JP2000282162A - Aluminum alloy extruded material excellent in corrosion fatigue strength - Google Patents

Aluminum alloy extruded material excellent in corrosion fatigue strength

Info

Publication number
JP2000282162A
JP2000282162A JP8751499A JP8751499A JP2000282162A JP 2000282162 A JP2000282162 A JP 2000282162A JP 8751499 A JP8751499 A JP 8751499A JP 8751499 A JP8751499 A JP 8751499A JP 2000282162 A JP2000282162 A JP 2000282162A
Authority
JP
Japan
Prior art keywords
corrosion fatigue
aluminum alloy
surface layer
fatigue strength
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8751499A
Other languages
Japanese (ja)
Inventor
Shinichi Omiya
慎一 大宮
Makoto Saga
誠 佐賀
Masao Kikuchi
正夫 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8751499A priority Critical patent/JP2000282162A/en
Publication of JP2000282162A publication Critical patent/JP2000282162A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a 6000 series Al alloy high in corrosion fatigue strength even in a corrosive environment in which Cl- ions are present by allowing it to have a compsn. contg. specified weight ratios of Mg and Si, and the balance Al with inevitable impurities and forming the structure of the surface layer part of a recrystallized structure of a specified average grain size. SOLUTION: This material is the one having a compsn. contg., by weight, 0.4 to 1.2% Mg, 0.3 to 1.4% Si, and the balance Al with inevitable impurities, in which the average grain size in the surface layer part is formed of a recrystallized structure of <=300 μm average grain size. Preferably, it is an Al alloy extruded material having a compsn. contg., by weight, 0.4 to 1.2% Mg, 0.3 to 1.4% Si, and the balance Al with inevitable impurities, in which the surface layer part has a fibrous structure, and moreover contg. one or more kinds among, by weight, 0.05 to 1.0% Cu, 0.05 to 0.6% Zn, 0.03 to 0.5% Mn, 0.03 to 0.5% Cr, 0.03 to 0.3% V, 0.05 to 0.5% Fe and 0.005 to 0.3% Ti. It is widely applicable as an Al stock for a structural member used for an automotive body or the like.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車などを構成
する構造部材に使用されるアルミニウム合金押出材に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an extruded aluminum alloy used for a structural member of an automobile or the like.

【0002】[0002]

【従来の技術】トラックをはじめとする自動車の車体な
どに使用される構造部材としては、鋼が多く使われてい
るが、軽量化のためにアルミニウムの使用が検討されて
いる。アルミニウムのなかで強度の高い6000系合金
の、特に5mm以上の材料を、熱間押出によって製造す
る場合、通常の条件で製造を行うと中心部と表面部の冷
却速度の違いから中心部が繊維状の組織、表層部が再結
晶組織からなる複合組織となる。
2. Description of the Related Art Steel is often used as a structural member for a vehicle body such as a truck, but the use of aluminum has been studied to reduce the weight. When manufacturing a 6000 series alloy with high strength among aluminum, especially a material with a diameter of 5 mm or more, by hot extrusion, if the manufacturing is performed under normal conditions, the center part will have a fiber due to the difference in cooling rate between the center part and the surface part. The composite structure has a shape-like structure and a surface layer composed of a recrystallized structure.

【0003】ところが、このように中心部に繊維状の組
織ができてしまうような押出条件では、表層部にある再
結晶組織の平均粒径が500μmを超えるような粗大結
晶粒からなる組織となってしまう。このような組織で
は、粒界の面積が減少しているので、時効析出物が少な
い粒界に集中して析出し、そこがCl- イオンなどによ
る腐食を受けやすくなるために、Cl- イオンが存在す
るような腐食環境、例えば、沿岸地域や凍結防止に食塩
を散布する寒冷地などでは、6000系アルミニウム合
金は、腐食疲労強度(腐食環境における振動などの繰返
し応力に対する耐久性)が著しく低下するという欠点が
あった。
[0003] However, under such extrusion conditions that a fibrous structure is formed at the center, a structure composed of coarse crystal grains whose average grain size of the recrystallized structure in the surface layer exceeds 500 μm is obtained. Would. These organizations, since the area of the grain boundary is reduced, and the precipitated concentrate on aging precipitates smaller grain boundaries, there Cl - to become susceptible to such corrosion ions, Cl - ions In a corrosive environment that exists, for example, in a coastal area or a cold region where salt is sprayed to prevent freezing, the 6000 series aluminum alloy has a significantly reduced corrosion fatigue strength (durability against repeated stress such as vibration in a corrosive environment). There was a disadvantage.

