 285.06 9.85 35 5 136.79 283.33 10.40 37 6 135.41 282.34 10.86 37 7 132.61 272.33 9.58 37 8th 135.34 280.79 8.64 37 9 133.01 280.27 10.48 52 10 135.23 281.67 11.96 52 11 137.56 278.42 9.00 52 12 133.48 278.28 8.62 52 13 133.80 274.62 8.13 54 14 134.47 280.03 11,60 54 15 136.96 280.18 10.50 54 16 132.54 276.22 8.69 54

Aus der Tabelle ist demzufolge erkennbar, dass sämtliche Proben eine Bruchdehnung A5 zwischen 8 und 12 % aufweisen. Demzufolge ist die vorliegende Aluminiumlegierung in hervorragendem Maße zur Verwendung bei der Druckgussherstellung von Ölwannen geeignet, bei welchen eine Bruchdehnung A5 von > 5 % erreicht werden muss, insbesondere um bei im Fahrbetrieb des Kraftwagens entstehendem Steinschlag eine Rissbildung vermeiden zu können.It can therefore be seen from the table that all samples have an elongation at break A 5 between 8 and 12%. Accordingly, the present aluminum alloy is eminently suitable for use in die-casting of oil pans where an elongation at break A 5 of> 5% has to be achieved, in particular to prevent cracking when rockfall occurs during driving of the motor vehicle.

In weiteren Versuchen hat sich darüber hinaus gezeigt, dass die mittels der vorstehenden Aluminium-Silizium-Legierung gegossenen Ölwannen eine Härte von > 80 HB, und insbesondere zwischen 84 und 88 HB aufweisen, so dass die Ölwannen im Anbindungs- bzw. Flanschbereich zu einem korrespondieren Motorgehäuse des Kraftwagens dicht festgelegt werden können. Die Gießhaut der im Gusszustand vorliegenden Ölwannen wurde dabei durch ein Bearbeitungsverfahren - beispielsweise durch Fräsen - entsprechend abgetragen, so dass realistische Härtewerte der im Gusszustand vorliegenden Ölwannen ermittelt werden konnten.In further experiments, it has also been found that the oil pans cast by means of the above aluminum-silicon alloy have a hardness of> 80 HB, and in particular between 84 and 88 HB, so that the oil pans in the connection or flange area correspond to one another Motor housing of the motor vehicle can be tightly closed. The casting skin of the as-cast condition The existing oil pans were correspondingly removed by a machining process, for example by milling, so that realistic hardness values of the oil pans in the cast state could be determined.

Beispiel 2:Example 2:

Vorliegend sind wiederum eine Mehrzahl von Gussbauteilen in Form von Ölwannen für einen Kraftwagen in einem Druckgussverfahren aus einer Aluminium-Silizium-Gusslegierung hergestellt worden, welche folgende Zusammensetzung aufweist: 7,8 bis 8,2 Gew.-% Silizium 0,5 bis 0,6 Gew.-% Mangan 0,15 bis 0,2 Gew.-% Eisen 0,27 bis 0,33 Gew.-% Magnesium 0,04 bis 0,08 Gew.-% Titan 140 bis 180 ppm Strontium und als Rest Aluminium mit einzeln maximal 0,05 Gew.-% und insgesamt maximal 0,2 Gew.-% herstellungsbedingten Verunreinigungen. Im vorliegenden Ausführungsbeispiel liegt der der Magnesiumgehalt insbesondere bei etwa 0,3 Gew.-%.In the present case, in turn, a plurality of cast components in the form of oil pans for a motor vehicle have been produced in a die-casting method from an aluminum-silicon casting alloy, which has the following composition: 7.8 to 8.2 Wt .-% silicon 0.5 to 0.6 Wt .-% manganese 0.15 to 0.2 Wt .-% iron 0.27 to 0.33 Wt .-% magnesium 0.04 to 0.08 % By weight of titanium 140 to 180 ppm strontium and the balance aluminum with individually at most 0.05 wt .-% and a maximum of 0.2 wt .-% of production-related impurities. In the present embodiment, the magnesium content is in particular about 0.3 wt .-%.

