JPH09249931A - High corrosion resistant aluminum alloy excellent in machinability - Google Patents

High corrosion resistant aluminum alloy excellent in machinability

Info

Publication number
JPH09249931A
JPH09249931A JP8124128A JP12412896A JPH09249931A JP H09249931 A JPH09249931 A JP H09249931A JP 8124128 A JP8124128 A JP 8124128A JP 12412896 A JP12412896 A JP 12412896A JP H09249931 A JPH09249931 A JP H09249931A
Authority
JP
Japan
Prior art keywords
mass
machinability
aluminum alloy
alloy
resistant aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8124128A
Other languages
Japanese (ja)
Other versions
JP3107517B2 (en
Inventor
Shinji Yoshihara
伸二 吉原
Masakazu Hirano
正和 平野
Hiroshi Iwamura
宏 岩村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27282606&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH09249931(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP08124128A priority Critical patent/JP3107517B2/en
Publication of JPH09249931A publication Critical patent/JPH09249931A/en
Application granted granted Critical
Publication of JP3107517B2 publication Critical patent/JP3107517B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Extrusion Of Metal (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a high corrosion resistant aluminum alloy excellent in machinability and suitable, e.g. for machine parts requiring frequent use of machining in their manufacturing process. SOLUTION: This aluminum alloy has a composition consisting of, by mass, 1.5-12.0% Si, 0.5-6.0% Mg, 0.01-0.1% Ti, and the balance Al with inevitable impurities and containing, if necessary, either or both of 0.5-2.0%, by mass, Mn and 0.1-1.0% Cu or one or more kinds among 0.5-1.0% Fe, 0.1-0.5% Cr, and 0.1-0.5% Zr.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、製造の過程で切削
加工を多用する機械部品等に適する切削性に優れた高耐
食アルミニウム合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly corrosion-resistant aluminum alloy having excellent machinability, which is suitable for machine parts and the like that frequently use cutting during manufacturing.

【0002】[0002]

【従来の技術】アルミニウム合金のうち特に3000系
のAl−Mn系合金を中心とした非熱処理型合金は、中
程度の機械的性質を持ち耐食性と冷間鍛造性に優れ、低
コストで成形が可能なため、機械部品などへの使用実績
が多く、その際、一般に冷間鍛造した後切削加工や穴あ
け加工を施して製品化されている。しかし、この系の合
金は、切削時に発生する切粉が分断され難く切削性に劣
るため、複雑な切削や穴あけ加工を必要とする機械部品
への採用は困難であった。
2. Description of the Related Art Among aluminum alloys, non-heat-treatable alloys, mainly 3000-series Al-Mn alloys, have moderate mechanical properties, excellent corrosion resistance and cold forgeability, and can be formed at low cost. Since it is possible, it is often used for machine parts and the like. At that time, it is generally commercialized by cold forging, followed by cutting and drilling. However, this type of alloy has difficulty in cutting chips generated at the time of cutting and is inferior in machinability, so that it has been difficult to employ it in machine parts that require complicated cutting and drilling.

【0003】また、アルミニウム合金のうち5000系
のAl−Mg系合金を中心とした非熱処理型合金は、中
程度の機械的性質(3000系より強度レベルがやや高
い)を持ち耐食性と冷間加工性に優れ、低コストで加工
が可能なため、カメラや顕微鏡の筒材のような光学機器
その他の機械部品などへの使用実績が多く、その際、一
般に冷間鍛造した後切削加工や穴あけ加工を施して製品
化されている。しかし、この系の合金は、切削時に発生
する切粉が分断され難く切削性に劣り、複雑な切削や穴
あけ加工を必要とする機械部品への採用は困難であっ
た。
[0003] Among aluminum alloys, non-heat-treated alloys, mainly 5000-series Al-Mg-based alloys, have moderate mechanical properties (slightly higher in strength level than 3000 series), corrosion resistance and cold working. It has excellent performance and can be processed at low cost, so it has many uses for optical devices and other mechanical parts such as cameras and microscope tubes. In that case, cutting and drilling are generally performed after cold forging. Has been commercialized. However, this type of alloy is inferior in machinability due to the difficulty in cutting chips generated during cutting, and it has been difficult to employ it in machine parts that require complicated cutting and drilling.

【0004】一方、従来の高切削性アルミニウム合金
は、展伸材の分野ではAA6262合金(Si:0.4
〜0.8質量%、Mg:0.8〜1.2質量%、Cu:
0.15〜0.4質量%、Pb:0.4〜0.7質量
%、Bi:0.4〜0.7質量%、残部Al)に代表さ
れるように、有効添加元素としてPb、Bi、Sn等の
低融点金属を含有する(特開昭54−143714号公
報、特開平3−39442号公報参照)。これら低融点
金属はアルミニウム中にほとんど固溶せず、アルミニウ
ム合金中に粒状にミクロ偏析し、その低融点金属粒子が
切削加工時の加工発熱により溶融して切粉を分断し、ア
ルミニウム合金の切削性を向上させる。
On the other hand, a conventional high machinability aluminum alloy is an AA6262 alloy (Si: 0.4
0.8% by mass, Mg: 0.8% to 1.2% by mass, Cu:
0.15 to 0.4% by mass, Pb: 0.4 to 0.7% by mass, Bi: 0.4 to 0.7% by mass, balance Al) It contains low melting point metals such as Bi and Sn (see JP-A-54-143714 and JP-A-3-39442). These low-melting metals hardly form a solid solution in aluminum, but micro-segregate in granular form in the aluminum alloy, and the low-melting metal particles are melted by the heat generated during the cutting process to cut chips and cut the aluminum alloy. Improve the performance.

【0005】なお、上記AA6262合金は、製造の過
程で切削加工、特にドリル加工が多用される機械部品、
例えば自動車のアンチスキッド・ブレーキ・システムの
ハウジングの素材として従来より使用されている熱処理
型アルミニウム合金であるが、このようなPb、Bi、
Sn等の低融点金属の添加による切削性向上効果は、上
記熱処理型合金に限らず非熱処理型合金においても等し
く得られることが予想される(例えば上記特開平3−3
9442号公報参照)。
[0005] The above-mentioned AA6262 alloy is a mechanical part that is frequently used for cutting, especially drilling in the manufacturing process.
For example, a heat-treated aluminum alloy conventionally used as a material for a housing of an anti-skid brake system of an automobile, such as Pb, Bi,
It is expected that the effect of improving the machinability by the addition of a low melting point metal such as Sn can be obtained not only in the above-mentioned heat-treated alloy but also in the non-heat-treated alloy (for example, Japanese Patent Application Laid-Open No. Hei 3-3).
No. 9442).

【0006】[0006]

【発明が解決しようとする課題】ところが、これらの低
融点金属が添加されたアルミニウム合金は切削性が向上
する反面耐食性が低下し、また、低融点金属は熱脆性を
引き起こす欠点もあり、使用環境に十分な注意を払う必
要があった。さらに、合金をスクラップとしてリサイク
ルする場合、Pb、Bi等を必要とする比較的少ない合
金種にしか転用ができず、転用範囲が狭まるためにリサ
イクル性に不利であるという問題を有する。
However, aluminum alloys to which these low-melting-point metals have been added improve machinability, but on the other hand, have low corrosion resistance, and low-melting-point metals also have the disadvantage of causing thermal embrittlement. Had to pay close attention to Further, when the alloy is recycled as scrap, it can be diverted only to a relatively small number of alloy species that require Pb, Bi, etc., and the diverted range is narrowed, which is disadvantageous in recyclability.

【0007】また、機械部品は耐食性、耐摩耗性又は装
飾効果を高めるために、表面にアルマイト処理を施す場
合があるが、PbやBiが添加されたアルミニウム合金
の場合、表面にPbやBiが露出した箇所において酸化
皮膜が形成されず、不均質で光沢のないアルマイト皮膜
しか得られないという問題がある。
[0007] Further, in order to enhance corrosion resistance, abrasion resistance or decorative effect, mechanical parts may be subjected to alumite treatment on the surface. In the case of an aluminum alloy to which Pb or Bi is added, Pb or Bi is added to the surface. There is a problem that an oxide film is not formed at an exposed portion, and only an alumite film having a non-uniform and low gloss can be obtained.

【0008】このような低融点金属を含有せずに切削性
を高めた非熱処理型アルミニウム合金は、特開昭60−
184658号公報に提案されてはいるが、Pb、B
i、Sn等の低融点金属を含有したアルミニウム合金に
比べて切削性が十分でなかった。
A non-heat treatment type aluminum alloy which does not contain such a low melting point metal and has improved machinability is disclosed in JP-A-60-
Although proposed in Japanese Patent No. 184658, Pb, B
The machinability was not sufficient as compared with an aluminum alloy containing a low melting point metal such as i or Sn.

【0009】本発明は上記従来技術の問題点に鑑みてな
されたもので、包括的にいえば、切削性と耐食性の双方
に優れるアルミニウム合金を得ること、また、リサイク
ル性を備え、均質なアルマイト皮膜を形成することので
きる切削性に優れたアルミニウム合金を得ることを目的
とする。個別具体的にいえば、従来の3000系あるい
は5000系非熱処理型アルミニウム合金と同程度の機
械的性質、冷間鍛造性、耐食性、及びリサイクル性を備
えるとともに、切削性が改善された非熱処理型アルミニ
ウム合金を得ること、従来のAA6262合金と同等以
上の切削性を備え、より改善された耐食性を有する熱処
理型アルミニウム合金を得ること、を目的とする。
The present invention has been made in view of the above-mentioned problems of the prior art. In general, it is possible to obtain an aluminum alloy excellent in both machinability and corrosion resistance, and to provide a recyclable and uniform alumite. The object is to obtain an aluminum alloy having excellent machinability capable of forming a film. Individually speaking, the non-heat treatment type which has the same mechanical properties, cold forgeability, corrosion resistance, and recyclability as the conventional 3000 series or 5000 series non-heat treatment type aluminum alloys and which has improved machinability It is an object to obtain an aluminum alloy, and to obtain a heat-treatable aluminum alloy having a machinability equal to or higher than that of a conventional AA6262 alloy and having more improved corrosion resistance.

