EP2088216B1 - Aluminium alloy - Google Patents

Aluminium alloy Download PDF

Info

Publication number
EP2088216B1
EP2088216B1 EP20090000917 EP09000917A EP2088216B1 EP 2088216 B1 EP2088216 B1 EP 2088216B1 EP 20090000917 EP20090000917 EP 20090000917 EP 09000917 A EP09000917 A EP 09000917A EP 2088216 B1 EP2088216 B1 EP 2088216B1
Authority
EP
European Patent Office
Prior art keywords
weight
vanadium
gew
bis
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20090000917
Other languages
German (de)
French (fr)
Other versions
EP2088216A1 (en
Inventor
Franz Dr. Riemelmoser
Thomas Waltenberger
Peter Prof. Dr. Uggowitzer
Jörg Prof. Dr. Löffler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Audi AG
Original Assignee
Audi AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40551896&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2088216(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Audi AG filed Critical Audi AG
Publication of EP2088216A1 publication Critical patent/EP2088216A1/en
Application granted granted Critical
Publication of EP2088216B1 publication Critical patent/EP2088216B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon

Definitions

  • the present invention relates to aluminum alloys of the alloy group 6xxx and extruded, safety-relevant motor vehicle profile components produced therefrom.
  • Aluminum alloys of class 6xxx are AlMgSi type aluminum alloys. These can be assigned to the family of hardenable aluminum alloys. Such aluminum alloys generally contain magnesium in a concentration range of 0.2 to 1.2 wt% and silicon in a concentration range of 0.3 to 1.5 wt%. Curing aluminum alloys are in the JP 2007-270204 A . DE 32 43 371 A1 , of the EP 0 805 219 A1 and the WO 00/52216 A1 described. Depending on the desired property profile, the magnesium and silicon concentrations are selected and, if appropriate, further alloying elements are added, for example manganese up to 0.6% by weight, copper up to 0.5% by weight, chromium up to 0.25% by weight.
  • % and vanadium up to 0.35 wt .-%.
  • Such alloys are known and are described, for example, under the designations AA6016 (0.2 to 0.6 wt.% Mg, 0.9 to 1.5 wt.% Si), AA6060 (0.35 to 0.6 wt. -% Mg, 0.3 to 0.6 wt .-% Si) and AA6061 (0.8 to 1.2 wt .-% Mg, 0.4 to 0.8 wt .-% Si) produced and sold.
  • Aluminum alloys of the type mentioned which are used in the field of vehicle construction, must have a high degree of energy absorption capacity or a high absorption of deformation energy before fracture. This is achieved inter alia by a high solidification exponent or by a high uniformity and elongation at break of the alloy. Such aluminum alloys are used, for example, in body structures, in so-called crash management systems and chassis parts.
  • Known aluminum alloys of the type AlMgSi with high strength eg AW 6082
  • the aluminum alloy according to the invention has a high yield strength, a high solidification coefficient, a high elongation at break and a high degree of formability and energy absorption capacity.
  • the refinement of the aluminum alloy according to the invention is based inter alia on the finding that the high-melting alloying elements titanium, vanadium, hafnium and tantalum on the one hand solidify from the melt due to their enrichment on the solidification front and on the other hand inhibit grain growth in hot working by the formation of fine intermetallic phases.
  • the addition of the high-melting transition metals titanium, vanadium, hafnium and tantalum is responsible for the fact that the aluminum alloy according to the invention is finely recrystallised after hot working or after a solution annealing.
  • the intermetallic phases formed during the solidification of the residual melt also influence the formation of the iron-containing phases of the AlFeMnSi type, which are advantageously present in a finer form and more homogeneously distributed.
  • a homogeneous and finely recrystallized microstructure with fine intermetallic phases is characterized by a higher level of strength in comparison to known coarsely recrystallized alloys and moreover has a higher solidification coefficient or a higher ductility than known aluminum alloys.
  • the solidification of the high-melting alloying elements titanium, vanadium, hafnium and tantalum which occurs during solidification on the solidification front, delays the grain growth during solidification and at the same time leads to the activation of new solidification nuclei.
  • the alloying elements titanium, vanadium, hafnium and tantalum have the highest degree of accumulation tendency. Compared to the main alloying elements magnesium and silicon, the enrichment of these alloying elements is much more pronounced, for titanium it is about a factor of 70 stronger, for vanadium about a factor of 30, for hafnium about a factor of 10 and for tantalum about a factor of 4 ,
  • the aluminum alloys according to the invention advantageously have a strictly balanced element concentration and properties of microalloys by the refractory transition metals titanium, vanadium, hafnium and tantalum.
  • the interactions of all alloying elements and the reaction kinetics as well as the grain growth criteria are taken into account, the advantages being in particular a homogeneous fine grain structure of the resulting aluminum alloy, a high cold workability and an improvement in ductility.
  • the 70-fold concentration of titanium and the 30-fold concentration of vanadium in the alloy in the sum is less than 15 wt .-%.
  • concentration of the alloying elements titanium, vanadium, hafnium and tantalum or titanium and vanadium are particularly advantageous with regard to the formation of favorable intermetallic phases. This results in a particularly homogeneous and fine-grained microstructure of the resulting Aluminum alloy and high ductility of a semifinished product or component produced therefrom. In addition, they have a high cold deformation capacity.
  • An inventive safety-relevant profile component consists of an aluminum alloy as described above.
  • the use of the aluminum alloy according to the invention results in a particularly high deformability of the component and a high energy absorption capacity of the component.
  • the components may be, for example, structural components of motor vehicles.
  • a semifinished product according to the invention consists of an aluminum alloy described above.
  • the semi-finished product advantageously has a high deformability due to the homogeneous, fine-grained microstructure and therefore, for example, a high cold workability.
  • the aluminum alloy according to the invention can be used in a variety of applications.
  • This process ensures the production of a profile part with a high yield strength, a high solidification coefficient, a high uniformity or elongation at break and increased formability and increased energy absorption capacity.
  • a particularly favorable property profile of the semifinished product with regard to its energy absorption capacity is achieved on the extruded semifinished product.
  • the hardening treatment according to process step d) can take place during process step c). Further advantageous embodiments of the method are shown when the solution annealing according to method step d) in a temperature range between 500 ° C and 560 ° C for a period of between 5 min. and 2 hours.
  • the hot aging or heat curing according to process step e) is advantageously carried out in a temperature range between 140 ° C and 215 ° C for a period of between 1 h and 20 h.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Body Structure For Vehicles (AREA)
  • Extrusion Of Metal (AREA)
  • Forging (AREA)

