JPS63100151A - Aluminum-alloy member and combined working method thereof - Google Patents

Aluminum-alloy member and combined working method thereof

Info

Publication number
JPS63100151A
JPS63100151A JP25727886A JP25727886A JPS63100151A JP S63100151 A JPS63100151 A JP S63100151A JP 25727886 A JP25727886 A JP 25727886A JP 25727886 A JP25727886 A JP 25727886A JP S63100151 A JPS63100151 A JP S63100151A
Authority
JP
Japan
Prior art keywords
forging
aluminum alloy
alloy member
shape
finish
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25727886A
Other languages
Japanese (ja)
Inventor
Kimiharu Ota
太田 公陽
Yasuo Hama
浜 葆夫
Yoshisada Kobayashi
小林 由定
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Publication of JPS63100151A publication Critical patent/JPS63100151A/en
Pending legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Abstract

PURPOSE:To obtain an Al-alloy member excellent in mechanical properties and dimensional accuracy, by forming an Al alloy having specified compositional ranges into a near-final shape by increasing a forging ratio in the required part and then by subjecting the resulting forged stock to finish forming by partially changing the forging ratio. CONSTITUTION:The Al alloy has a composition principally consisting of, by weight, 4.0-7.5% Si, 0.2-1.2% Mg, <=0.5% Cu, and the balance essentially Al. By increasing the forging ratio in the part requiring strength and resistance to pressure and by reducing the forging ratio in the part other than the above, this Al alloy is forged into a stock of near-final shape, which is maintained at about 300-500 deg.C and subjected to finish forging by an impression method. In this way, the Al-alloy member in which internal defects are removed and which has complicated shape can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、アルミニウム合金鋳造素形材を鍛造の荒地形
状とし仕上鍛造のインプレッションのみによる、部分的
あるいは全体的な鍛造加工により、優れた機械的性質と
寸法精度を有し、内部欠陥が除去された信顧性の高いア
ルミニウム合金部材、およびその複合加工方法に関する
ものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides an excellent machine by forming an aluminum alloy cast material into a rough shape for forging, and by partially or entirely forging only by the impression of finish forging. The present invention relates to a highly reliable aluminum alloy member that has excellent dimensional properties and dimensional accuracy and has no internal defects removed, and a composite processing method thereof.

〔従来の技術〕[Conventional technology]

従来自動車部品の駆動部位等の高強度と高い靭性を必要
とする強度部品や流体の漏洩が問題となる耐圧部品には
鉄系の材料が多(使用されていたが、近年の乗用車等の
軽量化の促進と共に、軽量で且つ機械的性質のよい展伸
材を用いたアルミニウム合金の冷間鍛造品も使用されて
きている。
In the past, iron-based materials were often used in strong parts that required high strength and high toughness, such as the drive parts of automobile parts, and pressure-resistant parts where fluid leakage was a problem, but in recent years iron-based materials have been used in lightweight parts such as passenger cars. With the advancement of aluminum alloys, cold forgings of aluminum alloys using wrought materials that are lightweight and have good mechanical properties have also been used.

しかし、冷間鍛造品は形状の自由度が少く、中空状ある
いは高いリブを有する形状は製造困難である。また鍛造
素材は丸棒形状であり、最終形状を得る為には、ロール
、曲げ、荒鍛造、仕上鍛造の各工程毎のインプレッショ
ンが必要であり、鍛造工程が複雑になるという欠点があ
る。
However, cold forged products have little freedom in shape, and it is difficult to manufacture hollow shapes or shapes with high ribs. In addition, the forged material is in the shape of a round bar, and in order to obtain the final shape, impressions are required for each step of rolling, bending, rough forging, and finish forging, making the forging process complicated.

