JPH11217647A - High corrosion resistant aluminum alloy excellent in machinability - Google Patents

High corrosion resistant aluminum alloy excellent in machinability

Info

Publication number
JPH11217647A
JPH11217647A JP33137198A JP33137198A JPH11217647A JP H11217647 A JPH11217647 A JP H11217647A JP 33137198 A JP33137198 A JP 33137198A JP 33137198 A JP33137198 A JP 33137198A JP H11217647 A JPH11217647 A JP H11217647A
Authority
JP
Japan
Prior art keywords
mass
aluminum alloy
machinability
alloy
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33137198A
Other languages
Japanese (ja)
Other versions
JP3886270B2 (en
Inventor
Shinji Yoshihara
伸二 吉原
Masakazu Hirano
正和 平野
Hiroshi Iwamura
宏 岩村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27282606&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH11217647(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Publication of JPH11217647A publication Critical patent/JPH11217647A/en
Application granted granted Critical
Publication of JP3886270B2 publication Critical patent/JP3886270B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a high corrosion resistant aluminum alloy excellent in machinability and suitably used, e.g. for machine parts which require frequent application of machining in the course of manufacture. SOLUTION: This aluminum alloy has a composition consisting of, by mass, 1.5-12.0% Si, 0.5-6.0% Mg, 0.01-0.1% Ti, and the balance Al with inevitable impurities and containing, if necessary, either or both of 0.5-2.0% Mn and 0.1-1.0% Cu or one or more kinds among 0.5-1.0% Fe, 0.1-0.5% Cr, and 0.1-0.5% Zr.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、製造の過程で切削
加工を多用する機械部品等に適する切削性に優れた高耐
食アルミニウム合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly corrosion-resistant aluminum alloy having excellent machinability, which is suitable for a machine part or the like which frequently uses a cutting process in a manufacturing process.

【0002】[0002]

【従来の技術】アルミニウム合金のうち特に3000系
のAl−Mn系合金を中心とした非熱処理型合金は、中
程度の機械的性質を持ち耐食性と冷間鍛造性に優れ、低
コストで成形が可能なため、機械部品などへの使用実績
が多く、その際、一般に冷間鍛造した後切削加工や穴あ
け加工を施して製品化されている。しかし、この系の合
金は、切削時に発生する切粉が分断され難く切削性に劣
るため、複雑な切削や穴あけ加工を必要とする機械部品
への採用は困難であった。
2. Description of the Related Art Among aluminum alloys, non-heat-treatable alloys, mainly 3000-series Al-Mn alloys, have moderate mechanical properties, excellent corrosion resistance and cold forgeability, and can be formed at low cost. Since it is possible, it is often used for machine parts and the like. At that time, it is generally commercialized by cold forging, followed by cutting and drilling. However, this type of alloy has difficulty in cutting chips generated at the time of cutting and is inferior in machinability, so that it has been difficult to employ it in machine parts that require complicated cutting and drilling.

【0003】また、アルミニウム合金のうち5000系
のAl−Mg系合金を中心とした非熱処理型合金は、中
程度の機械的性質(3000系より強度レベルがやや高
い)を持ち耐食性と冷間加工性に優れ、低コストで加工
が可能なため、カメラや顕微鏡の筒材のような光学機器
その他の機械部品などへの使用実績が多く、その際、一
般に冷間鍛造した後切削加工や穴あけ加工を施して製品
化されている。しかし、この系の合金は、切削時に発生
する切粉が分断され難く切削性に劣り、複雑な切削や穴
あけ加工を必要とする機械部品への採用は困難であっ
た。
[0003] Among aluminum alloys, non-heat-treated alloys, mainly 5000-series Al-Mg-based alloys, have moderate mechanical properties (slightly higher in strength level than 3000 series), corrosion resistance and cold working. It has excellent performance and can be processed at low cost, so it has many uses for optical devices and other mechanical parts such as cameras and microscope tubes. In that case, cutting and drilling are generally performed after cold forging. Has been commercialized. However, this type of alloy is inferior in machinability due to the difficulty in cutting chips generated during cutting, and it has been difficult to employ it in machine parts that require complicated cutting and drilling.

【0004】一方、従来の高切削性アルミニウム合金
は、展伸材の分野ではAA6262合金(Si:0.4
〜0.8質量%、Mg:0.8〜1.2質量%、Cu:
0.15〜0.4質量%、Pb:0.4〜0.7質量
%、Bi:0.4〜0.7質量%、残部Al)に代表さ
れるように、有効添加元素としてPb、Bi、Sn等の
低融点金属を含有する(特開昭54−143714号公
報、特開平3−39442号公報参照)。これら低融点
金属はアルミニウム中にほとんど固溶せず、アルミニウ
ム合金中に粒状にミクロ偏析し、その低融点金属粒子が
切削加工時の加工発熱により溶融して切粉を分断し、ア
ルミニウム合金の切削性を向上させる。
On the other hand, a conventional high machinability aluminum alloy is an AA6262 alloy (Si: 0.4
0.8% by mass, Mg: 0.8% to 1.2% by mass, Cu:
0.15 to 0.4% by mass, Pb: 0.4 to 0.7% by mass, Bi: 0.4 to 0.7% by mass, balance Al) It contains low melting point metals such as Bi and Sn (see JP-A-54-143714 and JP-A-3-39442). These low-melting metals hardly form a solid solution in aluminum, but micro-segregate in granular form in the aluminum alloy, and the low-melting metal particles are melted by the heat generated during the cutting process to cut chips and cut the aluminum alloy. Improve the performance.

【0005】なお、上記AA6262合金は、製造の過
程で切削加工、特にドリル加工が多用される機械部品、
例えば自動車のアンチスキッド・ブレーキ・システムの
ハウジングの素材として従来より使用されている熱処理
型アルミニウム合金であるが、このようなPb、Bi、
Sn等の低融点金属の添加による切削性向上効果は、上
記熱処理型合金に限らず非熱処理型合金においても等し
く得られることが予想される(例えば上記特開平3−3
9442号公報参照)。
[0005] The above-mentioned AA6262 alloy is a mechanical part that is frequently used for cutting, especially drilling in the manufacturing process.
For example, a heat-treated aluminum alloy conventionally used as a material for a housing of an anti-skid brake system of an automobile, such as Pb, Bi,
It is expected that the effect of improving the machinability by the addition of a low melting point metal such as Sn can be obtained not only in the above-mentioned heat-treated alloy but also in the non-heat-treated alloy (for example, Japanese Patent Application Laid-Open No. Hei 3-3)
No. 9442).

【0006】[0006]

【発明が解決しようとする課題】ところが、これらの低
融点金属が添加されたアルミニウム合金は切削性が向上
する反面耐食性が低下し、また、低融点金属は熱脆性を
引き起こす欠点もあり、使用環境に十分な注意を払う必
要があった。さらに、合金をスクラップとしてリサイク
ルする場合、Pb、Bi等を必要とする比較的少ない合
金種にしか転用ができず、転用範囲が狭まるためにリサ
イクル性に不利であるという問題を有する。
However, aluminum alloys to which these low-melting-point metals have been added improve machinability, but on the other hand, have low corrosion resistance, and low-melting-point metals also have the disadvantage of causing thermal embrittlement. Had to pay close attention to Furthermore, when the alloy is recycled as scrap, it can be diverted to only a relatively small number of alloy types that require Pb, Bi, etc., which is disadvantageous in terms of recyclability because the diverted range is narrowed.

【0007】また、機械部品は耐食性、耐摩耗性又は装
飾効果を高めるために、表面にアルマイト処理を施す場
合があるが、PbやBiが添加されたアルミニウム合金
の場合、表面にPbやBiが露出した箇所において酸化
皮膜が形成されず、不均質で光沢のないアルマイト皮膜
しか得られないという問題がある。
[0007] Further, in order to enhance corrosion resistance, abrasion resistance or decorative effect, mechanical parts may be subjected to alumite treatment on the surface. In the case of an aluminum alloy to which Pb or Bi is added, Pb or Bi is added to the surface. There is a problem that an oxide film is not formed at an exposed portion, and only an alumite film having a non-uniform and low gloss can be obtained.

【0008】このような低融点金属を含有せずに切削性
を高めた非熱処理型アルミニウム合金は、特開昭60−
184658号公報に提案されてはいるが、Pb、B
i、Sn等の低融点金属を含有したアルミニウム合金に
比べて切削性が十分でなかった。
[0008] A non-heat-treated aluminum alloy having improved machinability without containing such a low melting point metal is disclosed in
Pb, B, although proposed in 184658
The machinability was not sufficient as compared with an aluminum alloy containing a low melting point metal such as i or Sn.

【0009】本発明は上記従来技術の問題点に鑑みてな
されたもので、包括的にいえば、切削性と耐食性の双方
に優れるアルミニウム合金を得ること、また、リサイク
ル性を備え、均質なアルマイト皮膜を形成することので
きる切削性に優れたアルミニウム合金を得ることを目的
とする。個別具体的にいえば、従来の3000系あるい
は5000系非熱処理型アルミニウム合金と同程度の機
械的性質、冷間鍛造性、耐食性、及びリサイクル性を備
えるとともに、切削性が改善された非熱処理型アルミニ
ウム合金を得ること、従来のAA6262合金と同等以
上の切削性を備え、より改善された耐食性を有する熱処
理型アルミニウム合金を得ること、を目的とする。
The present invention has been made in view of the above-mentioned problems of the prior art. Generally speaking, an aluminum alloy excellent in both machinability and corrosion resistance is obtained, and a homogeneous alumite having recyclability is provided. An object of the present invention is to obtain an aluminum alloy which can form a film and has excellent machinability. More specifically, a non-heat treated type alloy having the same mechanical properties, cold forgeability, corrosion resistance, and recyclability as conventional 3000 type or 5000 type non-heat treated aluminum alloys, and improved machinability. An object of the present invention is to obtain an aluminum alloy, and to obtain a heat-treated aluminum alloy having machinability equal to or higher than that of a conventional AA6262 alloy and having improved corrosion resistance.