Description

Die vorliegende Erfindung betrifft Aluminiumlegierungen der Legierungsgruppe 6xxx und daraus hergestellte, stranggepresste, sicherheitsrelevante Kraftfahrzeug-Profilbauteile.The present invention relates to aluminum alloys of the alloy group 6xxx and extruded, safety-relevant motor vehicle profile components produced therefrom.

Bei Aluminiumlegierungen der Klasse 6xxx handelt es sich um Aluminiumlegierungen des Typs AlMgSi. Diese können der Familie der aushärtbaren Aluminiumlegierungen zugeordnet werden. Derartige Aluminiumlegierungen enthalten im Allgemeinen Magnesium in einem Konzentrationsbereich von 0,2 bis 1,2 Gew.-% und Silizium in einem Konzentrationsbereich von 0,3 bis 1,5 Gew.-%. Aushärtbare Aluminiumlegierungen sind in der JP 2007-270204 A , DE 32 43 371 A1 , der EP 0 805 219 A1 und der WO 00/52216 A1 beschrieben. Je nach erwünschtem Eigenschaftsprofil werden die Magnesium- und Siliziumkonzentrationen gewählt und gegebenenfalls weitere Legierungselemente zugesetzt, wie beispielsweise Mangan bis zu 0,6 Gew.-%, Kupfer bis zu 0,5 Gew.-%, Chrom bis zu 0,25 Gew.-% und Vanadium bis zu 0,35 Gew.-%. Solche Legierungen sind bekannt und werden beispielsweise unter den Bezeichnungen AA6016 (0,2 bis 0,6 Gew.-% Mg, 0,9 bis 1,5 Gew.-% Si), AA6060 (0,35 bis 0,6 Gew.-% Mg, 0,3 bis 0,6 Gew.-% Si) und AA6061 (0,8 bis 1,2 Gew.-% Mg, 0,4 bis 0,8 Gew.-% Si) hergestellt und vertrieben.Aluminum alloys of class 6xxx are AlMgSi type aluminum alloys. These can be assigned to the family of hardenable aluminum alloys. Such aluminum alloys generally contain magnesium in a concentration range of 0.2 to 1.2 wt% and silicon in a concentration range of 0.3 to 1.5 wt%. Curing aluminum alloys are in the JP 2007-270204 A . DE 32 43 371 A1 , of the EP 0 805 219 A1 and the WO 00/52216 A1 described. Depending on the desired property profile, the magnesium and silicon concentrations are selected and, if appropriate, further alloying elements are added, for example manganese up to 0.6% by weight, copper up to 0.5% by weight, chromium up to 0.25% by weight. % and vanadium up to 0.35 wt .-%. Such alloys are known and are described, for example, under the designations AA6016 (0.2 to 0.6 wt.% Mg, 0.9 to 1.5 wt.% Si), AA6060 (0.35 to 0.6 wt. -% Mg, 0.3 to 0.6 wt .-% Si) and AA6061 (0.8 to 1.2 wt .-% Mg, 0.4 to 0.8 wt .-% Si) produced and sold.

