JP4192755B2 - Aluminum alloy member and manufacturing method thereof - Google Patents

Aluminum alloy member and manufacturing method thereof Download PDF

Info

Publication number
JP4192755B2
JP4192755B2 JP2003367570A JP2003367570A JP4192755B2 JP 4192755 B2 JP4192755 B2 JP 4192755B2 JP 2003367570 A JP2003367570 A JP 2003367570A JP 2003367570 A JP2003367570 A JP 2003367570A JP 4192755 B2 JP4192755 B2 JP 4192755B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
forging
alloy member
less
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003367570A
Other languages
Japanese (ja)
Other versions
JP2005133112A (en
Inventor
克己 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2003367570A priority Critical patent/JP4192755B2/en
Priority to CNA2004100882272A priority patent/CN1611622A/en
Priority to US10/973,253 priority patent/US20050087267A1/en
Priority to EP04025523A priority patent/EP1528111A1/en
Publication of JP2005133112A publication Critical patent/JP2005133112A/en
Application granted granted Critical
Publication of JP4192755B2 publication Critical patent/JP4192755B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Forging (AREA)
  • Vehicle Body Suspensions (AREA)

Description

本発明は、鋳造性、鍛造性に優れるとともに、引張強さ、耐力、伸び率等の機械的性質と耐食性に優れるアルミニウム合金部材及びその製造方法に関する。   The present invention relates to an aluminum alloy member excellent in castability and forgeability, and excellent in mechanical properties such as tensile strength, yield strength, elongation, and corrosion resistance, and a method for producing the same.

製品の最終形状に近似した形状にアルミニウム合金系の溶湯を鋳造して、得られる鋳造材を強圧して熱間鍛造することによりアルミニウム合金部材を得る鋳造鍛造法がある。このような方法は、例えば車両のサスペンションアーム等を製造する際に採用される。このような、鋳造鍛造法を適用することができる適切な組成を有するアルミニウム合金として、鍛造性が良好なJIS−A6061合金(アルミニウム展伸材料)や、鋳造性が良好なJIS−AC4CH、AC4C(アルミニウム鋳物材料)や、これらアルミニウム展伸材料とアルミニウム鋳物材料との中間組成のもの等で、いろいろと検討されている。このようなアルミニウム合金を使用した鋳造鍛造法については、下記特許文献にいくつか記載されている。
特開2002−302728号公報 特許第2551882号公報 特開平6−73482号公報
There is a casting forging method in which an aluminum alloy member is obtained by casting an aluminum alloy-based molten metal in a shape approximate to the final shape of the product, and hot forging the resulting cast material. Such a method is employed, for example, when manufacturing a vehicle suspension arm or the like. As such an aluminum alloy having an appropriate composition to which the casting forging method can be applied, JIS-A6061 alloy (aluminum expanded material) with good forgeability, JIS-AC4CH, AC4C (with excellent castability) Various studies have been made on aluminum casting materials) and those having an intermediate composition between these aluminum extension materials and aluminum casting materials. Several casting forging methods using such aluminum alloys are described in the following patent documents.
JP 2002-302728 A Japanese Patent No. 2555182 JP-A-6-73482

上記の特許文献1、2、3においては、例えば自動車のアッパーアームやロアアームなどの足回り部品に使用されるアルミニウム合金部材として、軽量でかつ機械的性質の良好なアルミニウム合金が開示されている。ところで、自動車の足回り部品は、機械的性質が良好であることは当然のことながら、耐食性が良好であることも要求される。しかしながら、上記特許文献1、2、3に記載されているアルミニウム合金部材は、機械的性質を向上することに主に着目しており、耐食性の向上に関しては十分な検討をしているとはいえない。   In the above Patent Documents 1, 2, and 3, for example, aluminum alloys that are lightweight and have good mechanical properties are disclosed as aluminum alloy members used for undercarriage parts such as an upper arm and a lower arm of an automobile. Incidentally, undercarriage parts of automobiles are naturally required to have good corrosion resistance as well as good mechanical properties. However, the aluminum alloy members described in the above-mentioned Patent Documents 1, 2, and 3 mainly focus on improving the mechanical properties, and it can be said that sufficient studies have been made on improving the corrosion resistance. Absent.

例えば、特許文献1においては、段落[0028]に記載されているように、Cuを含有することにより、Al−Cu系の析出物を形成させて、合金部材の強度を向上させることが好ましい旨が記載されている。一方、耐食性に関しては、Cuの含有量を少なめに設定することが肝要であるとの記載があるのみである。   For example, in Patent Document 1, as described in paragraph [0028], it is preferable that the strength of the alloy member is improved by forming an Al—Cu-based precipitate by containing Cu. Is described. On the other hand, regarding the corrosion resistance, there is only a description that it is important to set the content of Cu to be small.

また、特許文献2においても同様に、段落[0014]に記載されているように、アルミニウム合金部材の強度を向上させる上で、0.2〜0.5wt%のCuを含有させることが好ましい旨記載されている。一方、耐食性の向上に関する記載はほとんどなく、耐食性に関する実験結果も開示されていない。なお、これら特許文献1及び特許文献2においては、Siの含有量が比較的低めに設定されており、十分な鋳造性を実現できるとはいえないという面もある。   Similarly, in Patent Document 2, as described in paragraph [0014], it is preferable to contain 0.2 to 0.5 wt% of Cu in order to improve the strength of the aluminum alloy member. Are listed. On the other hand, there is almost no description regarding improvement of corrosion resistance, and no experimental results regarding corrosion resistance are disclosed. In addition, in these patent documents 1 and patent documents 2, since content of Si is set comparatively low, there also exists a field that it cannot be said that sufficient castability is realizable.

次に、特許文献3においては、Cu:0.3wt%以下、Si:2.5wt%〜4.0wt%、Mg:0.4〜0.5wt%としたアルミニウム合金を50%以上の鍛造圧下率により鍛造したアルミニウム合金部材が開示されている。この技術によれば、Cuを0.3wt%以下に制限しても、鍛造圧下率50%以上の条件で熱間鍛造することにより、耐食性の低下を抑えつつ、十分な機械的強度を実現できるとしている。しかしながら、Cuの含有量を0.3wt%以下に制限するとしても、特許文献3の段落[0012]及び図3に示されているように、Cuの含有量の最適条件は0.2wt%であるとされており、アルミニウム合金の機械的性質を向上させるには、Cuの含有が望ましいことが主張されている。また、Cuの含有による耐食性の低下については定性的な記載があるだけであり、耐食性の向上に関して十分な対策がなされているとはいえない。このことは、耐食性試験の結果が開示されていないことからも明白である。   Next, in Patent Document 3, forging reduction of 50% or more of an aluminum alloy with Cu: 0.3 wt% or less, Si: 2.5 wt% to 4.0 wt%, and Mg: 0.4 to 0.5 wt% An aluminum alloy member forged at a rate is disclosed. According to this technology, even if Cu is limited to 0.3 wt% or less, sufficient mechanical strength can be realized while suppressing deterioration in corrosion resistance by hot forging under the condition of a forging reduction ratio of 50% or more. It is said. However, even if the Cu content is limited to 0.3 wt% or less, the optimum condition for the Cu content is 0.2 wt% as shown in paragraph [0012] of FIG. In order to improve the mechanical properties of aluminum alloys, it is claimed that the inclusion of Cu is desirable. Further, there is only a qualitative description about the decrease in corrosion resistance due to the inclusion of Cu, and it cannot be said that sufficient measures have been taken for improving the corrosion resistance. This is clear from the fact that the results of the corrosion resistance test are not disclosed.