また複雑な形状が可能であるダイカスト等の鋳造品があ
るが、内部欠陥や鋳肌面等で問題があり、強度上や耐圧
性での信軌性が鍛造に比し劣るとされている。そこで、
特開昭59−223133の「アルミニウム若しくはア
ルミニウム合金部材とその製造方法」に開示されている
ように金型にアルミニウム合金を鋳込み、鋳込み直後に
未だ高温の部材を型から取り出し、鋳造型より僅かに小
さい寸法のインプレッションで押圧する複合加工方法が
考えられる。しかし、鋳造素形材を素形材よりも平均的
に若干率さいインプレッションで押圧するだけでは、形
状の仕上加工はできても、本願発明の目的である機械的
性質の向上、内部欠陥の削除等は充分に行なえず、強度
部材や耐圧部品には適用できないという欠点があった。
In addition, there are cast products such as die casting that can be made into complex shapes, but they have problems with internal defects and cast surfaces, and are said to be inferior to forged products in terms of strength, pressure resistance, and reliability. Therefore,
As disclosed in ``Aluminum or aluminum alloy member and manufacturing method thereof'' of Japanese Patent Application Laid-Open No. 59-223133, aluminum alloy is cast into a mold, and immediately after casting, the still hot member is taken out of the mold and slightly lower than the casting mold. A composite processing method that presses with small-sized impressions can be considered. However, by simply pressing the cast material with an impression slightly higher on average than the material, it is possible to finish the shape, but it is not possible to improve the mechanical properties or eliminate internal defects, which is the purpose of the present invention. etc., and it has the disadvantage that it cannot be applied to strength members or pressure-resistant parts.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は従来使用されていた鉄系材料やアルミニウム合
金の冷間鍛造や鋳造そして鋳造−鍛造の複合加工の上記
問題点を解決するために、仕上鍛造の荒地形状となるア
ルミニウム合金の鋳造素形材を砂型、重力鋳造、ダイカ
スト鋳造にて形成する。部分的には複雑形状に必須の渦
流れを考慮して、アルミニウム鋳物用合金を基本とし、
これに鍛造性を加味して各種成分範囲を決め、鋳造性と
鍛造性に優れた新規合金を用いる。次に鋳造品の素形材
の形状としては、全体的には最終形状に近い形とし、強
度や耐圧を必要とする部位の鍛造比を大とし、それ以外
は小となように形成し、鍛造効果が必要な箇所に適格に
影響を及ぼすように考慮することにより、軽量で機械的
性質と寸法精度に優れ、且つ内部欠陥が除去された複雑
形状のアルミニウム合金部材を捷供するものである。
In order to solve the above-mentioned problems of conventionally used cold forging and casting of iron-based materials and aluminum alloys, and composite processing of casting and forging, the present invention aims to solve the above-mentioned problems of the conventionally used cold forging and casting of iron-based materials and aluminum alloys, and the composite processing of casting and forging. The material is formed by sand molding, gravity casting, or die casting. In part, taking into account the vortex flow that is essential for complex shapes, we use aluminum casting alloys as the basis.
Taking into account forgeability, we determined the range of various components and used a new alloy with excellent castability and forgeability. Next, as for the shape of the cast material, the overall shape is close to the final shape, the forging ratio is large in parts that require strength and pressure resistance, and the other parts are small. By considering that the forging effect is appropriately applied to the necessary locations, an aluminum alloy member that is lightweight, has excellent mechanical properties and dimensional accuracy, and has a complex shape with no internal defects removed is manufactured.

〔問題点を解決するための手段〕[Means for solving problems]

仕上鍛造後の最終形状に近い形に、ダイカスト鋳造、低
圧鋳造、砂型鋳造等により鍛造の荒地素材となるアルミ
ニウム合金素形材を鋳造する。このとき、最終形状をな
す部材と鋳造素形材との対応する各部位の寸法比を部分
的に異なるように鋳造する。
The aluminum alloy material that will become the raw material for forging is cast by die casting, low pressure casting, sand casting, etc. into a shape close to the final shape after finish forging. At this time, casting is performed such that the dimensional ratios of corresponding parts of the member forming the final shape and the casting material are partially different.