Aluminiumlegierungen der genannten Art, die im Bereich des Fahrzeugbaus eingesetzt werden, müssen ein hohes Maß an Energieabsorptionsvermögen bzw. eine hohe Absorption von Verformungsenergie vor dem Bruch aufweisen. Dies wird unter anderem durch einen hohen Verfestigungsexponenten erzielt bzw. durch eine hohe Gleichmaß- und Bruchdehnung der Legierung. Derartige Aluminiumlegierungen finden Einsatz zum Beispiel in Karosseriestrukturen, in sogenannten Crashmanagementsystemen und Fahrwerksteilen. Bekannte Aluminiumlegierungen vom Typ AlMgSi mit hoher Festigkeit (z.B. AW 6082) weisen jedoch den Nachteil auf, dass sie relativ grobrekristallisiert ausgebildet sind und daher geringere Verfestigungskoeffizienten, eine geringere Duktilität und damit auch ein verringertes Energieaufnahmevermögen aufweisen.Aluminum alloys of the type mentioned, which are used in the field of vehicle construction, must have a high degree of energy absorption capacity or a high absorption of deformation energy before fracture. This is achieved inter alia by a high solidification exponent or by a high uniformity and elongation at break of the alloy. Such aluminum alloys are used, for example, in body structures, in so-called crash management systems and chassis parts. Known aluminum alloys of the type AlMgSi with high strength (eg AW 6082), however, have the disadvantage that they are formed relatively coarsely recrystallized and therefore lower solidification, a have lower ductility and thus a reduced energy absorption capacity.

Es ist daher Aufgabe der vorliegenden Erfindung, eine Aluminiumlegierung der eingangs genannten Art bereitzustellen, welche gleichzeitig ein hohes Streckgrenzenniveau, einen hohen Verfestigungskoeffizienten und eine hohe Gleichmaß- bzw. Bruchdehnung sowie ein hohes Maß an Umformbarkeit und Energieaufnahmevermögen aufweist.It is therefore an object of the present invention to provide an aluminum alloy of the type mentioned, which simultaneously has a high yield strength level, a high solidification coefficient and a high uniformity or elongation at break and a high degree of formability and energy absorption capacity.

Es ist weiterhin Aufgabe der vorliegenden Erfindung stranggepresste Kraftfahrzeug-Profilbauteile aus einer solchen Aluminiumlegierung aufzuzeigen, mit denen sichere Fahrzeug-Tragstrukturen aufgebaut werden können.It is a further object of the present invention to show extruded motor vehicle profile components made of such an aluminum alloy with which safe vehicle support structures can be constructed.

Vorteilhafte Ausgestaltungen der Erfindung sind in den jeweiligen Unteransprüchen beschrieben.Advantageous embodiments of the invention are described in the respective subclaims.

Eine erfindungsgemäße Aluminiumlegierung weist folgende Zusammensetzung auf:

  • 0,3 bis 11,5 Gew.-% Silizium,
  • 0,06 bis 1,2 Gew.-% Magnesium,
  • 0,05 bis 0,9 Gew.-% Mangan,
  • 0,01 bis 0,5 Gew.-% Kupfer,
  • 0,05 bis 0,5 Gew.-% Eisen,
  • 0,05 bis 0,25 Gew.-% Chrom,
  • 0,02 bis 0,9 Gew.-% Titan,
  • 0,05 bis 0,3 Gew.-% Vanadium,
  • 0,02 bis 0,3 Gew.-% Hafnium,
  • 0,02 bis 0,3 Gew.-% Tantal und als Rest Aluminium und unvermeidbare Verunreinigungen von insgesamt maximal 0,1 Gew.-%.
An aluminum alloy according to the invention has the following composition:
  • 0.3 to 11.5% by weight of silicon,
  • 0.06 to 1.2% by weight of magnesium,
  • 0.05 to 0.9 wt% manganese,
  • 0.01 to 0.5% by weight of copper,
  • 0.05 to 0.5% by weight of iron,
  • 0.05 to 0.25% by weight of chromium,
  • 0.02 to 0.9% by weight of titanium,
  • 0.05 to 0.3 wt.% Vanadium,
  • 0.02 to 0.3% by weight hafnium,
  • 0.02 to 0.3 wt .-% tantalum and balance aluminum and unavoidable impurities of a maximum of 0.1 wt .-%.