Die einzelnen Ölwannen sind dabei nicht wärmebehandelt worden. Folglich beziehen sich die Messwerte auf den Gusszustand der Bauteile, wobei die Gießhaut im jeweiligen Probebereich wiederum durch ein Bearbeitungsverfahren - beispielsweise durch Fräsen - entsprechend abgetragen worden ist. Nr. ÖlWanne Rp0,2 Rm A % Nr. N/mm2 N/mm2 1 23 120,56 264,79 9,44 2 23 124,23 259,44 7,1 3 23 122,24 266,08 10 4 23 121,06 264,67 10,66 5 34 123,21 267,47 12,92 6 34 122,87 267,47 11,45 7 34 122,74 262,58 8,76 8 34 122,24 254,27 6,25 9 48 120,84 262,31 9,66 10 48 122,74 265,57 12,26 11 48 122,02 266,43 14,38 12 48 126,5 267,35 12,88 122,60 264,04 10,48 The individual oil pans have not been heat treated. Consequently, the measured values relate to the casting state of the components, wherein the casting skin in the respective test area has in turn been correspondingly removed by a machining method, for example by milling. No. oil pan R p0,2 R m A% No. N / mm 2 N / mm 2 1 23 120.56 264.79 9.44 2 23 124.23 259.44 7.1 3 23 122.24 266.08 10 4 23 121.06 264.67 10.66 5 34 123.21 267.47 12.92 6 34 122.87 267.47 11,45 7 34 122.74 262.58 8.76 8th 34 122.24 254.27 6.25 9 48 120.84 262.31 9.66 10 48 122.74 265.57 12.26 11 48 122.02 266.43 14.38 12 48 126.5 267.35 12.88 122.60 264.04 10.48

Aus der Tabelle ist insbesondere erkennbar, dass bei den vorliegenden Ölwannen die Zugfestigkeit Rm oberhalb von 250 - 260 N/mm2, die Dehngrenze Rp0,2 oberhalb von 120 N/mm2 und die Bruchdehnung A5 im Bereich zwischen 6,25 und 14,38 % liegt. Demzufolge ist die vorliegende Aluminiumlegierung wiederum besonders gut zur Verwendung bei der Druckgussherstellung von Ölwannen geeignet, bei welchen eine Bruchdehnung A5 von > 5 % erreicht werden muss. Auch in dieser Legierungszusammensetzung konnte eine Härte von > 80 HB erreicht werden.It can be seen in particular from the table that in the present oil sumps the tensile strength R m is above 250-260 N / mm 2 , the yield strength R p0.2 above 120 N / mm 2 and the elongation at break A 5 in the range between 6.25 and 14.38%. Accordingly, the present aluminum alloy, in turn, is particularly well suited for use in die casting of oil pans where an elongation at break A 5 of> 5% must be achieved. Also in this alloy composition, a hardness of> 80 HB could be achieved.

Beispiel 3:Example 3:

Dem vorliegenden Beispiel liegt ein Versuchsprogramm zugrunde, welches bei Bauteilen in Form von Türsäulen bzw. B-Säulen von Personenkraftwagen durchgeführt worden ist. Diese Türsäulen sollen dabei eine Dehngrenze Rp0,2 von 150 bis 180 MPa und eine Bruchdehnung A5 von = 7 % aufweisen.The present example is based on a test program which has been carried out on components in the form of door pillars or B pillars of passenger cars. These door pillars should have a yield strength R p0.2 of 150 to 180 MPa and an elongation at break A 5 of = 7%.