次に前記素形材を300〜500℃にて保持した状態で
、仕上鍛造のインプレッションにて仕上鍛造を行う。こ
の際鍛造の荒地素材となる鋳造素形材は、展伸材の冷間
鍛造で使用される丸物形状をなす素材とは異なり、全体
的形状は最終形状に近い形に形成しであるので、ひとつ
のインプレッションだけで、抜き勾配や、コーナーR等
の制限も少く、複雑且つ大型鍛造部材が容易に、安価に
製造可能となる。また鋳造素形材と鍛造後の各部位の寸
法比は必要とされる強度、耐圧性に応じて、部分的に変
えであるので、鍛造効果を必要な部位に効果的に集中さ
せることができる。従って鋳造素材の内部欠陥は鍛造の
打撃、押圧により消滅し、強度の必要な方向に鍛造によ
る組織の流れがつくられ、良好な表面状態を有するアル
ミニウム合金部材が可能となる。次にこの鍛造品のフラ
ッシュをプレス等によりトリミングを行い、480℃〜
540℃にて1〜6時間の溶体化処理と水冷による焼入
れを行い、その後130〜200℃で2〜10時間の焼
戻しを行うことにより、機械的性質に優れ、組織がち密
で、内部欠陥のなく、鋳造と鍛造の複合組織を持つアル
ミニウム合金部材を得ることができる。
Next, finish forging is performed using a finish forging impression while the formed material is held at 300 to 500°C. At this time, the cast material used as the raw material for forging is different from the round material used in cold forging of wrought materials, and the overall shape is close to the final shape. With only one impression, there are few restrictions on draft angle, corner radius, etc., and complex and large forged parts can be manufactured easily and at low cost. In addition, the dimensional ratio of the cast material and each part after forging is partially changed depending on the required strength and pressure resistance, so the forging effect can be effectively concentrated in the necessary parts. . Therefore, internal defects in the cast material are eliminated by the impact and pressure of forging, and a flow of the structure is created by forging in the direction where strength is required, making it possible to produce an aluminum alloy member with a good surface condition. Next, the flash of this forged product is trimmed using a press, etc., and the
By performing solution treatment at 540℃ for 1 to 6 hours and quenching by water cooling, and then tempering at 130 to 200℃ for 2 to 10 hours, it has excellent mechanical properties, a dense structure, and no internal defects. It is possible to obtain an aluminum alloy member having a composite structure of casting and forging.

次に成分範囲を限定した理由は、Siは4%以下になる
と鋳造時の流動性に問題があり、7.5%以上になると
鍛造変形能が低下する。Mgは0.2%以下になるとM
g5izの析出効果が得られず強度と靭性に問題が生じ
熱処理後の引張強度が低下する。
Next, the reason for limiting the range of components is that if Si is less than 4%, there will be a problem with fluidity during casting, and if it is more than 7.5%, forging deformability will be reduced. When Mg becomes 0.2% or less, M
The precipitation effect of g5iz cannot be obtained, problems arise in strength and toughness, and the tensile strength after heat treatment decreases.

Tiは結晶粒微細化の為に添加するものであるが、0.
1%以下では微細化の効果が得られず、0.2%以上に
なると化合物をつくりもろくなり、伸びに悪影響を与え
る。Srは共晶組織の粒状化、微細化により、強度、じ
ん性向上に寄与するものであるが、0.01%以下であ
るとその効果がなく、0.05%以上になると微細化に
必要な量を損うことになる。Crは0.04%以下にな
ると強度がでなく、0.35%以上になると、じん性に
悪栄養を与える。
Ti is added to refine grains, but 0.
If it is less than 1%, no finer graining effect will be obtained, and if it is more than 0.2%, it will form a compound and become brittle, adversely affecting elongation. Sr contributes to improving strength and toughness by granulating and refining the eutectic structure, but if it is less than 0.01%, it has no effect, and if it is more than 0.05%, it is necessary for refining. You will lose a large amount. If Cr is less than 0.04%, the strength will not be improved, and if it is more than 0.35%, it will malnutrition the toughness.

〔実施例〕〔Example〕

(実施例1) 第1表は本発明で実施した鋳造性と鍛造性に優れたアル
ミニウム合金とJIS規格品との成分比較表である。
(Example 1) Table 1 is a composition comparison table between an aluminum alloy with excellent castability and forgeability implemented in the present invention and a JIS standard product.

第1表は本発明で実施した鋳造性と鍛造性を考慮した1
例を示すアルミニウム合金とJIS規格品との成分比較
表である。
Table 1 shows 1 considering the castability and forgeability implemented in the present invention.
It is a composition comparison table of an aluminum alloy and a JIS standard product showing an example.

AC4Cは鋳物用のアルミニウム合金であり、6061
は冷間鍛造用のアルミニウム合金である。本実施例では
良好な鍛造性と鋳造性を兼ね備えた特性を出す為に、S
iの含有量を規定し、機械的性質向上の為に’g+Cr
を、結晶微細化の為に、Ti、Srの添加を行っている
AC4C is an aluminum alloy for casting, 6061
is an aluminum alloy for cold forging. In this example, in order to achieve characteristics that combine good forgeability and castability, S
The content of i is specified, and 'g+Cr is
In order to refine the crystals, Ti and Sr are added.