Die erfindungsgemäße Aluminiumlegierung weist ein hohes Streckgrenzenniveau, einen hohen Verfestigungskoeffizienten, eine hohe Gleichmaß- bzw. Bruchdehnung sowie ein hohes Maß an Umformbarkeit und Energieaufnahmevermögen auf. Der Ausgestaltung der erfindungsgemäßen Aluminiumlegierung liegt unter anderem die Erkenntnis zugrunde, dass die hochschmelzenden Legierungselemente Titan, Vanadium, Hafnium und Tantal einerseits beim Erstarren aus der Schmelze durch ihre Anreicherung an der Erstarrungsfront und andererseits bei der Warmumformung durch die Bildung feiner intermetallischer Phasen das Kornwachstum hemmen. Der Zusatz der hochschmelzenden Übergangsmetalle Titan, Vanadium, Hafnium und Tantal ist dafür verantwortlich, dass die erfindungsgemäße Aluminiumlegierung nach der Warmumformung oder auch nach einer Lösungsglühung feinrekristallisiert vorliegt. Die bei der Erstarrung der Restschmelze gebildeten intermetallischen Phasen beeinflussen zudem die Ausbildung der eisenhaltigen Phasen vom Typ AlFeMnSi, die vorteilhafterweise in feinerer Form und homogener verteilt vorliegen. Ein derart homogenes und feinrekristallisiertes Gefüge mit feinen intermetallischen Phasen zeichnet sich aber durch ein höheres Festigkeitsniveau im Vergleich zu bekannten grobrekristallisierten Legierungen aus und weist darüber hinaus einen höheren Verfestigungskoeffizienten bzw. eine höhere Duktilität als bekannte Aluminiumlegierungen auf. Zudem wurde beobachtet, dass die während der Erstarrung an der Erstarrungsfront auftretende Anreicherung der hochschmelzenden Legierungselemente Titan, Vanadium, Hafnium und Tantal das Kornwachstum während der Erstarrung verzögert und gleichzeitig zur Aktivierung neuer Erstarrungskeime führt. Dabei weisen die Legierungselemente Titan, Vanadium, Hafnium und Tantal den höchsten Grad an Anreicherungstendenz auf. Im Vergleich zu den Hauptlegierungselementen Magnesium und Silizium ist die Anreicherung dieser Legierungselemente deutlich ausgeprägter, für Titan ist sie etwa um den Faktor 70 stärker, für Vanadium etwa um den Faktor 30, für Hafnium etwa um den Faktor 10 und für Tantal etwa um den Faktor 4.The aluminum alloy according to the invention has a high yield strength, a high solidification coefficient, a high elongation at break and a high degree of formability and energy absorption capacity. The refinement of the aluminum alloy according to the invention is based inter alia on the finding that the high-melting alloying elements titanium, vanadium, hafnium and tantalum on the one hand solidify from the melt due to their enrichment on the solidification front and on the other hand inhibit grain growth in hot working by the formation of fine intermetallic phases. The addition of the high-melting transition metals titanium, vanadium, hafnium and tantalum is responsible for the fact that the aluminum alloy according to the invention is finely recrystallised after hot working or after a solution annealing. The intermetallic phases formed during the solidification of the residual melt also influence the formation of the iron-containing phases of the AlFeMnSi type, which are advantageously present in a finer form and more homogeneously distributed. However, such a homogeneous and finely recrystallized microstructure with fine intermetallic phases is characterized by a higher level of strength in comparison to known coarsely recrystallized alloys and moreover has a higher solidification coefficient or a higher ductility than known aluminum alloys. In addition, it has been observed that the solidification of the high-melting alloying elements titanium, vanadium, hafnium and tantalum, which occurs during solidification on the solidification front, delays the grain growth during solidification and at the same time leads to the activation of new solidification nuclei. The alloying elements titanium, vanadium, hafnium and tantalum have the highest degree of accumulation tendency. Compared to the main alloying elements magnesium and silicon, the enrichment of these alloying elements is much more pronounced, for titanium it is about a factor of 70 stronger, for vanadium about a factor of 30, for hafnium about a factor of 10 and for tantalum about a factor of 4 ,

In einer weiteren vorteilhaften Ausgestaltung der erfindungsgemäßen Aluminiumlegierung weist diese folgende Zusammensetzung auf:

  • 0,6 bis 1,3 Gew.-% Silizium,
  • 0,4 bis 1,2 Gew.-% Magnesium,
  • 0,2 bis 0,6 Gew.-% Mangan,
  • 0,2 bis 0,5 Gew.-% Kupfer,
  • 0,2 bis 0,5 Gew.-% Eisen,
  • 0,05 bis 0,25 Gew.-% Chrom,
  • 0,02 bis 0,2 Gew.-% Titan,
  • 0,05 bis 0,2 Gew.-% Vanadium,
  • 0,02 bis 0,2 Gew.-% Hafnium,
  • 0,02 bis 0,2 Gew.-% Tantal und als Rest Aluminium und unvermeidbare Verunreinigungen von insgesamt maximal 0,1 Gew.-% enthält.
In a further advantageous embodiment of the aluminum alloy according to the invention, it has the following composition:
  • 0.6 to 1.3% by weight of silicon,
  • 0.4 to 1.2% by weight of magnesium,
  • 0.2 to 0.6% by weight of manganese,
  • 0.2 to 0.5% by weight of copper,
  • 0.2 to 0.5% by weight of iron,
  • 0.05 to 0.25% by weight of chromium,
  • From 0.02 to 0.2% by weight of titanium,
  • From 0.05 to 0.2% by weight of vanadium,
  • 0.02 to 0.2% by weight hafnium,
  • 0.02 to 0.2 wt .-% tantalum and the remainder aluminum and unavoidable impurities of a maximum of 0.1 wt .-% contains.