また、自動車のサスペンションアームに使用されるアルミニウム合金部材としては、機械的強度のみではなく、伸び率等の機械的性質が良好であることも求められる。   Moreover, as an aluminum alloy member used for a suspension arm of an automobile, not only mechanical strength but also mechanical properties such as elongation are required to be good.

本発明は、上記のような実情を鑑みてなされたものであり、鍛造性及び鋳造性が良好であり、さらに鍛造後の機械的強度や伸び率等の機械的性質が優れ、かつ耐食性にも優れるアルミニウム合金部材と、このようなアルミニウム合金部材の製造方法とを提供することを課題とする。   The present invention has been made in view of the above circumstances, has good forgeability and castability, is excellent in mechanical properties such as mechanical strength and elongation after forging, and also has corrosion resistance. It is an object to provide an excellent aluminum alloy member and a method for producing such an aluminum alloy member.

最終製品形状に近似した形状をもつ近似形状鋳造材から熱間鍛造されたサスペンションアーム用アルミニウム合金部材において、Si:3.0〜4.2wt%、Mg:0.4〜0.6wt%、Zn、Mn、Ni、Sn、Crの合計量:0.5wt%以下、を含有し、残部が不可避不純物及びAlよりなる組成とされ、かつ、必須添加元素としてCuを含有せず、不可避的に含有されるCuは、0.02%wt以下、Fe:0.2wt%以下、であることを特徴とする。 In an aluminum alloy member for a suspension arm hot forged from an approximate shape cast material having a shape close to the final product shape, Si: 3.0 to 4.2 wt%, Mg: 0.4 to 0.6 wt%, Zn , Mn, Ni, Sn, Cr total amount: 0.5 wt% or less, the balance is inevitable impurities and Al composition, Cu is not included as an essential additive element, inevitably included Cu to be added is 0.02% wt or less and Fe: 0.2 wt% or less.

さらに、上記本発明の課題を解決するために、本発明のサスペンションアーム用アルミニウム合金部材の製造方法は、Si:3.0〜4.2wt%、Mg:0.4〜0.6wt%Fe:0.2wt%以下、Zn、Mn、Ni、Sn、Crの合計量:0.5wt%以下、を含有し、残部が不可避不純物及びAlよりなる組成とされ、かつ、必須添加元素としてCuを含有せず、不可避的に含有されるCuは、0.02%wt以下、Fe:0.2wt%以下、であるアルミニウム合金により構成されたアルミニウム合金を、最終製品形状に近似した形状をもつ近似形状鋳造材に鋳造する工程と、
該近似形状鋳造材を、鍛造圧下率30〜50%の条件で熱間鍛造する工程とを、有することを特徴とするサスペンションアーム用アルミニウム合金部材の製造方法とする。ここで、鍛造圧下率とは、鍛造工程により、近似形状鋳造材の厚さが変化したとき、その厚さの減少率を言うものとする。
Furthermore, in order to solve the above-described problems of the present invention, the manufacturing method of an aluminum alloy member for a suspension arm according to the present invention includes Si: 3.0 to 4.2 wt%, Mg: 0.4 to 0.6 wt% , Fe : 0.2 wt% or less, the total amount of Zn, Mn, Ni, Sn, Cr: 0.5 wt% or less, the balance is made of inevitable impurities and Al, and Cu as an essential additive element Cu, which is unavoidably contained, is an approximation that has an aluminum alloy composed of an aluminum alloy that is 0.02% wt or less and Fe: 0.2 wt% or less, in a shape that approximates the shape of the final product. Casting into a shape cast material;
A method for producing an aluminum alloy member for a suspension arm , comprising: hot forging the approximate shape cast material under a forging reduction ratio of 30 to 50%. Here, the forging reduction ratio refers to a reduction rate of the thickness when the thickness of the approximate shape cast material is changed by the forging process.

さらに、本発明のアルミニウム合金部材の製造方法においては、前記近似形状鋳造材を熱間鍛造する工程により得られた鍛造部材を、溶体化処理後急冷し、155〜165℃の温度範囲で、6〜8時間の時効処理を行うことができる。   Furthermore, in the manufacturing method of the aluminum alloy member of the present invention, the forged member obtained by the hot forging step of the approximate shape cast material is rapidly cooled after the solution treatment, and in the temperature range of 155 to 165 ° C., 6 An aging treatment of ˜8 hours can be performed.

本発明者は、Cuを実質的に添加しなくても、最終製品に近似した形状の近似形状鋳造材を熱間鍛造することで、機械的強度や伸び率等の機械的性質も十分なアルミニウム合金部材を実現することができることを見出し、本発明の完成に至った。前述したような本発明のアルミニウム合金部材によれば、鋳造後の近似形状鋳造材を鍛造して得られるアルミニウム合金部材において、鋳造性及び鍛造性を良好に維持し、かつ良好な機械的強度を実現するために、Si及びMgの含有量を所定の範囲に規定するとともに、従来のアルミニウム合金部材とは異なり、Cuを必須添加元素として含有させないようにしたことが特徴である。そのため、機械的強度の向上のためにCuを含有させていた従来のアルミニウム合金と比べて、耐食性が格段に向上する。さらに、所望の条件で熱間鍛造されているため、機械的強度や伸び率等の機械的性質も従来のアルミニウム合金部材と遜色ないものとなっている。したがって、本発明によれば、鋳造性及び鍛造性を良好に維持しつつ、耐食性も優れ、機械的性質も遜色のないアルミニウム合金部材を実現することができるのである。   The present inventor is an aluminum that has sufficient mechanical properties such as mechanical strength and elongation rate by hot forging an approximate shape cast material having a shape approximate to the final product without substantially adding Cu. The present inventors have found that an alloy member can be realized, and have completed the present invention. According to the aluminum alloy member of the present invention as described above, in an aluminum alloy member obtained by forging an approximately-shaped cast material after casting, the castability and forgeability are maintained well, and good mechanical strength is obtained. In order to achieve this, the contents of Si and Mg are defined within a predetermined range, and, unlike conventional aluminum alloy members, Cu is not included as an essential additive element. Therefore, the corrosion resistance is remarkably improved as compared with a conventional aluminum alloy containing Cu for improving the mechanical strength. Furthermore, since it is hot-forged under desired conditions, mechanical properties such as mechanical strength and elongation rate are comparable to conventional aluminum alloy members. Therefore, according to the present invention, it is possible to realize an aluminum alloy member that maintains excellent castability and forgeability, is excellent in corrosion resistance, and is inferior in mechanical properties.