【0010】[0010]

【課題を解決するための手段】本発明者らは、前記課題
を解決するため鋭意研究を重ねた結果、従来切削性を向
上させる目的で添加されていたPb、Bi、Snなどの
低融点金属を添加せず、リサイクル性を阻害しないSi
及びMgなどを用いることで上記目的を達成できること
を見い出し、その知見を基に本発明を完成するに至っ
た。なお、以下に示すように、本願は強度レベルの異な
る2系統の非熱処理型アルミニウム合金に関する発明
(請求項1〜5と請求項6〜9)と、熱処理型アルミニ
ウム合金に関する発明(請求項10〜12)を包含す
る。
As a result of intensive studies to solve the above problems, the inventors of the present invention have found that low-melting-point metals such as Pb, Bi, Sn, etc., which have been added for the purpose of improving machinability in the past. Si is not added and does not hinder recyclability
It was found that the above object can be achieved by using Mg and Mg, and based on the findings, the present invention has been completed. As shown below, the present application relates to two systems of non-heat treatment type aluminum alloys having different strength levels (claims 1 to 5 and 6 to 9) and inventions to heat treatment type aluminum alloys (claims 10 to 10). 12) is included.

【0011】[請求項1〜5の発明]この発明に関わる
切削性に優れる高耐食アルミニウム合金は、Si:1.
5〜12.0質量%、Mg:0.5〜6.0質量%、T
i:0.01〜0.1質量%をそれぞれ含有し、残部が
Al及び不可避不純物からなる。また、この発明に関わ
る切削性に優れる高耐食アルミニウム合金は、必要に応
じて、上記合金元素に加え、Mn:0.5〜2.0質
量%又はCu:0.1〜1.0質量%のいずれか一方又
は双方を含有し、あるいは、Fe:0.5〜1.0質
量%、Cr:0.1〜0.5質量%、Zr:0.1〜
0.5質量%のうちいずれか1種以上を含有し、あるい
は、上記、の双方に挙げた元素を自由に組み合わ
せて含有する。
[Inventions 1 to 5] A highly corrosion resistant aluminum alloy excellent in machinability according to the present invention is Si: 1.
5 to 12.0 mass%, Mg: 0.5 to 6.0 mass%, T
i: 0.01 to 0.1% by mass, respectively, with the balance being Al and unavoidable impurities. Further, the highly corrosion-resistant aluminum alloy excellent in machinability according to the present invention, if necessary, in addition to the above alloy elements, Mn: 0.5 to 2.0 mass% or Cu: 0.1 to 1.0 mass%. One or both of the above, or Fe: 0.5 to 1.0% by mass, Cr: 0.1 to 0.5% by mass, Zr: 0.1 to 0.1% by mass.
One or more of 0.5 mass% is contained, or the above-mentioned elements are freely combined and contained.

【0012】上記切削性に優れる高耐食アルミニウム合
金は、鍛造性が優れるものの切削性が劣るため多くの機
械部品などへの適用ができなかった従来の3003合金
や3004合金と比較すると、強度、耐食性、及び冷間
鍛造性が同等で、切削性が著しく改善された非熱処理型
アルミニウム合金であり、低コストの冷間鍛造が可能
で、かつ複雑な切削加工が可能となる。そして、切粉の
分断性がよく、長い切粉による工具への切粉の巻き付き
等のトラブルが発生しない。また、切削性向上のためP
b、Bi等の低融点金属を添加していないので、高耐食
であり熱脆性も生じ得ず、リサイクル性も阻害されてい
ない。なお、このアルミニウム合金は、常法に従って製
造することができ、例えば溶解、鋳造、均質化熱処理を
施した後押出加工を行い、この押出材を鍛造加工用の素
材とすることができる。
The above-mentioned highly corrosion-resistant aluminum alloy having excellent machinability is superior in forgeability but inferior in machinability due to poor machinability, and thus has strength and corrosion resistance as compared with conventional 3003 alloy and 3004 alloy which cannot be applied to many machine parts. It is a non-heat treatment type aluminum alloy having the same cold forgeability and significantly improved machinability, which enables cold forging at low cost and enables complicated cutting. Further, the cutting ability of the cutting chips is good, and troubles such as winding of the cutting chips around the tool due to long cutting chips do not occur. In addition, P is used to improve machinability.
Since a low melting point metal such as b or Bi is not added, it has high corrosion resistance, heat brittleness cannot occur, and recyclability is not hindered. The aluminum alloy can be manufactured according to a conventional method. For example, the extruded material can be melted, cast, homogenized and heat-treated, and then extruded to be used as a material for forging.

【0013】次に、上記アルミニウム合金における各元
素の添加理由及び添加量の限定理由を説明する。
Next, the reasons for adding each element and the reasons for limiting the amount of addition to the aluminum alloy will be described.

【0014】Si:1.5〜12.0質量% Siはアルミニウム組織中にSi系の化合物を形成し切
粉の分断性をよくし切削性を向上させる。これはSi系
化合物が切粉を分断する起点となるためである。Si添
加下限値はアルミニウム中での固溶限である1.5%を
越えていることが必要であり、Siによる効果を明確に
させるためには2.0%を越える添加が望ましく、さら
に4.0%以上の添加により顕著な効果を得ることがで
きる。従って、優れた切削性を得るとの観点からは、S
iは2.0〜12.0(2.0を含まず)%、あるいは
4.0〜12.0%とするのがよい。一方、Siの添加
上限は、粗大な初晶Siが生じ変形抵抗が増加すること
による押出性の低下や押出材の脆化を招かないために、
共晶点の12.0%以下とする必要がある。特に押出性
が良好な6%以下が望ましい。
Si: 1.5 to 12.0 mass% Si forms a Si-based compound in the aluminum structure to improve the cutting property of cutting chips and improve the machinability. This is because the Si-based compound serves as a starting point for cutting chips. The lower limit of Si addition must exceed the solid solubility limit of 1.5% in aluminum. To clarify the effect of Si, addition of more than 2.0% is desirable. A remarkable effect can be obtained by adding 0.0% or more. Therefore, from the viewpoint of obtaining excellent machinability, S
i is preferably 2.0 to 12.0 (not including 2.0)% or 4.0 to 12.0%. On the other hand, the upper limit of addition of Si does not cause deterioration of extrudability and embrittlement of the extruded material due to increase in deformation resistance due to formation of coarse primary crystal Si,
It must be 12.0% or less of the eutectic point. In particular, the extrudability is desirably 6% or less.

【0015】Mg:0.5〜6.0質量% Mgは歪硬化能を向上させるため切粉分断性を向上さ
せ、また固溶体化して素材の強度を高める効果がある。
Mg含有量が0.5%未満では十分その効果が得られ
ず、6.0%を越えて添加すると変形抵抗が増し押出性
が低下する。強度と良好な押出性を確保するとの観点か
ら、概ね1.0%以上、3.0%以下が好ましいが、専
ら押出加工時の変形抵抗を抑えて押出性を向上させると
の観点からすれば、1.0%未満、特に0.9%以下と
することで顕著な効果を得ることができる。従って、そ
の場合はMgは0.5〜1.0(1.0を含まず)%、
あるいは0.5〜0.9%とすればよい。
Mg: 0.5 to 6.0% by mass Mg has the effects of improving the strain hardening ability and thus improving the chip breaking property, and also forming a solid solution to increase the strength of the material.
If the Mg content is less than 0.5%, the effect cannot be sufficiently obtained, and if the Mg content exceeds 6.0%, the deformation resistance increases and the extrudability decreases. From the viewpoint of securing strength and good extrudability, it is preferably about 1.0% or more and 3.0% or less. However, from the viewpoint of exclusively suppressing deformation resistance during extrusion and improving extrudability. , Less than 1.0%, particularly 0.9% or less, a remarkable effect can be obtained. Therefore, in that case, Mg is 0.5 to 1.0 (not including 1.0)%,
Alternatively, it may be 0.5 to 0.9%.

【0016】Ti:0.01〜0.1質量% Tiは鋳造組織を微細化して機械的性質を安定化する。
しかし、Ti含有量が0.01%未満ではその効果が得
られず、一方、0.1%を越えて添加してもその効果は
飽和する。
Ti: 0.01 to 0.1% by mass Ti makes the cast structure fine and stabilizes the mechanical properties.
However, if the Ti content is less than 0.01%, the effect cannot be obtained, while if the content exceeds 0.1%, the effect is saturated.

【0017】Mn:0.5〜2.0質量% Mnは固溶体化して素材の強度を高める効果があり、ま
た、歪硬化能を向上させるため切粉分断を助長する効果
を持つ。しかし、Mn含有量が0.5%未満では十分な
効果が得られず、一方、2.0%を越えて添加すると押
出性が低下する。特に強度と良好な押出性を確保すると
の観点から、0.7%以上、1.5%以下が望まれる。
Mn: 0.5 to 2.0 mass% Mn has the effect of forming a solid solution to increase the strength of the raw material, and also has the effect of promoting cutting of chips in order to improve the strain hardening ability. However, if the Mn content is less than 0.5%, a sufficient effect cannot be obtained, while if it exceeds 2.0%, the extrudability decreases. In particular, from the viewpoint of securing strength and good extrudability, 0.7% or more and 1.5% or less are desired.