本発明による合金を用いて砂型により、外径35m/m
の丸棒をつくり、この試験片の高さを32m/m 、3
0m/m 、15m/mの3種類に鍛造した結果の機械
的性質を第2表に示す。比較の為にアルミニウム鋳造用
合金のなかでは比較的鍛造特性のよいAC4Cの機械的
性質も示しである。尚本実施例の合金は鍛造後の厚み1
0+/m(鍛造比71%)まで鍛造可能であったが、A
C4Cは15m/m(鍛造比57%)が限界であり、そ
れ以下の厚さ迄鍛造すると割れを生じ、鍛造の継続が不
可能であった。
Using the alloy according to the present invention, an outer diameter of 35 m/m was produced using a sand mold.
A round bar is made, and the height of this test piece is 32 m/m, 3
Table 2 shows the mechanical properties of the results of forging into three types, 0 m/m and 15 m/m. For comparison, the mechanical properties of AC4C, which has relatively good forging properties among aluminum casting alloys, are also shown. The alloy in this example has a thickness of 1 after forging.
It was possible to forge up to 0+/m (forging ratio 71%), but A
C4C has a limit of 15 m/m (forging ratio of 57%), and if forged to a thickness less than that, cracks would occur, making it impossible to continue forging.

次に鍛造後の厚み15m/m(鍛造比57%)の鍛造材
を溶体化処理を行い、水冷による焼入後、焼戻しを行っ
た後の機械的性質を第3表に示す。
Next, the forged material having a thickness of 15 m/m (forging ratio 57%) was subjected to solution treatment, and the mechanical properties after quenching by water cooling and tempering are shown in Table 3.

第    3    表 第2表に示すように、鋳造素形材を鍛造することにより
AC4C及び実施合金の引張強さ、及び伸びが向上して
おり、特に伸びは著るしい増大を示している0次に第3
表に示すようにT6処理後の機械的性質は両合金共に著
るしい向上を示しているが、特に本実施例合金ではその
傾向が顕著であり、展伸材の6061のT6処理品に匹
敵する機械的性質を有することが可能である。
Table 3 As shown in Table 2, the tensile strength and elongation of AC4C and the implemented alloy are improved by forging the cast material, and in particular, the elongation shows a remarkable increase. 3rd to
As shown in the table, the mechanical properties of both alloys after T6 treatment are markedly improved, and this tendency is particularly remarkable for the alloy of this example, which is comparable to the T6 treated wrought material 6061. It is possible to have mechanical properties such as

(実施例2) 実施例1での合金成分を用い、砂型により鋳造素形材を
つくり、プレス鍛造のインプレッションを用いて1回の
みの押圧により、鋳造品の内部欠陥を除去した、気密性
に優れた耐圧部品の例を第1図に示す。第1図の(a)
は鍛造後の形状を示し、(b)は鋳造の素形状を示すも
のであり、鋳造素形材の内側に20%程度の余肉をつけ
、これを押圧することにより、内部欠陥を除去し、緻密
な組織とし、80kgf/cdの気密試験にも耐えて、
耐圧気密部材として、実用に供することが可能である。
(Example 2) Using the alloy components in Example 1, a cast material was made with a sand mold, and by pressing only once using a press forging impression, the internal defects of the cast product were removed and airtightness was achieved. Figure 1 shows an example of an excellent pressure-resistant component. (a) in Figure 1
(b) shows the shape after forging, and (b) shows the original shape after casting. By adding about 20% extra thickness to the inside of the cast material and pressing it, internal defects can be removed. , has a dense structure and withstands an airtight test of 80 kgf/cd,
It can be put to practical use as a pressure-resistant and airtight member.

第4表は砂型品とその鍛造品の気密性を比較したもので
あり、鍛造品は内部欠陥を除去することにより理論密度
により近くなっていることが分る。
Table 4 compares the airtightness of a sand molded product and a forged product thereof, and it can be seen that the forged product has a density closer to the theoretical density by removing internal defects.

第    4    表 □□甲甲 第5図の(a)に鍛造品、(blに砂型鋳造品のミクロ
m織を示すが、鋳造品の内部欠陥が押圧効果により除去
された状況が組織的にも確認できる。
Table 4 □□ Figure 5 (a) shows the micro weave of the forged product, and (bl shows the micro-m weave of the sand mold cast product). You can check it.

(実施例3) 鋳物用アルミニウム合金AC4C相当の良好なる鋳造性
を生かして、低圧鋳造により全体的には鍛造後の最終形
状に近い形に素形材をつ(す、これを1tのエアドロッ
プハンマーにて、型打鍛造を行ったアームアイドラーの
実施例を述ることにする。
(Example 3) Taking advantage of the good castability of aluminum alloy AC4C for castings, we used low-pressure casting to form a material into a shape that is close to the final shape after forging. An example of an arm idler that is die-forged using a hammer will be described.