そして、本発明のアルミニウム合金部材の製造方法を採用することで、アルミニウム合金にCuを積極的に添加しなくても、十分な機械的強度をもつアルミニウム合金部材が得られることがわかった。つまり、近似形状鋳造材を熱間鍛造するときの鍛造圧下率を、30〜50%の範囲に設定することで、Cuを積極的に合金に添加しなくても、十分な機械的強度等の機械的性質を実現できることがわかったのである。熱間鍛造においては、一般的に鍛造圧下率を増加させることにより、引張強さや伸び率等の機械的性質が向上すると考えられるが、本発明者が検討したところ、必須添加元素としてCuを含有しない場合に、鍛造圧下率を50%以上とすると、引張強さや耐力や伸び率等の機械的性質の向上は頭打ちとなり、かえって低下することもあることがわかった。鍛造することにより、アルミニウム合金部材の組織内に形成されている引けやピンホール等の解消、組織の緻密化により機械的性質の向上を果たすが、鍛造圧下率が50%を越えると、鍛造時の組織配向の度合いが強くなりすぎ、機械的性質(特に、引張り強さ)の低下を誘発するものと考えられる。なお、鍛造圧下率が50%とは、鍛造前の近似形状鋳造材の厚みが鍛造後に50%減少していることを意味するものとする。一方、鍛造圧下率が30%未満の場合では、アルミニウム合金部材の伸び率を十分に維持することができない。アルミニウム合金部材として、自動車のサスペンションアームに使用されるものを例示する場合、伸び率を十分に得るには、11%以上の伸び率を実現することが望ましいが、鍛造圧下率を30%以上とすることで、アルミニウム合金部材の伸び率を11%以上の良好な範囲に設定することが可能となる。   And it was found that by employing the method for producing an aluminum alloy member of the present invention, an aluminum alloy member having sufficient mechanical strength can be obtained without actively adding Cu to the aluminum alloy. In other words, by setting the forging reduction rate when hot forging the approximate shape cast material in the range of 30 to 50%, sufficient mechanical strength and the like can be obtained without adding Cu to the alloy actively. It was found that mechanical properties could be realized. In hot forging, it is considered that mechanical properties such as tensile strength and elongation rate are generally improved by increasing the forging reduction ratio. However, when the present inventors have studied, Cu is contained as an essential additive element. In the case where the forging reduction ratio is not less than 50%, the improvement in the mechanical properties such as tensile strength, proof stress and elongation rate has reached its peak, and it may be lowered. Forging improves mechanical properties by eliminating shrinkage and pinholes formed in the structure of aluminum alloy members and densifying the structure, but if the forging reduction ratio exceeds 50%, It is considered that the degree of the orientation of the structure becomes too strong and induces a decrease in mechanical properties (particularly, tensile strength). The forging reduction ratio of 50% means that the thickness of the approximate shape cast material before forging is reduced by 50% after forging. On the other hand, when the forging reduction rate is less than 30%, the elongation rate of the aluminum alloy member cannot be sufficiently maintained. When an aluminum alloy member used for an automobile suspension arm is exemplified, it is desirable to achieve an elongation of 11% or more in order to obtain a sufficient elongation, but the forging reduction ratio is 30% or more. By doing so, it becomes possible to set the elongation rate of an aluminum alloy member in the favorable range of 11% or more.

このように、本発明のアルミニウム合金部材の製造方法によれば、鋳造性及び鍛造性が十分に維持されるとともに、機械的強度や伸び率等の機械的性質が優れ、かつ、耐食性にも優れるアルミニウム合金部材を製造することができる。   Thus, according to the method for producing an aluminum alloy member of the present invention, castability and forgeability are sufficiently maintained, mechanical properties such as mechanical strength and elongation rate are excellent, and corrosion resistance is also excellent. An aluminum alloy member can be manufactured.

さらに、上記のようにアルミニウム合金部材の機械的強度を向上させるには、鍛造工程の後に、アルミニウム合金部材を溶体化処理に給し、その後急冷して、時効処理に給することが有効である。溶体化処理の条件としては、155〜165℃の温度範囲、6〜8時間の時効時間の範囲を設定することができる。155℃未満の温度では、機械的性質(特に、引張り強さ)が劣るという不具合が生じ、165℃を超える温度では、析出物の析出が十分に行われず、十分な伸び率を実現することができないという問題がある。また、時効処理の時間が、6時間未満であると、析出物の析出が十分に行われず、強度(特に、引張り強度)が十分でなく、8時間を越えると、アルミニウム合金部材の強度の向上も飽和することになるとともに、伸び率が急激に低下するという問題がある。   Furthermore, in order to improve the mechanical strength of the aluminum alloy member as described above, it is effective to supply the aluminum alloy member to a solution treatment after the forging step, and then rapidly cool and supply to the aging treatment. . As a solution treatment condition, a temperature range of 155 to 165 ° C. and an aging time range of 6 to 8 hours can be set. If the temperature is lower than 155 ° C., the mechanical properties (particularly, tensile strength) are inferior, and if the temperature exceeds 165 ° C., the precipitate is not sufficiently precipitated and a sufficient elongation can be realized. There is a problem that you can not. Further, if the aging treatment time is less than 6 hours, precipitates are not sufficiently precipitated, and the strength (particularly tensile strength) is not sufficient, and if it exceeds 8 hours, the strength of the aluminum alloy member is improved. However, there is a problem that the elongation rate decreases rapidly.

以下、本発明のアルミニウム合金部材の組成の限定理由について説明する。   Hereinafter, the reasons for limiting the composition of the aluminum alloy member of the present invention will be described.

(Si:3.0〜4.2wt%)Siは、湯流れ性、引け性を改善し、鋳造クラックの発生を抑制することができ、鋳造性を向上させることができる元素である。Siが過剰であると塑性変形性を害するとともに、伸び率や機械的強度を低下させやすい。そのため、上記範囲にSiの含有量を設定している。Siの含有量が3.0wt%未満であると、上記のようなSiを含有させることの効果が十分に発揮されず、一方、Siの含有量が4.2wt%を超えると、機械的強度を損なう。なお、Siの含有量は、望ましくは、3.0〜4.2wt%とするのがよく、さらに望ましくは、3.0〜4.0wt%とするのがよい。   (Si: 3.0 to 4.2 wt%) Si is an element that can improve the flowability and shrinkage of molten metal, suppress the occurrence of casting cracks, and improve the castability. If Si is excessive, the plastic deformability is impaired, and the elongation and mechanical strength are likely to be lowered. Therefore, the Si content is set within the above range. If the Si content is less than 3.0 wt%, the effect of containing Si as described above is not sufficiently exerted. On the other hand, if the Si content exceeds 4.2 wt%, the mechanical strength is increased. Damage. The Si content is desirably 3.0 to 4.2 wt%, and more desirably 3.0 to 4.0 wt%.

(Mg:0.4〜0.6wt%)MgはSiと共存して含有されることにより、アルミニウム合金の組織中にMgSiを生成し、この化合物による析出硬化により引張強さや耐力等の機械的強度を向上させることができる元素である。しかしながら、過剰に含有されると、アルミニウム合金部材の伸び率や衝撃値が低下する。そのため、上記範囲にMgの含有量を設定している。Mgの含有量は、望ましくは0.35〜0.65wt%とすることができ、さらに望ましくは0.40〜0.60wt%とすることができる。 (Mg: 0.4 to 0.6 wt%) Mg is contained in the presence of Si, so that Mg 2 Si is generated in the structure of the aluminum alloy, and the tensile strength, proof strength, etc. are reduced by precipitation hardening with this compound. It is an element that can improve the mechanical strength. However, when it contains excessively, the elongation rate and impact value of an aluminum alloy member will fall. Therefore, the content of Mg is set in the above range. The Mg content is desirably 0.35 to 0.65 wt%, and more desirably 0.40 to 0.60 wt%.