In einer weiteren vorteilhaften Ausgestaltung der erfindungsgemäßen Aluminiumlegierung weist diese folgende Zusammensetzung auf:

  • 0,9 bis 1,1 Gew.-% Silizium,
  • 0,7 bis 0,9 Gew.-% Magnesium,
  • 0,3 bis 0,5 Gew.-% Mangan,
  • 0,2 bis 0,5 Gew.-% Kupfer,
  • 0,2 bis 0,4 Gew.-% Eisen,
  • 0,05 bis 0,15 Gew.-% Chrom,
  • 0,02 bis 0,15 Gew.-% Titan,
  • 0,05 bis 0,2 Gew.-% Vanadium,
  • 0,02 bis 0,15 Gew.-% Hafnium,
  • 0,02 bis 0,15 Gew.-% Tantal und als Rest Aluminium und unvermeidbare Verunreinigungen von insgesamt maximal 0,1 Gew.-% enthält.
In a further advantageous embodiment of the aluminum alloy according to the invention, it has the following composition:
  • 0.9 to 1.1% by weight of silicon,
  • 0.7 to 0.9% by weight of magnesium,
  • From 0.3 to 0.5% by weight of manganese,
  • 0.2 to 0.5% by weight of copper,
  • 0.2 to 0.4% by weight of iron,
  • 0.05 to 0.15% by weight of chromium,
  • 0.02 to 0.15% by weight of titanium,
  • From 0.05 to 0.2% by weight of vanadium,
  • 0.02 to 0.15% by weight hafnium,
  • 0.02 to 0.15 wt .-% tantalum and the remainder aluminum and unavoidable impurities of a total of 0.1 wt .-% maximum.

Die erfindungsgemäß zusammengesetzten Aluminiumlegierungen weisen vorteilhafterweise eine streng ausgewogene Elementkonzentration und Eigenschaften von Mikrolegierungen durch die hochschmelzenden Übergangsmetalle Titan, Vanadium, Hafnium und Tantal auf. Dabei sind die Wechselwirkungen aller Legierungselemente und die Reaktionskinetik sowie die Kornwachstumskriterien berücksichtigt, wobei die Vorteile insbesondere in einer homogenen Feinkornstruktur der resultierenden Aluminiumlegierung, einer hohen Kaltumformbarkeit und einer Verbesserung der Duktilität liegen.The aluminum alloys according to the invention advantageously have a strictly balanced element concentration and properties of microalloys by the refractory transition metals titanium, vanadium, hafnium and tantalum. The interactions of all alloying elements and the reaction kinetics as well as the grain growth criteria are taken into account, the advantages being in particular a homogeneous fine grain structure of the resulting aluminum alloy, a high cold workability and an improvement in ductility.

In weiteren vorteilhaften Ausgestaltungen der erfindungsgemäßen Aluminiumlegierung beträgt die Konzentration der Elemente Titan, Vanadium, Hafnium und Tantal in der Legierung in der Summe weniger als 0,4 Gew.-%. Zudem ist es möglich, dass die 70-fache Konzentration an Titan und die 30-fache Konzentration an Vanadium in der Legierung in der Summe weniger als 15 Gew.-% beträgt. Derartige Einschränkungen der Konzentration der Legierungselemente Titan, Vanadium, Hafnium und Tantal oder Titan und Vanadium sind insbesondere im Hinblick auf die Bildung günstig wirkender intermetallischer Phasen von Vorteil. Es ergibt sich eine besonders homogene und feinkörnige Gefügestruktur der resultierenden Aluminiumlegierung und eine hohe Verformbarkeit eines daraus hergestellten Halbzeugs oder Bauteils. Zudem weisen sie eine hohe Kaltverformungskapazität auf.In further advantageous embodiments of the aluminum alloy according to the invention, the concentration of the elements titanium, vanadium, hafnium and tantalum in the alloy in the sum of less than 0.4 wt .-%. In addition, it is possible that the 70-fold concentration of titanium and the 30-fold concentration of vanadium in the alloy in the sum is less than 15 wt .-%. Such restrictions on the concentration of the alloying elements titanium, vanadium, hafnium and tantalum or titanium and vanadium are particularly advantageous with regard to the formation of favorable intermetallic phases. This results in a particularly homogeneous and fine-grained microstructure of the resulting Aluminum alloy and high ductility of a semifinished product or component produced therefrom. In addition, they have a high cold deformation capacity.

Ein erfindungsgemäßes sicherheitsrelevantes Profilbauteil besteht aus einer Aluminiumlegierung wie im Vorhergehenden beschrieben. Durch die Verwendung der erfindungsgemäßen Aluminiumlegierung ergibt sich eine besonders hohe Verformbarkeit des Bauteils sowie ein hohes Energieaufnahmevermögen des Bauteils. Bei den Bauteilen kann es sich zum Beispiel um Strukturbauteile von Kraftfahrzeugen handeln.An inventive safety-relevant profile component consists of an aluminum alloy as described above. The use of the aluminum alloy according to the invention results in a particularly high deformability of the component and a high energy absorption capacity of the component. The components may be, for example, structural components of motor vehicles.

Ein erfindungsgemäßes Halbzeug besteht aus einer im Vorhergehenden beschriebenen Aluminiumlegierung. Das Halbzeug weist vorteilhafterweise eine hohe Verformbarkeit aufgrund der homogenen, feinkörnigen Gefügestruktur und daher zum Beispiel eine hohe Kaltumformbarkeit auf.A semifinished product according to the invention consists of an aluminum alloy described above. The semi-finished product advantageously has a high deformability due to the homogeneous, fine-grained microstructure and therefore, for example, a high cold workability.