面この実施例では鍛造性の向上の為にCuO量を少くし
、熱処理後の強度確保の為にMgを多くし、結晶粒微細
化の為にTi、Srを添加しており、その成分は重量%
で、Siニア、0%、Mg:0.8%、Ti:0.15
%、Sr:0.03%、Cr:0.3%、Fe:0.2
%で残部実質的にAlであるものを用いている。
In this example, the amount of CuO is reduced to improve forgeability, the amount of Mg is increased to ensure strength after heat treatment, and Ti and Sr are added to refine the grains. weight%
So, Si near, 0%, Mg: 0.8%, Ti: 0.15
%, Sr: 0.03%, Cr: 0.3%, Fe: 0.2
%, the balance being substantially Al.

第2図は本発明で実施したアームアイドラーの正面図、
第3図の(a)は仕上鍛造後のその断面図、(b)、 
(C1は(a)のA+   A+’、B+   B+’
の断面図を示す。第4図の(a)は仕上鍛造の荒地素材
となる鋳造素形材の断面図、fbl、 (C1はta+
のAz  AZ’。
Figure 2 is a front view of the arm idler implemented in the present invention;
Figure 3 (a) is a cross-sectional view after finish forging, (b)
(C1 is A+ A+', B+ B+' in (a)
A cross-sectional view is shown. Figure 4(a) is a cross-sectional view of the cast material that will be the raw material for finish forging, fbl, (C1 is ta+
AZ AZ'.

Bz  Bx’の断面図を示す。第3図の素形材を48
0℃で均熱後、仕上金型のインプレッションに設置し4
回の打撃を行ったのが第3図に示す仕上鍛造の形状であ
る。素形材の内外形寸法の4′は28a+10+φ、外
径5′は39m/a+φ、高さ6′は25m+/mであ
り、これを内径4を28.4m/mφ、外径5は39.
7m/mφ、高さは27m/anに鍛造成形しである。
A cross-sectional view of Bz Bx' is shown. The material shown in Figure 3 is 48
After soaking at 0℃, place it in the impression of the finishing mold 4
The shape of the finish forging shown in Figure 3 is obtained by applying multiple blows. The inner and outer dimensions of the raw material 4' are 28a+10+φ, the outer diameter 5' is 39m/a+φ, and the height 6' is 25m+/m, and the inner diameter 4 is 28.4m/mφ and the outer diameter 5 is 39.
It is forged to a diameter of 7m/mφ and a height of 27m/an.

同様に7’、8’、13’はそれぞれ、28m/mφ、
38.5m/mφ、36.0m/mでありこれを28.
4m/m 、 38.3m/m 、39m/mに成形し
である。断面At  At’のa′は18+m/m 。
Similarly, 7', 8', and 13' are respectively 28m/mφ,
38.5m/mφ, 36.0m/m, which is 28.
It is molded to 4m/m, 38.3m/m, and 39m/m. A' of the cross section At At' is 18+m/m.

10′は10m/mであり、鍛造後の断面A、−A、’
のaは15.5m/m 、 10は鍛造前と同様の1O
IIl/111に成形してあり、Bz  Bt’におけ
る断面の11′の2011/R1,12’の1011I
/I11は断面B。
10' is 10m/m, and the cross sections A, -A,' after forging are
a is 15.5m/m, 10 is 1O, same as before forging
IIl/111, 2011/R1 of 11' in cross section at Bz Bt', 1011I of 12'
/I11 is cross section B.

−Bl’の11の17.5m/+a 、 12の10m
111へと鍛造成形しである。またR形状については、
例えば素形材では15’、16’のRの大きさは8Rで
あるが仕上鍛造後の15.16では4Rに成形しである
。この鍛造品を所定の熱処理を行ったところ、良好なる
機械的性質を示し、第6表に示すように、展伸材の60
61に匹敵する性質を有することができた。
-Bl' 11 17.5m/+a, 12 10m
It is forged to 111. Regarding the R shape,
For example, the R size of 15' and 16' in the raw material is 8R, but after finish forging, the R size of 15.16 is 4R. When this forged product was subjected to prescribed heat treatment, it showed good mechanical properties, and as shown in Table 6,
It was possible to have properties comparable to those of 61.