Dabei sind die B-Säulen in einem Druckgussverfahren aus einer Aluminium-Silizium-Gusslegierung in zwei Varianten hergestellt worden, welche folgende Zusammensetzungen aufweisen:
Variante 1: 7,8 bis 8,2 Gew.-% Silizium 0,5 bis 0,6 Gew.-% Mangan 0,15 bis 0,2 Gew.-% Eisen 0,27 bis 0,33 Gew.-% Magnesium 0,04 bis 0,08 Gew.-% Titan 140 bis 180 ppm Strontium und als Rest Aluminium mit einzeln maximal 0,05 Gew.-% und insgesamt maximal 0,2 Gew.-% herstellungsbedingten Verunreinigungen.
Variante 2: 7,8 bis 8,2 Gew.-% Silizium 0,5 bis 0,6 Gew.-% Mangan 0,15 bis 0,2 Gew.-% Eisen 0,5 bis 0,6 Gew.-% Magnesium 0,04 bis 0,08 Gew.-% Titan 140 bis 180 ppm Strontium und als Rest Aluminium mit einzeln maximal 0,05 Gew.-% und insgesamt maximal 0,2 Gew.-% herstellungsbedingten Verunreinigungen.
The B-pillars have been produced in a die casting process from an aluminum-silicon casting alloy in two variants, which have the following compositions:
Version 1: 7.8 to 8.2 Wt .-% silicon 0.5 to 0.6 Wt .-% manganese 0.15 to 0.2 Wt .-% iron 0.27 to 0.33 Wt .-% magnesium 0.04 to 0.08 % By weight of titanium 140 to 180 ppm strontium and the balance aluminum with individually at most 0.05 wt .-% and a maximum of 0.2 wt .-% of production-related impurities.
Variant 2: 7.8 to 8.2 Wt .-% silicon 0.5 to 0.6 Wt .-% manganese 0.15 to 0.2 Wt .-% iron 0.5 to 0.6 Wt .-% magnesium 0.04 to 0.08 % By weight of titanium 140 to 180 ppm strontium and the balance aluminum with individually at most 0.05 wt .-% and a maximum of 0.2 wt .-% of production-related impurities.

Somit ist erkennbar, dass sich die beiden Varianten im Wesentlichen durch die unterschiedlichen Gehalte an Magnesium, nämlich bei der Variante 1 mit 0,27 bis 0,33 Gew.-% und bei der Variante 2 mit 0,5 bis 0,6 Gew.-%, unterscheiden.Thus, it can be seen that the two variants essentially by the different contents of magnesium, namely in the variant 1 with 0.27 to 0.33 wt .-% and in the variant 2 with 0.5 to 0.6 wt. -%, different.

Wärmebehandlung:Heat treatment: Prozessablauf 1:Process flow 1:

Die beiden Varianten der Aluminium-Silizium-Gusslegierung - und zwar insbesondere Variante 2 mit einem Gehalt von etwa 0,6 Gew.-% Magnesium - wurden dabei beispielsweise den folgenden, in den Fig. 1 und 2 anhand von Ablaufschemas erläuterter Wärmebehandlungen, unterzogen:

  • Dabei zeigt Fig.1 ein Verfahren, bei welchem die B-Säulen (Produkt P) nach dem Gießen in einem Schritt 1 - unter Ausnutzung eines Teils der Gießwärme - in einem Schritt 2 lösungsgeglüht und an der Luft mittels eines Ventilators abgeschreckt werden. Mit anderen Worten wird vorliegend das Produkt P nach dem Entformen aus dem Gießwerkzeug nicht beispielsweise auf Raumtemperatur abgekühlt, sondern vielmehr bei einer Temperatur von noch etwa 200° C in Schritt 2 lösungsgeglüht. Während des Lösungsglühens in Schritt 2 verbleiben dabei ein Anguss A bzw. andere Gießreste am Produkt P.
The two variants of the aluminum-silicon casting alloy - and in particular variant 2 with a content of about 0.6 wt .-% magnesium - were, for example, the following, in the Fig. 1 and 2 subjected to heat treatments explained by means of flow diagrams:
  • It shows Fig.1 a method in which the B-pillars (product P) after casting in a step 1 - using a portion of the casting heat - are solution-annealed in a step 2 and quenched in the air by means of a fan. In other words, in the present case, the product P is not cooled to room temperature, for example, after demolding from the casting tool, but rather solution-annealed at a temperature of about 200 ° C in step 2. During the solution annealing in step 2, a sprue A or other casting residues remain on the product P.