(Cu:必須添加元素として含有しない)前述したように、本発明によれば、Cuを実質的に添加しないことで、アルミニウム合金部材の耐食性を格段に向上させることができる。従来、例えば自動車のサスペンションアーム等に使用されるアルミニウム合金部材の機械的強度を向上させるには、Cuが必須であるとの見方が強かったが、本発明の製造方法により、Cuを実質的に含有しなくても、機械的強度に優れるとともに、耐食性にも優れるアルミニウム合金部材を製造することができる。そのため、Cuは可及的に含有されていないのが好ましいが、不可避不純物として含有されていもよい。Cuが不可避不純物としてアルミニウム合金部材に含有されている場合のCuの含有量は、0.02wt%以下とすることができる。さらに、不可避不純物としてのCuを抑制したアルミニウム合金部材においては、Cuの含有量は0.01wt%以下とすることができる。   (Cu: not contained as an essential additive element) As described above, according to the present invention, the corrosion resistance of the aluminum alloy member can be significantly improved by substantially not adding Cu. Conventionally, in order to improve the mechanical strength of an aluminum alloy member used, for example, in an automobile suspension arm or the like, it has been strongly believed that Cu is essential. However, according to the manufacturing method of the present invention, Cu is substantially reduced. Even if it is not contained, an aluminum alloy member having excellent mechanical strength and excellent corrosion resistance can be produced. Therefore, Cu is preferably not contained as much as possible, but may be contained as an inevitable impurity. When Cu is contained as an inevitable impurity in the aluminum alloy member, the Cu content can be 0.02 wt% or less. Furthermore, in the aluminum alloy member in which Cu as an inevitable impurity is suppressed, the Cu content can be 0.01 wt% or less.

(Fe:0.2wt%以下)Feは巣を発生させて鋳造性に悪影響を与えると共に、塑性変形性を害して鍛造性に悪影響を与える。そのため、不可避不純物としてのFeの含有量はなるべく低く設定しておくのが望ましい。Feの含有量が0.2wt%を超えると、近似形状鋳造材に形成される引け巣(ミクロポロシティー)が増加するとともに、近似形状鋳造材を鍛造する際に得られる鍛造品にクラックが生じやすくなる。   (Fe: 0.2 wt% or less) Fe causes nests to adversely affect castability, and also adversely affects forgeability by impairing plastic deformability. Therefore, it is desirable to set the content of Fe as an inevitable impurity as low as possible. When the Fe content exceeds 0.2 wt%, shrinkage cavities (microporosity) formed in the approximate shape cast material increase and cracks occur in the forged product obtained when forging the approximate shape cast material. It becomes easy.

(Zn、Mn、Ni、Sn、Crの合計含有量が0.5wt%以下)Znが過剰であると、耐食性が低下する。そのため、耐食性の向上を目的とする本発明のアルミニウム合金部材においては、可及的にその含有量を制限するのが好ましい。一方、Mnの含有量が過剰に多いと、スラッチが発生しやすい。また、Ni、Snが過剰に含有されていると、耐食性が劣化しやすい。また、Crの含有量が過剰に多いと、スラッチの生成を助成する。これらの元素は、上記のような理由からその含有量を制限するのが望ましく、これらの元素の合計含有量が0.5%以下とすることで、上記不具合を防止することができる。   (The total content of Zn, Mn, Ni, Sn, and Cr is 0.5 wt% or less) If Zn is excessive, the corrosion resistance is lowered. Therefore, it is preferable to limit the content of the aluminum alloy member of the present invention for the purpose of improving corrosion resistance as much as possible. On the other hand, if the Mn content is excessively large, slats are likely to occur. Moreover, when Ni and Sn are contained excessively, corrosion resistance tends to deteriorate. Moreover, when there is too much content of Cr, the production | generation of a slat is assisted. The content of these elements is desirably limited for the reasons described above, and the above problems can be prevented by setting the total content of these elements to 0.5% or less.

以下、本発明の実施形態について図面を参照しつつ説明する。本実施形態に係る鋳造工程で用いる成形型1は、揺動機能を有する鋳造型装置に装備された金型であり、高強度、高耐食性要請部品の代表例である車両用サスペンションアームを製造するためのものである。成型型1は、図1に模式的に示すように、最終製品形状に近似した第一キャビティ11と、該第一キャビティ11に連通する第二キャビティ12とを持つ、成型型1は注湯開始前は水平型とされている。そして、アルミニウム合金系の溶湯を成形型1の第一キャビティ11に注湯する。   Embodiments of the present invention will be described below with reference to the drawings. A mold 1 used in a casting process according to the present embodiment is a mold equipped in a casting mold apparatus having a swing function, and manufactures a vehicle suspension arm that is a representative example of a component requiring high strength and high corrosion resistance. Is for. As schematically shown in FIG. 1, the mold 1 has a first cavity 11 that approximates the shape of the final product and a second cavity 12 that communicates with the first cavity 11. The front is a horizontal type. Then, molten aluminum alloy is poured into the first cavity 11 of the mold 1.

ここで、注湯されるアルミニウム合金系の溶湯は、Si:3.0〜4.2wt%、Mg:0.4〜0.6wt%、Fe:0.2wt%以下、Zn、Mn、Ni、Sn、Crの合計含有量:0.5wt%以下、残部が不可避不純物及びAlよりなる組成とされ、かつ、Cuが必須添加元素として含有されていないものである。具体的に、必須添加元素としてCuが含有されていない場合、不可避的に含有されるCuは、例えば0.02%wt以下、さらに0.01wt%とすることができる。   Here, the molten aluminum alloy-based molten metal is Si: 3.0 to 4.2 wt%, Mg: 0.4 to 0.6 wt%, Fe: 0.2 wt% or less, Zn, Mn, Ni, The total content of Sn and Cr: 0.5 wt% or less, the balance is composed of inevitable impurities and Al, and Cu is not contained as an essential additive element. Specifically, when Cu is not contained as an essential additive element, Cu inevitably contained can be, for example, 0.02% by weight or less, and further 0.01% by weight.

鋳造工程において、溶湯の温度は一般的には、720〜750℃とすることができる。成形型1の型温は一般的には250〜350℃とすることができる。鋳造工程では、注湯は第二キャビティ12側に堰開口12xを設けて堰開口12xから行う。第一キャビティ11及び第二キャビティ12に溶湯が装填されたら、水平型である成形型1を揺動させて、第一キャビティ11が上方となるように縦型とする(図示せず)。このようにすれば、鋳造工程において、第一キャビティ11の溶湯を早期に凝固させるとともに、第二キャビティ12の凝固が遅延することになる。このように、溶湯を指向性凝固させれば、鋳造品である近似形状鋳造材2が複雑な形状を有する場合であっても、形成される鋳造品に引けやピンホールが生じるのを抑制することができる。溶湯全体が凝固したときに、成形型1を再度水平にし、成形型1を型開きし、図2に模式的に示すような近似形状鋳造材2を得ることができる。近似形状鋳造材2は、アーム形状をなす本体2aと、ボルト挿通孔が形成されるボス部2sと、ボルト挿通孔が形成されるボス部2b、2cを有する。なお、凝固時間はサイズや形状にもよるが、一般的には30〜120秒程度、殊に40〜80秒程度である。ただし、これに限定されるものではない。   In the casting process, the temperature of the molten metal can be generally 720 to 750 ° C. The mold temperature of the mold 1 can generally be set to 250 to 350 ° C. In the casting process, pouring is performed from the dam opening 12x by providing the dam opening 12x on the second cavity 12 side. When the first cavity 11 and the second cavity 12 are filled with molten metal, the horizontal mold 1 is swung to form a vertical mold (not shown) so that the first cavity 11 faces upward. If it does in this way, in the casting process, while the molten metal of the 1st cavity 11 will be solidified early, solidification of the 2nd cavity 12 will be delayed. Thus, if the molten metal is directional solidified, even if the approximate shape cast material 2 that is a cast product has a complicated shape, it is possible to suppress the occurrence of shrinkage and pinholes in the cast product to be formed. be able to. When the entire molten metal is solidified, the mold 1 is leveled again, the mold 1 is opened, and an approximate shape casting 2 as schematically shown in FIG. 2 can be obtained. The approximate shape cast material 2 has a main body 2a having an arm shape, a boss portion 2s in which a bolt insertion hole is formed, and boss portions 2b and 2c in which a bolt insertion hole is formed. The solidification time depends on the size and shape, but is generally about 30 to 120 seconds, particularly about 40 to 80 seconds. However, it is not limited to this.