【0004】これは、強度をより高くするために600
0系アルミニウム合金おいて添加元素(Mg、Siな
ど)を多く添加した場合に顕著で、強度と腐食疲労強度
が両立しないことが、6000系アルミニウム合金の自
動車の車体などの構造部材への適用を阻む大きな要因と
なっている。
[0004] In order to obtain higher strength,
It is remarkable when a large amount of additional elements (Mg, Si, etc.) are added to the 0-series aluminum alloy, and the incompatibility between strength and corrosion fatigue strength is required for the application of the 6000-series aluminum alloy to structural members such as automobile bodies. It is a major factor that hinders.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記のよう
な現状に鑑み、Cl- イオンが存在するような腐食環境
においても、腐食疲労強度が高い6000系アルミニウ
ム合金を提供することを目的になされたものである。
SUMMARY OF THE INVENTION In view of the above situation, an object of the present invention is to provide a 6000 series aluminum alloy having high corrosion fatigue strength even in a corrosive environment where Cl - ions are present. It was done.

【0006】[0006]

【課題を解決するための手段】発明者らは、6000系
アルミニウム合金の腐食疲労強度と組織との関連につい
て鋭意検討の結果、腐食疲労強度に優れた6000系ア
ルミニウム合金が備えるべき組織を知見し、それに基づ
き本発明を完成させたものであって、その要旨とすると
ころは、 (1)重量%で、Mg:0.4〜1.2%、Si:0.
3〜1.4%を含有し、残部がAlおよび不可避不純物
からなり、表層部が平均粒径が300μm以下である再
結晶組織であることを特徴とする腐食疲労強度に優れた
アルミニウム合金押出材。 (2)重量%で、Mg:0.4〜1.2%、Si:0.
3〜1.4%を含有し、残部がAlおよび不可避不純物
からなり、表層部が繊維状組織であることを特徴とする
腐食疲労強度に優れたアルミニウム合金押出材。
Means for Solving the Problems The inventors of the present invention have made intensive studies on the relationship between the corrosion fatigue strength and the structure of a 6000 series aluminum alloy, and as a result, have found the structure to be provided in a 6000 series aluminum alloy having excellent corrosion fatigue strength. The present invention has been completed on the basis thereof, and the gist of the invention is as follows: (1) Mg: 0.4 to 1.2%;
An extruded aluminum alloy material having excellent corrosion fatigue strength, characterized by containing 3 to 1.4%, the balance being Al and unavoidable impurities, and a surface layer having a recrystallized structure having an average grain size of 300 µm or less. . (2) By weight%, Mg: 0.4-1.2%, Si: 0.
An extruded aluminum alloy material having an excellent corrosion fatigue strength, containing 3 to 1.4%, the balance being Al and unavoidable impurities, and a surface layer having a fibrous structure.

【0007】(3)重量%で、Cu:0.05〜1.0
%、Zn:0.05〜0.6%、Mn:0.03〜0.
5%、Cr:0.03〜0.5%、V:0.03〜0.
3%、Fe:0.05〜0.5%、Ti:0.005〜
0.3%の1種以上を、さらに含有することを特徴とす
る前記(1)または(2)に記載の腐食疲労強度に優れ
たアルミニウム合金押出材。 (4)腐食疲労強度を要する部位に、前記(1)〜
(3)のいずれかに記載のアルミニウム合金押出材を有
することを特徴とする腐食疲労強度に優れた構造部材で
ある。
(3) Cu: 0.05-1.0% by weight
%, Zn: 0.05-0.6%, Mn: 0.03-0.
5%, Cr: 0.03 to 0.5%, V: 0.03 to 0.
3%, Fe: 0.05-0.5%, Ti: 0.005-
The extruded aluminum alloy material having excellent corrosion fatigue strength according to the above (1) or (2), further comprising at least one kind of 0.3%. (4) The above-mentioned (1)-
A structural member having excellent corrosion fatigue strength, comprising the aluminum alloy extruded material according to any one of (3).

【0008】[0008]

【発明の実施の形態】6000系の腐食疲労は、例えば
アルミニウムハンドブック(第5版)、軽金属協会変
(1994)、53頁に記載のように、 粒界に析出した平衡相(Mg2 Si)やSiが母材に
比べ優先的に溶解する。 繰返し応力によりの腐食が加速され、部材表面にき
裂を生ずる。 のおいて生じたき裂を起点に、疲労き裂が進展し、
部材が破壊する。 というメカニズムによって起こるとされている。
BEST MODE FOR CARRYING OUT THE INVENTION Corrosion fatigue of the 6000 series can be measured by the equilibrium phase (Mg 2 Si) precipitated at the grain boundaries as described in, for example, Aluminum Handbook (5th edition), Light Metal Association of Japan (1994), page 53. And Si are preferentially dissolved compared to the base material. Corrosion due to repeated stress is accelerated, causing cracks on the member surface. Starting from the crack that occurred, the fatigue crack propagated,
The member breaks. It is said to occur by the mechanism.