Nach dem Lösungsglühen in Schritt 2 ist das Bauteil nach wie vor relativ weich bzw. duktil und kann demzufolge in Schritt 3 entgratet werden. Hierbei werden der Anguss A bzw. andere Gießreste vom Produkt P entfernt. Das Produkt P bleibt dabei weiter weich.After the solution heat treatment in step 2, the component is still relatively soft or ductile and can therefore be deburred in step 3. In this case, the sprue A or other casting residues are removed from the product P. The product P remains soft.

Im Anschluss an das im Schritt 3 durchgeführte Entgraten erfolgt in Schritt 4 ein Richten der B-Säule bzw. des Produkts P. Das Produkt P ist hierzu weiter weich.Following the deburring carried out in step 3, the B-pillar or product P is straightened in step 4. The product P is further soft for this purpose.

Schließlich wird das Produkt P in Schritt 5 ausgelagert, und zwar bei einer der im Weiteren noch näher beschriebenen Auslagerungstemperaturen. Danach ist das bis nach dem Schritt 4 weiche Produkt entsprechend seiner gewünschten Materialeigenschaften eingestellt.Finally, the product P is removed in step 5, specifically at one of the aging temperatures which will be described in more detail below. Thereafter, the product which is soft until after step 4 is adjusted according to its desired material properties.

Prozessablauf 2:Process flow 2:

Die Fig. 2 zeigt ein Verfahren, welches sich von demjenigen gemäß Fig. 1 insbesondere dadurch unterscheidet, dass die Schritte 2 und 3 in ihrer Abfolge vertauscht sind und somit vorliegend auch keine Ausnutzung eines Teils der Gießwärme erfolgt.The Fig. 2 shows a method which differs from that according to Fig. 1 in particular distinguished by the fact that the steps 2 and 3 are reversed in their sequence and thus in the present case, no utilization of a portion of the casting heat takes place.

Somit wird das Produkt P vorliegend nach Schritt 1 gemeinsam mit dem Anguss A bzw. anderen Gießresten auf Raumtemperatur bzw. auf etwa 20° C abgekühlt. Danach erfolgt das Entgraten 3 bzw. das Entfernen des Angusses und der Gießreste, wobei das Produkt hierbei nach wie vor weich ist.Thus, the product P in the present case after step 1 is cooled together with the sprue A or other casting residues to room temperature or to about 20 ° C. Thereafter, the deburring 3 and the removal of the sprue and the casting remains, wherein the product is still soft.

Im Anschluss an das Entgraten 3 erfolgt das Lösungsglühen 2 und das anschließende Abkühlen beispielsweise an der Luft mittels eines Ventilators. Das Produkt P bleibt dabei weiter weich.After the deburring 3, the solution annealing 2 and the subsequent cooling takes place for example in the air by means of a fan. The product P remains soft.

Die Schritte 4 und 5, also das Richten der B-Säule bzw. des Produkts P und das Auslagern bei einer der im Weiteren noch näher beschriebenen Auslagerungstemperaturen, erfolgen dann wiederum analog zum Verfahren gemäß Fig.1. Nach Schritt 5 ist das bis nach dem Schritt 4 weiche Produkt entsprechen seiner gewünschten Materialeigenschaften wiederum eingestellt.Steps 4 and 5, so the straightening of the B-pillar or the product P and the outsourcing in one of the hereinafter described in more detail Auslagerstemperaturen, then turn again analogous to the method according to Fig.1 , After step 5, the product which is soft until after step 4 is in turn adjusted in accordance with its desired material properties.

Beiden Verfahren gemäß Fig. 1 und Fig.2 ist es gemeinsam, dass im jeweiligen Verfahrensablauf an den Stellen Q1 eine Maßprüfung an der Stelle Q2 eine Festigkeits- bzw. Zugprüfung vorgenommen wird.Both methods according to Fig. 1 and Fig. 2 It is common that in the respective procedure at the points Q1 a dimensional check at the point Q2 a strength or tensile test is made.