【0010】[0010]

【課題を解決するための手段】本発明者らは、前記課題
を解決するため鋭意研究を重ねた結果、従来切削性を向
上させる目的で添加されていたPb、Bi、Snなどの
低融点金属を添加せず、リサイクル性を阻害しないSi
及びMgなどを用いることで上記目的を達成できること
を見い出し、その知見を基に本発明を完成するに至っ
た。なお、以下に示すように、本願は強度レベルの異な
る2系統の非熱処理型アルミニウム合金に関する発明
(請求項1〜5と請求項6〜9)と、熱処理型アルミニ
ウム合金に関する発明(請求項10〜12)を包含す
る。
Means for Solving the Problems The inventors of the present invention have made intensive studies to solve the above-mentioned problems, and as a result, low melting point metals such as Pb, Bi, Sn and the like which have been conventionally added for the purpose of improving machinability. Adds no Si and does not hinder recyclability
It has been found that the above object can be achieved by using Mg and Mg, and the present invention has been completed based on the knowledge. As described below, the present invention relates to two types of non-heat treatment type aluminum alloys having different strength levels (claims 1 to 5 and claims 6 to 9) and a heat treatment type aluminum alloy (claims 10 to 10). 12).

【0011】[請求項1〜5の発明]この発明に関わる
切削性に優れる高耐食アルミニウム合金は、Si:1.
5〜12.0質量%、Mg:0.5〜6.0質量%、T
i:0.01〜0.1質量%をそれぞれ含有し、残部が
Al及び不可避不純物からなる。また、この発明に関わ
る切削性に優れる高耐食アルミニウム合金は、必要に応
じて、上記合金元素に加え、Mn:0.5〜2.0質
量%又はCu:0.1〜1.0質量%のいずれか一方又
は双方を含有し、あるいは、Fe:0.5〜1.0質
量%、Cr:0.1〜0.5質量%、Zr:0.1〜
0.5質量%のうちいずれか1種以上を含有し、あるい
は、上記、の双方に挙げた元素を自由に組み合わ
せて含有する。
[Inventions of Claims 1 to 5] The highly corrosion-resistant aluminum alloy excellent in machinability according to the present invention is composed of Si: 1.
5 to 12.0% by mass, Mg: 0.5 to 6.0% by mass, T
i: 0.01 to 0.1% by mass, respectively, with the balance being Al and unavoidable impurities. In addition, the high corrosion-resistant aluminum alloy having excellent machinability according to the present invention may contain, as necessary, Mn: 0.5 to 2.0 mass% or Cu: 0.1 to 1.0 mass%, in addition to the above alloy elements. Or Fe: 0.5 to 1.0% by mass, Cr: 0.1 to 0.5% by mass, Zr: 0.1 to
It contains any one or more of 0.5% by mass, or contains any combination of the above elements.

【0012】上記切削性に優れる高耐食アルミニウム合
金は、鍛造性が優れるものの切削性が劣るため多くの機
械部品などへの適用ができなかった従来の3003合金
や3004合金と比較すると、強度、耐食性、及び冷間
鍛造性が同等で、切削性が著しく改善された非熱処理型
アルミニウム合金であり、低コストの冷間鍛造が可能
で、かつ複雑な切削加工が可能となる。そして、切粉の
分断性がよく、長い切粉による工具への切粉の巻き付き
等のトラブルが発生しない。また、切削性向上のためP
b、Bi等の低融点金属を添加していないので、高耐食
であり熱脆性も生じ得ず、リサイクル性も阻害されてい
ない。なお、このアルミニウム合金は、常法に従って製
造することができ、例えば溶解、鋳造、均質化熱処理を
施した後押出加工を行い、この押出材を鍛造加工用の素
材とすることができる。
The high corrosion-resistant aluminum alloy having excellent machinability has excellent strength and corrosion resistance as compared with the conventional 3003 alloy and 3004 alloy which cannot be applied to many mechanical parts due to poor forgeability but poor machinability. And a non-heat-treatable aluminum alloy having the same cold forgeability and markedly improved machinability, enabling low-cost cold forging and complex cutting. Further, the cutting ability of the chips is good, and troubles such as winding of the chips around the tool due to long chips are not generated. In addition, P
Since no low-melting-point metal such as b or Bi is added, it has high corrosion resistance, does not cause thermal embrittlement, and does not hinder recyclability. The aluminum alloy can be manufactured according to a conventional method. For example, after performing melting, casting, and homogenizing heat treatment, extrusion processing is performed, and the extruded material can be used as a material for forging processing.

【0013】次に、上記アルミニウム合金における各元
素の添加理由及び添加量の限定理由を説明する。
Next, the reason for adding each element in the above aluminum alloy and the reason for limiting the amount of addition will be described.

【0014】Si:1.5〜12.0質量% Siはアルミニウム組織中にSi系の化合物を形成し切
粉の分断性をよくし切削性を向上させる。これはSi系
化合物が切粉を分断する起点となるためである。Si添
加下限値はアルミニウム中での固溶限である1.5%を
越えていることが必要であり、Siによる効果を明確に
させるためには2.0%を越える添加が望ましく、さら
に4.0%以上の添加により顕著な効果を得ることがで
きる。従って、優れた切削性を得るとの観点からは、S
iは2.0〜12.0(2.0を含まず)%、あるいは
4.0〜12.0%とするのがよい。一方、Siの添加
上限は、粗大な初晶Siが生じ変形抵抗が増加すること
による押出性の低下や押出材の脆化を招かないために、
共晶点の12.0%以下とする必要がある。特に押出性
が良好な6%以下が望ましい。
Si: 1.5 to 12.0% by mass Si forms a Si-based compound in the aluminum structure, improves the cutting performance of the chips, and improves the cutting performance. This is because the Si-based compound serves as a starting point for cutting chips. It is necessary that the lower limit of Si addition exceeds 1.5%, which is the solid solubility limit in aluminum, and more than 2.0% is desirable in order to clarify the effect of Si. A remarkable effect can be obtained by adding 0.0% or more. Therefore, from the viewpoint of obtaining excellent machinability, S
i is preferably set to 2.0 to 12.0% (not including 2.0), or 4.0 to 12.0%. On the other hand, the upper limit of the addition of Si is set so that coarse primary crystal Si is generated and deformation resistance is increased, so that extrudability is not reduced and extruded material is not embrittled.
It must be 12.0% or less of the eutectic point. In particular, the extrudability is desirably 6% or less.

【0015】Mg:0.5〜6.0質量% Mgは歪硬化能を向上させるため切粉分断性を向上さ
せ、また固溶体化して素材の強度を高める効果がある。
Mg含有量が0.5%未満では十分その効果が得られ
ず、6.0%を越えて添加すると変形抵抗が増し押出性
が低下する。強度と良好な押出性を確保するとの観点か
ら、概ね1.0%以上、3.0%以下が好ましいが、専
ら押出加工時の変形抵抗を抑えて押出性を向上させると
の観点からすれば、1.0%未満、特に0.9%以下と
することで顕著な効果を得ることができる。従って、そ
の場合はMgは0.5〜1.0(1.0を含まず)%、
あるいは0.5〜0.9%とすればよい。
Mg: 0.5 to 6.0% by mass Mg has an effect of improving the chip breaking property in order to improve the strain hardening ability, and has the effect of forming a solid solution to increase the strength of the material.
If the Mg content is less than 0.5%, the effect cannot be sufficiently obtained, and if the Mg content exceeds 6.0%, the deformation resistance increases and the extrudability decreases. From the viewpoint of securing strength and good extrudability, it is preferably about 1.0% or more and 3.0% or less. However, from the viewpoint of exclusively suppressing deformation resistance during extrusion and improving extrudability. , Less than 1.0%, particularly 0.9% or less, a remarkable effect can be obtained. Therefore, in that case, Mg is 0.5 to 1.0 (excluding 1.0)%,
Alternatively, it may be set to 0.5 to 0.9%.

【0016】Ti:0.01〜0.1質量% Tiは鋳造組織を微細化して機械的性質を安定化する。
しかし、Ti含有量が0.01%未満ではその効果が得
られず、一方、0.1%を越えて添加してもその効果は
飽和する。
Ti: 0.01-0.1% by mass Ti refines a cast structure and stabilizes mechanical properties.
However, if the Ti content is less than 0.01%, the effect cannot be obtained, while if the content exceeds 0.1%, the effect is saturated.

【0017】Mn:0.5〜2.0質量% Mnは固溶体化して素材の強度を高める効果があり、ま
た、歪硬化能を向上させるため切粉分断を助長する効果
を持つ。しかし、Mn含有量が0.5%未満では十分な
効果が得られず、一方、2.0%を越えて添加すると押
出性が低下する。特に強度と良好な押出性を確保すると
の観点から、0.7%以上、1.5%以下が望まれる。
Mn: 0.5 to 2.0% by mass Mn has the effect of forming a solid solution to increase the strength of the material, and has the effect of promoting chip breaking to improve strain hardening ability. However, if the Mn content is less than 0.5%, a sufficient effect cannot be obtained, while if it exceeds 2.0%, the extrudability decreases. In particular, from the viewpoint of securing strength and good extrudability, 0.7% or more and 1.5% or less are desired.