【0009】発明者らは、の腐食の起点となる析出物
が、特に面積の小さな粒界に集中して、析出することが
腐食疲労のそもそもの原因であることに着目し、粒界へ
のβ相などの析出状態を詳細に調査した結果、6000
系アルミニウム合金において、腐食疲労に対して有効で
ある粒界面積が十分大きな組織を特定するに至ったもの
である。
The present inventors have paid attention to the fact that the precipitates, which are the starting points of corrosion, are concentrated on the grain boundaries having a particularly small area and are the primary cause of corrosion fatigue. As a result of a detailed investigation of the precipitation state such as the β phase, 6000
This has led to the identification of a structure in which a grain boundary area effective for corrosion fatigue is sufficiently large in a system aluminum alloy.

【0010】発明者の調査の結果、上記の条件を満たす
組織は、 (1)平均粒径300μm以下であるような再結晶組織 (2)繊維状組織 の2種類が6000系アルミニウム合金において実現可
能で、表面から500μm以下の表層部が、上記いずれ
かの組織を有すれば、従来の同一組成の合金に比較し
て、腐食疲労強度が著しく向上することを見出した。
As a result of the investigation by the inventor, a structure satisfying the above conditions can be realized by (1) a recrystallized structure having an average particle size of 300 μm or less and (2) a fibrous structure in a 6000 series aluminum alloy. It has been found that when the surface layer portion of 500 μm or less from the surface has any of the above structures, the corrosion fatigue strength is remarkably improved as compared with a conventional alloy having the same composition.

【0011】6000系アルミニウム合金では、冷却が
遅い場合は繊維状組織となり、逆に冷却速度が速いと再
結晶組織になる。そのために、6000系アルミニウム
合金の、特に5mm以上の材料を、熱間押出によって製
造する場合、通常の条件で製造を行うと中心部と表面部
の冷却速度の違いから中心部が繊維状の組織、表層部が
再結晶組織からなる複合組織となる。ところが、このよ
うに中心部に繊維状の組織ができてしまうような通常の
押出条件では、表層部にある再結晶組織の平均粒径が5
00μmを超えるような粗大結晶粒からなる組織となっ
てしまうため、腐食疲労強度は高くない。
A 6000 series aluminum alloy has a fibrous structure when cooling is slow, and a recrystallized structure when cooling is fast. Therefore, when a 6000 series aluminum alloy, particularly a material having a size of 5 mm or more, is manufactured by hot extrusion, if the manufacturing is performed under normal conditions, the central portion has a fibrous structure due to a difference in cooling rate between the central portion and the surface portion. Then, the surface layer becomes a composite structure composed of a recrystallized structure. However, under such ordinary extrusion conditions that a fibrous structure is formed at the center, the average grain size of the recrystallized structure in the surface layer is 5%.
Since the structure is made of coarse crystal grains exceeding 00 μm, the corrosion fatigue strength is not high.

【0012】十分な加工度を確保した上で押出速度を速
め、表層部が急冷されるようにすると、再結晶組織の粒
径が細かくなる。発明者らは、押出速度を15m/mi
nよりも速くすると、表層部に平均粒径300μm以下
であるような再結晶組織ができ、腐食疲労強度が著しく
改善されることを見出した。なお、腐食疲労は材料の表
層部から発生進行するので、表層部の組織が本発明に規
定するものであればよいが、上記条件で製造すると、材
料厚みにもよるが、材料全面が再結晶組織となる。
If the extrusion rate is increased while ensuring a sufficient degree of processing and the surface layer is rapidly cooled, the grain size of the recrystallized structure becomes smaller. The inventors set the extrusion speed to 15 m / mi.
When n is faster than n, it has been found that a recrystallized structure having an average particle size of 300 μm or less is formed in the surface layer portion, and the corrosion fatigue strength is significantly improved. Since the corrosion fatigue occurs and proceeds from the surface layer of the material, it is sufficient that the structure of the surface layer is defined in the present invention. However, when manufactured under the above conditions, the entire surface of the material is recrystallized, depending on the material thickness. Become an organization.