Die im jeweiligen Schritt 2 der beiden Verfahren gemäß Fig. 1 und Fig.2 durchgeführte Lösungsglühung erfolgte in unterschiedlichen Versuchen bei unterschiedlichen Temperaturen zwischen 460 und 490° C und während unterschiedlicher Glühzeiten von 15 bis 120 min.In the respective step 2 of the two methods according to Fig. 1 and Fig. 2 carried out solution annealing was carried out in different experiments at different temperatures between 460 and 490 ° C and during different annealing times of 15 to 120 min.

Die im jeweiligen Schritt 5 der beiden Verfahren gemäß Fig. 1 und Fig.2 durchgeführte Auslagerung erfolgte ebenfalls in unterschiedlichen Versuchen bei unterschiedlichen Temperaturen zwischen 160 und 240° C und während unterschiedlicher Auslagerungszeiten von 20 bis 240 min.In the respective step 5 of the two methods according to Fig. 1 and Fig. 2 performed outsourcing was also carried out in different experiments at different temperatures between 160 and 240 ° C and during different aging times of 20 to 240 min.

Durch die Wärmebehandlung wurden Bauteile zum Einsatz beispielsweise in der Karosserie, im Fahrwerk oder im Antriebsstrang des Kraftwagens geschaffen, welche eine Dehngrenze Rp0,2 zwischen 90 und 180 MPa , eine Zugfestigkeit Rm zwischen 180 und 250 MPa und eine Bruchdehnung A5 im Bereich zwischen 8 und 22 % aufweisen. Demzufolge ist die vorliegende Aluminiumlegierung wiederum besonders gut zur Verwendung im Kraftfahrzeug geeignet.The heat treatment components were created for use, for example, in the body, in the chassis or in the drive train of the motor vehicle, which has a yield strength R p0,2 between 90 and 180 MPa, a tensile strength R m between 180 and 250 MPa and an elongation at break A 5 in the range between 8 and 22%. As a result, the present aluminum alloy is again particularly well suited for use in the motor vehicle.

Beispiel 4:Example 4:

Dem vorliegenden Beispiel liegt ein Versuchsprogramm zugrunde, bei welchem hochfeste Bauteile von Personenkraftwagen mit einer Legierungszusammensetzung gemäß Variante 1 (0,27 bis 0,33 Gew.-% Mg) entsprechend bearbeitet werden, dass diese nach der nachfolgend beschriebenen Wärmebehandlung eine Dehngrenze Rp0,2 von = 180 MPa aufweisen.The present example is based on a test program in which high-strength components of passenger cars with an alloy composition according to variant 1 (0.27 to 0.33 wt .-% Mg) are processed accordingly, that these after the heat treatment described below, a yield strength R p0, 2 of = 180 MPa.

Hierzu wurden die hochfesten Bauteile einer T5-Glühung bei unterschiedlichen Temperaturen zwischen 160 und 240° C und während unterschiedlicher Zeiten von 20 bis 240 min unterzogen.For this purpose, the high-strength components of a T5 annealing were subjected to different temperatures between 160 and 240 ° C and for different times from 20 to 240 min.

Claims (14)