Die erfindungsgemäße Aluminiumlegierung kann in einer Vielzahl von Anwendungen Verwendung finden.The aluminum alloy according to the invention can be used in a variety of applications.

Ein beispielhaftes Verfahren zur Herstellung eines Profilteils, insbesondere eines Profilteils zur Verwendung im Fahrzeugbau umfasst folgende Schritte:

  1. a) Bereitstellung eines Gussbolzens aus einer Aluminiumlegierung gemäss einem der Ansprüche 1 bis 5;
  2. b) Ein- oder mehrstufiges Erwärmen des Gussbolzens bei Temperaturen zwischen 470°C und 580°C;
  3. c) Warmumformung des Gussbolzens mittels Strangpressen bei Temperaturen zwischen 400°C und 580°C zur Ausbildung des Halbzeugs;
  4. d) Aushärtebehandlung des im Verfahrensschritt c) erzeugten Halbzeugs mittels Lösungsglühen für einen vorbestimmten Zeitraum in einem ersten Temperaturbereich; und
  5. e) Warmauslagerung bzw. Warmaushärten des Halbzeugs für einen vorbestimmten Zeitraum in einem vorbestimmten zweiten Temperaturbereich, wobei der zweite Temperaturbereich niedriger ist als der erste Temperaturbereich des Lösungsglühens.
An exemplary method for producing a profile part, in particular a profile part for use in vehicle construction, comprises the following steps:
  1. a) providing a cast bolt of an aluminum alloy according to any one of claims 1 to 5;
  2. b) one or more stages of heating the cast bolt at temperatures between 470 ° C and 580 ° C;
  3. c) hot forming of the cast bolt by means of extrusion at temperatures between 400 ° C and 580 ° C to form the semi-finished product;
  4. d) curing treatment of the semifinished product produced in process step c) by solution annealing for a predetermined period of time in a first temperature range; and
  5. e) hot aging or hot curing of the semifinished product for a predetermined period in a predetermined second Temperature range, wherein the second temperature range is lower than the first temperature range of the solution annealing.

Dieses Verfahren gewährleistet die Herstellung eines Profilteils mit einem hohen Streckgrenzenniveau, einem hohen Verfestigungskoeffizienten, einer hohen Gleichmass- bzw. Bruchdehnung sowie einer erhöhten Umformbarkeit und einem erhöhten Energieaufnahmevermögen. Insbesondere durch die Aushärtungsbehandlung mittels Lösungsglühen wird ein besonders günstiges Eigenschaftsprofil des Halbzeugs bezüglich seiner Energieabsorptionsfähigkeit am stranggepressten Halbzeug erzielt. Dabei kann die Aushärtebehandlung gemäss Verfahrensschritt d) während des Verfahrensschritts c) erfolgen. Weitere vorteilhafte Ausgestaltungen des Verfahrens zeigen sich, wenn das Lösungsglühen gemäss Verfahrensschritt d) in einem Temperaturbereich zwischen 500°C und 560°C für einen Zeitraum zwischen 5 min. und 2 Std. erfolgt. Das Warmauslagern bzw. Warmaushärten gemäss Verfahrensschritt e) erfolgt vorteilhafterweise in einem Temperaturbereich zwischen 140°C und 215°C für einen Zeitraum zwischen 1 Std. und 20 Std.This process ensures the production of a profile part with a high yield strength, a high solidification coefficient, a high uniformity or elongation at break and increased formability and increased energy absorption capacity. In particular, by the hardening treatment by means of solution annealing, a particularly favorable property profile of the semifinished product with regard to its energy absorption capacity is achieved on the extruded semifinished product. The hardening treatment according to process step d) can take place during process step c). Further advantageous embodiments of the method are shown when the solution annealing according to method step d) in a temperature range between 500 ° C and 560 ° C for a period of between 5 min. and 2 hours. The hot aging or heat curing according to process step e) is advantageously carried out in a temperature range between 140 ° C and 215 ° C for a period of between 1 h and 20 h.

Claims (7)