第    3    表 〔発明の効果〕 (11鋳造特性と鍛造特性を加味した軽合金材料を用い
て、鍛造前の荒地素材を鋳造にて製造し、これを仕上鍛
造のひとつのインプレッションのみで最終形状に鍛造す
ることにより、鍛造工程の簡略化と金型インプレッショ
ンの削減ができる。
Table 3 [Effects of the invention] (11 Using a light alloy material with casting characteristics and forging characteristics, a raw material before forging is manufactured by casting, and it is shaped into the final shape with only one impression of finishing forging. By forging, the forging process can be simplified and mold impressions can be reduced.

(2)荒地素材を鋳造素形材とすることにより、複雑、
かつ大型の鍛造品が可能となり、また鍛造品の個々の部
位の鍛造比を変えて、強度の必要な部位の機械的性質を
高めると共に、打撃力を有効に生ずことにより、同じ容
量の設備でより大型の鍛造が可能となる。
(2) By using raw materials as cast materials, complex,
It is now possible to produce large forged products, and by changing the forging ratio of each part of the forged product to improve the mechanical properties of the parts that require strength, and by effectively generating impact force, it is possible to produce equipment with the same capacity. This allows for larger forging.

(3)鋳造素材の内部欠陥を消失させることにより複雑
形状の耐圧部品として用いる事ができる。
(3) By eliminating internal defects in the cast material, it can be used as pressure-resistant parts with complex shapes.

(4)仕上鍛造品を適切な条件でT6処理することによ
って、複雑形状をなす強度部品として、使用することが
できる。
(4) By subjecting the finished forged product to T6 treatment under appropriate conditions, it can be used as a strong component with a complex shape.

(5)従来の鍛造歩留50%に比較して80%と高い鍛
造歩留りが可能となる。
(5) A higher forging yield of 80% is possible compared to the conventional forging yield of 50%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例(2)の耐圧部品の断面図を示すもので
あり、(a)は仕上鍛造後、(b)は砂型鋳造品のそれ
ぞれ断面図である。 第2図は実施例3のアームアイドラーの正面図、第3図
は第2図の仕上鍛造後の形状を示すもので(1)は全体
断面図、(b)、 (C)は(a)のAt  A+’、
B+−Bl’の断面を示す図である。 第4図は鋳造素形材の形状を示すもので、(a)は全体
断面図、(b)、 fc)は(a)のA4  Az’、
Bz  B!’の断面を示す図である。第5図は鍛造品
、砂型鋳造品の金属組織写真である。 (b) 第1図 (b)       (c) 第3図 (b)       (c) 第4図 第5図 ca)
FIG. 1 shows a cross-sectional view of the pressure-resistant component of Example (2), in which (a) is a cross-sectional view of the product after finish forging, and (b) is a cross-sectional view of the sand mold cast product. Fig. 2 is a front view of the arm idler of Example 3, Fig. 3 shows the shape after finish forging of Fig. 2, (1) is an overall sectional view, and (b) and (C) are (a). At A+',
It is a figure which shows the cross section of B+-Bl'. Figure 4 shows the shape of the cast material, where (a) is an overall sectional view, (b), fc) are A4 Az' of (a),
Bz B! ' is a diagram showing a cross section of '. Figure 5 is a photograph of the metallographic structure of a forged product and a sand casting product. (b) Figure 1 (b) (c) Figure 3 (b) (c) Figure 4 Figure 5 ca)

Claims (1)