【0013】表層部における平均粒径は、通常の金属材
料に対してなされている方法に準じて行えばよいが、3
0〜50倍程度の組織写真上の任意の位置に、例えば1
00mmの特定長さの直線を引いて、この直線に交わる
粒子の個数から求める方法が比較的簡便である。発明者
らは、1つの試料に対して、表面から500μm以下の
表層である部位において、厚さ方向およびそれに直交す
る方向に各5本の直線を引いて粒径を求め、その平均を
平均粒径とした。
The average particle size in the surface layer may be determined according to the method used for ordinary metal materials.
At any position on the tissue photograph of about 0 to 50 times, for example, 1
It is relatively simple to draw a straight line having a specific length of 00 mm and obtain the number from the number of particles intersecting the straight line. The inventors determined the particle size of one sample by drawing five straight lines in the thickness direction and in a direction perpendicular to the thickness direction on the surface layer of 500 μm or less from the surface to obtain the average particle size. Diameter.

【0014】上記再結晶組織とは逆に、押出速度を1m
/min以下にすると表層部においても十分に冷却速度
が遅くなり、表層部まで繊維状組織となる。この組織に
おいては、粒径自体は定義できないが、この組織も腐食
疲労に対しては平均粒径300μm以下であるような再
結晶組織と同様の効果が認められることを、発明者らは
見出した。本発明は、腐食疲労に影響のある表層部の組
織のみを規定するものであるが、この繊維状組織場合、
中心部は表層部よりもさらに冷却速度が遅いので、全面
繊維状組織となる。また、熱間押出装置の仕様などによ
っては、最表層に若干の再結晶組織が残存する場合があ
るが、この組織は当然ながら、極めて平均粒径の大きな
ものとなっており、腐食疲労に対して悪影響を与えるの
で、この再結晶組織を研削し、表層部において繊維状組
織のみとする必要がある。
Contrary to the recrystallized structure, the extrusion speed is 1 m
If the rate is not more than / min, the cooling rate is sufficiently reduced even in the surface layer portion, and a fibrous structure is formed up to the surface layer portion. In this structure, the grain size itself cannot be defined, but the inventors have found that this structure has the same effect on corrosion fatigue as a recrystallized structure having an average particle size of 300 μm or less. . The present invention defines only the structure of the surface layer that has an effect on corrosion fatigue, but in the case of this fibrous structure,
Since the cooling rate of the central portion is lower than that of the surface portion, the entire surface has a fibrous structure. Also, depending on the specifications of the hot extrusion equipment, a slight recrystallized structure may remain in the outermost layer, but this structure naturally has an extremely large average particle size, and it is difficult to prevent corrosion fatigue. Therefore, it is necessary to grind the recrystallized structure to make only the fibrous structure in the surface layer.

【0015】上記表層部組織の実現が可能な板厚とし
て、前記(1)に規定の再結晶組織に対しては、15m
m以下の板厚の材料への適用が好ましい。熱間押出成形
では、再結晶は押出しの際の温度上昇と、加工によって
起こる。一般に15mmを超える板厚の押出成形材では
加工度が十分でないために、押出速度を速めることによ
って、本発明に規定の組織とすることが、非常に困難と
なるためである。一方、前記(2)に規定の繊維状組織
では、最表層部の粗大再結晶粒にさえ注意すれば、いか
なる板厚にも対応可能である。
The thickness of the sheet capable of realizing the surface layer structure is 15 m for the recrystallized structure specified in the above (1).
It is preferably applied to a material having a thickness of not more than m. In hot extrusion, recrystallization occurs due to elevated temperatures during extrusion and processing. In general, an extruded material having a thickness of more than 15 mm does not have sufficient workability, and it is very difficult to increase the extrusion speed to obtain the structure specified in the present invention. On the other hand, in the fibrous structure specified in the above (2), it is possible to cope with any plate thickness as long as attention is paid to coarse recrystallized grains in the outermost layer.

【0016】前記(4)に記載の部材は、本発明のアル
ミニウム合金押出材を有することを特徴とするが、本発
明のアルミニウム合金押出材は腐食疲労の問題となる部
位に使用するのが良い。例えばC形やH形の断面を持つ
ものでは、少なくともフランジ部分が本発明のアルミニ
ウム合金押出材であることが好ましい。部材の構成材と
して本発明のアルミニウム合金押出材を使用する際、部
材の腐食疲労に曝される面には特に注意を要する。つま
り、製造時に本発明の表面部組織を有していたとして
も、切断や研削によって、本発明に属さない表面が腐食
疲労に曝されることのないよう十分に注意することが必
要になる。
The member described in the above (4) is characterized by having the aluminum alloy extruded material of the present invention, but the aluminum alloy extruded material of the present invention is preferably used in a portion where corrosion fatigue becomes a problem. . For example, in a material having a C-shaped or H-shaped cross section, it is preferable that at least the flange portion is the aluminum alloy extruded material of the present invention. When using the aluminum alloy extruded material of the present invention as a constituent material of a member, special attention must be paid to the surface of the member exposed to corrosion fatigue. That is, even if the surface structure of the present invention is provided at the time of manufacturing, it is necessary to pay sufficient attention so that a surface not belonging to the present invention is not exposed to corrosion fatigue by cutting or grinding.