【0018】Cu:0.1〜1.0質量% Cuは固溶体化して素材の強度を高めるとともに、歪硬
化能を向上させるため切粉分断も助長する効果を持ち、
Mnに代えて又はMnとともに添加される。しかし、C
u含有量が0.1%未満ではその効果に乏しく、一方、
1.0%を越えて添加すると耐食性が低下し、また押出
性も低下する。特に強度と良好な耐食性及び押出性を確
保するとの観点から、0.3%以上、0.8%以下が望
まれる。
Cu: 0.1 to 1.0 mass% Cu has the effect of forming a solid solution to increase the strength of the material and also to promote chip breaking in order to improve the strain hardening ability.
It is added instead of or together with Mn. But C
If the u content is less than 0.1%, its effect is poor, while
If it is added in an amount exceeding 1.0%, the corrosion resistance decreases and the extrudability also decreases. In particular, from the viewpoint of securing strength and good corrosion resistance and extrudability, 0.3% or more and 0.8% or less are desired.

【0019】Fe:0.5〜1.0質量%、 Cr:0.1〜0.5質量%、 Zr:0.1〜0.5質量% Fe、Cr、ZrはそれぞれAlとの化合物を形成し、
切粉分断の起点となって切削性を向上させる。本発明に
おいてそれぞれ不可避不純物として下限値未満の含有が
許容されるが、下限値未満ではその効果が十分でなく、
一方、上限値を越えると粗大な化合物を生成し押出性が
低下する。
Fe: 0.5 to 1.0% by mass, Cr: 0.1 to 0.5% by mass, Zr: 0.1 to 0.5% by mass Fe, Cr and Zr are each a compound with Al. Formed,
Improves machinability by becoming the starting point for cutting chips. In the present invention, the inclusion of less than the lower limit as each inevitable impurity is allowed, but if it is less than the lower limit, the effect is not sufficient,
On the other hand, when the content exceeds the upper limit, a coarse compound is formed and the extrudability is lowered.

【0020】また、上記アルミニウム合金の不可避不純
物としては、JISH4040に規定する化学成分に準
じ、Pb、Bi、Snは各々0.05質量%以下が許容
される。これらの低融点金属は多く含まれるとアルミニ
ウム合金の耐食性を劣化させるが、この範囲内であれば
その特性に影響を与えない。また、他の不可避不純物も
個々に0.05質量%以下が許容される。
As the unavoidable impurities of the aluminum alloy, Pb, Bi, and Sn are allowed to be 0.05 mass% or less each in accordance with the chemical composition defined in JIS H4040. If these low melting point metals are contained in a large amount, the corrosion resistance of the aluminum alloy is degraded, but within this range, the properties are not affected. Also, other unavoidable impurities are individually allowed to be 0.05% by mass or less.

【0021】[請求項6〜9の発明]この発明に関わる
切削性に優れる高耐食アルミニウム合金は、Si:1.
5〜12.0質量%、Mg:2.0〜6.0質量%をそ
れぞれ含有し、残部がAl及び不可避不純物からなる。
また、この発明に関わる切削性に優れる高耐食アルミニ
ウム合金は、必要に応じて、上記合金元素に加え、M
n:0.3〜1.2質量%、Ti:0.01〜0.1質
量%のいずれか一方又は双方を含有し、あるいは、F
e:0.5〜1.0質量%、Cr:0.1〜0.5質量
%、Zr:0.1〜0.5質量%のうちいずれか1種以
上を含有し、あるいは、上記、の双方に挙げた元
素を自由に組み合わせて含有する。
[Inventions 6 to 9] A highly corrosion-resistant aluminum alloy excellent in machinability according to the present invention is Si: 1.
5 to 12.0 mass% and Mg: 2.0 to 6.0 mass% are contained, and the balance is Al and inevitable impurities.
Further, the highly corrosion-resistant aluminum alloy excellent in machinability according to the present invention, if necessary, in addition to the above alloy elements, M
n: 0.3 to 1.2% by mass, Ti: 0.01 to 0.1% by mass, either or both, or F
e: 0.5 to 1.0% by mass, Cr: 0.1 to 0.5% by mass, Zr: 0.1 to 0.5% by mass, or at least one of the above, or The elements listed in both of these are freely combined and contained.

【0022】上記切削性に優れる高耐食アルミニウム合
金は、冷間加工性が優れるものの切削性が劣るため多く
の機械部品などへの適用ができなかった従来の5052
合金や5056合金と比較すると、強度、耐食性、及び
冷間鍛造等の冷間加工性が同等で、切削性が著しく改善
された非熱処理型アルミニウム合金であり、複雑な切削
加工を可能とする合金である。そして、切粉の分断性が
よく、長い切粉による工具への切粉の巻き付き等のトラ
ブルが発生しない。また、切削性向上のためPb、Bi
等の低融点金属を添加していないので、高耐食であり熱
脆性も生じ得ず、リサイクル性も阻害されていない。な
お、このアルミニウム合金は、常法に従って製造するこ
とができ、例えば溶解、鋳造、均質化熱処理を施した後
押出加工を行い、この押出材を切削加工用の素材とする
ことができる。
The high corrosion resistance aluminum alloy excellent in machinability described above is excellent in cold workability, but inferior in machinability, so that it cannot be applied to many machine parts and so on.
Compared with alloy and 5056 alloy, it is a non-heat treatment type aluminum alloy that has the same strength, corrosion resistance, and cold workability such as cold forging, and has significantly improved machinability, and an alloy that enables complex cutting work. Is. Further, the cutting ability of the cutting chips is good, and troubles such as winding of the cutting chips around the tool due to long cutting chips do not occur. In addition, Pb, Bi for improving the machinability
Since low-melting-point metals such as, for example, are not added, high corrosion resistance, thermal embrittlement cannot occur, and recyclability is not impaired. The aluminum alloy can be manufactured according to a conventional method. For example, the extruded material can be melted, cast, homogenized and heat treated, and then extruded to obtain a material for cutting.

【0023】次に、上記アルミニウム合金における各元
素の添加理由及び添加量の限定理由を説明する。
Next, the reason for adding each element and the reason for limiting the amount of addition to the aluminum alloy will be described.

【0024】Si:1.5〜12.0質量% Siはアルミニウム組織中にSi系の化合物を形成し切
粉の分断性をよくし切削性を向上させる。これはSi系
化合物が切削時に発生する切粉を分断する起点となるた
めである。Si添加下限値はアルミニウム中での固溶限
である1.5%を越えていることが必要であり、Siに
よる効果を明確にさせるためには2.0%を越える添加
が望ましく、さらに4.0%以上の添加により顕著な効
果を得ることができる。従って、優れた切削性を得ると
の観点からは、Siは2.0〜12.0(2.0を含ま
ず)%、あるいは4.0〜12.0%とするのがよい。
一方、Siの添加上限は、粗大な初晶Siが生じ変形抵
抗が増加することによる押出性の低下や押出材の脆化を
招かないために、共晶点の12.0%以下とする必要が
ある。特に押出性が良好な6%以下が望ましい。
Si: 1.5 to 12.0 mass% Si forms a Si-based compound in the aluminum structure to improve the cutting property of cutting chips and improve the cutting property. This is because the Si-based compound serves as a starting point for cutting chips generated during cutting. The lower limit of Si addition must exceed the solid solubility limit of 1.5% in aluminum. To clarify the effect of Si, addition of more than 2.0% is desirable. A remarkable effect can be obtained by adding 0.0% or more. Therefore, from the viewpoint of obtaining excellent machinability, Si is preferably 2.0 to 12.0 (not including 2.0)%, or 4.0 to 12.0%.
On the other hand, the upper limit of the addition of Si needs to be 12.0% or less of the eutectic point in order to prevent the extrudability from being reduced or the embrittlement of the extruded material due to the increase in deformation resistance due to the formation of coarse primary crystal Si. There is. In particular, the extrudability is desirably 6% or less.

【0025】Mg:2.0〜6.0質量% Mgは歪硬化能を向上させるため切粉分断性を向上さ
せ、また固溶体化して素材の強度を高める効果がある。
Mg含有量が2.0%未満では十分な効果が得られず、
6.0%を越えて添加すると変形抵抗が増し押出性が低
下する。特に強度と良好な押出性を確保するとの観点か
ら、2.5%以上、5.5%以下が望まれる。
Mg: 2.0 to 6.0 mass% Mg has the effects of improving the strain hardening ability and thus improving the chip breaking property, and also forming a solid solution to increase the strength of the material.
If the Mg content is less than 2.0%, a sufficient effect cannot be obtained,
If added in excess of 6.0%, the deformation resistance increases and the extrudability decreases. Particularly, from the viewpoint of securing strength and good extrudability, 2.5% or more and 5.5% or less are desired.

【0026】Ti:0.01〜0.1質量% Tiは鋳造組織を微細化して機械的性質を安定化する。
しかし、Ti含有量が0.01%未満ではその効果が得
られず、一方、0.1%を越えて添加してもその効果は
飽和する。
Ti: 0.01 to 0.1 mass% Ti refines the cast structure and stabilizes the mechanical properties.
However, if the Ti content is less than 0.01%, the effect cannot be obtained, while if the content exceeds 0.1%, the effect is saturated.

【0027】Mn:0.3〜1.2質量% Mnは固溶体化して素材の強度を高める効果があり、ま
た、歪硬化能を向上させるため切粉分断を助長する効果
を持つ。しかし、Mn含有量が0.3%未満では十分な
効果が得られず、一方、1.2%を越えて添加すると押
出性が低下する。特に強度と良好な押出性を確保すると
の観点から、0.5%以上、1.0%以下が望まれる。
Mn: 0.3 to 1.2% by mass Mn has the effect of forming a solid solution to increase the strength of the raw material, and also has the effect of promoting cutting of chips to improve the strain hardening ability. However, if the Mn content is less than 0.3%, a sufficient effect cannot be obtained, while if it is added over 1.2%, the extrudability deteriorates. Particularly, from the viewpoint of securing strength and good extrudability, 0.5% or more and 1.0% or less are desired.