次に、本実施形態にかかる鍛造工程について説明する。本実施形態にかかる鍛造工程においては、一旦室温に戻った近似形状鋳造材2を大気中で加熱炉により所要の温度まで加熱する(例えば430℃程度)。そして、近似形状鋳造材2を図3に示すように、鍛造型4に配置して、鍛造型4で近似形状鋳造材2の厚み方向に強圧して熱間鍛造し、鋳造鍛造品5を得る。鍛造型4は、平坦な下割面40を有する金属製の上型43と下型41とを有する。鍛造型4は下割面40及び上割面42を凹設して形成された鍛造キャビティ46と、鍛造キャビティ46外側にこれを一周するように形成されたバリ形成空間47とを有する。鍛造時に近似形状鋳造材2の温度は一般的には390〜430℃である。鍛造工程では、近似形状鋳造剤2をこれの厚み方向に鍛造キャビティ46の型面46fで強圧して熱間鍛造をする。鍛造工程は、鍛造しつつバリを積極的に生成する半密閉鍛造とされており、強圧に伴い近似形状鋳造材2の内部分が外方の空間47に逃げ、近似形状鍛造材2の周囲にバリ部20をもつ鋳造鍛造材5が形成される。鍛造により本体2a、ボルト挿通孔が形成されるボス部2s、2b、2cが強化されている。バリ部20は鋳造鍛造品5の厚み方向の中央域に形成されている。鋳造鍛造品5は鍛造型4の型面46fで強圧された鍛造表面5fを有する。なお、上記した鍛造工程において、近似形状鋳造材2の第二キャビティ12に近い側を鍛造する鍛造圧下率をαnとし、近似形状鋳造材2の第二キャビティ12に遠い側を鍛造する鍛造圧下率をαdとしたとき、αn>αdとすることができる。本実施形態においては、近似形状鋳造材2を指向性凝固を図るかたちで凝固させている。そのため、第一キャビティで形成された近似形状鋳造材2の部分においては、引けはピンホール等の欠陥の発生が抑制されることになる。しかしながら、第一キャビティで形成された近似形状鋳造材2と言えども、凝固が遅延する第二キャビティに近い側には、形状の如何などによっては、引けやピンホールなどが発生することがある。そこで、上述したように、αn>αdと設定することにより、第二キャビティ12に近い側の近似形状鋳造材2の部分において、引けやピンホールが形成されていても、鍛造によって、これら引けやピンホールを潰しやすくなる。そのため、アルミニウム合金部材の機械的強度向上に貢献す
ることができる。
Next, the forging process concerning this embodiment is demonstrated. In the forging process according to the present embodiment, the approximately shaped cast material 2 that has once returned to room temperature is heated in the atmosphere to a required temperature (for example, about 430 ° C.). Then, as shown in FIG. 3, the approximate shape cast material 2 is arranged in the forging die 4, and hot forging is performed by forging die 4 in the thickness direction of the approximate shape cast material 2 to obtain a cast forged product 5. . The forging die 4 has a metal upper die 43 and a lower die 41 having a flat lower surface 40. The forging die 4 has a forging cavity 46 formed by recessing the lower split surface 40 and the upper split surface 42, and a burr forming space 47 formed so as to make a round around the forging cavity 46. The temperature of the approximate shape cast material 2 at the time of forging is generally 390 to 430 ° C. In the forging process, hot casting is performed by strongly pressing the approximate shape casting agent 2 in the thickness direction at the die surface 46f of the forging cavity 46. The forging process is semi-sealed forging that actively generates burrs while forging, and the inner portion of the approximate shape casting material 2 escapes to the outer space 47 due to strong pressure, and around the approximate shape forging material 2. A cast forged material 5 having a burr 20 is formed. The bosses 2s, 2b, and 2c in which the main body 2a and bolt insertion holes are formed are strengthened by forging. The burrs 20 are formed in the central region in the thickness direction of the cast forged product 5. The cast forged product 5 has a forged surface 5 f that is strongly pressed by the die surface 46 f of the forging die 4. In the forging step described above, the forging reduction rate for forging the side near the second cavity 12 of the approximate shape casting material 2 is αn, and the forging reduction rate for forging the side far from the second cavity 12 of the approximate shape casting material 2. Where αd> αd. In the present embodiment, the approximately shaped casting material 2 is solidified in the form of directional solidification. Therefore, in the portion of the approximate shape cast material 2 formed by the first cavity, the occurrence of defects such as pinholes is suppressed. However, even with the approximate shape cast material 2 formed of the first cavity, a close or pinhole may occur on the side close to the second cavity where solidification is delayed depending on the shape. Therefore, as described above, by setting αn> αd, even if a shrinkage or a pinhole is formed in the portion of the approximate shape cast material 2 on the side close to the second cavity 12, these shrinkage and It becomes easy to crush the pinhole. Therefore, it can contribute to the improvement of the mechanical strength of the aluminum alloy member.

上記の鍛造工程において、鍛造圧下率は30〜50%の範囲内に設定される方式を採用することができる。断面減少率は30%以下、特に15%以下に設定されていることが好ましい。前述したように、Cuを実質的に含有しない本発明にかかるアルミニウム合金部材においては、鍛造圧下率を0%から50%へと高めるにつれて、引張強さ、伸び率が高まる。しかしながら、鍛造圧下率が50%を超えると、引張強さ、伸び率等が減少する。一方、鍛造圧下率が30%未満では、十分な引張強さ、耐力、伸び率等を実現することができない。例えば、自動車のサスペンションアーム等の足回り部品に使用されるアルミニウム合金部材においては、伸び率が11%以上とされていることが望まれており、アルミニウム合金部材の伸び率を11%以上とするには、鍛造圧下率を30%以上とするのがよい。ここで、断面減少率が30%以下とされる場合、基本的に断面減少率に相当する肉部分がバリ部20となる。   In the forging step described above, a method in which the forging reduction ratio is set within a range of 30 to 50% can be employed. The cross-sectional reduction rate is preferably set to 30% or less, particularly 15% or less. As described above, in the aluminum alloy member according to the present invention which does not substantially contain Cu, the tensile strength and the elongation rate increase as the forging reduction rate is increased from 0% to 50%. However, when the forging reduction rate exceeds 50%, the tensile strength, the elongation rate, and the like decrease. On the other hand, if the forging reduction ratio is less than 30%, sufficient tensile strength, proof stress, elongation rate and the like cannot be realized. For example, in an aluminum alloy member used for undercarriage parts such as an automobile suspension arm, it is desired that the elongation rate is 11% or more, and the elongation rate of the aluminum alloy member is 11% or more. For this, the forging reduction ratio is preferably 30% or more. Here, when the cross-section reduction rate is 30% or less, the flesh portion basically corresponding to the cross-section reduction rate becomes the burr portion 20.