【0018】Cu:0.1〜1.0質量% Cuは固溶体化して素材の強度を高めるとともに、歪硬
化能を向上させるため切粉分断も助長する効果を持ち、
Mnに代えて又はMnとともに添加される。しかし、C
u含有量が0.1%未満ではその効果に乏しく、一方、
1.0%を越えて添加すると耐食性が低下し、また押出
性も低下する。特に強度と良好な耐食性及び押出性を確
保するとの観点から、0.3%以上、0.8%以下が望
まれる。
Cu: 0.1 to 1.0% by mass Cu has the effect of forming a solid solution to increase the strength of the material and also promoting the cutting of chips to improve the strain hardening ability.
It is added instead of or together with Mn. But C
If the u content is less than 0.1%, the effect is poor.
If it is added in excess of 1.0%, the corrosion resistance decreases and the extrudability also decreases. In particular, from the viewpoint of securing strength and good corrosion resistance and extrudability, 0.3% or more and 0.8% or less are desired.

【0019】Fe:0.5〜1.0質量%、 Cr:0.1〜0.5質量%、 Zr:0.1〜0.5質量% Fe、Cr、ZrはそれぞれAlとの化合物を形成し、
切粉分断の起点となって切削性を向上させる。本発明に
おいてそれぞれ不可避不純物として下限値未満の含有が
許容されるが、下限値未満ではその効果が十分でなく、
一方、上限値を越えると粗大な化合物を生成し押出性が
低下する。
Fe: 0.5 to 1.0% by mass, Cr: 0.1 to 0.5% by mass, Zr: 0.1 to 0.5% by mass Fe, Cr and Zr each represent a compound with Al. Forming
It serves as a starting point for cutting chips and improves cutting properties. In the present invention, the content of less than the lower limit as each inevitable impurity is allowed, but the effect is not sufficient below the lower limit,
On the other hand, if it exceeds the upper limit, a coarse compound is formed, and the extrudability decreases.

【0020】また、上記アルミニウム合金の不可避不純
物としては、JISH4040に規定する化学成分に準
じ、Pb、Bi、Snは各々0.05質量%以下が許容
される。これらの低融点金属は多く含まれるとアルミニ
ウム合金の耐食性を劣化させるが、この範囲内であれば
その特性に影響を与えない。また、他の不可避不純物も
個々に0.05質量%以下が許容される。
As the inevitable impurities of the aluminum alloy, Pb, Bi, and Sn are each allowed to be 0.05% by mass or less according to the chemical components specified in JIS H4040. If these low melting point metals are contained in a large amount, the corrosion resistance of the aluminum alloy is degraded, but within this range, the properties are not affected. Also, other unavoidable impurities are individually allowed to be 0.05% by mass or less.

【0021】[請求項6〜9の発明]この発明に関わる
切削性に優れる高耐食アルミニウム合金は、Si:1.
5〜12.0質量%、Mg:2.0〜6.0質量%をそ
れぞれ含有し、残部がAl及び不可避不純物からなる。
また、この発明に関わる切削性に優れる高耐食アルミニ
ウム合金は、必要に応じて、上記合金元素に加え、M
n:0.3〜1.2質量%、Ti:0.01〜0.1質
量%のいずれか一方又は双方を含有し、あるいは、F
e:0.5〜1.0質量%、Cr:0.1〜0.5質量
%、Zr:0.1〜0.5質量%のうちいずれか1種以
上を含有し、あるいは、上記、の双方に挙げた元
素を自由に組み合わせて含有する。
[Inventions of Claims 6 to 9] The highly corrosion-resistant aluminum alloy excellent in machinability according to the present invention is composed of Si: 1.
5 to 12.0% by mass, and Mg: 2.0 to 6.0% by mass, and the balance consists of Al and inevitable impurities.
In addition, the high corrosion-resistant aluminum alloy having excellent machinability according to the present invention may have M
n: 0.3 to 1.2% by mass, Ti: 0.01 to 0.1% by mass, or both.
e: 0.5 to 1.0% by mass, Cr: 0.1 to 0.5% by mass, Zr: 0.1 to 0.5% by mass. Both of the above elements are freely combined and contained.

【0022】上記切削性に優れる高耐食アルミニウム合
金は、冷間加工性が優れるものの切削性が劣るため多く
の機械部品などへの適用ができなかった従来の5052
合金や5056合金と比較すると、強度、耐食性、及び
冷間鍛造等の冷間加工性が同等で、切削性が著しく改善
された非熱処理型アルミニウム合金であり、複雑な切削
加工を可能とする合金である。そして、切粉の分断性が
よく、長い切粉による工具への切粉の巻き付き等のトラ
ブルが発生しない。また、切削性向上のためPb、Bi
等の低融点金属を添加していないので、高耐食であり熱
脆性も生じ得ず、リサイクル性も阻害されていない。な
お、このアルミニウム合金は、常法に従って製造するこ
とができ、例えば溶解、鋳造、均質化熱処理を施した後
押出加工を行い、この押出材を切削加工用の素材とする
ことができる。
The high corrosion-resistant aluminum alloy having excellent machinability has good cold workability, but has poor machinability, so that it cannot be applied to many mechanical parts and the like.
Compared to alloys and 5056 alloys, it is a non-heat treated aluminum alloy that has the same strength, corrosion resistance, and cold workability such as cold forging, and has significantly improved machinability. It is. Further, the cutting ability of the chips is good, and troubles such as winding of the chips around the tool due to long chips are not generated. In addition, Pb, Bi for improving machinability
Since no low-melting-point metal is added, it has high corrosion resistance, no thermal embrittlement can occur, and the recyclability is not hindered. In addition, this aluminum alloy can be manufactured according to a conventional method. For example, after performing melting, casting, and homogenizing heat treatment, extrusion processing is performed, and the extruded material can be used as a material for cutting.

【0023】次に、上記アルミニウム合金における各元
素の添加理由及び添加量の限定理由を説明する。
Next, the reason for adding each element and the reason for limiting the amount of each element in the aluminum alloy will be described.

【0024】Si:1.5〜12.0質量% Siはアルミニウム組織中にSi系の化合物を形成し切
粉の分断性をよくし切削性を向上させる。これはSi系
化合物が切削時に発生する切粉を分断する起点となるた
めである。Si添加下限値はアルミニウム中での固溶限
である1.5%を越えていることが必要であり、Siに
よる効果を明確にさせるためには2.0%を越える添加
が望ましく、さらに4.0%以上の添加により顕著な効
果を得ることができる。従って、優れた切削性を得ると
の観点からは、Siは2.0〜12.0(2.0を含ま
ず)%、あるいは4.0〜12.0%とするのがよい。
一方、Siの添加上限は、粗大な初晶Siが生じ変形抵
抗が増加することによる押出性の低下や押出材の脆化を
招かないために、共晶点の12.0%以下とする必要が
ある。特に押出性が良好な6%以下が望ましい。
Si: 1.5 to 12.0% by mass Si forms a Si-based compound in the aluminum structure, improves the cutting performance of the chips, and improves the cutting performance. This is because the Si-based compound serves as a starting point for dividing chips generated during cutting. It is necessary that the lower limit of Si addition exceeds 1.5%, which is the solid solubility limit in aluminum, and more than 2.0% is desirable in order to clarify the effect of Si. A remarkable effect can be obtained by adding 0.0% or more. Therefore, from the viewpoint of obtaining excellent machinability, the content of Si is preferably set to 2.0 to 12.0% (not including 2.0), or 4.0 to 12.0%.
On the other hand, the upper limit of the addition of Si needs to be 12.0% or less of the eutectic point in order to prevent the extrudability from being reduced or the embrittlement of the extruded material due to the increase in deformation resistance due to the formation of coarse primary crystal Si. There is. In particular, the extrudability is desirably 6% or less.

【0025】Mg:2.0〜6.0質量% Mgは歪硬化能を向上させるため切粉分断性を向上さ
せ、また固溶体化して素材の強度を高める効果がある。
Mg含有量が2.0%未満では十分な効果が得られず、
6.0%を越えて添加すると変形抵抗が増し押出性が低
下する。特に強度と良好な押出性を確保するとの観点か
ら、2.5%以上、5.5%以下が望まれる。
Mg: 2.0 to 6.0% by mass Mg has an effect of improving the chip breaking property to improve the strain hardening ability, and has the effect of forming a solid solution to increase the strength of the material.
If the Mg content is less than 2.0%, a sufficient effect cannot be obtained,
If added in excess of 6.0%, deformation resistance increases and extrudability decreases. In particular, from the viewpoint of securing strength and good extrudability, 2.5% or more and 5.5% or less are desired.

【0026】Ti:0.01〜0.1質量% Tiは鋳造組織を微細化して機械的性質を安定化する。
しかし、Ti含有量が0.01%未満ではその効果が得
られず、一方、0.1%を越えて添加してもその効果は
飽和する。
Ti: 0.01 to 0.1% by mass Ti refines a cast structure and stabilizes mechanical properties.
However, if the Ti content is less than 0.01%, the effect cannot be obtained, while if the content exceeds 0.1%, the effect is saturated.

【0027】Mn:0.3〜1.2質量% Mnは固溶体化して素材の強度を高める効果があり、ま
た、歪硬化能を向上させるため切粉分断を助長する効果
を持つ。しかし、Mn含有量が0.3%未満では十分な
効果が得られず、一方、1.2%を越えて添加すると押
出性が低下する。特に強度と良好な押出性を確保すると
の観点から、0.5%以上、1.0%以下が望まれる。
Mn: 0.3 to 1.2% by mass Mn has the effect of forming a solid solution to increase the strength of the material, and has the effect of promoting chip breaking to improve strain hardening ability. However, if the Mn content is less than 0.3%, a sufficient effect cannot be obtained, while if it exceeds 1.2%, the extrudability decreases. In particular, from the viewpoint of securing strength and good extrudability, 0.5% or more and 1.0% or less are desired.

【0028】Fe:0.5〜1.0質量%、 Cr:0.1〜0.5質量%、 Zr:0.1〜0.5質量% Fe、Cr、ZrはそれぞれAlとの化合物を形成し、
切粉分断の起点となって切削性を向上させる。本発明に
おいてそれぞれ不可避不純物として下限値未満の含有が
許容されるが、含有量がそれぞれ下限値未満ではその効
果が十分でなく、一方、上限値を越えると粗大な化合物
を生成し押出性が低下する。
Fe: 0.5 to 1.0% by mass, Cr: 0.1 to 0.5% by mass, Zr: 0.1 to 0.5% by mass Fe, Cr and Zr each represent a compound with Al. Forming
It serves as a starting point for cutting chips and improves cutting properties. In the present invention, the content of less than the lower limit as each inevitable impurity is allowed, but if the content is less than the respective lower limit, the effect is not sufficient, while if the content exceeds the upper limit, a coarse compound is formed and the extrudability is reduced. I do.

【0029】また、上記アルミニウム合金の不可避不純
物としては、JISH4040に規定する化学成分に準
じ、Pb、Bi、Snは各々0.05質量%以下が許容
される。これらの低融点金属は多く含まれるとアルミニ
ウム合金の耐食性を劣化させるが、この範囲内であれば
その特性に影響を与えない。また、他の不可避不純物も
個々に0.05質量%以下が許容される。
As the inevitable impurities of the aluminum alloy, Pb, Bi, and Sn are each allowed to be 0.05% by mass or less in accordance with the chemical components specified in JIS H4040. If these low melting point metals are contained in a large amount, the corrosion resistance of the aluminum alloy is degraded, but within this range, the properties are not affected. Also, other unavoidable impurities are individually allowed to be 0.05% by mass or less.

【0030】[請求項10〜12の発明]この発明に関
わる切削性に優れる高耐食アルミニウム合金は、Si:
1.5〜12.0質量%、Mg:0.2〜1.2質量
%、Cu:0.15〜3.0質量%をそれぞれ含有し、
残部がAl及び不可避不純物からなる。また、この発明
に関わる切削性に優れる高耐食アルミニウム合金は、必
要に応じて、上記合金元素に加え、Cr:0.04〜
0.35質量%又はTi:0.001〜0.05質量%
のいずれか一方又は双方を含有する。
[Inventions of Claims 10 to 12] The highly corrosion-resistant aluminum alloy having excellent machinability according to the present invention comprises Si:
1.5 to 12.0 mass%, Mg: 0.2 to 1.2 mass%, Cu: 0.15 to 3.0 mass%, respectively.
The balance consists of Al and unavoidable impurities. In addition, the high corrosion-resistant aluminum alloy excellent in machinability according to the present invention may have Cr: 0.04 to
0.35% by mass or Ti: 0.001 to 0.05% by mass
One or both.

【0031】上記切削性に優れる高耐食アルミニウム合
金の最大の特徴は、AA6262合金のようにPb、B
i、Sn等の低融点金属を添加せずに、切削性を向上さ
せていることである。このアルミニウム合金押出材は、
低融点金属を添加していないことからAA6262合金
に比べ高耐食性であり、さらに、熱脆性も生じ得ず、リ
サイクル性も高い。そして、切粉の分断性がよく、長い
切粉による工具への切粉の巻き付き等のトラブルが発生
しない。なお、上記アルミニウム合金は、常法に従い、
例えば、溶解、鋳造、均質化処理を施した後押出加工を
行い、この押出材を溶体化、焼入れ、人工時効処理を施
し所定の強度を与えた後、切削加工に供することができ
る。
The greatest feature of the high corrosion-resistant aluminum alloy having excellent machinability is that Pb, B like AA6262 alloy.
That is, the machinability is improved without adding a low melting point metal such as i or Sn. This extruded aluminum alloy
Since no low-melting-point metal is added, it has higher corrosion resistance than AA6262 alloy, can not generate thermal embrittlement, and has high recyclability. Further, the cutting ability of the chips is good, and troubles such as winding of the chips around the tool due to long chips are not generated. In addition, the above-mentioned aluminum alloy is in accordance with an ordinary method,
For example, extrusion processing can be performed after melting, casting, and homogenizing treatments, and the extruded material can be subjected to solution treatment, quenching, artificial aging treatment to give a predetermined strength, and then subjected to cutting processing.

【0032】次に、上記アルミニウム合金における各元
素の添加理由及び添加量の限定理由を説明する。
Next, the reason for adding each element in the above aluminum alloy and the reason for limiting the amount of addition will be described.

【0033】Si:1.5〜12.0質量% Siはアルミニウム組織中にSi系の化合物を形成さ
せ、切粉分断をよくし、切削性を向上させる。これはS
i相が歪み伝播の起点となり、切削時に工具から受ける
歪の伝播速度を速くしているためである。よってSi添
加下限値は、アルミニウム中での固溶限である1.5%
を越えていることが必要であり、Siによる効果を明確
にさせるためには2.0%を越える添加が望ましく、さ
らに4.0%以上の添加により顕著な効果を得ることが
できる。従って、優れた切削性を得るとの観点からは、
Siは2.0〜12.0(2.0を含まず)%、あるい
は4.0〜12.0%とするのがよい。一方、Siの添
加上限は、粗大な初晶Siが生じ変形抵抗が増加するこ
とによる押出性の低下や押出材の脆化を招かないため
に、共晶点の12.0%以下とする必要があり、特に押
出生産性が良好な6%以下が望ましい。
Si: 1.5 to 12.0% by mass Si forms a Si-based compound in the aluminum structure, improves cutting of chips, and improves machinability. This is S
This is because the i-phase becomes the starting point of strain propagation, and the propagation speed of strain received from the tool during cutting is increased. Therefore, the lower limit of Si addition is 1.5% which is the solid solubility limit in aluminum.
Must be exceeded, and in order to clarify the effect of Si, addition of more than 2.0% is desirable, and a remarkable effect can be obtained by adding more than 4.0%. Therefore, from the viewpoint of obtaining excellent machinability,
Si is preferably set to 2.0 to 12.0% (not including 2.0), or 4.0 to 12.0%. On the other hand, the upper limit of the addition of Si needs to be 12.0% or less of the eutectic point in order to prevent the extrudability from being reduced or the embrittlement of the extruded material due to the increase in deformation resistance due to the formation of coarse primary crystal Si. It is particularly desirable that the extrusion productivity be 6% or less.

【0034】Mg:0.2〜1.2質量% MgはSiとの共存によって熱処理時にMgSiとな
って析出し、強度を高める効果がある。Mg含有量が
0.2%未満ではその効果が得られず、一方、1.2%
を越えて添加するとMg単体の固溶強化により変形抵抗
が増加し押出性が低下する。強度と良好な押出性を確保
するとの観点から、概ね0.4%以上、1.0%以下が
好ましいが、専ら押出加工時の変形抵抗を抑えて押出性
を向上させるとの観点からすれば、1%未満、特に0.
9%以下とすることで顕著な効果を得ることができる。
従って、その場合はMgは0.2〜1.0(1.0を含
まず)%、あるいは0.2〜0.9%とすればよい。
Mg: 0.2 to 1.2% by mass Mg coexists with Si to precipitate as Mg 2 Si during heat treatment, and has the effect of increasing the strength. If the Mg content is less than 0.2%, the effect cannot be obtained, while 1.2%
If the addition exceeds the above range, deformation resistance increases due to solid solution strengthening of Mg alone, and extrudability decreases. From the viewpoint of ensuring strength and good extrudability, the content is preferably approximately 0.4% or more and 1.0% or less. However, from the viewpoint of exclusively suppressing deformation resistance during extrusion and improving extrudability. , Less than 1%, especially 0.
A remarkable effect can be obtained by setting the content to 9% or less.
Therefore, in that case, Mg may be set to 0.2 to 1.0 (excluding 1.0)% or 0.2 to 0.9%.

【0035】Cu:0.15〜3.0質量% Cuは熱処理により強度を高めるとともに、歪み硬化能
を向上させるため切粉分断を助長する。Cu含有量が
0.15%未満ではその効果に乏しく、一方3.0%を
越えて添加すると耐食性が低下し、また押出性も低下す
る。特に強度と良好な耐食性及び押出性を確保するとの
観点から、0.2%以上、2.5%以下が望まれる。
Cu: 0.15 to 3.0% by mass Cu enhances the strength by heat treatment and promotes cutting of chips to improve strain hardening ability. If the Cu content is less than 0.15%, the effect is poor, while if it exceeds 3.0%, the corrosion resistance decreases and the extrudability also decreases. In particular, from the viewpoint of securing strength and good corrosion resistance and extrudability, 0.2% or more and 2.5% or less are desired.

【0036】Cr:0.04〜0.35質量% Crは押出加工時の加工発熱過程での再結晶による強度
低下を抑える効果があるが、0.04%未満ではその効
果がない。一方、0.35%を越えて添加するとAl−
Cr系の粗大な化合物を生成し押出材を脆化させる。特
に再結晶防止と押出材脆化を防止するとの観点から、
0.07%以上、0.3%以下が望まれる。
Cr: 0.04 to 0.35% by mass Cr has the effect of suppressing a decrease in strength due to recrystallization in the process of heat generation during extrusion, but has no effect if less than 0.04%. On the other hand, when adding over 0.35%, Al-
Generates a Cr-based coarse compound and embrittles the extruded material. In particular, from the viewpoint of preventing recrystallization and preventing embrittlement of the extruded material,
0.07% or more and 0.3% or less are desired.

【0037】Ti:0.001〜0.05質量% Tiは鋳造組織を微細化して機械的性質を安定化する。
しかし、Ti含有量が0.001%未満ではその効果が
得られず、一方0.05%を越えて添加してもそれ以上
微細化効果は向上しない。
Ti: 0.001 to 0.05% by mass Ti refines the cast structure and stabilizes mechanical properties.
However, if the Ti content is less than 0.001%, the effect cannot be obtained. On the other hand, if the Ti content exceeds 0.05%, the effect of miniaturization is not further improved.

【0038】Fe:0.5〜1.0質量% Zr:0.1〜0.5質量% Fe、ZrはそれぞれAlと化合物を形成し、切粉の分
断の起点となって切削性を向上させるため、必要に応じ
て添加することができる。本発明合金においてそれぞれ
不可避不純物として下限値未満の含有が許容されるが、
下限値未満ではその効果が十分でなく、一方、上限値を
越えると粗大な化合物を生成し、押出性が低下する。
Fe: 0.5 to 1.0% by mass Zr: 0.1 to 0.5% by mass Fe and Zr each form a compound with Al, and serve as a starting point of cutting chips to improve machinability. Can be added as needed. In the alloy of the present invention, the content of less than the lower limit as the inevitable impurities is allowed,
If the amount is less than the lower limit, the effect is not sufficient. On the other hand, if the amount exceeds the upper limit, a coarse compound is formed, and the extrudability decreases.

【0039】また、上記アルミニウム合金の不可避不純
物としては、JISH4040に規定する化学成分に準
じ、Pb、Bi、Snは各々0.05質量%以下、Mn
は0.15質量%以下が許容される。これらの成分は多
く含まれると上記アルミニウム合金の耐食性(Pb、B
i、Sn)又は切削性(Mn)を劣化させるが、上記範
囲内であればこれらの特性に影響を与えない。
The unavoidable impurities of the above aluminum alloy are as follows: Pb, Bi and Sn are each 0.05% by mass or less, and Mn is Mn according to the chemical components specified in JIS H4040.
Is allowed to be 0.15% by mass or less. When these components are contained in a large amount, the corrosion resistance (Pb, B
i), Sn) or machinability (Mn) is deteriorated, but these properties are not affected within the above range.

【0040】[請求項13の発明]この発明に関わるア
ルマイト処理用アルミニウム合金は、これまで述べた切
削性に優れる高耐食アルミニウム合金の用途を特定した
ものである。このアルミニウム合金の母材中に微細に分
散したSiやSiMgは、従来の高切削性アルミニウ
ム合金中に分散するPbやBiと異なり、酸化皮膜の均
質な形成を妨げず、表面に均質で光沢のあるアルマイト
皮膜が形成された機械部品等を得ることができる。
[Invention of Claim 13] The aluminum alloy for alumite treatment according to the present invention specifies the use of the high corrosion-resistant aluminum alloy having excellent machinability described above. Si and SiMg 2 finely dispersed in the base material of this aluminum alloy, unlike Pb and Bi dispersed in the conventional high machinability aluminum alloy, do not hinder the uniform formation of an oxide film and have a uniform and glossy surface. It is possible to obtain a mechanical part or the like on which a strong alumite film is formed.

【0041】[0041]

【実施例】以下、本発明の実施例について、比較例と比
較して具体的に説明する。なお、[実施例1]は請求項
1〜5の発明に対応し、[実施例2]は請求項6〜9の
発明」に対応し、[実施例3]は請求項10〜12の発
明に対応し、[実施例4]は請求項13の発明に対応す
る。
EXAMPLES Examples of the present invention will be specifically described below in comparison with comparative examples. [Example 1] corresponds to the inventions of claims 1 to 5, [Example 2] corresponds to the inventions of claims 6 to 9, and [Example 3] corresponds to the inventions of claims 10 to 12. Embodiment 4 corresponds to the invention of claim 13.

【0042】[実施例1]表1〜表3に示した化学組成
の合金を溶解し半連続鋳造により160mm径の押出ビ
レットを作製し、520℃で4時間均質化熱処理を施し
た後、500℃の押出温度で60mm径に押し出した。
Example 1 An alloy having a chemical composition shown in Tables 1 to 3 was melted, an extruded billet having a diameter of 160 mm was prepared by semi-continuous casting, and subjected to a homogenizing heat treatment at 520 ° C. for 4 hours. Extruded to a diameter of 60 mm at an extrusion temperature of ° C.

【0043】[0043]

【表1】 [Table 1]

【0044】[0044]

【表2】 [Table 2]

【0045】[0045]

【表3】 [Table 3]

【0046】この押出材から押出方向に径20mm×高
さ20mmの試験片を採取し、これを冷間で軸方向に据
込み鍛造し、側面に微小割れが発生する限界据込み率を
求め、各々の冷鍛性(据込み鍛造性)を下記の要領で評
価した。また、この押出材から高さ60mmの試験片を
切り出し、これを冷間で軸方向に据込み鍛造(限界据込
み率が50%以上のものは50%、限界据込み率が50
%未満のものはその限界据込み率まで)し、その据込み
鍛造材を用いて各々の機械的性質、切削性及び耐食性を
下記の要領で測定した。なお、押出性を調べるため上記
押出では押出荷重を一定(600トン)とし、押出速度
(押出材が出てくるときの速度)を計測し、各押出材の
押出性を下記の要領で評価した。
From the extruded material, a test piece having a diameter of 20 mm and a height of 20 mm was sampled in the extrusion direction, and this was cold-upset and forged in the axial direction, and the critical upsetting ratio at which microcracks were generated on the side face was obtained. Each cold forgeability (upset forgeability) was evaluated in the following manner. Further, a test piece having a height of 60 mm was cut out from the extruded material, and this was cold-extruded in the axial direction and forged (50% or more when the critical upsetting rate was 50% or more, and 50% in the critical upsetting rate).
%, Up to the critical upsetting ratio), and the mechanical properties, machinability and corrosion resistance of each of the upsetting forged materials were measured in the following manner. In order to examine the extrudability, in the above extrusion, the extrusion load was kept constant (600 tons), the extrusion speed (the speed at which the extruded material came out) was measured, and the extrudability of each extruded material was evaluated in the following manner. .

【0047】冷鍛性;限界据込み率が50%を越えると
き◎(優れている)、30〜50%のとき○(使用可能
である)、30%未満のとき×(使用に耐えない)と評
価した。 機械的性質;据込み鍛造材から据込み方向に垂直な方向
に径6mm、平行部長さ40mmの引張試験片を採取
し、その引張強さ、耐力、及び伸びを測定した。 切削性;市販の高速度鋼製の4mm径ドリルを用い、回
転数1500mm/分、送り速度300mm/分の条件
にて切削し、ドリルへの巻き付き発生の有無を観察する
とともに、切粉分断性を調べるため切粉100個当りの
重量を測定した。 耐食性;72時間のCASS試験(5%食塩水に塩化第
二銅を100ppm添加し、さらに酢酸にてpH=3に
調整した液を50℃にて噴霧)による単位面積当りの重
量減少を測定した。 押出性;押出速度の値が5m/分より大のとき◎(優れ
ている)、2〜5m/分のとき○(使用可能である)、
2m/分より小のとき×(使用に耐えない)と評価し
た。
Cold forgeability: When the critical upsetting ratio exceeds 50%, ◎ (excellent), when it is 30 to 50%, ○ (usable), and when it is less than 30%, × (not usable) Was evaluated. Mechanical properties: Tensile test specimens having a diameter of 6 mm and a parallel part length of 40 mm were sampled from the upsetting forged material in a direction perpendicular to the upsetting direction, and the tensile strength, proof stress, and elongation were measured. Machinability: Using a commercially available 4 mm diameter drill made of high-speed steel, cut at 1500 rpm / min and feed rate of 300 mm / min to observe the occurrence of wrapping around the drill, and to cut chips. The weight per 100 chips was measured in order to check the weight. Corrosion resistance: Weight loss per unit area was measured by a CASS test for 72 hours (a solution prepared by adding 100 ppm of cupric chloride to 5% saline and adjusting the pH to 3 with acetic acid at 50 ° C.). . Extrudability: when the value of the extrusion speed is more than 5 m / min, ◎ (excellent), when 2 to 5 m / min, ○ (usable),
When it was smaller than 2 m / min, it was evaluated as x (not usable).

【0048】これらの試験結果を表4〜表6に示す。こ
の発明の実施例に相当する合金1〜32は、いずれも優
れた切削性と耐食性を示し、これを比較例の合金45
(従来の3003合金に相当)や合金46(従来の30
04合金に相当)と比較すると、切削性において著しく
優れ、機械的性質や耐食性は同等であり、冷鍛性でもほ
ぼ同等である。また、押出材にはむしれや焼き付き痕は
なく表面性状は良好で、押出性の値も十分使用可能な範
囲内にある。
Tables 4 to 6 show the test results. All of the alloys 1 to 32 corresponding to the examples of the present invention show excellent machinability and corrosion resistance.
(Equivalent to the conventional 3003 alloy) and alloy 46 (the conventional 303 alloy)
(Equivalent to alloy No. 04), it is remarkably superior in machinability, mechanical properties and corrosion resistance are the same, and cold forgeability is almost the same. Further, the extruded material had no surface peeling or seizure marks and had good surface properties, and the value of extrudability was within a sufficiently usable range.

【0049】[0049]

【表4】 [Table 4]

【0050】[0050]

【表5】 [Table 5]

【0051】[0051]

【表6】 [Table 6]

【0052】これに対し、比較例の合金33〜47は組
成がこの発明の範囲外の合金であり、いずれも何らかの
特性が実施例合金1〜32に比べ劣っている。すなわ
ち、合金33、35、37、39は、それぞれSi、M
g、Cu、Mnの含有量が不足のため切削性に劣る(切
粉の分断性が劣り、切粉の巻き付きがある)。合金3
4、36、38、40、42〜44は、それぞれSi、
Mg、Cu、Mn、Fe、Cr、Zrが過剰なため押出
性と冷鍛性に劣り、合金38は耐食性にも劣る。合金4
1はTiを有効量含有しないため、伸びが悪く冷鍛性に
劣る。また、従来の合金45及び合金46は切削性に劣
り、合金46にPb及びBiを添加してなる合金47は
切削性は改善されたが、耐食性が悪くなっている。
On the other hand, the alloys 33 to 47 of the comparative examples are alloys whose compositions are out of the range of the present invention, and all have some characteristics inferior to those of the alloys of the examples. That is, alloys 33, 35, 37, and 39 are Si, M
Insufficient amounts of g, Cu, and Mn result in poor machinability (inferior chip cutting performance and wrapping of chips). Alloy 3
4, 36, 38, 40, 42 to 44 are each Si,
Excessive amounts of Mg, Cu, Mn, Fe, Cr, and Zr result in poor extrudability and cold forgeability, and alloy 38 also has poor corrosion resistance. Alloy 4
Since No. 1 does not contain an effective amount of Ti, elongation is poor and cold forgeability is inferior. Further, the conventional alloys 45 and 46 have poor machinability, and the alloy 47 obtained by adding Pb and Bi to the alloy 46 has improved machinability, but has poor corrosion resistance.

【0053】[実施例2]表7及び表8に示した化学組
成の合金を溶解し半連続鋳造により160mm径の押出
ビレットを作製し、520℃で4時間均質化熱処理を施
した後、500℃の押出温度で60mm径に押し出し
た。
Example 2 An alloy having a chemical composition shown in Tables 7 and 8 was melted, an extruded billet having a diameter of 160 mm was produced by semi-continuous casting, and subjected to a homogenizing heat treatment at 520 ° C. for 4 hours. Extruded to a diameter of 60 mm at an extrusion temperature of ° C.

【0054】[0054]

【表7】 [Table 7]

【0055】[0055]

【表8】 [Table 8]

【0056】この押出材から[実施例1]と全く同じ要
領で試験片を採取し、かつ全く同じ要領で冷鍛性、機械
的性質、切削性、耐食性、押出性の測定及び評価を行っ
た。これらの試験結果を表9及び表10に示す。この発
明の実施例に相当する合金48〜60は、いずれも優れ
た切削性と耐食性を示し、これを比較例の合金69(従
来の5056合金に相当)、合金70(従来の5052
合金に相当)及び合金71(従来の5083合金に相
当)と比較すると、切削性において著しく優れ、機械的
性質や耐食性は同等であり、冷鍛性でもほぼ同等であ
る。また、押出材にはむしれや焼き付き痕はなく表面性
状は良好で、押出性の値も十分使用可能な範囲内にあ
る。
A test piece was sampled from this extruded material in exactly the same manner as in [Example 1], and cold forgeability, mechanical properties, machinability, corrosion resistance and extrudability were measured and evaluated in exactly the same manner. . Tables 9 and 10 show the test results. The alloys 48 to 60 corresponding to the examples of the present invention all show excellent machinability and corrosion resistance, which are compared with alloy 69 (corresponding to the conventional 5056 alloy) and alloy 70 (conventional 5052) of the comparative examples.
Compared with alloy (corresponding to alloy) and alloy 71 (corresponding to conventional 5083 alloy), they are remarkably excellent in machinability, have the same mechanical properties and corrosion resistance, and have almost the same cold forgeability. Further, the extruded material had no surface peeling or seizure marks and had good surface properties, and the value of extrudability was within a sufficiently usable range.

【0057】[0057]

【表9】 [Table 9]

【0058】[0058]

【表10】 [Table 10]

【0059】これに対し、比較例の合金61〜72は組
成がこの発明の範囲外の合金であり、いずれも何らかの
特性が実施例合金48〜60に比べ劣っている。すなわ
ち、合金62、64はそれぞれSi、Mgの含有量が不
足のため切削性に劣る(切粉の分断性が劣り、切粉の巻
き付きがある)。合金61、63、65〜68はそれぞ
れSi、Mg、Cu、Fe、Cr、Zrが過剰なため押
出性と冷鍛性に劣り、合金65は耐食性にも劣る。ま
た、従来の合金69、合金70及び合金71は切削性に
劣り、合金69にPb及びBiを添加してなる合金72
は切削性は改善されたが、耐食性が悪くなっている。
On the other hand, the alloys 61 to 72 of the comparative examples are alloys whose compositions are out of the range of the present invention, and all have some inferior properties to the alloys of the examples 48 to 60. That is, the alloys 62 and 64 are inferior in machinability due to insufficient contents of Si and Mg, respectively (inferior cutting ability of chips and winding of chips). Alloys 61, 63, 65-68 are inferior in extrudability and cold forgeability due to excessive amounts of Si, Mg, Cu, Fe, Cr and Zr, and alloy 65 is inferior in corrosion resistance. Conventional alloy 69, alloy 70 and alloy 71 are inferior in machinability, and alloy 72 obtained by adding Pb and Bi to alloy 69.
Has improved machinability but poor corrosion resistance.

【0060】[実施例3]表11及び表12に示した化
学組成の合金を溶解し半連続鋳造により160mm径の
押出ビレットを作製し、475℃で4時間均質化熱処理
を施した後、500℃の押出温度で60mm径に押し出
し、これを520℃で1時間溶体化処理して水中に焼入
れた。さらに170℃で6時間の人工時効処理を施して
供試材とし、各々の機械的性質、切削性及び耐食性を下
記の要領で測定及び評価を行った。
Example 3 An alloy having a chemical composition shown in Tables 11 and 12 was melted, an extruded billet having a diameter of 160 mm was produced by semi-continuous casting, and subjected to a homogenizing heat treatment at 475 ° C. for 4 hours. It was extruded to a diameter of 60 mm at an extrusion temperature of 200 ° C., solution-treated at 520 ° C. for 1 hour, and quenched in water. Further, artificial aging treatment was performed at 170 ° C. for 6 hours to obtain test materials, and the mechanical properties, machinability and corrosion resistance of each test material were measured and evaluated in the following manner.

【0061】[0061]

【表11】 [Table 11]

【0062】[0062]

【表12】 [Table 12]

【0063】機械的性質;押出方向に採取したJIS4
号試験片を用い、JISZ2241に規定する金属材料
試験方法に準じ、引張強さ、耐力、及び伸びを測定し
た。切削性、耐食性、押出性;[実施例1]と同じ要
領。
Mechanical properties: JIS4 sampled in the extrusion direction
The tensile strength, proof stress, and elongation were measured using the No. test piece according to the metal material test method specified in JISZ2241. Machinability, corrosion resistance, extrudability; same as in [Example 1].

【0064】これらの試験結果を表13及び表14に示
す。この発明の実施例に相当する合金73〜98は、い
ずれも優れた切削性と耐食性を示し、これを比較例合金
105(従来のAA6262合金に相当)と比較する
と、耐食性に優れ、切削性でも同等ないし優れている。
また、押出材にはむしれや焼き付き痕はなく表面性状は
良好で、押出性と機械的性質の値も十分使用可能な範囲
内にある。
Tables 13 and 14 show the test results. All of alloys 73 to 98 corresponding to the examples of the present invention show excellent machinability and corrosion resistance. Compared with comparative example alloy 105 (corresponding to conventional AA6262 alloy), alloys 73 to 98 have excellent corrosion resistance and machinability. Equal or better.
Further, the extruded material has no peeling or seizure marks and has good surface properties, and the values of extrudability and mechanical properties are within a sufficiently usable range.

【0065】[0065]

【表13】 [Table 13]

【0066】[0066]

【表14】 [Table 14]

【0067】これに対し、比較例合金99〜105は組
成がこの発明の範囲外の合金であり、いずれも何らかの
特性が実施例合金73〜98に比べ劣っている。すなわ
ち、合金100、101はSi量が不足のため切削性に
劣り(切粉の分断性が劣り、切粉の巻き付きがある)、
合金104はCu量が過剰のため耐食性に劣り、合金1
05(AA6262相当)はPb、Biを含有するため
さらに耐食性が劣る。また、合金99はSi量が過剰の
ため、合金102はMg量が過剰のため、合金103は
Cr量が過剰のため、合金104はCuが過剰なため、
合金106はFeが過剰なため、合金107はZrが過
剰なため、それぞれ押出性に劣る。
On the other hand, the alloys of Comparative Examples 99 to 105 are alloys whose compositions are out of the range of the present invention, and all have inferior characteristics to those of the alloys of Examples 73 to 98. That is, the alloys 100 and 101 are inferior in machinability due to insufficient amount of Si (inferior in chip breaking and chip winding),
Alloy 104 is inferior in corrosion resistance due to an excessive amount of Cu.
05 (corresponding to AA6262) further contains Pb and Bi, so that the corrosion resistance is further deteriorated. Further, alloy 99 has an excessive amount of Si, alloy 102 has an excessive amount of Mg, alloy 103 has an excessive amount of Cr, and alloy 104 has an excessive amount of Cu.
The alloy 106 has an excessive amount of Fe, and the alloy 107 has an excessive amount of Zr.