【0028】Fe:0.5〜1.0質量%、 Cr:0.1〜0.5質量%、 Zr:0.1〜0.5質量% Fe、Cr、ZrはそれぞれAlとの化合物を形成し、
切粉分断の起点となって切削性を向上させる。本発明に
おいてそれぞれ不可避不純物として下限値未満の含有が
許容されるが、含有量がそれぞれ下限値未満ではその効
果が十分でなく、一方、上限値を越えると粗大な化合物
を生成し押出性が低下する。
Fe: 0.5 to 1.0% by mass, Cr: 0.1 to 0.5% by mass, Zr: 0.1 to 0.5% by mass Fe, Cr and Zr are each a compound with Al. Formed,
Improves machinability by becoming the starting point for cutting chips. In the present invention, the inclusion of less than the lower limit as each inevitable impurity is allowed, but if the content is less than the lower limit, the effect is not sufficient, while if it exceeds the upper limit, a coarse compound is formed and extrudability is lowered. To do.

【0029】また、上記アルミニウム合金の不可避不純
物としては、JISH4040に規定する化学成分に準
じ、Pb、Bi、Snは各々0.05質量%以下が許容
される。これらの低融点金属は多く含まれるとアルミニ
ウム合金の耐食性を劣化させるが、この範囲内であれば
その特性に影響を与えない。また、他の不可避不純物も
個々に0.05質量%以下が許容される。
As the unavoidable impurities of the aluminum alloy, Pb, Bi, and Sn are allowed to be 0.05 mass% or less for each, in accordance with the chemical composition defined in JIS H4040. If these low melting point metals are contained in a large amount, the corrosion resistance of the aluminum alloy is degraded, but within this range, the properties are not affected. Also, other unavoidable impurities are individually allowed to be 0.05% by mass or less.

【0030】[請求項10〜12の発明]この発明に関
わる切削性に優れる高耐食アルミニウム合金は、Si:
1.5〜12.0質量%、Mg:0.2〜1.2質量
%、Cu:0.15〜3.0質量%をそれぞれ含有し、
残部がAl及び不可避不純物からなる。また、この発明
に関わる切削性に優れる高耐食アルミニウム合金は、必
要に応じて、上記合金元素に加え、Cr:0.04〜
0.35質量%又はTi:0.001〜0.05質量%
のいずれか一方又は双方を含有する。
[Inventions of Claims 10 to 12] A highly corrosion-resistant aluminum alloy excellent in machinability according to the present invention is Si:
1.5-12.0 mass%, Mg: 0.2-1.2 mass%, Cu: 0.15-3.0 mass%, respectively,
The balance consists of Al and unavoidable impurities. Further, the highly corrosion-resistant aluminum alloy excellent in machinability according to the present invention, if necessary, in addition to the above alloy elements, Cr: 0.04 to
0.35 mass% or Ti: 0.001-0.05 mass%
Either or both of are included.

【0031】上記切削性に優れる高耐食アルミニウム合
金の最大の特徴は、AA6262合金のようにPb、B
i、Sn等の低融点金属を添加せずに、切削性を向上さ
せていることである。このアルミニウム合金押出材は、
低融点金属を添加していないことからAA6262合金
に比べ高耐食性であり、さらに、熱脆性も生じ得ず、リ
サイクル性も高い。そして、切粉の分断性がよく、長い
切粉による工具への切粉の巻き付き等のトラブルが発生
しない。なお、上記アルミニウム合金は、常法に従い、
例えば、溶解、鋳造、均質化処理を施した後押出加工を
行い、この押出材を溶体化、焼入れ、人工時効処理を施
し所定の強度を与えた後、切削加工に供することができ
る。
The greatest feature of the high corrosion resistant aluminum alloy having excellent machinability is that Pb, B as in the AA6262 alloy.
That is, the machinability is improved without adding a low melting point metal such as i or Sn. This aluminum alloy extruded material is
Since no low-melting point metal is added, the alloy has higher corrosion resistance than the AA6262 alloy, and further, thermal brittleness cannot occur and recyclability is high. Further, the cutting ability of the cutting chips is good, and troubles such as winding of the cutting chips around the tool due to long cutting chips do not occur. Incidentally, the aluminum alloy, in accordance with a conventional method,
For example, it can be subjected to melting, casting, homogenization treatment, and then extrusion processing, and this extruded material is subjected to solution treatment, quenching, artificial aging treatment to give a predetermined strength, and then subjected to cutting processing.

【0032】次に、上記アルミニウム合金における各元
素の添加理由及び添加量の限定理由を説明する。
Next, the reason for adding each element and the reason for limiting the amount added in the aluminum alloy will be described.

【0033】Si:1.5〜12.0質量% Siはアルミニウム組織中にSi系の化合物を形成さ
せ、切粉分断をよくし、切削性を向上させる。これはS
i相が歪み伝播の起点となり、切削時に工具から受ける
歪の伝播速度を速くしているためである。よってSi添
加下限値は、アルミニウム中での固溶限である1.5%
を越えていることが必要であり、Siによる効果を明確
にさせるためには2.0%を越える添加が望ましく、さ
らに4.0%以上の添加により顕著な効果を得ることが
できる。従って、優れた切削性を得るとの観点からは、
Siは2.0〜12.0(2.0を含まず)%、あるい
は4.0〜12.0%とするのがよい。一方、Siの添
加上限は、粗大な初晶Siが生じ変形抵抗が増加するこ
とによる押出性の低下や押出材の脆化を招かないため
に、共晶点の12.0%以下とする必要があり、特に押
出生産性が良好な6%以下が望ましい。
Si: 1.5 to 12.0 mass% Si forms a Si-based compound in the aluminum structure, improves cutting of chips and improves machinability. This is S
This is because the i-phase serves as the starting point of strain propagation and increases the propagation velocity of strain received from the tool during cutting. Therefore, the lower limit of Si addition is 1.5%, which is the solid solubility limit in aluminum.
It is necessary to exceed 2.0%, and in order to clarify the effect of Si, it is desirable to add over 2.0%, and further addition of 4.0% or more can obtain a remarkable effect. Therefore, from the viewpoint of obtaining excellent machinability,
Si is preferably 2.0 to 12.0 (not including 2.0)% or 4.0 to 12.0%. On the other hand, the upper limit of addition of Si must be 12.0% or less of the eutectic point in order to prevent deterioration of extrudability and embrittlement of the extruded material due to the formation of coarse primary crystal Si and increase in deformation resistance. 6% or less, which is particularly favorable for extrusion productivity.

【0034】Mg:0.2〜1.2質量% MgはSiとの共存によって熱処理時にMg2Siとな
って析出し、強度を高める効果がある。Mg含有量が
0.2%未満ではその効果が得られず、一方、1.2%
を越えて添加するとMg単体の固溶強化により変形抵抗
が増加し押出性が低下する。強度と良好な押出性を確保
するとの観点から、概ね0.4%以上、1.0%以下が
好ましいが、専ら押出加工時の変形抵抗を抑えて押出性
を向上させるとの観点からすれば、1%未満、特に0.
9%以下とすることで顕著な効果を得ることができる。
従って、その場合はMgは0.2〜1.0(1.0を含
まず)%、あるいは0.2〜0.9%とすればよい。
Mg: 0.2 to 1.2% by mass Mg coexists with Si and becomes Mg 2 Si during heat treatment to be precipitated and has the effect of increasing strength. If the Mg content is less than 0.2%, the effect cannot be obtained, while 1.2%
If it is added over the range, the solid solution strengthening of Mg alone increases the deformation resistance and reduces the extrudability. From the viewpoint of ensuring strength and good extrudability, it is preferably 0.4% or more and 1.0% or less, but from the viewpoint of exclusively suppressing deformation resistance during extrusion processing and improving extrudability. Less than 1%, especially 0.
If it is 9% or less, a remarkable effect can be obtained.
Therefore, in this case, Mg may be 0.2 to 1.0 (not including 1.0)% or 0.2 to 0.9%.

【0035】Cu:0.15〜3.0質量% Cuは熱処理により強度を高めるとともに、歪み硬化能
を向上させるため切粉分断を助長する。Cu含有量が
0.15%未満ではその効果に乏しく、一方3.0%を
越えて添加すると耐食性が低下し、また押出性も低下す
る。特に強度と良好な耐食性及び押出性を確保するとの
観点から、0.2%以上、2.5%以下が望まれる。
Cu: 0.15 to 3.0 mass% Cu enhances the strength by heat treatment and promotes chip breaking because it improves strain hardening ability. If the Cu content is less than 0.15%, the effect is poor, while if it is added over 3.0%, the corrosion resistance decreases and the extrudability also decreases. In particular, 0.2% or more and 2.5% or less are desired from the viewpoint of securing strength and good corrosion resistance and extrudability.

【0036】Cr:0.04〜0.35質量% Crは押出加工時の加工発熱過程での再結晶による強度
低下を抑える効果があるが、0.04%未満ではその効
果がない。一方、0.35%を越えて添加するとAl−
Cr系の粗大な化合物を生成し押出材を脆化させる。特
に再結晶防止と押出材脆化を防止するとの観点から、
0.07%以上、0.3%以下が望まれる。
Cr: 0.04 to 0.35 mass% Cr has the effect of suppressing the strength reduction due to recrystallization during the process heat generation during extrusion, but if it is less than 0.04%, it has no effect. On the other hand, if added over 0.35%, Al-
A coarse Cr-based compound is generated to embrittle the extruded material. Especially from the viewpoint of preventing recrystallization and preventing embrittlement of the extruded material,
0.07% or more and 0.3% or less are desired.

【0037】Ti:0.001〜0.05質量% Tiは鋳造組織を微細化して機械的性質を安定化する。
しかし、Ti含有量が0.001%未満ではその効果が
得られず、一方0.05%を越えて添加してもそれ以上
微細化効果は向上しない。
Ti: 0.001 to 0.05 mass% Ti refines the cast structure and stabilizes the mechanical properties.
However, if the Ti content is less than 0.001%, the effect cannot be obtained, while if it is added over 0.05%, the refinement effect is not improved any more.

【0038】Fe:0.5〜1.0質量% Zr:0.1〜0.5質量% Fe、ZrはそれぞれAlと化合物を形成し、切粉の分
断の起点となって切削性を向上させるため、必要に応じ
て添加することができる。本発明合金においてそれぞれ
不可避不純物として下限値未満の含有が許容されるが、
下限値未満ではその効果が十分でなく、一方、上限値を
越えると粗大な化合物を生成し、押出性が低下する。
Fe: 0.5 to 1.0% by mass Zr: 0.1 to 0.5% by mass Fe and Zr form a compound with Al, respectively, and serve as a starting point for cutting chips to improve machinability. Therefore, it can be added if necessary. In the alloys of the present invention, the inclusion of less than the lower limit as unavoidable impurities is allowed,
If it is less than the lower limit, the effect is not sufficient, while if it exceeds the upper limit, a coarse compound is formed and the extrudability deteriorates.

【0039】また、上記アルミニウム合金の不可避不純
物としては、JISH4040に規定する化学成分に準
じ、Pb、Bi、Snは各々0.05質量%以下、Mn
は0.15質量%以下が許容される。これらの成分は多
く含まれると上記アルミニウム合金の耐食性(Pb、B
i、Sn)又は切削性(Mn)を劣化させるが、上記範
囲内であればこれらの特性に影響を与えない。
As the inevitable impurities of the aluminum alloy, Pb, Bi and Sn are each 0.05 mass% or less and Mn in accordance with the chemical composition defined in JIS H4040.
Is allowed to be 0.15 mass% or less. If a large amount of these components is contained, the corrosion resistance (Pb, B
i, Sn) or machinability (Mn) is deteriorated, but within the above range, these characteristics are not affected.

【0040】[請求項13の発明]この発明に関わるア
ルマイト処理用アルミニウム合金は、これまで述べた切
削性に優れる高耐食アルミニウム合金の用途を特定した
ものである。このアルミニウム合金の母材中に微細に分
散したSiやSiMg2は、従来の高切削性アルミニウ
ム合金中に分散するPbやBiと異なり、酸化皮膜の均
質な形成を妨げず、表面に均質で光沢のあるアルマイト
皮膜が形成された機械部品等を得ることができる。
[Invention of Claim 13] The aluminum alloy for alumite treatment according to the present invention specifies the use of the high corrosion-resistant aluminum alloy excellent in machinability described above. The finely dispersed Si and SiMg 2 in the base material of this aluminum alloy do not interfere with the uniform formation of an oxide film, unlike Pb and Bi which are dispersed in conventional high machinability aluminum alloys, and have a uniform and glossy surface. It is possible to obtain a machine part or the like on which a certain alumite film is formed.

【0041】[0041]

【実施例】以下、本発明の実施例について、比較例と比
較して具体的に説明する。なお、[実施例1]は請求項
1〜5の発明に対応し、[実施例2]は請求項6〜9の
発明」に対応し、[実施例3]は請求項10〜12の発
明に対応し、[実施例4]は請求項13の発明に対応す
る。
EXAMPLES Examples of the present invention will be specifically described below in comparison with comparative examples. [Example 1] corresponds to the inventions of claims 1 to 5, [Example 2] corresponds to the inventions of claims 6 to 9, and [Example 3] is the inventions of claims 10 to 12. [Example 4] corresponds to the invention of claim 13.

【0042】[実施例1]表1〜表3に示した化学組成
の合金を溶解し半連続鋳造により160mm径の押出ビ
レットを作製し、520℃で4時間均質化熱処理を施し
た後、500℃の押出温度で60mm径に押し出した。
[Example 1] An alloy having the chemical composition shown in Tables 1 to 3 was melted and an extruded billet having a diameter of 160 mm was prepared by semi-continuous casting. After homogenizing heat treatment at 520 ° C for 4 hours, 500 It was extruded to a diameter of 60 mm at an extrusion temperature of ° C.

【0043】[0043]

【表1】 [Table 1]

【0044】[0044]

【表2】 [Table 2]

【0045】[0045]

【表3】 [Table 3]

【0046】この押出材から押出方向に径20mm×高
さ20mmの試験片を採取し、これを冷間で軸方向に据
込み鍛造し、側面に微小割れが発生する限界据込み率を
求め、各々の冷鍛性(据込み鍛造性)を下記の要領で評
価した。また、この押出材から高さ60mmの試験片を
切り出し、これを冷間で軸方向に据込み鍛造(限界据込
み率が50%以上のものは50%、限界据込み率が50
%未満のものはその限界据込み率まで)し、その据込み
鍛造材を用いて各々の機械的性質、切削性及び耐食性を
下記の要領で測定した。なお、押出性を調べるため上記
押出では押出荷重を一定(600トン)とし、押出速度
(押出材が出てくるときの速度)を計測し、各押出材の
押出性を下記の要領で評価した。
From this extruded material, a test piece having a diameter of 20 mm and a height of 20 mm was taken in the extruding direction, cold-upset forged in the axial direction, and a critical upsetting ratio at which microcracks were generated on the side surface was obtained. The cold forgeability (upset forgeability) of each was evaluated in the following manner. Further, a test piece having a height of 60 mm was cut out from this extruded material, and cold upset forging was carried out in the axial direction (50% for those having a critical upsetting rate of 50% or more, 50% for the upsetting rate).
% Up to its limit upsetting ratio), and the upsetting forged materials were used to measure the mechanical properties, machinability and corrosion resistance of each in the following manner. In addition, in order to examine the extrudability, in the above extrusion, the extrusion load was kept constant (600 tons), the extrusion speed (speed when the extruded material came out) was measured, and the extrudability of each extruded material was evaluated in the following manner. .

【0047】冷鍛性;限界据込み率が50%を越えると
き◎(優れている)、30〜50%のとき○(使用可能
である)、30%未満のとき×(使用に耐えない)と評
価した。 機械的性質;据込み鍛造材から据込み方向に垂直な方向
に径6mm、平行部長さ40mmの引張試験片を採取
し、その引張強さ、耐力、及び伸びを測定した。 切削性;市販の高速度鋼製の4mm径ドリルを用い、回
転数1500mm/分、送り速度300mm/分の条件
にて切削し、ドリルへの巻き付き発生の有無を観察する
とともに、切粉分断性を調べるため切粉100個当りの
重量を測定した。 耐食性;72時間のCASS試験(5%食塩水に塩化第
二銅を100ppm添加し、さらに酢酸にてpH=3に
調整した液を50℃にて噴霧)による単位面積当りの重
量減少を測定した。 押出性;押出速度の値が5m/分より大のとき◎(優れ
ている)、2〜5m/分のとき○(使用可能である)、
2m/分より小のとき×(使用に耐えない)と評価し
た。
Cold forgeability: ◎ (excellent) when the critical upsetting rate exceeds 50%, ◯ (usable) when 30 to 50%, × (not usable) when less than 30% It was evaluated. Mechanical properties: A tensile test piece having a diameter of 6 mm and a parallel portion length of 40 mm was taken from the upset forging material in a direction perpendicular to the upsetting direction, and its tensile strength, proof stress, and elongation were measured. Machinability: Using a commercially available high-speed steel 4 mm diameter drill, cutting under the conditions of a rotation speed of 1500 mm / min and a feed rate of 300 mm / min, and observing the occurrence of winding around the drill, as well as chip cutting property The weight per 100 chips was measured in order to investigate. Corrosion resistance: A 72-hour CASS test (adding 100 ppm of cupric chloride to 5% saline and spraying a solution adjusted to pH = 3 with acetic acid at 50 ° C.) to measure weight reduction per unit area . Extrudability: ◎ (excellent) when the value of the extrusion speed is greater than 5 m / min, ○ (useable) when the value is 2 to 5 m / min,
When it was less than 2 m / min, it was evaluated as x (not usable).

【0048】これらの試験結果を表4〜表6に示す。こ
の発明の実施例に相当する合金1〜32は、いずれも優
れた切削性と耐食性を示し、これを比較例の合金45
(従来の3003合金に相当)や合金46(従来の30
04合金に相当)と比較すると、切削性において著しく
優れ、機械的性質や耐食性は同等であり、冷鍛性でもほ
ぼ同等である。また、押出材にはむしれや焼き付き痕は
なく表面性状は良好で、押出性の値も十分使用可能な範
囲内にある。
The results of these tests are shown in Tables 4 to 6. Alloys 1 to 32 corresponding to the examples of the present invention all showed excellent machinability and corrosion resistance, and this was confirmed to be alloy 45 of the comparative example.
(Equivalent to conventional 3003 alloy) or alloy 46 (conventional 30
(Equivalent to the 04 alloy), it is remarkably excellent in machinability, has the same mechanical properties and corrosion resistance, and has substantially the same cold forgeability. Further, the extruded material has no peeling or seizure marks and has a good surface property, and the value of extrudability is within a sufficiently usable range.

【0049】[0049]

【表4】 [Table 4]

【0050】[0050]

【表5】 [Table 5]

【0051】[0051]

【表6】 [Table 6]

【0052】これに対し、比較例の合金33〜47は組
成がこの発明の範囲外の合金であり、いずれも何らかの
特性が実施例合金1〜32に比べ劣っている。すなわ
ち、合金33、35、37、39は、それぞれSi、M
g、Cu、Mnの含有量が不足のため切削性に劣る(切
粉の分断性が劣り、切粉の巻き付きがある)。合金3
4、36、38、40、42〜44は、それぞれSi、
Mg、Cu、Mn、Fe、Cr、Zrが過剰なため押出
性と冷鍛性に劣り、合金38は耐食性にも劣る。合金4
1はTiを有効量含有しないため、伸びが悪く冷鍛性に
劣る。また、従来の合金45及び合金46は切削性に劣
り、合金46にPb及びBiを添加してなる合金47は
切削性は改善されたが、耐食性が悪くなっている。
On the other hand, the alloys 33 to 47 of the comparative examples are alloys whose compositions are out of the range of the present invention, and some properties are inferior to those of the example alloys 1 to 32. That is, the alloys 33, 35, 37 and 39 are Si and M, respectively.
Since the contents of g, Cu, and Mn are insufficient, the machinability is inferior (the cutting ability of the cutting is inferior, and the cutting is wrapped around). Alloy 3
4, 36, 38, 40, 42 to 44 are Si,
Since Mg, Cu, Mn, Fe, Cr, and Zr are excessive, extrudability and cold forgeability are poor, and alloy 38 is also poor in corrosion resistance. Alloy 4
Since No. 1 does not contain an effective amount of Ti, the elongation is poor and the cold forgeability is poor. Further, the conventional alloys 45 and 46 are poor in machinability, and the alloy 47 made by adding Pb and Bi to the alloy 46 has improved machinability but poor corrosion resistance.

【0053】[実施例2]表7及び表8に示した化学組
成の合金を溶解し半連続鋳造により160mm径の押出
ビレットを作製し、520℃で4時間均質化熱処理を施
した後、500℃の押出温度で60mm径に押し出し
た。
Example 2 An alloy having the chemical composition shown in Tables 7 and 8 was melted, and an extruded billet having a diameter of 160 mm was produced by semi-continuous casting. After homogenizing heat treatment at 520 ° C. for 4 hours, 500 It was extruded to a diameter of 60 mm at an extrusion temperature of ° C.

【0054】[0054]

【表7】 [Table 7]

【0055】[0055]

【表8】 [Table 8]

【0056】この押出材から[実施例1]と全く同じ要
領で試験片を採取し、かつ全く同じ要領で冷鍛性、機械
的性質、切削性、耐食性、押出性の測定及び評価を行っ
た。これらの試験結果を表9及び表10に示す。この発
明の実施例に相当する合金48〜60は、いずれも優れ
た切削性と耐食性を示し、これを比較例の合金69(従
来の5056合金に相当)、合金70(従来の5052
合金に相当)及び合金71(従来の5083合金に相
当)と比較すると、切削性において著しく優れ、機械的
性質や耐食性は同等であり、冷鍛性でもほぼ同等であ
る。また、押出材にはむしれや焼き付き痕はなく表面性
状は良好で、押出性の値も十分使用可能な範囲内にあ
る。
Test pieces were sampled from this extruded material in exactly the same manner as in [Example 1], and the cold forgeability, mechanical properties, machinability, corrosion resistance and extrudability were measured and evaluated in exactly the same manner. . The test results are shown in Tables 9 and 10. All of the alloys 48 to 60 corresponding to the examples of the present invention showed excellent machinability and corrosion resistance, and the alloys 69 (corresponding to the conventional 5056 alloy) and alloy 70 (conventional 5052) of the comparative example were shown.
Compared with alloy 71) and alloy 71 (corresponding to conventional 5083 alloy), they are remarkably excellent in machinability, have the same mechanical properties and corrosion resistance, and have almost the same cold forgeability. Further, the extruded material has no peeling or seizure marks and has a good surface property, and the value of extrudability is within a sufficiently usable range.

【0057】[0057]

【表9】 [Table 9]

【0058】[0058]

【表10】 [Table 10]

【0059】これに対し、比較例の合金61〜72は組
成がこの発明の範囲外の合金であり、いずれも何らかの
特性が実施例合金48〜60に比べ劣っている。すなわ
ち、合金62、64はそれぞれSi、Mgの含有量が不
足のため切削性に劣る(切粉の分断性が劣り、切粉の巻
き付きがある)。合金61、63、65〜68はそれぞ
れSi、Mg、Cu、Fe、Cr、Zrが過剰なため押
出性と冷鍛性に劣り、合金65は耐食性にも劣る。ま
た、従来の合金69、合金70及び合金71は切削性に
劣り、合金69にPb及びBiを添加してなる合金72
は切削性は改善されたが、耐食性が悪くなっている。
On the other hand, the alloys 61 to 72 of the comparative examples are alloys whose compositions are out of the range of the present invention, and some properties are inferior to those of the example alloys 48 to 60. That is, the alloys 62 and 64 are inferior in machinability due to insufficient contents of Si and Mg, respectively (inferior in chip cutting property and in wrapping of chips). Alloys 61, 63, 65 to 68 are inferior in extrudability and cold forgeability because Si, Mg, Cu, Fe, Cr and Zr are excessive, and alloy 65 is inferior in corrosion resistance. Further, the conventional alloy 69, alloy 70, and alloy 71 are inferior in machinability, and alloy 72 formed by adding Pb and Bi to alloy 69 is used.
Has improved machinability but poorer corrosion resistance.

【0060】[実施例3]表11及び表12に示した化
学組成の合金を溶解し半連続鋳造により160mm径の
押出ビレットを作製し、475℃で4時間均質化熱処理
を施した後、500℃の押出温度で60mm径に押し出
し、これを520℃で1時間溶体化処理して水中に焼入
れた。さらに170℃で6時間の人工時効処理を施して
供試材とし、各々の機械的性質、切削性及び耐食性を下
記の要領で測定及び評価を行った。
Example 3 An alloy having the chemical composition shown in Table 11 and Table 12 was melted and an extruded billet having a diameter of 160 mm was produced by semi-continuous casting. After homogenizing heat treatment at 475 ° C. for 4 hours, 500 It was extruded to a diameter of 60 mm at an extrusion temperature of ° C, solution-treated at 520 ° C for 1 hour, and quenched in water. Further, artificial aging treatment was carried out at 170 ° C. for 6 hours to obtain a test material, and each mechanical property, machinability and corrosion resistance were measured and evaluated in the following manner.

【0061】[0061]

【表11】 [Table 11]

【0062】[0062]

【表12】 [Table 12]

【0063】機械的性質;押出方向に採取したJIS4
号試験片を用い、JISZ2241に規定する金属材料
試験方法に準じ、引張強さ、耐力、及び伸びを測定し
た。 切削性、耐食性、押出性;[実施例1]と同じ要領。
Mechanical properties: JIS4 sampled in the extrusion direction
Tensile strength, proof stress, and elongation were measured using the No. test piece according to the metal material test method specified in JISZ2241. Machinability, corrosion resistance, extrudability; the same procedure as in [Example 1].

【0064】これらの試験結果を表13及び表14に示
す。この発明の実施例に相当する合金73〜98は、い
ずれも優れた切削性と耐食性を示し、これを比較例合金
105(従来のAA6262合金に相当)と比較する
と、耐食性に優れ、切削性でも同等ないし優れている。
また、押出材にはむしれや焼き付き痕はなく表面性状は
良好で、押出性と機械的性質の値も十分使用可能な範囲
内にある。
The results of these tests are shown in Tables 13 and 14. Alloys 73 to 98 corresponding to the examples of the present invention all exhibit excellent machinability and corrosion resistance, and when compared with Comparative Example Alloy 105 (corresponding to conventional AA6262 alloy), excellent corrosion resistance and even machinability Equal to or superior.
In addition, the extruded material has no peeling or seizure marks and has a good surface property, and the values of extrudability and mechanical properties are within the range where it can be sufficiently used.

【0065】[0065]

【表13】 [Table 13]

【0066】[0066]

【表14】 [Table 14]

【0067】これに対し、比較例合金99〜105は組
成がこの発明の範囲外の合金であり、いずれも何らかの
特性が実施例合金73〜98に比べ劣っている。すなわ
ち、合金100、101はSi量が不足のため切削性に
劣り(切粉の分断性が劣り、切粉の巻き付きがある)、
合金104はCu量が過剰のため耐食性に劣り、合金1
05(AA6262相当)はPb、Biを含有するため
さらに耐食性が劣る。また、合金99はSi量が過剰の
ため、合金102はMg量が過剰のため、合金103は
Cr量が過剰のため、合金104はCuが過剰なため、
合金106はFeが過剰なため、合金107はZrが過
剰なため、それぞれ押出性に劣る。
On the other hand, the comparative alloys 99 to 105 are alloys whose compositions are out of the scope of the present invention, and some properties are inferior to those of the example alloys 73 to 98. That is, the alloys 100 and 101 are inferior in machinability due to a lack of Si amount (inferior in chip cutting property, and wrapping of chips),
Alloy 104 is inferior in corrosion resistance due to excessive Cu content.
No. 05 (corresponding to AA6262) contains Pb and Bi, so that the corrosion resistance is further deteriorated. Further, alloy 99 has an excessive amount of Si, alloy 102 has an excessive amount of Mg, alloy 103 has an excessive amount of Cr, and alloy 104 has an excessive amount of Cu.
Since the alloy 106 has an excessive amount of Fe and the alloy 107 has an excessive amount of Zr, the extrudability is poor.

【0068】[実施例4]実施例1〜3の供試材の表面
を研磨したのち硫酸アルマイトを施し、酸化皮膜の厚さ
を10μmにして表面の光沢を観察した。表面の光沢が
優れているものを◎、劣るものを×と評価し、その結果
を表4〜6、9、10、13、14に併せて記載した。
本発明の実施例に相当する合金は、いずれも表面の光沢
が優れアルマイト処理性に優れている。
Example 4 The surface of each of the test materials of Examples 1 to 3 was polished and then anodized with sulfuric acid to make the thickness of the oxide film 10 μm, and the surface gloss was observed. The case where the surface gloss was excellent was evaluated as ⊚, and the case where the surface gloss was inferior was evaluated as ×, and the results are also shown in Tables 4 to 6, 9, 10, 13, and 14.
The alloys corresponding to the examples of the present invention all have excellent surface gloss and excellent alumite processability.

【0069】[0069]

【発明の効果】このように、本発明に関わるアルミニウ
ム合金(請求項1〜5)は、Pb、Bi等の低融点金属
を使用していないにも関わらず、従来の3003合金や
3004合金に比べて切削性が著しく優れ、機械的性
質、耐食性、冷間鍛造性、押出性についてもほぼ同等で
優れる非熱処理型合金である。また、本発明に関わるア
ルミニウム合金(請求項6〜9)は、Pb、Bi等の低
融点金属を使用していないにも関わらず、従来の505
6合金、5052合金及び5083合金に比べて切削性
が著しく優れ、機械的性質、耐食性、冷間鍛造性、押出
性についてもほぼ同等で優れる非熱処理型合金である。
そして、いずれも長い切粉による工具への切粉の巻き付
き等のトラブルも発生せず、冷間鍛造の採用及び熱処理
の省略により工程の低コスト化を達成できるものであ
り、さらにリサイクル性にも難がないことから、工業的
価値が極めて大きいものである。
As described above, the aluminum alloy according to the present invention (claims 1 to 5) is not the conventional 3003 alloy or 3004 alloy even though it does not use a low melting point metal such as Pb or Bi. In comparison, it is a non-heat-treatable alloy with significantly superior machinability, mechanical properties, corrosion resistance, cold forgeability and extrudability that are almost the same. In addition, the aluminum alloy according to the present invention (claims 6 to 9) does not use a low melting point metal such as Pb or Bi, but has a conventional 505 content.
It is a non-heat treatment type alloy that has remarkably excellent machinability as compared with 6 alloy, 5052 alloy and 5083 alloy, and is almost the same in mechanical properties, corrosion resistance, cold forgeability and extrudability.
And, in both cases, troubles such as wrapping of chips on the tool due to long chips do not occur, and it is possible to achieve process cost reduction by adopting cold forging and omitting heat treatment, and also in recyclability Since there are no difficulties, it has a great industrial value.

【0070】一方、本発明に関わるアルミニウム合金
(請求項10〜12)は、耐食性及び切削性について従
来技術のAA6262合金を凌駕する。そして、長い切
粉による工具への切粉の巻き付き等のトラブルも発生し
ないため、特に自動工作機械を用いた無人運転で作成さ
れる機械部品用素材として適しており、加えて低融点金
属に起因する熱脆性も生じ得ず、リサイクル性も高いの
で、AA6262合金が用いられていた各用途に適用で
きる切削性に優れた高耐食アルミニウム合金として工業
的価値がきわめて大きいものである。また、上記アルミ
ニウム合金(請求項1〜12)は、PbやBiを添加す
ることなく切削性を高めていることから、アルマイト処
理性に優れ、均質で光沢のあるアルマイト皮膜を形成す
ることができる。
On the other hand, the aluminum alloy according to the present invention (claims 10 to 12) is superior to the conventional AA6262 alloy in corrosion resistance and machinability. And since it does not cause troubles such as winding of chips around tools due to long chips, it is particularly suitable as a material for machine parts created by unmanned operation using automatic machine tools. Since it does not cause thermal embrittlement and has high recyclability, it has an extremely high industrial value as a highly corrosion-resistant aluminum alloy with excellent machinability that can be applied to various uses for which the AA6262 alloy was used. Further, since the aluminum alloy (claims 1 to 12) has improved machinability without adding Pb or Bi, it is possible to form a uniform and glossy alumite film having excellent alumite processability. .

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 Si:1.5〜12.0質量%、Mg:
0.5〜6.0質量%、Ti:0.01〜0.1質量%
をそれぞれ含有し、残部がAl及び不可避不純物からな
ることを特徴とする切削性に優れる高耐食アルミニウム
合金。
1. Si: 1.5 to 12.0 mass%, Mg:
0.5 to 6.0 mass%, Ti: 0.01 to 0.1 mass%
A highly corrosion-resistant aluminum alloy having excellent machinability, characterized in that each of them contains Al and the balance is Al and unavoidable impurities.
【請求項2】 Si:1.5〜12.0質量%、Mg:
0.5〜1.0(1.0を含まず)質量%、Ti:0.
01〜0.1質量%をそれぞれ含有し、さらに、Mn:
0.5〜2.0質量%を含有し、残部がAl及び不可避
不純物からなることを特徴とする切削性に優れる高耐食
アルミニウム合金。
2. Si: 1.5 to 12.0 mass%, Mg:
0.5 to 1.0 (not including 1.0)% by mass, Ti: 0.
01-0.1% by mass respectively, and further Mn:
A highly corrosion-resistant aluminum alloy having excellent machinability, characterized by containing 0.5 to 2.0 mass% and the balance being Al and inevitable impurities.
【請求項3】 Si:2.0〜12.0(2.0を含ま
ず)質量%、Mg:0.5〜6.0質量%、Ti:0.
01〜0.1質量%をそれぞれ含有し、さらに、Mn:
0.5〜2.0質量%を含有し、残部がAl及び不可避
不純物からなることを特徴とする切削性に優れる高耐食
アルミニウム合金。
3. Si: 2.0 to 12.0 (2.0 is not included) mass%, Mg: 0.5 to 6.0 mass%, Ti: 0.
01-0.1% by mass respectively, and further Mn:
A highly corrosion-resistant aluminum alloy having excellent machinability, characterized by containing 0.5 to 2.0 mass% and the balance being Al and inevitable impurities.
【請求項4】 さらに、Cu:0.1〜1.0質量%を
含有することを特徴とする請求項1〜3のいずれかに記
載された切削性に優れる高耐食アルミニウム合金。
4. The high corrosion resistant aluminum alloy having excellent machinability according to claim 1, further comprising Cu: 0.1 to 1.0 mass%.
【請求項5】 さらに、Fe:0.5〜1.0質量%、
Cr:0.1〜0.5質量%、Zr:0.1〜0.5質
量%のうちいずれか1種以上を含有することを特徴とす
る請求項1〜4のいずれかに記載された切削性に優れる
高耐食アルミニウム合金。
5. Further, Fe: 0.5 to 1.0% by mass,
Cr: 0.1 to 0.5% by mass, Zr: 0.1 to 0.5% by mass, and one or more of them are contained. Highly corrosion resistant aluminum alloy with excellent machinability.
【請求項6】 Si:1.5〜12.0質量%、Mg:
2.0〜6.0質量%をそれぞれ含有し、残部がAl及
び不可避不純物からなることを特徴とする切削性に優れ
る高耐食アルミニウム合金。
6. Si: 1.5 to 12.0 mass%, Mg:
A highly corrosion-resistant aluminum alloy excellent in machinability, characterized in that it contains 2.0 to 6.0 mass% each, and the balance comprises Al and unavoidable impurities.
【請求項7】 Si:2〜12.0(2を含まず)質量
%、Mg:2.0〜6.0質量%をそれぞれ含有し、さ
らに、Mn:0.3〜1.2質量%を含有し、残部がA
l及び不可避不純物からなることを特徴とする切削性に
優れる高耐食アルミニウム合金。
7. Si: 2 to 12.0 (not including 2) mass% and Mg: 2.0 to 6.0 mass% are respectively contained, and further Mn: 0.3 to 1.2 mass%. And the balance is A
A highly corrosion-resistant aluminum alloy having excellent machinability, which is characterized by comprising 1 and unavoidable impurities.
【請求項8】 さらに、Ti:0.01〜0.1質量%
を含有することを特徴とする請求項7に記載された切削
性に優れる高耐食アルミニウム合金。
8. Further, Ti: 0.01 to 0.1% by mass.
A highly corrosion-resistant aluminum alloy having excellent machinability as set forth in claim 7, containing:
【請求項9】 さらに、Fe:0.5〜1.0質量%、
Cr:0.1〜0.5質量%、Zr:0.1〜0.5質
量%のうちいずれか1種以上を含有することを特徴とす
る請求項6〜8のいずれかに記載された切削性に優れる
高耐食アルミニウム合金。
9. Further, Fe: 0.5 to 1.0% by mass,
9. Any one or more of Cr: 0.1 to 0.5 mass% and Zr: 0.1 to 0.5 mass% is contained, and it is described in any one of Claims 6 to 8. Highly corrosion resistant aluminum alloy with excellent machinability.
【請求項10】 Si:1.5〜12.0質量%、M
g:0.2〜1.2質量%、Cu:0.15〜3.0質
量%をそれぞれ含有し、残部がAl及び不可避不純物か
らなることを特徴とする切削性に優れる高耐食アルミニ
ウム合金。
10. Si: 1.5 to 12.0 mass%, M
A highly corrosion-resistant aluminum alloy having excellent machinability, characterized in that g: 0.2 to 1.2 mass% and Cu: 0.15 to 3.0 mass% are respectively contained, and the balance comprises Al and unavoidable impurities.
【請求項11】 さらに、Cr:0.04〜0.35質
量%を含有することを特徴とする請求項10に記載され
た切削性に優れた高耐食アルミニウム合金。
11. The highly corrosion resistant aluminum alloy having excellent machinability according to claim 10, further containing Cr: 0.04 to 0.35 mass%.
【請求項12】 さらに、Ti:0.001〜0.05
質量%を含有することを特徴とする請求項10又は11
に記載された切削性に優れる高耐食アルミニウム合金。
12. Further, Ti: 0.001 to 0.05
% Or mass% is contained.
Highly corrosion resistant aluminum alloy with excellent machinability described in.
【請求項13】 請求項1〜12のいずれかに記載され
た化学組成を有するアルマイト処理用アルミニウム合
金。
13. An aluminum alloy for alumite treatment, which has the chemical composition according to any one of claims 1 to 12.
JP08124128A 1995-03-30 1996-03-29 High corrosion resistant aluminum alloy extruded material with excellent machinability Expired - Lifetime JP3107517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08124128A JP3107517B2 (en) 1995-03-30 1996-03-29 High corrosion resistant aluminum alloy extruded material with excellent machinability