【0017】つぎに、成分の限定理由について説明す
る。Mgは、本発明で対象としている系の合金で基本と
なる合金元素であり、Siとともに化合物を形成して強
度の上昇に寄与する。Mg量が0.4%未満では、析出
効果によって強度の上昇に寄与するβ”相の生成量が少
なくなるため、十分な強度が得られず、一方1.2%を
超えれば押出正が低下するとともに溶体化処理しても粒
界析出物の偏析を十分に抑制できないので粒界腐食性が
低下する。そのため、Mgの含有量は0.4〜1.2%
の範囲とする。
Next, the reasons for limiting the components will be described. Mg is a basic alloy element in the alloy of the system targeted in the present invention, and forms a compound with Si to contribute to an increase in strength. When the amount of Mg is less than 0.4%, the amount of the β ″ phase that contributes to the increase in strength due to the precipitation effect decreases, so that sufficient strength cannot be obtained. At the same time, even if the solution treatment is performed, the segregation of the grain boundary precipitates cannot be sufficiently suppressed, so that the intergranular corrosion property is reduced, so that the Mg content is 0.4 to 1.2%.
Range.

【0018】Siも、本発明で対象としている系の合金
で基本となる合金元素であり、Mgとともにβ”相を形
成し、強度向上に寄与する。Si相が0.3%未満では
効果に寄与するβ”相の生成量が少ないために、十分な
強度が得られない。一方1.4%を超えて添加すると、
粒界腐食特性を低下させるばかりでなく、凝固の際に粗
大なSiが晶出して押出速度を低下させる。したがっ
て、Siの含有量は0.3〜1.4%とする。
Si is also a basic alloying element in the alloys of the present invention, and forms a β ″ phase together with Mg, contributing to the improvement of strength. Since the amount of the contributing β ″ phase is small, sufficient strength cannot be obtained. On the other hand, if added over 1.4%,
In addition to lowering the intergranular corrosion characteristics, coarse Si is crystallized during solidification and lowers the extrusion speed. Therefore, the content of Si is set to 0.3 to 1.4%.

【0019】Cuは、時効硬化を促進させ、合金の強度
を上昇させる元素であるが、含有量が0.05%未満で
はその効果は見られず、1.0%を超えると、β相やS
i相以外にCuを含有する粒界析出物を形成し、耐粒界
腐食性を低下させる。従って、Cu含有量は0.05〜
1.0%とした。Znは、強度向上に有効な元素である
が、含有量が0.05%未満では、その効果は小さく、
0.6%を超えると耐粒界腐食性および溶接性が低下す
る。したがって、Znの含有量は0.05〜0.6%と
する。
Cu is an element that promotes age hardening and increases the strength of the alloy. However, if the content is less than 0.05%, the effect is not seen, and if it exceeds 1.0%, the β phase or S
A grain boundary precipitate containing Cu other than the i-phase is formed, and the intergranular corrosion resistance is reduced. Therefore, the Cu content is 0.05 to
1.0%. Zn is an element effective for improving the strength, but if the content is less than 0.05%, the effect is small,
If it exceeds 0.6%, the intergranular corrosion resistance and the weldability decrease. Therefore, the content of Zn is set to 0.05 to 0.6%.

【0020】Cr、Mn、ZrおよびVはいずれも結晶
粒を微細化、安定化するとともに強度を向上させる効果
を有する元素であり、必要に応じて1種以上を添加す
る。いずれの元素も0.03%未満では上記の効果は得
られない。一方CrおよびMnは0.5%、Zrおよび
Vは0.3%をそれぞれ超えて含有すると、上記効果が
飽和するばかりでなく、押出性を低下させるので、それ
ぞれの元素の含有量は、Cr:0.03〜0.5%、M
n:0.03〜0.5%、Zr:0.03〜0.3%、
V:0.03〜0.3%とする。
Each of Cr, Mn, Zr and V is an element having the effect of refining and stabilizing crystal grains and improving the strength, and one or more of them are added as necessary. If any of the elements is less than 0.03%, the above effects cannot be obtained. On the other hand, if the contents of Cr and Mn exceed 0.5% and the contents of Zr and V exceed 0.3%, not only the above effects are saturated, but also the extrudability is reduced. : 0.03 to 0.5%, M
n: 0.03-0.5%, Zr: 0.03-0.3%,
V: 0.03 to 0.3%.