【特許請求の範囲】 1)最終形状に近いアルミニウム合金鋳造品を仕上鍛造
の荒地素形材とし、鍛造効果により、鋳造素形材をしの
ぐ優れた機械的性質と寸法精度とを有し、鋳造素形材の
内部欠陥がないことを特徴とするアルミニウム合金部材 (2)アルミニウム合金部材の成分が重量%で、Si:
4.0〜7.5%、Mg:0.2〜1.2%、Cu:≦
0.5%で残部が実質的にAlであることを特徴とする
特許請求の範囲第1項記載のアルミニウム合金部材 (3)アルミニウム合金部材の成分が重量%で、Si:
4.0〜7.5%、Mg:0.2〜1.2%、Cu:≦
0.5%とTi:0.1〜0.2%、Sr:0.01〜
0.05%、Cr:0.04〜0.35%の範囲でTi
、Sr、Crのうち1種、または2種以上の成分を有し
、残部が実質的にAlであることを特徴とする特許請求
の範囲第1項記載のアルミニウム合金部材 (4)鍛造用荒地素材となる鋳造素形材と仕上鍛造後の
最終形状をなす部材との対応する各部位の寸法比を部分
的に変え、且つ全体の形状としては最終形状に近い形に
鋳造した素形材を、仕上鍛造後のインプレッションのみ
による鍛造工程により、強度や耐圧を必要とする部位の
鍛造比を大とし、それ以外の部位の鍛造比を0又は小と
して、鍛造比を部分的にかえて最終仕上形状を形成する
ことを特徴とするアルミニウム合金部材の複合加工方法 (5)鍛造比が5〜65%であることを特徴とする特許
請求の範囲第4項記載のアルミニウム軽合金部材の複合
加工方法 (6)アルミニウム合金部材の成分が重量%で、Si:
4.0〜7.5%、Mg:0.2〜1.2%、Cu:≦
0.5%で残部が実質的にAlであることを特徴とする
特許請求の範囲第4項乃至第5項記載のアルミニウム合
金部材 (7)アルミニウム合金部材の成分が重量%で、Si:
4.0〜7.5%、Mg:0.2〜1.2%、Cu:≦
0.5%とTi:0.1〜0.2%、Sr:0.01〜
0.05%、Cr:0.04〜0.35%の範囲でTi
、Sr、Crの1種、または2種以上の成分を有し、残
部が実質的にAlであることを特徴とする特許請求の範
囲第4項乃至第5項記載のアルミニウム合金部材の複合
加工方法
[Scope of Claims] 1) An aluminum alloy cast product with a shape close to the final shape is used as a raw material for finish forging, and due to the forging effect, it has excellent mechanical properties and dimensional accuracy that surpass those of cast materials. Aluminum alloy member characterized by having no internal defects in the formed material (2) The aluminum alloy member contains Si:
4.0-7.5%, Mg: 0.2-1.2%, Cu:≦
0.5% and the remainder is substantially Al, the aluminum alloy member according to claim 1 (3) The components of the aluminum alloy member are in weight %, Si:
4.0-7.5%, Mg: 0.2-1.2%, Cu:≦
0.5%, Ti: 0.1~0.2%, Sr: 0.01~
0.05%, Cr: Ti in the range of 0.04 to 0.35%
, Sr, and Cr, and the remainder is substantially Al. By partially changing the dimensional ratio of each corresponding part of the cast material that is the raw material and the part that will form the final shape after finish forging, the material is cast into a shape that is close to the final shape as a whole. , Through the forging process using only impressions after finish forging, the forging ratio is increased in parts that require strength and pressure resistance, and the forging ratio in other parts is set to 0 or small, and the forging ratio is partially changed to achieve the final finish. Composite processing method for aluminum alloy members characterized by forming a shape (5) Composite processing method for aluminum light alloy members according to claim 4, characterized in that the forging ratio is 5 to 65% (6) The composition of the aluminum alloy member is Si:
4.0-7.5%, Mg: 0.2-1.2%, Cu:≦
0.5% and the remainder is substantially Al, the aluminum alloy member (7) according to claims 4 to 5, wherein the components of the aluminum alloy member are in weight %, Si:
4.0-7.5%, Mg: 0.2-1.2%, Cu:≦
0.5%, Ti: 0.1~0.2%, Sr: 0.01~
0.05%, Cr: Ti in the range of 0.04 to 0.35%
, Sr, and Cr, and the remainder is substantially Al. Method
JP25727886A 1986-04-04 1986-10-29 Aluminum-alloy member and combined working method thereof Pending JPS63100151A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7796986 1986-04-04
JP61-77969 1986-04-04

Publications (1)

Publication Number Publication Date
JPS63100151A true JPS63100151A (en) 1988-05-02

Family

ID=13648753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25727886A Pending JPS63100151A (en) 1986-04-04 1986-10-29 Aluminum-alloy member and combined working method thereof

Country Status (1)