  1. Aluminium alloy of the alloy group 6xxx, characterised by the composition
    0.3 to 11.5 % by weight silicon,
    0.06 to 1.2 % by weight magnesium,
    0.05 to 0.9 % by weight manganese,
    0.01 to 0.5 % by weight copper,
    0.05 to 0.5 % by weight iron,
    0.05 to 0.25 % by weight chromium,
    0.02 to 0.9 % by weight titanium,
    0.05 to 0.3 % by weight vanadium,
    0.02 to 0.3 % by weight hafnium,
    0.02 to 0.3 % by weight tantalum, and, as residue, aluminium and unavoidable contaminants at a maximum of 0.1 % by weight altogether.
  2. Aluminium alloy according to claim 1, characterised in that the alloy contains
    0.6 to 1.3 % by weight silicon,
    0.4 to 1.2 % by weight magnesium,
    0.2 to 0.6 % by weight manganese,
    0.2 to 0.5 % by weight copper,
    0.2 to 0.5 % by weight iron,
    0.05 to 0.25 % by weight chromium,
    0.02 to 0.2 % by weight titanium,
    0.05 to 0.2 % by weight vanadium,
    0.02 to 0.2 % by weight hafnium,
    0.02 to 0.2 % by weight tantalum, and, as residue, aluminium and unavoidable contaminants at a maximum of 0.1 % by weight altogether.
  3. Aluminium alloy according to claim 1, characterised in that the alloy contains
    0.9 to 1.1 % by weight silicon,
    0.7 to 0.9 % by weight magnesium,
    0.3 to 0.5 % by weight manganese,
    0.2 to 0.5 % by weight copper,
    0.2 to 0.4 % by weight iron,
    0.05 to 0.15 % by weight chromium,
    0.02 to 0.15 % by weight titanium,
    0.05 to 0.2 % by weight vanadium,
    0.02 to 0.15 % by weight hafnium,
    0.02 to 0.15 % by weight tantalum, and, as residue, aluminium and unavoidable contaminants at a maximum of 0.1 % by weight altogether.
  4. Aluminium alloy according to any of the preceding claims, characterised in that the concentration of the elements titanium, vanadium, hafnium and tantalum in the alloy is less than 0.4 % by weight in total.
  5. Aluminium alloy according to any of the preceding claims, characterised in that the 70 times the concentration of titanium and the 30 times the concentration of vanadium in the alloy is less than 15.0 % by weight in total.
  6. Use of an aluminium alloy according to any of claims 1 to 5 for producing an extruded, safety-relevant motor vehicle profile component.
  7. Extruded, safety-relevant motor vehicle component made of an aluminium alloy according to any of claims 1 to 5.
EP20090000917 2008-02-07 2009-01-23 Aluminium alloy Active EP2088216B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200810008326 DE102008008326A1 (en) 2008-02-07 2008-02-07 aluminum alloy

Publications (2)

Publication Number Publication Date
EP2088216A1 EP2088216A1 (en) 2009-08-12
EP2088216B1 true EP2088216B1 (en) 2013-03-20

Family

ID=40551896

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20090000917 Active EP2088216B1 (en) 2008-02-07 2009-01-23 Aluminium alloy

Country Status (3)

Country Link
EP (1) EP2088216B1 (en)
DE (1) DE102008008326A1 (en)
ES (1) ES2403211T3 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013525608A (en) 2010-04-26 2013-06-20 サパ アーベー Damage-resistant aluminum material with hierarchical microstructure
PL3339457T3 (en) * 2012-04-25 2020-12-14 Norsk Hydro Asa Extruded al-mg-si aluminium alloy profile with improved properties
DE102018216224A1 (en) * 2018-07-02 2020-01-02 Volkswagen Aktiengesellschaft Engine for a motor vehicle comprising a component comprising a light metal alloy as well as a cylinder head and cylinder crankcase
CN112522552B (en) * 2020-11-04 2022-04-26 佛山科学技术学院 Corrosion-resistant aluminum alloy and preparation method and application thereof

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2287365A1 (en) * 1974-10-10 1976-05-07 Cegedur Hot worked, hardened tempered light alloy vehicle bumper - in tube form with unequal wall thickness
US4072542A (en) * 1975-07-02 1978-02-07 Kobe Steel, Ltd. Alloy sheet metal for fins of heat exchanger and process for preparation thereof
DE3243371A1 (en) 1982-09-13 1984-03-15 Schweizerische Aluminium AG, 3965 Chippis ALUMINUM ALLOY
US4637842A (en) * 1984-03-13 1987-01-20 Alcan International Limited Production of aluminum alloy sheet and articles fabricated therefrom
JPS63157831A (en) * 1986-12-18 1988-06-30 Toyo Alum Kk Heat-resisting aluminum alloy
JP2753739B2 (en) * 1989-08-31 1998-05-20 健 増本 Method for producing aluminum-based alloy foil or aluminum-based alloy fine wire
JPH07166285A (en) * 1993-06-08 1995-06-27 Shinko Alcoa Yuso Kizai Kk Hardened al alloy sheet by baking and production thereof
JP3157068B2 (en) * 1993-07-05 2001-04-16 古河電気工業株式会社 Manufacturing method of aluminum alloy sheet for forming
JPH07228957A (en) * 1994-02-18 1995-08-29 Sky Alum Co Ltd Production of aluminum alloy sheet having excellent formability and quench-hardenability
DE69633002T2 (en) 1996-05-03 2005-07-21 Aluminum Company Of America Vehicle frame components with improved energy absorption capability, method for their manufacture and an alloy
DE69825414T3 (en) * 1998-02-17 2011-05-05 Aleris Aluminum Bonn Gmbh Aluminum alloy and process for its preparation
JP2000178673A (en) * 1998-12-10 2000-06-27 Kobe Steel Ltd Intermediate material of high formability aluminum alloy sheet
CH693673A5 (en) 1999-03-03 2003-12-15 Alcan Tech & Man Ag Use of an aluminum alloy of the AlMgSi type for the production of structural components.
JP2000282162A (en) * 1999-03-30 2000-10-10 Nippon Steel Corp Aluminum alloy extruded material excellent in corrosion fatigue strength
JP2001262265A (en) * 2000-03-22 2001-09-26 Kobe Steel Ltd Hot rolling stock of high formability aluminum alloy sheet
AU2003268697A1 (en) * 2002-10-01 2004-04-23 Asahi Tec Corporation Aluminum alloy for casting-forging, aluminum cast/forged article, and method for manufacture thereof
FR2857376B1 (en) * 2003-07-09 2008-08-22 Corus Aluminium Nv AlMgSi ALLOY
TW200530406A (en) * 2003-12-26 2005-09-16 Nippon Light Metal Co Method for producing Al-Mg-Si based aluminum alloy plate excellent in bake-hardenability
WO2006005573A1 (en) * 2004-07-09 2006-01-19 Corus Aluminium Nv Process for producing aluminium alloy sheet material with improved bake-hardening response
DE102005060297A1 (en) * 2005-11-14 2007-05-16 Fuchs Kg Otto Energieabsorbtionsbauteil
JP4944474B2 (en) * 2006-03-30 2012-05-30 株式会社神戸製鋼所 Aluminum alloy plate excellent in stretch flangeability and manufacturing method thereof