  1. Aluminium alloy, in particular a pressure casting alloy, preferably for a cast component of a motor vehicle, characterised by the following alloying elements: 6.5 to <9.5 % by weight silicon 0.3 to 0.6 % by weight manganese 0.15 to 0.35 % by weight iron 0.02 to 0.6 % by weight magnesium max. 0.1 % by weight titanium 90 to 180 ppm strontium
    and aluminium as the remainder, with a maximum of 0.05 % by weight individually, and a maximum of 0.2 % by weight in total, of production-related contaminants.
  2. Aluminium alloy according to claim 1,
    characterised in
    that said alloy, as cast, exhibits a hardness of > 80 HB, preferably between 84 HB and 88 HB.
  3. Aluminium alloy according to either claim 1 or claim 2,
    characterised in
    that said alloy, as cast, exhibits an elongation at break A5 of > 5 %, preferably of 8 % to 12%.
  4. Aluminium alloy according to any one of claims 1 to 3,
    characterised in
    that said alloy exhibits 0.1 to 0.4 % by weight of copper as a further alloying element.
  5. Aluminium alloy according to any one of claims 1 to 4,
    characterised in
    that said alloy exhibits 0.22 to 0.4 % by weight, preferably 0.32 to 0.36 % by weight, of magnesium.
  6. Use of an aluminium alloy according to any one of claims 1 to 5 in a cast component, in particular an oil pan of a motor vehicle.
  7. Use according to claim 6,
    characterised in
    that the cast component is produced in a pressure casting process.
  8. Use according to either claim 6 or claim 7,
    characterised in
    that the cast component is subjected to a heat treatment process after the casting process.
  9. Use according to claim 8,
    characterised in
    that the cast component is partially solution treated in a temperature range of from 400 to 490 °C, in particular in a temperature range of from 420 to 460 °C, for a duration of from 20 to 120 minutes, and is subsequently air-cooled.
  10. Cast component, in particular for a motor vehicle, which is produced from an aluminium alloy according to any one of claims 1 to 5.
  11. Cast component according to claim 10,
    characterised in
    that said component is formed as an oil pan for a motor vehicle.
  12. Cast component according to either claim 10 or claim 11,
    characterised in
    that all regions of said component as cast exhibit an at least approximately uniform hardness of > 80 HB, preferably between 84 HB and 88 HB.
    that all regions of said component as cast exhibit an at least approximately uniform hardness of > 80 HB, preferably between 84 HB and 88 HB.
  13. Cast component according to any one of claims 10 to 12,
    characterised in
    that all regions of said component as cast exhibit an at least approximately uniform elongation at break A5 of > 5 %, preferably of 8 % to 12 %.
  14. Cast component according to claim 13,
    characterised in
    that said cast component is at least partially solution treated in a temperature range of from 400 to 490 °C, in particular in a temperature range of from 420 to 460 °C, for a duration of from 20 to 120 minutes and subsequently air-cooled.
EP07787546A 2006-07-14 2007-07-13 Aluminum alloy and the utilization thereof for a cast component, in particular a motor vehicle Active EP2041328B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI200730180T SI2041328T1 (en) 2006-07-14 2007-07-13 Aluminum alloy and the utilization thereof for a cast component, in particular a motor vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006032699A DE102006032699B4 (en) 2006-07-14 2006-07-14 Aluminum alloy and its use for a cast component, in particular a motor vehicle
PCT/EP2007/057278 WO2008006908A1 (en) 2006-07-14 2007-07-13 Aluminum alloy and the utilization thereof for a cast component, in particular a motor vehicle

Publications (2)

Publication Number Publication Date
EP2041328A1 EP2041328A1 (en) 2009-04-01
EP2041328B1 true EP2041328B1 (en) 2010-01-27

Family

ID=38523382

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07787546A Active EP2041328B1 (en) 2006-07-14 2007-07-13 Aluminum alloy and the utilization thereof for a cast component, in particular a motor vehicle

Country Status (9)

Country Link
US (1) US20090297393A1 (en)
EP (1) EP2041328B1 (en)
JP (1) JP2009543944A (en)
AT (1) ATE456682T1 (en)
CA (1) CA2657731A1 (en)
DE (2) DE102006032699B4 (en)
ES (1) ES2340218T3 (en)
SI (1) SI2041328T1 (en)
WO (1) WO2008006908A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2455505A1 (en) * 2010-11-19 2012-05-23 Martinrea Honsel Germany GmbH Cylinder head for combustion engines made of an aluminium alloy
DE102018214739A1 (en) * 2018-08-30 2020-03-05 Magna BDW technologies GmbH High-strength housing, as well as processes for the production of high-strength cast housings

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010007531B4 (en) * 2010-02-11 2014-11-27 Audi Ag Method for producing a body component
ES2507865T3 (en) * 2010-12-28 2014-10-15 Casa Maristas Azterlan Method to obtain improved mechanical properties in plate-shaped beta-free recycled aluminum molds
CZ2015521A3 (en) * 2015-07-28 2016-12-14 Univerzita J. E. Purkyně V Ústí Nad Labem Aluminium alloy intended especially for manufacture of castings of mold segments for molding pneumatic tires and heat treatment process of mold segment castings
WO2017027734A1 (en) * 2015-08-13 2017-02-16 Alcoa Inc. Improved 3xx aluminum casting alloys, and methods for making the same
MX2018011818A (en) * 2016-03-31 2019-01-24 Rio Tinto Alcan Int Ltd Aluminum alloys having improved tensile properties.