【0068】[実施例4]実施例1〜3の供試材の表面
を研磨したのち硫酸アルマイトを施し、酸化皮膜の厚さ
を10μmにして表面の光沢を観察した。表面の光沢が
優れているものを◎、劣るものを×と評価し、その結果
を表4〜6、9、10、13、14に併せて記載した。
本発明の実施例に相当する合金は、いずれも表面の光沢
が優れアルマイト処理性に優れている。
[Example 4] The surfaces of the test materials of Examples 1 to 3 were polished, then anodized with sulfuric acid, the thickness of the oxide film was set to 10 µm, and the gloss of the surface was observed. Those with excellent surface gloss were evaluated as ◎, and those with inferior gloss were evaluated as x, and the results are shown in Tables 4 to 6, 9, 10, 13, and 14.
All of the alloys corresponding to the examples of the present invention have excellent surface gloss and excellent alumite treatment properties.

【0069】[0069]

【発明の効果】このように、本発明に関わるアルミニウ
ム合金(請求項1〜5)は、Pb、Bi等の低融点金属
を使用していないにも関わらず、従来の3003合金や
3004合金に比べて切削性が著しく優れ、機械的性
質、耐食性、冷間鍛造性、押出性についてもほぼ同等で
優れる非熱処理型合金である。また、本発明に関わるア
ルミニウム合金(請求項6〜9)は、Pb、Bi等の低
融点金属を使用していないにも関わらず、従来の505
6合金、5052合金及び5083合金に比べて切削性
が著しく優れ、機械的性質、耐食性、冷間鍛造性、押出
性についてもほぼ同等で優れる非熱処理型合金である。
そして、いずれも長い切粉による工具への切粉の巻き付
き等のトラブルも発生せず、冷間鍛造の採用及び熱処理
の省略により工程の低コスト化を達成できるものであ
り、さらにリサイクル性にも難がないことから、工業的
価値が極めて大きいものである。
As described above, the aluminum alloy according to the present invention (Claims 1 to 5) does not use a low melting point metal such as Pb, Bi, etc. This is a non-heat-treatable alloy that has remarkably excellent machinability and almost the same mechanical properties, corrosion resistance, cold forgeability, and extrudability. Further, the aluminum alloy (claims 6 to 9) according to the present invention uses the conventional 505 despite the fact that a low melting point metal such as Pb or Bi is not used.
This is a non-heat-treatable alloy that has remarkably excellent machinability as compared with Alloy No. 6, 5052 and 5083, and has almost the same mechanical properties, corrosion resistance, cold forgeability and extrudability.
In both cases, there is no trouble such as wrapping of chips around the tool due to long chips, and the cost can be reduced by adopting cold forging and omitting heat treatment. Since there is no difficulty, the industrial value is extremely large.

【0070】一方、本発明に関わるアルミニウム合金
(請求項10〜12)は、耐食性及び切削性について従
来技術のAA6262合金を凌駕する。そして、長い切
粉による工具への切粉の巻き付き等のトラブルも発生し
ないため、特に自動工作機械を用いた無人運転で作成さ
れる機械部品用素材として適しており、加えて低融点金
属に起因する熱脆性も生じ得ず、リサイクル性も高いの
で、AA6262合金が用いられていた各用途に適用で
きる切削性に優れた高耐食アルミニウム合金として工業
的価値がきわめて大きいものである。また、上記アルミ
ニウム合金(請求項1〜12)は、PbやBiを添加す
ることなく切削性を高めていることから、アルマイト処
理性に優れ、均質で光沢のあるアルマイト皮膜を形成す
ることができる。
On the other hand, the aluminum alloy according to the present invention (claims 10 to 12) surpasses the conventional AA6262 alloy in corrosion resistance and machinability. Also, since there is no trouble such as wrapping of chips around tools due to long chips, it is particularly suitable as a material for machine parts created by unmanned operation using automatic machine tools. Therefore, AA6262 alloy has high industrial value as a highly corrosion-resistant aluminum alloy excellent in machinability which can be applied to various applications in which AA6262 alloy has been used. In addition, since the aluminum alloy (Claims 1 to 12) enhances the machinability without adding Pb or Bi, the aluminum alloy is excellent in alumite treatment property and can form a uniform and glossy alumite film. .

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 Si:1.5〜12.0質量%、Mg:
0.5〜6.0質量%、Ti:0.01〜0.1質量%
をそれぞれ含有し、残部がAl及び不可避不純物からな
ることを特徴とする切削性に優れる高耐食アルミニウム
合金。
1. Si: 1.5 to 12.0 mass%, Mg:
0.5 to 6.0% by mass, Ti: 0.01 to 0.1% by mass
, And the balance is made of Al and unavoidable impurities. A highly corrosion-resistant aluminum alloy having excellent machinability.
【請求項2】 Si:1.5〜12.0質量%、Mg:
0.5〜1.0(1.0を含まず)質量%、Ti:0.
01〜0.1質量%をそれぞれ含有し、さらに、Mn:
0.5〜2.0質量%を含有し、残部がAl及び不可避
不純物からなることを特徴とする切削性に優れる高耐食
アルミニウム合金。
2. Si: 1.5 to 12.0 mass%, Mg:
0.5 to 1.0 (not including 1.0) mass%, Ti: 0.
0.01 to 0.1% by mass, and further contains Mn:
A highly corrosion-resistant aluminum alloy containing 0.5 to 2.0% by mass, with the balance being Al and unavoidable impurities.
【請求項3】 Si:2.0〜12.0(2.0を含ま
ず)質量%、Mg:0.5〜6.0質量%、Ti:0.
01〜0.1質量%をそれぞれ含有し、さらに、Mn:
0.5〜2.0質量%を含有し、残部がAl及び不可避
不純物からなることを特徴とする切削性に優れる高耐食
アルミニウム合金。
3. Si: 2.0 to 12.0 (not including 2.0) mass%, Mg: 0.5 to 6.0 mass%, Ti: 0.
0.01 to 0.1% by mass, and further contains Mn:
A highly corrosion-resistant aluminum alloy containing 0.5 to 2.0% by mass, with the balance being Al and unavoidable impurities.
【請求項4】 さらに、Cu:0.1〜1.0質量%を
含有することを特徴とする請求項1〜3のいずれかに記
載された切削性に優れる高耐食アルミニウム合金。
4. The highly corrosion-resistant aluminum alloy according to claim 1, further comprising 0.1 to 1.0% by mass of Cu.
【請求項5】 さらに、Fe:0.5〜1.0質量%、
Cr:0.1〜0.5質量%、Zr:0.1〜0.5質
量%のうちいずれか1種以上を含有することを特徴とす
る請求項1〜4のいずれかに記載された切削性に優れる
高耐食アルミニウム合金。
5. Fe: 0.5 to 1.0% by mass,
The composition according to any one of claims 1 to 4, wherein the composition contains at least one of Cr: 0.1 to 0.5% by mass and Zr: 0.1 to 0.5% by mass. High corrosion resistance aluminum alloy with excellent machinability.
【請求項6】 Si:1.5〜12.0質量%、Mg:
2.0〜6.0質量%をそれぞれ含有し、残部がAl及
び不可避不純物からなることを特徴とする切削性に優れ
る高耐食アルミニウム合金。
6. Si: 1.5 to 12.0 mass%, Mg:
A highly corrosion-resistant aluminum alloy excellent in machinability, containing 2.0 to 6.0% by mass, and the balance being Al and unavoidable impurities.
【請求項7】 Si:2〜12.0(2を含まず)質量
%、Mg:2.0〜6.0質量%をそれぞれ含有し、さ
らに、Mn:0.3〜1.2質量%を含有し、残部がA
l及び不可避不純物からなることを特徴とする切削性に
優れる高耐食アルミニウム合金。
7. Si: 2 to 12.0 (not including 2) mass%, Mg: 2.0 to 6.0 mass%, and Mn: 0.3 to 1.2 mass%. And the balance is A
A highly corrosion-resistant aluminum alloy having excellent machinability, characterized by being composed of l and unavoidable impurities.
【請求項8】 さらに、Ti:0.01〜0.1質量%
を含有することを特徴とする請求項7に記載された切削
性に優れる高耐食アルミニウム合金。
8. Further, Ti: 0.01 to 0.1% by mass.
The highly corrosion-resistant aluminum alloy having excellent machinability according to claim 7, wherein:
【請求項9】 さらに、Fe:0.5〜1.0質量%、
Cr:0.1〜0.5質量%、Zr:0.1〜0.5質
量%のうちいずれか1種以上を含有することを特徴とす
る請求項6〜8のいずれかに記載された切削性に優れる
高耐食アルミニウム合金。
9. Further, Fe: 0.5 to 1.0% by mass,
The composition according to any one of claims 6 to 8, wherein one or more of Cr: 0.1 to 0.5% by mass and Zr: 0.1 to 0.5% by mass are contained. High corrosion resistance aluminum alloy with excellent machinability.
【請求項10】 Si:1.5〜12.0質量%、M
g:0.2〜1.2質量%、Cu:0.15〜3.0質
量%をそれぞれ含有し、残部がAl及び不可避不純物か
らなることを特徴とする切削性に優れる高耐食アルミニ
ウム合金。
10. Si: 1.5 to 12.0 mass%, M
g: 0.2 to 1.2 mass%, Cu: 0.15 to 3.0 mass%, and the balance is made of Al and unavoidable impurities.
【請求項11】 さらに、Cr:0.04〜0.35質
量%を含有することを特徴とする請求項10に記載され
た切削性に優れた高耐食アルミニウム合金。
11. The highly corrosion-resistant aluminum alloy according to claim 10, further comprising 0.04 to 0.35% by mass of Cr.
【請求項12】 さらに、Ti:0.001〜0.05
質量%を含有することを特徴とする請求項10又は11
に記載された切削性に優れる高耐食アルミニウム合金。
12. Ti: 0.001 to 0.05
12. The composition according to claim 10, wherein the content is by mass.
High corrosion resistance aluminum alloy with excellent machinability described in.
【請求項13】 請求項1〜12のいずれかに記載され
た化学組成を有するアルマイト処理用アルミニウム合
金。
13. An alumite-treating aluminum alloy having the chemical composition according to claim 1. Description:
JP33137198A 1995-03-30 1998-11-20 High corrosion resistance aluminum alloy with excellent machinability Expired - Lifetime JP3886270B2 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP7-99723 1995-03-30
JP7-99634 1995-03-30
JP9963495 1995-03-30
JP8-19392 1995-03-30
JP9972395 1995-03-31
JP1939296 1996-01-09