Also Published As

Publication number Publication date
DE102008008326A1 (en) 2011-03-03
EP2088216A1 (en) 2009-08-12
ES2403211T3 (en) 2013-05-16

Similar Documents

Publication Publication Date Title
DE102013012259B3 (en) Aluminum material with improved precipitation hardening, process for its production and use of the aluminum material
DE10352932B4 (en) Cast aluminum alloy
DE112015000499B4 (en) Method for producing a plastically deformed aluminum alloy product
EP3235917B1 (en) Alloy for pressure die casting
DE10230710B4 (en) Weldable high strength Al-Mg-Si alloy
EP3370900B1 (en) Light metal casting part and method of its production
DE602005005509T2 (en) HIGH-TREATMENT ALUMINUM PLATE AND METHOD FOR PRODUCING THIS PLATE
EP3176275B1 (en) Aluminium-silicon die casting alloy method for producing a die casting component made of the alloy, and a body component with a die casting component
EP3314031A1 (en) High-strength and easily formable almg-strip, and method for producing the same
DE112008003052T5 (en) Product of Al-Mg-Zn wrought alloy and manufacturing method therefor
DE202006006518U1 (en) Aluminum casting alloy, useful in production of safety components, contains silicon
DE112017007033B4 (en) Chassis component for a motor vehicle made of an aluminium alloy and method for increasing the ductility and strength of an aluminium alloy
DE102009036056A1 (en) Impact-resistant aluminum alloy suitable for thick-walled die castings, especially crank cases, has specified composition
EP2888382A1 (en) Intergranular corrosion-resistant aluminum alloy strip, and method for the production thereof
EP2984196A1 (en) Aluminum-free magnesium alloy
DE102013002632B4 (en) Aluminum-silicon diecasting alloy and method of making a die cast component
EP2088216B1 (en) Aluminium alloy
DE102011112005A1 (en) Alloy, preferably aluminum casting alloy, useful e.g. as a sand or die casting alloy, comprises a specified range of silicon, zinc, iron, copper, magnesium, strontium, sodium, antimony and aluminum
DE602004005529T2 (en) Wrought aluminum alloy
JP6810178B2 (en) High-strength aluminum alloy and its manufacturing method, aluminum alloy plate and aluminum alloy member using the aluminum alloy
WO2013034134A1 (en) Method for producing a magnesium alloy and a magnesium alloy produced accordingly
DE10248594A1 (en) Making aluminum sheet alloyed with scandium and zirconium and having high fracture resistance in e.g. aerospace applications, employs roller casting process and specified hot-working
DE102019202676B4 (en) Cast components with high strength and ductility and low tendency to hot crack
AT507490B1 (en) ALUMINUM ALLOY, PROCESS FOR THEIR PRODUCTION AND THEIR USE
CH700835B1 (en) Aluminum composite sheet metal product.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20100212

AKX Designation fees paid

Designated state(s): DE ES FR IT SE

17Q First examination report despatched

Effective date: 20100324

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR IT SE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009006511

Country of ref document: DE

Effective date: 20130516

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2403211

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20130516

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: CONSTELLIUM CRV

Effective date: 20131218

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502009006511

Country of ref document: DE

Effective date: 20131218

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PLBP Opposition withdrawn

Free format text: ORIGINAL CODE: 0009264

PLBD Termination of opposition procedure: decision despatched

Free format text: ORIGINAL CODE: EPIDOSNOPC1

PLBM Termination of opposition procedure: date of legal effect published

Free format text: ORIGINAL CODE: 0009276

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION PROCEDURE CLOSED

27C Opposition proceedings terminated

Effective date: 20141009

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230529

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240201

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240131

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240125

Year of fee payment: 16

Ref country code: IT

Payment date: 20240129

Year of fee payment: 16

Ref country code: FR

Payment date: 20240126

Year of fee payment: 16