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0791624B2 (en) * 1988-05-11 1995-10-04 本田技研工業株式会社 Method for manufacturing aluminum alloy cast article
JPH058296A (en) * 1991-07-05 1993-01-19 Sumitomo Electric Ind Ltd Method for lining and reconditioning pipe
DE4304134C1 (en) * 1993-02-11 1994-09-15 Albert Handtmann Metallguswerk Process for the production of castings
FR2721041B1 (en) * 1994-06-13 1997-10-10 Pechiney Recherche Aluminum-silicon alloy sheet intended for mechanical, aeronautical and space construction.
CH689143A5 (en) * 1994-06-16 1998-10-30 Rheinfelden Aluminium Gmbh Aluminum-silicon casting alloys with high corrosion resistance, particularly for safety components.
EP0992601A1 (en) * 1998-10-05 2000-04-12 Alusuisse Technology &amp; Management AG Method for fabricating a component from an aluminium alloy by pressure die-casting
DE10002021C2 (en) * 1999-09-24 2002-10-17 Honsel Guss Gmbh Process for the heat treatment of structural castings from an aluminum alloy to be used for this
JP2002339030A (en) * 2001-05-17 2002-11-27 Yamaha Motor Co Ltd Aluminum alloy for diecasting
JP2003027169A (en) * 2001-07-19 2003-01-29 Yamaha Motor Co Ltd Aluminum alloy and aluminum alloy casting
FR2841164B1 (en) * 2002-06-25 2004-07-30 Pechiney Aluminium ALLOY MOLDING WITH HIGH FLUID RESISTANCE
EP1443122B1 (en) * 2003-01-23 2009-07-29 ALUMINIUM RHEINFELDEN GmbH Die cast aluminium alloy
US7666353B2 (en) * 2003-05-02 2010-02-23 Brunswick Corp Aluminum-silicon alloy having reduced microporosity
US20050199318A1 (en) * 2003-06-24 2005-09-15 Doty Herbert W. Castable aluminum alloy
JP2005264301A (en) * 2004-03-22 2005-09-29 Toyota Central Res & Dev Lab Inc Casting aluminum alloy, casting of aluminum alloy and manufacturing method therefor
JP2005281829A (en) * 2004-03-30 2005-10-13 Honda Motor Co Ltd Al-si based alloy and alloy member made of the alloy
PL1612286T3 (en) * 2004-06-29 2011-12-30 Rheinfelden Aluminium Gmbh Aluminium alloy for pressure die casting
JP2006183122A (en) * 2004-12-28 2006-07-13 Denso Corp Aluminum alloy for die casting and method for producing aluminum alloy casting

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2455505A1 (en) * 2010-11-19 2012-05-23 Martinrea Honsel Germany GmbH Cylinder head for combustion engines made of an aluminium alloy
DE102018214739A1 (en) * 2018-08-30 2020-03-05 Magna BDW technologies GmbH High-strength housing, as well as processes for the production of high-strength cast housings

Also Published As

Publication number Publication date
JP2009543944A (en) 2009-12-10
WO2008006908A1 (en) 2008-01-17
DE102006032699B4 (en) 2010-09-09
US20090297393A1 (en) 2009-12-03
ATE456682T1 (en) 2010-02-15
SI2041328T1 (en) 2010-04-30
CA2657731A1 (en) 2008-01-17
ES2340218T3 (en) 2010-05-31
EP2041328A1 (en) 2009-04-01
DE102006032699A1 (en) 2008-01-17
DE502007002755D1 (en) 2010-03-18