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP08124128A Division JP3107517B2 (en) 1995-03-30 1996-03-29 High corrosion resistant aluminum alloy extruded material with excellent machinability

Publications (2)

Publication Number Publication Date
JPH11217647A true JPH11217647A (en) 1999-08-10
JP3886270B2 JP3886270B2 (en) 2007-02-28

Family

ID=27282606

Family Applications (2)

Application Number Title Priority Date Filing Date
JP08124128A Expired - Lifetime JP3107517B2 (en) 1995-03-30 1996-03-29 High corrosion resistant aluminum alloy extruded material with excellent machinability
JP33137198A Expired - Lifetime JP3886270B2 (en) 1995-03-30 1998-11-20 High corrosion resistance aluminum alloy with excellent machinability

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP08124128A Expired - Lifetime JP3107517B2 (en) 1995-03-30 1996-03-29 High corrosion resistant aluminum alloy extruded material with excellent machinability

Country Status (1)

Country Link
JP (2) JP3107517B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1972696A1 (en) 2007-03-15 2008-09-24 Bayerische Motorenwerke Aktiengesellschaft Cast aluminium alloy
WO2010112698A1 (en) * 2009-04-03 2010-10-07 Alcan International Limited Aa 6xxx aluminium alloy for precision turning
JP2011080118A (en) * 2009-10-07 2011-04-21 Nippon Light Metal Co Ltd Aluminum alloy member and manufacturing method therefor
WO2013144343A1 (en) * 2012-03-30 2013-10-03 Jaguar Land Rover Limited Alloy and method of production thereof
EP2664687A1 (en) * 2012-05-15 2013-11-20 Constellium Extrusions Decin s.r.o. Improved free-machining wrought aluminium alloy product and manufacturing process thereof
CN112725646A (en) * 2020-12-25 2021-04-30 亚太轻合金(南通)科技有限公司 Aluminum-silicon alloy and preparation method thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003072839A1 (en) * 2002-02-28 2003-09-04 Aisin Keikinzoku Co., Ltd. Wear-resistant aluminum alloy excellent in staking property and extruded product made thereof
JP4192755B2 (en) * 2003-10-28 2008-12-10 アイシン精機株式会社 Aluminum alloy member and manufacturing method thereof
CN102365379B (en) * 2009-03-31 2014-01-22 日立金属株式会社 Al-Mg-Si-type aluminum alloy for casting which has excellent bearing force, and casted member comprising same
CN102459672A (en) 2009-06-29 2012-05-16 爱信轻金属株式会社 Wear-resistant aluminum alloy extruded material having excellent fatigue strength and cutting properties
JP5777782B2 (en) 2013-08-29 2015-09-09 株式会社神戸製鋼所 Manufacturing method of extruded aluminum alloy with excellent machinability
EP3176274B1 (en) 2014-07-31 2019-06-26 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Aluminium alloy extruded material with excellent machinability and manufacturing method thereof
KR101606525B1 (en) 2014-10-29 2016-03-25 주식회사 케이엠더블유 Aluminum alloy for die casting having excellent corrosion resistance
CN113564429A (en) * 2021-08-10 2021-10-29 江苏亚太航空科技有限公司 Fine-grain aluminum alloy block and preparation process and application thereof
CN113637882B (en) * 2021-08-13 2022-02-18 贵州电网有限责任公司 Aluminum alloy corrosion-resistant structural member material for electric power facilities and preparation method thereof
CN115491552B (en) * 2022-10-09 2023-04-25 苏州大学 Corrosion-resistant cast aluminum alloy, preparation method and application

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190542A (en) * 1984-03-13 1985-09-28 Showa Alum Ind Kk Aluminum alloy having superior corrosion resistance for parts contacting with magnetic tape
JPH0297638A (en) * 1988-09-30 1990-04-10 Showa Denko Kk Aluminum alloy for parts to be brought into contact with magnetic tape
JPH03100136A (en) * 1989-09-13 1991-04-25 Sumitomo Light Metal Ind Ltd Aluminum alloy material for die
JP2965219B2 (en) * 1991-05-31 1999-10-18 スカイアルミニウム株式会社 Far infrared radiator

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1972696A1 (en) 2007-03-15 2008-09-24 Bayerische Motorenwerke Aktiengesellschaft Cast aluminium alloy
WO2010112698A1 (en) * 2009-04-03 2010-10-07 Alcan International Limited Aa 6xxx aluminium alloy for precision turning
FR2944029A1 (en) * 2009-04-03 2010-10-08 Alcan Int Ltd 6XXX SERIES ALLOY ALLOY ALLOY
JP2011080118A (en) * 2009-10-07 2011-04-21 Nippon Light Metal Co Ltd Aluminum alloy member and manufacturing method therefor
WO2013144343A1 (en) * 2012-03-30 2013-10-03 Jaguar Land Rover Limited Alloy and method of production thereof
EP2664687A1 (en) * 2012-05-15 2013-11-20 Constellium Extrusions Decin s.r.o. Improved free-machining wrought aluminium alloy product and manufacturing process thereof
WO2013170953A1 (en) * 2012-05-15 2013-11-21 Constellium Extrusions Decin S.R.O. Improved free-machining wrought aluminium alloy product and manufacturing process thereof
US10458009B2 (en) 2012-05-15 2019-10-29 Constellium Extrusions Decin S.R.O. Free-machining wrought aluminium alloy product and manufacturing process thereof
CN112725646A (en) * 2020-12-25 2021-04-30 亚太轻合金(南通)科技有限公司 Aluminum-silicon alloy and preparation method thereof

Also Published As

Publication number Publication date
JP3107517B2 (en) 2000-11-13
JP3886270B2 (en) 2007-02-28
JPH09249931A (en) 1997-09-22

Similar Documents

Publication Publication Date Title
JP3301919B2 (en) Aluminum alloy extruded material with excellent chip breaking performance
US5522950A (en) Substantially lead-free 6XXX aluminum alloy
JP3107517B2 (en) High corrosion resistant aluminum alloy extruded material with excellent machinability
EP2664687B1 (en) Improved free-machining wrought aluminium alloy product and manufacturing process thereof
US5240519A (en) Aluminum based Mg-Si-Cu-Mn alloy having high strength and superior elongation
JP3335732B2 (en) Hypoeutectic Al-Si alloy and casting method thereof
US8454766B2 (en) Extruded material of a free-cutting aluminum alloy excellent in embrittlement resistance at a high temperature
WO2006083982A2 (en) Aluminum-zinc-magnesium-scandium alloys and methods of fabricating same
JPH0372147B2 (en)
JPH10219381A (en) High strength aluminum alloy excellent in intergranular corrosion resistance, and its production
JPH1112705A (en) Production of high strength aluminum alloy forging excellent in machinability
JP3886329B2 (en) Al-Mg-Si aluminum alloy extruded material for cutting
JPH07145440A (en) Aluminum alloy forging stock
JP2848368B2 (en) Manufacturing method of aluminum alloy for compressor parts with excellent wear resistance and toughness
JPH1180869A (en) Aluminum alloy fin material and production of aluminum alloy fin material
JP3453607B2 (en) High-strength aluminum alloy extruded material with excellent chip breaking performance
JPH11152552A (en) Method for working aluminum-zinc-silicon alloy
JPH0925533A (en) Production of aluminum alloy for machining, excellent in cold forgeability, and cold forged aluminum alloy material for machining
JP2002206132A (en) Aluminum alloy extrusion material having excellent machinability and production method therefor
JP3684245B2 (en) Aluminum alloy for cold forging
JPH09202933A (en) High strength aluminum alloy excellent in hardenability
JPH11323472A (en) Al-mg-si alloy extrusion material excellent in machinability and its production
JPS63312945A (en) Non heat treatment type high strength free cutting aluminum alloy for cold forging and its production
JPH0925532A (en) Production of aluminum alloy for cold forging excellent in machinability, and cold forged aluminum alloy material excellent in machinability
JP2002212660A (en) Aluminum alloy having excellent machinability

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061121

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131201

Year of fee payment: 7

EXPY Cancellation because of completion of term