Country Link
JP (1) JPS63100151A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH093581A (en) * 1995-06-15 1997-01-07 Nippon Light Metal Co Ltd Forged aluminum product with high fatigue strength and its production
JPH0910884A (en) * 1995-06-22 1997-01-14 Nissan Motor Co Ltd Production of forged product
JP2005133112A (en) * 2003-10-28 2005-05-26 Aisin Seiki Co Ltd Aluminum alloy member and its manufacturing method
JP2006322062A (en) * 2005-04-19 2006-11-30 Daiki Aluminium Industry Co Ltd Aluminum alloy for casting, and aluminum alloy casting thereby
EP1972696A1 (en) * 2007-03-15 2008-09-24 Bayerische Motorenwerke Aktiengesellschaft Cast aluminium alloy
JP2010018875A (en) * 2008-07-14 2010-01-28 Toyota Central R&D Labs Inc High strength aluminum alloy, method for producing high strength aluminum alloy casting, and method for producing high strength aluminum alloy member
JP2011162883A (en) * 2011-03-24 2011-08-25 Toyota Central R&D Labs Inc High-strength aluminum alloy, method of manufacturing high-strength aluminum alloy casting, and method of manufacturing high-strength aluminum alloy member
JP2018075624A (en) * 2016-11-11 2018-05-17 株式会社ミクニ Aluminum alloy component and manufacturing method thereof
US10323304B2 (en) * 2014-07-29 2019-06-18 Ksm Castings Group Gmbh Al-casting alloy

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH093581A (en) * 1995-06-15 1997-01-07 Nippon Light Metal Co Ltd Forged aluminum product with high fatigue strength and its production
JPH0910884A (en) * 1995-06-22 1997-01-14 Nissan Motor Co Ltd Production of forged product
JP2005133112A (en) * 2003-10-28 2005-05-26 Aisin Seiki Co Ltd Aluminum alloy member and its manufacturing method
JP2006322062A (en) * 2005-04-19 2006-11-30 Daiki Aluminium Industry Co Ltd Aluminum alloy for casting, and aluminum alloy casting thereby
EP1972696A1 (en) * 2007-03-15 2008-09-24 Bayerische Motorenwerke Aktiengesellschaft Cast aluminium alloy
JP2010018875A (en) * 2008-07-14 2010-01-28 Toyota Central R&D Labs Inc High strength aluminum alloy, method for producing high strength aluminum alloy casting, and method for producing high strength aluminum alloy member
JP2011162883A (en) * 2011-03-24 2011-08-25 Toyota Central R&D Labs Inc High-strength aluminum alloy, method of manufacturing high-strength aluminum alloy casting, and method of manufacturing high-strength aluminum alloy member
US10323304B2 (en) * 2014-07-29 2019-06-18 Ksm Castings Group Gmbh Al-casting alloy
JP2018075624A (en) * 2016-11-11 2018-05-17 株式会社ミクニ Aluminum alloy component and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US5409555A (en) Method of manufacturing a forged magnesium alloy
US5902424A (en) Method of making an article of manufacture made of a magnesium alloy
US10612116B2 (en) Increasing strength of an aluminum alloy
US10801089B2 (en) Light metal cast component
JPS61117204A (en) High-strength al alloy member for structural purpose
JPS5920454A (en) Method of increasing fatigue limit and tenacity of high strength aluminum alloy
WO2004031424A1 (en) Aluminum alloy for casting-forging, aluminum cast/forged article, and method for manufacture thereof
CN106460107A (en) Al-casting alloy
US10927436B2 (en) Aluminum alloys
JP4822324B2 (en) Aluminum alloy forged road wheel and manufacturing method thereof
JPS63100151A (en) Aluminum-alloy member and combined working method thereof
US4104089A (en) Die-cast aluminum alloy products
KR20220135197A (en) Method for producing special vehicle wheels using 7000 series aluminum alloy
JPH08144031A (en) Production of aluminum-zinc-magnesium alloy hollow shape excellent in strength and formability
JP2002348631A (en) Aluminum-zinc-magnesium aluminum alloy for casting and forging, aluminum-zinc-magnesium cast and forged article, and manufacturing method therefor
KR101567094B1 (en) Aluminum alloy for casting and forging casting and forged product for suspension and method for manufacturing the same
JP2002538305A (en) Structural member manufactured from AlMgSi type aluminum alloy
JP3710249B2 (en) Aluminum extruded profile and method for producing extruded profile and structural member
JP2848368B2 (en) Manufacturing method of aluminum alloy for compressor parts with excellent wear resistance and toughness
US20210079501A1 (en) Low cost high ductility cast aluminum alloy
EP0132650A1 (en) Aluminium alloy for structural shaped elements of vehicles and process for manufacturing said elements
Anyalebechi Effect of process route on the structure, tensile, and fatigue properties of aluminum alloy automotive steering knuckles
KR100493666B1 (en) High Strength Aluminum Alloy Material for Automobile Wheels
JP2786954B2 (en) Manufacturing method of connecting rod
JPH11269592A (en) Aluminum-hyper-eutectic silicon alloy low in hardening sensitivity, and its manufacture