本実施形態によれば、鋳造鍛造品5のうち厚み方向の中央領域では、金属組織が流れる配向性の度合いが大きかった。しかし鋳造鍛造品5のうち鍛造キャビティ46の型面46f近く鍛造表面5fでは、金属組織が流れる配向性の度合いがあまり認められなかった。したがって、鋳造鍛造品5のうち鍛造キャビティ46の型面46f近くでは、鋳造工程において鋳造チル組織が残留しているものである。   According to the present embodiment, the degree of orientation through which the metal structure flows is large in the central region in the thickness direction of the cast forged product 5. However, in the cast forged product 5, the degree of orientation through which the metal structure flows was not recognized on the forged surface 5 f near the die surface 46 f of the forged cavity 46. Therefore, in the casting forged product 5, the casting chill structure remains in the casting process near the die surface 46 f of the forging cavity 46.

本発明にかかるアルミニウム合金部材が、良好な機械的性質を示すとともに、優れた耐食性を示すことを確認するため、あるいは本発明にかかるアルミニウム合金部材の製造方法により、機械的性質及び耐食性に優れたアルミニウム合金を製造できることを確認するため、以下のような実験を行った。   In order to confirm that the aluminum alloy member according to the present invention exhibits good mechanical properties and excellent corrosion resistance, or by the method for producing an aluminum alloy member according to the present invention, it has excellent mechanical properties and corrosion resistance. In order to confirm that an aluminum alloy can be produced, the following experiment was conducted.

(実験例1) 表1に示すような組成(残部はAl)のアルミニウム合金を溶湯として、図1に示すような本実施形態にかかる金型を用いて図2に示すような近似形状鋳造材を得た。鋳造条件は、アルミ溶湯温度:720℃、鋳造型温度:250〜350℃である。得られた近似形状鋳造材を430℃に加熱した後、図3に示すように、断面減少率10%、鍛造圧下率を30%として、熱間鍛造し鋳造鍛造品を作製した。得られた鋳造鍛造品に対して熱処理を行った。具体的には、540℃で6時間の条件で溶体化処理を行ったあと、その状態で160℃で8時間の時間処理を施した。   (Experimental example 1) An aluminum alloy having a composition as shown in Table 1 (the balance is Al) is used as a molten metal, and an approximate shape casting material as shown in FIG. Got. Casting conditions are: molten aluminum temperature: 720 ° C., casting mold temperature: 250-350 ° C. After the obtained approximately shaped cast material was heated to 430 ° C., as shown in FIG. 3, a cast forged product was produced by hot forging with a cross-sectional reduction rate of 10% and a forging reduction rate of 30%. The obtained cast forged product was subjected to heat treatment. Specifically, solution treatment was performed at 540 ° C. for 6 hours, and in that state, treatment was performed at 160 ° C. for 8 hours.

このようにして得られた鋳造鍛造品に対して、以下の要領により耐食性試験を行った。まず、鋳造鍛造品の断面から、図4に示す形状に耐食性試験片10を加工作成した。試験片の寸法は図4に示すとおりである。そして、このような形状の耐食性試験片を応力を付与できるように図5に示すよう形で組み付けた。具体的には、U字状に形成された耐食性試験片の鍔部にそれぞれ円形の貫通孔10aを形成し、この貫通孔10aにボルト6を挿通し、ナット7で固定した。具体的には、図5に示すように組み付けた。

Figure 0004192755
図5のような状態の耐食性試験片に対して、ボルト6により150〜200MPaの応力を付与しつつ、塩水噴霧試験を行った。そして耐食性試験片の断面において、顕微鏡観察を行い、該断面に粒界腐食が発生しているかどうかを評価した。応力は、図5に示すように試験片10に取り付けられた歪ゲージ8により測定した。
Figure 0004192755
表2よりわかるように、Cuを実質的に添加していない、Cuの含有量が0.01wt%の試料では、粒界腐食が全く発生せず、極めて良好な耐食性を実現できることがわかる。一方、Cuの含有量を制限している、Cuの含有量が0.33wt%や0.26wt%である試料においては、粒界腐食が観察された試料が、全体の10%程度もあり、十分な耐食性が実現されていないことがわかる。 The cast forged product thus obtained was subjected to a corrosion resistance test according to the following procedure. First, the corrosion resistance test piece 10 was formed into a shape shown in FIG. 4 from the cross section of the cast forged product. The dimensions of the test piece are as shown in FIG. And the corrosion-resistant test piece of such a shape was assembled | attached in the form as shown in FIG. 5 so that stress can be provided. Specifically, circular through-holes 10 a were formed in the flange portions of the U-shaped corrosion resistance test pieces, and bolts 6 were inserted into the through-holes 10 a and fixed with nuts 7. Specifically, it assembled | attached as shown in FIG.
Figure 0004192755
A salt spray test was performed on the corrosion resistance test piece in the state shown in FIG. 5 while applying a stress of 150 to 200 MPa with the bolt 6. And in the cross section of the corrosion-resistant test piece, the microscope observation was performed and it was evaluated whether the intergranular corrosion had generate | occur | produced in this cross section. The stress was measured with a strain gauge 8 attached to the test piece 10 as shown in FIG.
Figure 0004192755
As can be seen from Table 2, in the sample with substantially no Cu added and a Cu content of 0.01 wt%, intergranular corrosion does not occur at all, and it can be seen that extremely good corrosion resistance can be realized. On the other hand, in the sample where the Cu content is limited and the Cu content is 0.33 wt% or 0.26 wt%, there are about 10% of the samples in which intergranular corrosion is observed, It can be seen that sufficient corrosion resistance is not realized.