Similar Documents

Publication Publication Date Title
EP2653579B1 (en) Aluminium alloy
EP2735621B1 (en) Aluminium die casting alloy
EP3235917B1 (en) Alloy for pressure die casting
EP2954081B1 (en) Aluminium casting alloy
DE3135943C2 (en) Aluminum-silicon alloys and processes for their manufacture
EP2041328B1 (en) Aluminum alloy and the utilization thereof for a cast component, in particular a motor vehicle
EP2700727B1 (en) Al casting alloy
EP3176275B2 (en) Aluminium-silicon die casting alloy method for producing a die casting component made of the alloy, and a body component with a die casting component
EP3159422B1 (en) Alloy for pressure die casting
DE102016118729A1 (en) A new high-pressure injection molding process for aluminum alloys for high temperature and corrosive environments
DE102017114162A1 (en) HIGH STRENGTH AND HIGH CRYAN RESISTANT ALUMINUM ALLOY ALLOYS AND HPDC MOTOR BLOCKS
EP1683882A1 (en) Aluminium alloy with low quench sensitivity and process for the manufacture of a semi-finished product of this alloy
EP1917372B1 (en) Aluminium casting alloy
WO2017174185A1 (en) Aluminum alloy, in particular for a casting method, and method for producing a component from such an aluminum alloy
DE102004007704A1 (en) Production of a material based on an aluminum alloy used for producing motor vehicle engine components comprises forming an aluminum base alloy containing silicon and magnesium, hot deforming and heat treating
DE102013002632B4 (en) Aluminum-silicon diecasting alloy and method of making a die cast component
WO2005045081A1 (en) Aluminium alloy, component made therefrom and method for production of said component
EP3423606B1 (en) Aluminium casting alloy
EP1234893B1 (en) Cast alloy of the type AlMgSi
DE102021131973A1 (en) Die-cast aluminum alloy
DE102012021634B4 (en) A method of making a vehicle body having a magnesium alloy body member, and a vehicle body made therewith
EP3966358B1 (en) Component, in particular for a vehicle, and method for producing such a component
DE102006040720A1 (en) Aluminum casting alloy contains alloying additions of silicon, molybdenum, iron, manganese, titanium, strontium and other components, for casting workpieces and structural parts, e.g. for motor vehicle chassis parts
DE10310453A1 (en) Die-cast component and process for its manufacture
EP0211831B2 (en) Process for the cold extrusion of aluminium or aluminium alloys

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090119

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502007002755

Country of ref document: DE

Date of ref document: 20100318

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KELLER & PARTNER PATENTANWAELTE AG WINTERTHUR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2340218

Country of ref document: ES

Kind code of ref document: T3

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100527

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100527

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100427

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: ALUMINIUM RHEINFELDEN GMBH

Effective date: 20101022

BERE Be: lapsed

Owner name: BDW TECHNOLOGIES G.M.B.H.

Effective date: 20100731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007002755

Country of ref document: DE

Representative=s name: RAUSCH, GABRIELE, DIPL.-PHYS. DR.RER.NAT., DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007002755

Country of ref document: DE

Representative=s name: GABRIELE RAUSCH, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100713

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100728

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

R26 Opposition filed (corrected)

Opponent name: ALUMINIUM RHEINFELDEN GMBH

Effective date: 20101022

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: MAGNA BDW TECHNOLGIES GMBH

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20130910

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 502007002755

Country of ref document: DE

Effective date: 20130910

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: EIGERSTRASSE 2 POSTFACH, 3000 BERN 14 (CH)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007002755

Country of ref document: DE

Representative=s name: RAUSCH, GABRIELE, DIPL.-PHYS. DR.RER.NAT., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007002755

Country of ref document: DE

Owner name: MAGNA BDW TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: BDW TECHNOLOGIES GMBH, 85570 MARKT SCHWABEN, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: BDW TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: BDW TECHNOLOGIES GMBH, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230719

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230724

Year of fee payment: 17

Ref country code: GB

Payment date: 20230720

Year of fee payment: 17

Ref country code: ES

Payment date: 20230926

Year of fee payment: 17

Ref country code: CH

Payment date: 20230802

Year of fee payment: 17

Ref country code: AT

Payment date: 20230720

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20230629

Year of fee payment: 17

Ref country code: FR

Payment date: 20230725

Year of fee payment: 17

Ref country code: DE

Payment date: 20230719

Year of fee payment: 17