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP7-99634 1995-03-30
JP8-19392 1995-03-30
JP7-99723 1995-03-30
JP9963495 1995-03-30
JP9972395 1995-03-31
JP1939296 1996-01-09
JP08124128A JP3107517B2 (en) 1995-03-30 1996-03-29 High corrosion resistant aluminum alloy extruded material with excellent machinability

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP33137198A Division JP3886270B2 (en) 1995-03-30 1998-11-20 High corrosion resistance aluminum alloy with excellent machinability

Publications (2)

Publication Number Publication Date
JPH09249931A true JPH09249931A (en) 1997-09-22
JP3107517B2 JP3107517B2 (en) 2000-11-13

Family

ID=27282606

Family Applications (2)

Application Number Title Priority Date Filing Date
JP08124128A Expired - Lifetime JP3107517B2 (en) 1995-03-30 1996-03-29 High corrosion resistant aluminum alloy extruded material with excellent machinability
JP33137198A Expired - Lifetime JP3886270B2 (en) 1995-03-30 1998-11-20 High corrosion resistance aluminum alloy with excellent machinability

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP33137198A Expired - Lifetime JP3886270B2 (en) 1995-03-30 1998-11-20 High corrosion resistance aluminum alloy with excellent machinability

Country Status (1)

Country Link
JP (2) JP3107517B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003072839A1 (en) * 2002-02-28 2003-09-04 Aisin Keikinzoku Co., Ltd. Wear-resistant aluminum alloy excellent in staking property and extruded product made thereof
JP2005133112A (en) * 2003-10-28 2005-05-26 Aisin Seiki Co Ltd Aluminum alloy member and its manufacturing method
WO2010114063A1 (en) * 2009-03-31 2010-10-07 日立金属株式会社 Al-mg-si-type aluminum alloy for casting which has excellent bearing force, and casted member comprising same
EP2664687A1 (en) 2012-05-15 2013-11-20 Constellium Extrusions Decin s.r.o. Improved free-machining wrought aluminium alloy product and manufacturing process thereof
KR20160024837A (en) 2014-07-31 2016-03-07 가부시키가이샤 고베 세이코쇼 Aluminum alloy extruded material having excellent machinability and method for manufacturing same
US9657374B2 (en) 2013-08-29 2017-05-23 Kobe Steel, Ltd. Free-machining aluminum alloy extruded material with reduced surface roughness and excellent productivity
CN113564429A (en) * 2021-08-10 2021-10-29 江苏亚太航空科技有限公司 Fine-grain aluminum alloy block and preparation process and application thereof
CN113637882A (en) * 2021-08-13 2021-11-12 贵州电网有限责任公司 Aluminum alloy corrosion-resistant structural member material for electric power facilities and preparation method thereof
CN115491552A (en) * 2022-10-09 2022-12-20 苏州大学 Corrosion-resistant cast aluminum alloy, preparation method and application

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007012423A1 (en) 2007-03-15 2008-09-18 Bayerische Motoren Werke Aktiengesellschaft Cast aluminum alloy
FR2944029B1 (en) * 2009-04-03 2011-04-22 Alcan Int Ltd 6XXX SERIES ALLOY ALLOY ALLOY
JP4755725B2 (en) 2009-06-29 2011-08-24 アイシン軽金属株式会社 Wear-resistant aluminum alloy extruded material with excellent fatigue strength and machinability
JP5499610B2 (en) * 2009-10-07 2014-05-21 日本軽金属株式会社 Aluminum alloy member and manufacturing method thereof
GB201205655D0 (en) * 2012-03-30 2012-05-16 Jaguar Cars Alloy and method of production thereof
KR101606525B1 (en) * 2014-10-29 2016-03-25 주식회사 케이엠더블유 Aluminum alloy for die casting having excellent corrosion resistance
CN112725646A (en) * 2020-12-25 2021-04-30 亚太轻合金(南通)科技有限公司 Aluminum-silicon alloy and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190542A (en) * 1984-03-13 1985-09-28 Showa Alum Ind Kk Aluminum alloy having superior corrosion resistance for parts contacting with magnetic tape
JPH0297638A (en) * 1988-09-30 1990-04-10 Showa Denko Kk Aluminum alloy for parts to be brought into contact with magnetic tape
JPH03100136A (en) * 1989-09-13 1991-04-25 Sumitomo Light Metal Ind Ltd Aluminum alloy material for die
JPH06116667A (en) * 1991-05-31 1994-04-26 Sky Alum Co Ltd Far infrared radiator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190542A (en) * 1984-03-13 1985-09-28 Showa Alum Ind Kk Aluminum alloy having superior corrosion resistance for parts contacting with magnetic tape
JPH0297638A (en) * 1988-09-30 1990-04-10 Showa Denko Kk Aluminum alloy for parts to be brought into contact with magnetic tape
JPH03100136A (en) * 1989-09-13 1991-04-25 Sumitomo Light Metal Ind Ltd Aluminum alloy material for die
JPH06116667A (en) * 1991-05-31 1994-04-26 Sky Alum Co Ltd Far infrared radiator

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003072839A1 (en) * 2002-02-28 2003-09-04 Aisin Keikinzoku Co., Ltd. Wear-resistant aluminum alloy excellent in staking property and extruded product made thereof
US7473327B2 (en) 2002-02-28 2009-01-06 Aisin Keikinzoku Co., Ltd. Wear-resistant aluminum alloy excellent in caulking property and extruded product made thereof
JP2005133112A (en) * 2003-10-28 2005-05-26 Aisin Seiki Co Ltd Aluminum alloy member and its manufacturing method
WO2010114063A1 (en) * 2009-03-31 2010-10-07 日立金属株式会社 Al-mg-si-type aluminum alloy for casting which has excellent bearing force, and casted member comprising same
US9518312B2 (en) 2009-03-31 2016-12-13 Hitachi Metals, Ltd. Al—Mg—Si-based, casting aluminum alloy with excellent yield strength and cast member made thereof
EP2664687A1 (en) 2012-05-15 2013-11-20 Constellium Extrusions Decin s.r.o. Improved free-machining wrought aluminium alloy product and manufacturing process thereof
WO2013170953A1 (en) 2012-05-15 2013-11-21 Constellium Extrusions Decin S.R.O. Improved free-machining wrought aluminium alloy product and manufacturing process thereof
US10458009B2 (en) 2012-05-15 2019-10-29 Constellium Extrusions Decin S.R.O. Free-machining wrought aluminium alloy product and manufacturing process thereof
US9657374B2 (en) 2013-08-29 2017-05-23 Kobe Steel, Ltd. Free-machining aluminum alloy extruded material with reduced surface roughness and excellent productivity
KR20170027316A (en) 2014-07-31 2017-03-09 가부시키가이샤 고베 세이코쇼 Aluminum alloy extruded material having excellent machinability and method for manufacturing same
KR20160024837A (en) 2014-07-31 2016-03-07 가부시키가이샤 고베 세이코쇼 Aluminum alloy extruded material having excellent machinability and method for manufacturing same
CN113564429A (en) * 2021-08-10 2021-10-29 江苏亚太航空科技有限公司 Fine-grain aluminum alloy block and preparation process and application thereof
CN113637882A (en) * 2021-08-13 2021-11-12 贵州电网有限责任公司 Aluminum alloy corrosion-resistant structural member material for electric power facilities and preparation method thereof
CN115491552A (en) * 2022-10-09 2022-12-20 苏州大学 Corrosion-resistant cast aluminum alloy, preparation method and application

Also Published As

Publication number Publication date
JP3886270B2 (en) 2007-02-28
JP3107517B2 (en) 2000-11-13
JPH11217647A (en) 1999-08-10

Similar Documents

Publication Publication Date Title
JP3301919B2 (en) Aluminum alloy extruded material with excellent chip breaking performance
US5522950A (en) Substantially lead-free 6XXX aluminum alloy
JP3107517B2 (en) High corrosion resistant aluminum alloy extruded material with excellent machinability
EP2664687B1 (en) Improved free-machining wrought aluminium alloy product and manufacturing process thereof
US8454766B2 (en) Extruded material of a free-cutting aluminum alloy excellent in embrittlement resistance at a high temperature
JP3335732B2 (en) Hypoeutectic Al-Si alloy and casting method thereof
JPH10219381A (en) High strength aluminum alloy excellent in intergranular corrosion resistance, and its production
JP2004084058A (en) Method for producing aluminum alloy forging for transport structural material and aluminum alloy forging
JPH1112705A (en) Production of high strength aluminum alloy forging excellent in machinability
JP3886329B2 (en) Al-Mg-Si aluminum alloy extruded material for cutting
JPH09125181A (en) Aluminum alloy for forging
JPH07145440A (en) Aluminum alloy forging stock
JP2002047524A (en) Aluminum alloy extrusion material for machine parts having excellent strength, machinability and clinching property
JP3832774B2 (en) Aluminum alloy for cutting excellent in cold forgeability and method for producing aluminum alloy cold forged material for cutting
JP3453607B2 (en) High-strength aluminum alloy extruded material with excellent chip breaking performance
JPH09279319A (en) Production of aluminum alloy for compressor parts, excellent in machinability, wear resistance and toughness
JPH1096039A (en) Wear resistant aluminum alloy material excellent in cutting workability and corrosion resistance
JPH11152552A (en) Method for working aluminum-zinc-silicon alloy
JPH09202933A (en) High strength aluminum alloy excellent in hardenability
JP2002206132A (en) Aluminum alloy extrusion material having excellent machinability and production method therefor
JP4707075B2 (en) Aluminum alloy with excellent machinability
JPH11323472A (en) Al-mg-si alloy extrusion material excellent in machinability and its production
JPH0925532A (en) Production of aluminum alloy for cold forging excellent in machinability, and cold forged aluminum alloy material excellent in machinability
JPS63312945A (en) Non heat treatment type high strength free cutting aluminum alloy for cold forging and its production
JP2002212660A (en) Aluminum alloy having excellent machinability

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070908

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080908

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080908

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 13

EXPY Cancellation because of completion of term