(実験例2) 次に、表1の必須添加元素としてCuを実質的に含有していないサンプルNo.1の組成のアルミニウム合金部材を、表3に示すように鍛造工程における鍛造圧下率を変化させたものを複数作製した。鍛造工程以外の工程における条件は、実験例1と同様としている。このように得られたアルミニウム合金部材に対して、図6に示すような形状に引張強さ試験片15を加工作成した。このような引張試験片を用いて、JISZ2241に規定されている引張試験を行い、試料の引張強さ、耐力、伸び率を測定した。得られた結果を表3に示す。

Figure 0004192755
表3に示すように、鍛造圧下率が30%以上の試料においては、比較的高い引張強さ及び耐力を実現することができるとともに、11%以上の伸び率を実現することができ、例えば自動車の足回り品として好適なアルミニウム合金部材を得ることができる。しかしながら、鍛造圧下率が50%を越えると、アルミニウム合金部材の伸び率の増加が飽和し、引張り強さや耐力は低下してしまう。したがって、Cuを実質的に含有しないアルミニウム合金部材の場合、鍛造工程における鍛造圧下率は、30〜50%の範囲に設定するのが好ましいことがわかる。 (Experimental example 2) Next, sample No. which does not contain Cu substantially as an essential addition element of Table 1 is shown. As shown in Table 3, a plurality of aluminum alloy members having the composition 1 having different forging reduction ratios in the forging process were produced. Conditions in the steps other than the forging step are the same as those in Experimental Example 1. A tensile strength test piece 15 was formed into a shape as shown in FIG. 6 from the aluminum alloy member thus obtained. Using such a tensile test piece, the tensile test specified in JISZ2241 was performed, and the tensile strength, proof stress, and elongation rate of the sample were measured. The obtained results are shown in Table 3.
Figure 0004192755
As shown in Table 3, in a sample having a forging reduction ratio of 30% or more, a relatively high tensile strength and yield strength can be realized, and an elongation ratio of 11% or more can be realized. An aluminum alloy member suitable as an underbody product can be obtained. However, if the forging reduction rate exceeds 50%, the increase in the elongation rate of the aluminum alloy member is saturated, and the tensile strength and proof stress are reduced. Therefore, in the case of the aluminum alloy member which does not contain Cu substantially, it turns out that it is preferable to set the forge reduction rate in a forging process in the range of 30 to 50%.

(実験例3) 次に、表1のサンプルNo.1の組成のアルミニウム合金部材において、時効処理における時効時間を表4のように変えて、複数のアルミニウム合金部材を作成した。鍛造工程において、断面減少率は10%とし、鍛造圧下率は40%とした。時効処理において、アルミニウム合金部材が晒される雰囲気の温度は、実験例1と同様に160℃としている。その他、時効時間以外の作製条件は、実験例1と同様としている。このようにして得られたアルミニウム合金部材に対して、実験例2と同様の方法により、引張試験を行った。結果を表5に示す。

Figure 0004192755
表4に示すように、時効時間が6〜8時間の範囲では、Cuを強度向上を目的として含有するアルミニウム合金と遜色ない程度の、引張強さ及び耐力を実現でき、さらに、11%以上の伸び率を確保することができることがわかる。時効時間が6時間に満たないと、十分な引張強さ及び耐力を実現することができず、時効時間が8時間を越えると、11%以上の伸び率を実現することができない。 (Experimental example 3) Next, sample No. In the aluminum alloy member having the composition 1, a plurality of aluminum alloy members were prepared by changing the aging time in the aging treatment as shown in Table 4. In the forging process, the cross-sectional reduction rate was 10%, and the forging reduction rate was 40%. In the aging treatment, the temperature of the atmosphere to which the aluminum alloy member is exposed is set to 160 ° C. as in Experimental Example 1. In addition, the production conditions other than the aging time are the same as in Experimental Example 1. A tensile test was performed on the aluminum alloy member thus obtained by the same method as in Experimental Example 2. The results are shown in Table 5.
Figure 0004192755
As shown in Table 4, when the aging time is in the range of 6 to 8 hours, the tensile strength and the proof stress are comparable to those of an aluminum alloy containing Cu for the purpose of improving the strength, and more than 11%. It can be seen that the elongation rate can be secured. If the aging time is less than 6 hours, sufficient tensile strength and proof stress cannot be realized, and if the aging time exceeds 8 hours, an elongation of 11% or more cannot be realized.

上記の実験により、本発明のアルミニウム合金部材は、機械的性質に優れるとともに、高い耐食性も有することが確認できた。さらに、本発明のアルミニウム合金部材の製造方法によれば、機械的性質に優れるとともに、高い耐食性を有するアルミニウム合金部材を製造することができることが確認できた。   From the above experiments, it was confirmed that the aluminum alloy member of the present invention was excellent in mechanical properties and also had high corrosion resistance. Furthermore, according to the method for producing an aluminum alloy member of the present invention, it was confirmed that an aluminum alloy member having excellent mechanical properties and high corrosion resistance can be produced.

鋳造工程について説明するための図。The figure for demonstrating a casting process. 近似形状鋳造材を模式的に示す平面図。The top view which shows an approximate shape casting material typically. 近似形状鋳造材を鍛造型の型面で鍛造している状態を示す断面図。Sectional drawing which shows the state which is forging the approximate shape casting material with the die surface of a forging die. 耐食性試験片の形状について説明する図。The figure explaining the shape of a corrosion-resistant test piece. 耐食性試験片とボルトとの取り付け構造を説明する図。The figure explaining the attachment structure of a corrosion-resistant test piece and a volt | bolt. 引張り強さ試験片の形状について説明するための図。The figure for demonstrating the shape of a tensile strength test piece.

符号の説明Explanation of symbols

2 近似形状鋳造材
5 アルミニウム合金部材
2 Cast material with approximate shape 5 Aluminum alloy member

Claims (3)

最終製品形状に近似した形状をもつ近似形状鋳造材から熱間鍛造されたアルミニウム合金部材において、
Si:3.0〜4.2wt%、Mg:0.4〜0.6wt%Zn、Mn、Ni、Sn、Crの合計量:0.5wt%以下、を含有し、残部が不可避不純物及びAlよりなる組成とされ、
かつ、必須添加元素としてCuを含有せず、不可避的に含有されるCuは、0.02%wt以下、Fe:0.2wt%以下、であることを特徴とするサスペンションアーム用アルミニウム合金部材。
In an aluminum alloy member hot forged from an approximate shape cast material having a shape approximate to the final product shape,
Si: 3.0 to 4.2 wt%, Mg: 0.4 to 0.6 wt% , Zn, Mn, Ni, Sn, Cr total amount: 0.5 wt% or less, the balance is inevitable impurities and The composition is made of Al,
An aluminum alloy member for a suspension arm , which does not contain Cu as an essential additive element, and unavoidably contained Cu is 0.02% wt or less and Fe: 0.2 wt% or less.
Si:3.0〜4.2wt%、Mg:0.4〜0.6wt%、Fe:0.2wt%以下、Zn、Mn、Ni、Sn、Crの合計量:0.5wt%以下、を含有し、残部が不可避不純物及びAlよりなる組成とされ、
かつ、必須添加元素としてCuを含有せず、不可避的に含有されるCuは、0.02%wt以下、Fe:0.2wt%以下、であるアルミニウム合金により構成されたアルミニウム合金を、最終製品形状に近似した形状をもつ近似形状鋳造材に鋳造する工程と、
該近似形状鋳造材を、鍛造圧下率30〜50%の条件で熱間鍛造する工程とを、有することを特徴とするサスペンションアーム用アルミニウム合金部材の製造方法。
Si: 3.0-4.2 wt%, Mg: 0.4-0.6 wt%, Fe: 0.2 wt% or less, Zn, Mn, Ni, Sn, Cr total amount: 0.5 wt% or less Containing, the balance is made of inevitable impurities and Al,
In addition, Cu is unavoidably contained as an essential additive element, and Cu contained unavoidably is 0.02% wt or less, Fe: 0.2 wt% or less, an aluminum alloy composed of an aluminum alloy is used as the final product. Casting into an approximate shape cast material having a shape close to the shape;
A method for producing an aluminum alloy member for a suspension arm , comprising: hot forging the approximate shape cast material under a forging reduction ratio of 30 to 50%.
前記近似形状鋳造材を熱間鍛造する工程により得られた鍛造部材を、溶体化処理後急冷し、155〜165℃の温度範囲で、6〜8時間の時効処理を行うことを特徴とする請求項2に記載のサスペンションアーム用アルミニウム合金部材の製造方法。 The forged member obtained by the hot forging step of the approximate shape cast material is rapidly cooled after the solution treatment, and is subjected to an aging treatment for 6 to 8 hours in a temperature range of 155 to 165 ° C. Item 3. A method for producing an aluminum alloy member for a suspension arm according to Item 2.
JP2003367570A 2003-10-28 2003-10-28 Aluminum alloy member and manufacturing method thereof Expired - Fee Related JP4192755B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003367570A JP4192755B2 (en) 2003-10-28 2003-10-28 Aluminum alloy member and manufacturing method thereof
CNA2004100882272A CN1611622A (en) 2003-10-28 2004-10-21 Aluminum alloy product and method of manufacturing the same
US10/973,253 US20050087267A1 (en) 2003-10-28 2004-10-27 Aluminum alloy product and method of manufacturing the same
EP04025523A EP1528111A1 (en) 2003-10-28 2004-10-27 Al-Si-Mg aluminium alloy product and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003367570A JP4192755B2 (en) 2003-10-28 2003-10-28 Aluminum alloy member and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005133112A JP2005133112A (en) 2005-05-26
JP4192755B2 true JP4192755B2 (en) 2008-12-10