【0021】Feは、Alにとっては不可避不純物であ
るが、上記のCr、Mn、Zr、Vと同様に結晶粒を微
細化、安定化するとともに強度を向上させるの効果を有
しており必要に応じて含有させても良い。Feを添加す
る場合、添加量が0.05未満であると、この効果が得
られず、0.5%を超えると、効果が飽和するだけでな
くAl−Fe−Si系の金属間化合物を生成し押出性を
低下させる。したがって、Feの含有量は0.05〜
0.5%とする。
Fe is an unavoidable impurity for Al, but has the effect of refining and stabilizing the crystal grains and improving the strength as in the case of Cr, Mn, Zr and V described above. You may make it contain according to it. In the case of adding Fe, if the addition amount is less than 0.05, this effect cannot be obtained, and if it exceeds 0.5%, not only the effect is saturated but also the Al—Fe—Si based intermetallic compound Produces and reduces extrudability. Therefore, the content of Fe is 0.05 to
0.5%.

【0022】TiおよびBは、一般に鋳塊の結晶粒微細
化のため、単独あるいは組み合わせて添加する。Ti:
0.05%未満、B:0.0005%未満では、この効
果は得られず、Ti:0.3%超、B:0.03%超で
は、効果が飽和する。そのため、それぞれの元素の含有
量は、Ti:0.05〜0.3%、B:0.0005〜
0.03%とする。
Ti and B are generally added singly or in combination to refine the crystal grains of the ingot. Ti:
If the content is less than 0.05% and B: less than 0.0005%, this effect cannot be obtained. If the content of Ti exceeds 0.3% and the content of B exceeds 0.03%, the effect is saturated. Therefore, the content of each element is as follows: Ti: 0.05 to 0.3%, B: 0.0005 to
0.03%.

【0023】[0023]

【実施例】以下、本発明の実施例について説明する。表
1に示す組成を有するAl合金を溶解、鋳造し、面削、
均質化処理を行って熱間押出用素材とした。この素材を
500℃で5分間予備加熱し、熱間押出成形を行った。
押出材の形状は、板厚8mm×一辺100mmの正方形
板材である。表2に示すように、押出速度を変化させ、
実施例、比較例に属す試験材を造り分けた。押出し後5
50℃で30分間の溶体化処理を施し、この温度から氷
水中に投入して急冷し焼入れた後に170℃で8時間の
時効処理を行った。それぞれの試験材の押出速度と、引
張強さ、耐力、表層部組織および粒径は表2に示した通
りである。
Embodiments of the present invention will be described below. An Al alloy having the composition shown in Table 1 was melted, cast,
A homogenization treatment was performed to obtain a material for hot extrusion. This material was preheated at 500 ° C. for 5 minutes, and hot extrusion was performed.
The shape of the extruded material is a square plate having a thickness of 8 mm and a side of 100 mm. As shown in Table 2, the extrusion speed was changed,
Test materials belonging to Examples and Comparative Examples were separately manufactured. After extrusion 5
The solution was subjected to a solution treatment at 50 ° C. for 30 minutes, poured into ice water from this temperature, rapidly cooled and quenched, and then subjected to an aging treatment at 170 ° C. for 8 hours. The extrusion speed, tensile strength, proof stress, surface layer structure and particle size of each test material are as shown in Table 2.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】このようにして得られた各試験材から疲労
試験片を切出し、3.5%のNaCl水溶液中での腐食
疲労試験にて評価した結果を表2に示す。疲労試験条件
は、応力振幅240MPa、応力比R=−1、試験速度
1Hzとした。表2の結果によれば、本発明に属す表層
部組織は、比較例に比べると優れた腐食疲労特性を示し
ている。
A fatigue test piece was cut out from each of the test materials thus obtained and the results of a corrosion fatigue test in a 3.5% aqueous NaCl solution are shown in Table 2. The fatigue test conditions were a stress amplitude of 240 MPa, a stress ratio of R = -1, and a test speed of 1 Hz. According to the results shown in Table 2, the surface layer structure belonging to the present invention has excellent corrosion fatigue properties as compared with the comparative example.

【0027】[0027]

【発明の効果】以上説明したように、本発明のアルミニ
ウム合金押出材は、腐食疲労強度に優れるので、沿岸地
域や凍結防止に食塩を散布する寒冷地など腐食を受けや
すい環境においても十分な疲労強度を有するため、トラ
ックをはじめとする自動車の車体などに使用される構造
部材用のアルミニウム素材として広く適用できる。従っ
て、本発明は工業的価値の極めて高い発明であるといえ
る。
As described above, since the extruded aluminum alloy of the present invention has excellent corrosion fatigue strength, it can be sufficiently fatigued even in an environment susceptible to corrosion, such as in coastal areas or in cold regions where salt is sprayed to prevent freezing. Because of its strength, it can be widely applied as an aluminum material for structural members used in trucks and other automobile bodies. Therefore, it can be said that the present invention is an invention having extremely high industrial value.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 Mg:0.4〜1.2%、 Si:0.3〜1.4%を含有し、 残部がAlおよび不可避不純物からなり、表層部が平均
粒径が300μm以下の再結晶組織であることを特徴と
する腐食疲労強度に優れたアルミニウム合金押出材。
1. An alloy containing 0.4 to 1.2% by weight of Mg and 0.3 to 1.4% by weight of Si, the balance being Al and unavoidable impurities, and the surface layer having an average particle size of 1% by weight. An extruded aluminum alloy material having excellent corrosion fatigue strength, having a recrystallized structure of 300 μm or less.
【請求項2】 重量%で、 Mg:0.4〜1.2%、 Si:0.3〜1.4%を含有し、 残部がAlおよび不可避不純物からなり、表層部が繊維
状組織であることを特徴とする腐食疲労強度に優れたア
ルミニウム合金押出材。
2. The composition contains Mg: 0.4 to 1.2% and Si: 0.3 to 1.4% by weight, the balance being Al and unavoidable impurities, and the surface layer having a fibrous structure. An extruded aluminum alloy material having excellent corrosion fatigue strength.
【請求項3】 重量%で、 Cu:0.05〜1.0%、 Zn:0.05〜0.6%、 Mn:0.03〜0.5%、 Cr:0.03〜0.5%、 V :0.03〜0.3%、 Fe:0.05〜0.5%、 Ti:0.005〜0.3%の1種以上を、さらに含有
することを特徴とする請求項1または2に記載の腐食疲
労強度に優れたアルミニウム合金押出材。
3. Weight%: Cu: 0.05 to 1.0%, Zn: 0.05 to 0.6%, Mn: 0.03 to 0.5%, Cr: 0.03 to 0.5%. 5%, V: 0.03 to 0.3%, Fe: 0.05 to 0.5%, and Ti: 0.005 to 0.3%. Item 4. An extruded aluminum alloy material having excellent corrosion fatigue strength according to item 1 or 2.
【請求項4】 腐食疲労強度を要する部位に、請求項1
〜3のいずれかに記載のアルミニウム合金押出材を有す
ることを特徴とする腐食疲労強度に優れた構造部材。
4. The method according to claim 1, wherein the portion requiring corrosion fatigue strength is provided.
4. A structural member having excellent corrosion fatigue strength, comprising the aluminum alloy extruded material according to any one of items 1 to 3.
JP8751499A 1999-03-30 1999-03-30 Aluminum alloy extruded material excellent in corrosion fatigue strength Withdrawn JP2000282162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8751499A JP2000282162A (en) 1999-03-30 1999-03-30 Aluminum alloy extruded material excellent in corrosion fatigue strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8751499A JP2000282162A (en) 1999-03-30 1999-03-30 Aluminum alloy extruded material excellent in corrosion fatigue strength

Publications (1)

Publication Number Publication Date
JP2000282162A true JP2000282162A (en) 2000-10-10

Family

ID=13917110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8751499A Withdrawn JP2000282162A (en) 1999-03-30 1999-03-30 Aluminum alloy extruded material excellent in corrosion fatigue strength

Country Status (1)

Country Link
JP (1) JP2000282162A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002317255A (en) * 2001-04-17 2002-10-31 Sumitomo Light Metal Ind Ltd Member for automobile brake and production method therefor
US6533245B2 (en) 2000-10-03 2003-03-18 Kabushiki Kaisha Kobe Seiko Sho Valve device
EP2088216A1 (en) * 2008-02-07 2009-08-12 Audi AG Aluminium alloy
EP2175042A1 (en) 2008-09-22 2010-04-14 Trimet Aluminium AG Corrosion-resistant aluminium extrusion profile and method for manufacturing a structure component
WO2013165069A1 (en) * 2012-05-03 2013-11-07 (주)레오포즈 Aluminum alloy for semi-solid forging
CN104451276A (en) * 2014-12-31 2015-03-25 东莞市东兴铝业有限公司 Aluminum alloy material for improving deep drawing and manufacturing method and application thereof
US20170096731A1 (en) * 2012-05-31 2017-04-06 Rio Tinto Alcan International Limited Aluminum Alloy Combining High Strength, Elongation and Extrudability
US10646914B2 (en) 2018-01-12 2020-05-12 Accuride Corporation Aluminum alloys for applications such as wheels and methods of manufacture
CN113755725A (en) * 2021-09-08 2021-12-07 江西理工大学 Multi-scale particle modified 6000 series alloy wire rod and preparation method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6533245B2 (en) 2000-10-03 2003-03-18 Kabushiki Kaisha Kobe Seiko Sho Valve device
JP4537611B2 (en) * 2001-04-17 2010-09-01 株式会社住軽テクノ Automotive brake member and manufacturing method thereof
JP2002317255A (en) * 2001-04-17 2002-10-31 Sumitomo Light Metal Ind Ltd Member for automobile brake and production method therefor
EP2088216A1 (en) * 2008-02-07 2009-08-12 Audi AG Aluminium alloy
EP2175042A1 (en) 2008-09-22 2010-04-14 Trimet Aluminium AG Corrosion-resistant aluminium extrusion profile and method for manufacturing a structure component
WO2013165069A1 (en) * 2012-05-03 2013-11-07 (주)레오포즈 Aluminum alloy for semi-solid forging
US9970090B2 (en) * 2012-05-31 2018-05-15 Rio Tinto Alcan International Limited Aluminum alloy combining high strength, elongation and extrudability
US20170096731A1 (en) * 2012-05-31 2017-04-06 Rio Tinto Alcan International Limited Aluminum Alloy Combining High Strength, Elongation and Extrudability
CN104451276A (en) * 2014-12-31 2015-03-25 东莞市东兴铝业有限公司 Aluminum alloy material for improving deep drawing and manufacturing method and application thereof
US10646914B2 (en) 2018-01-12 2020-05-12 Accuride Corporation Aluminum alloys for applications such as wheels and methods of manufacture
US11420249B2 (en) 2018-01-12 2022-08-23 Accuride Corporation Aluminum wheels and methods of manufacture
CN113755725A (en) * 2021-09-08 2021-12-07 江西理工大学 Multi-scale particle modified 6000 series alloy wire rod and preparation method thereof
CN113755725B (en) * 2021-09-08 2022-11-22 江西理工大学 Multi-scale particle modified 6000 series alloy wire rod and preparation method thereof

Similar Documents

Publication Publication Date Title
CA3006318C (en) High strength 6xxx aluminum alloys and methods of making the same
JP4903183B2 (en) Method for forming aluminum alloy with excellent bending properties
JP4411350B2 (en) Recovered high-strength multilayer aluminum brazing sheet products
EP1407057B1 (en) Weldable high strength al-mg-si alloy
CN100475999C (en) Weldable high strength AI-Mg-Si alloy
JP6412103B2 (en) Structural aluminum alloy plate and manufacturing method thereof
KR20090089905A (en) High-strength aluminum-base alloy products and process for production thereof
JP6022882B2 (en) High strength aluminum alloy extruded material and manufacturing method thereof
EP0480402B1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
JPH10219381A (en) High strength aluminum alloy excellent in intergranular corrosion resistance, and its production
JP3563323B2 (en) Aluminum alloy plate excellent in thread rust resistance and method for producing the same
JP2000282162A (en) Aluminum alloy extruded material excellent in corrosion fatigue strength
JPH11310841A (en) Aluminum alloy extruded shape excellent in fatigue strength, and its production
JPH11217647A (en) High corrosion resistant aluminum alloy excellent in machinability
CA2540409C (en) Aluminum alloy sheet excellent in resistance to softening by baking
JPH07145440A (en) Aluminum alloy forging stock
JP2001240930A (en) Al-Mg-Si BASED ALUMINUM ALLOY EXTRUDED MATERIAL FOR DOOR BEAM, AND DOOR BEAM
JP2019183264A (en) High strength aluminum alloy, aluminum alloy sheet and aluminum alloy member using the aluminum alloy
JPS62149839A (en) Wear resistant aluminum alloy for working excellent in strength
JP2001020027A (en) Al-Mg-Si-Cu ALLOY SHEET EXCELLENT IN CORROSION RESISTANCE AND FORMABILITY, AND ITS MANUFACTURE
JPH11310842A (en) Aluminum alloy sheet for fuel tank, excellent in seam weldability, and its manufacture
JP3684245B2 (en) Aluminum alloy for cold forging
WO2019189521A1 (en) High-strength aluminum alloy, and aluminum alloy sheet and aluminum alloy member using said aluminum alloy
JPH09202933A (en) High strength aluminum alloy excellent in hardenability
JPH0860281A (en) Ductile aluminum alloy having high rigidity and high heat resistance

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060606