Family

ID=34420132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003367570A Expired - Fee Related JP4192755B2 (en) 2003-10-28 2003-10-28 Aluminum alloy member and manufacturing method thereof

Country Status (4)

Country Link
US (1) US20050087267A1 (en)
EP (1) EP1528111A1 (en)
JP (1) JP4192755B2 (en)
CN (1) CN1611622A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008014033A (en) * 2006-07-06 2008-01-24 Sunpole Co Retractable car stop
EP1997924B1 (en) * 2007-05-24 2009-12-23 ALUMINIUM RHEINFELDEN GmbH High-temperature aluminium alloy
WO2009006939A1 (en) 2007-07-09 2009-01-15 Bharat Forge Aluminiumtechnik Gmbh & Co. Kg Casting-forging of wrought alloys
DE102010007812B4 (en) * 2010-02-11 2017-04-20 Ksm Castings Group Gmbh Method and device for the production of motor vehicle chassis parts
CN105483467A (en) * 2016-02-02 2016-04-13 广东辉丰科技股份有限公司 Nanocrystalline aluminum alloy used for zipper and preparation method thereof
WO2017147504A1 (en) * 2016-02-24 2017-08-31 Detroit Materials Inc. High fluidity iron alloy forming process and articles therefrom
CN106319299A (en) * 2016-08-31 2017-01-11 中信戴卡股份有限公司 Novel aluminum alloy and preparing method thereof
CN107557621A (en) * 2017-08-31 2018-01-09 国网河南省电力公司西峡县供电公司 It is a kind of suitable for aluminium alloy conductor of overhead transmission line and preparation method thereof
CN111155001B (en) * 2020-03-09 2022-05-24 安徽唐瑞汽车科技有限公司 High-strength high-elongation aluminum alloy and production method thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63100151A (en) * 1986-04-04 1988-05-02 Hitachi Metals Ltd Aluminum-alloy member and combined working method thereof
JPH02232331A (en) * 1989-03-03 1990-09-14 Nippon Light Metal Co Ltd Aluminum alloy for die casting having excellent filiform corrosion resistance
JPH0673482A (en) * 1992-08-26 1994-03-15 Honda Motor Co Ltd Aluminum alloy member and its production
JP3335732B2 (en) * 1993-10-12 2002-10-21 日本軽金属株式会社 Hypoeutectic Al-Si alloy and casting method thereof
NO950843L (en) 1994-09-09 1996-03-11 Ube Industries Method of Treating Metal in Semi-Solid State and Method of Casting Metal Bars for Use in This Method
FR2727336B1 (en) * 1994-11-29 1997-01-31 Asahi Tec Corp METHOD FOR FLUOTOURNING A VEHICLE WHEEL
JPH08246118A (en) * 1995-03-03 1996-09-24 Ube Ind Ltd Production of aluminum alloy casting
JP3107517B2 (en) * 1995-03-30 2000-11-13 株式会社神戸製鋼所 High corrosion resistant aluminum alloy extruded material with excellent machinability
DE69622664T2 (en) 1995-10-09 2002-11-14 Honda Motor Co Ltd thixocasting
JP2002302728A (en) * 2001-04-09 2002-10-18 Hoei Kogyo Kk Aluminum alloy for casting and forging, aluminum cast and forged article, and production method therefor
JP2002361399A (en) * 2001-06-07 2002-12-17 Aisin Seiki Co Ltd Casting and forging method for aluminum alloy, and aluminum alloy for casting and forging

Also Published As

Publication number Publication date
US20050087267A1 (en) 2005-04-28
EP1528111A1 (en) 2005-05-04
JP2005133112A (en) 2005-05-26
CN1611622A (en) 2005-05-04

Similar Documents

Publication Publication Date Title
JP5355320B2 (en) Aluminum alloy casting member and manufacturing method thereof
US20100288401A1 (en) Aluminum casting alloy
US20150202680A1 (en) Method for manufacturing semifinished product for hard disk drive device case body and semifinished product for case body
JP2005264301A (en) Casting aluminum alloy, casting of aluminum alloy and manufacturing method therefor
JPH06172949A (en) Member made of magnesium alloy and its production
US10023943B2 (en) Casting aluminum alloy and casting produced using the same
CN109811206B (en) Cast aluminum alloy
JP2008542534A (en) Aluminum casting alloy, aluminum alloy casting, and manufacturing method of aluminum alloy casting
JP2017503086A (en) Aluminum casting alloy with improved high temperature performance
US10927436B2 (en) Aluminum alloys
JP4822324B2 (en) Aluminum alloy forged road wheel and manufacturing method thereof
JP4192755B2 (en) Aluminum alloy member and manufacturing method thereof
JP4145242B2 (en) Aluminum alloy for casting, casting made of aluminum alloy and method for producing casting made of aluminum alloy
KR101603424B1 (en) Aluminum alloy for casting and forging, casting and forged product for chassis structure and method for manufacturing the same
JP6385683B2 (en) Al alloy casting and manufacturing method thereof
JP6446785B2 (en) Aluminum alloy casting and manufacturing method thereof
US6962673B2 (en) Heat-resistant, creep-resistant aluminum alloy and billet thereof as well as methods of preparing the same
JP2022044919A (en) Aluminum alloy-made forged member and method for producing the same
JP7358759B2 (en) Scroll member and scroll forging product manufacturing method
JP2003170263A (en) Method for casting vehicle wheel under low pressure
JP4351609B2 (en) Aluminum alloy, heat-resistant and high-strength aluminum alloy part, and manufacturing method thereof
US6623570B2 (en) AlMgSi casting alloy
US20210123123A1 (en) Aluminum alloy forging and production method thereof
JP7459496B2 (en) Manufacturing method for aluminum alloy forgings
JP2006161103A (en) Aluminum alloy member and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080411

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080521

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080908

R151 Written notification of patent or utility model registration

Ref document number: 4192755

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees