JP2002348631A - Aluminum-zinc-magnesium aluminum alloy for casting and forging, aluminum-zinc-magnesium cast and forged article, and manufacturing method therefor - Google Patents

Aluminum-zinc-magnesium aluminum alloy for casting and forging, aluminum-zinc-magnesium cast and forged article, and manufacturing method therefor

Info

Publication number
JP2002348631A
JP2002348631A JP2001152658A JP2001152658A JP2002348631A JP 2002348631 A JP2002348631 A JP 2002348631A JP 2001152658 A JP2001152658 A JP 2001152658A JP 2001152658 A JP2001152658 A JP 2001152658A JP 2002348631 A JP2002348631 A JP 2002348631A
Authority
JP
Japan
Prior art keywords
forging
casting
aluminum
alloy
cast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001152658A
Other languages
Japanese (ja)
Inventor
Shuji Inoue
修次 井上
Tomohiro Aikawa
智広 相川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2001152658A priority Critical patent/JP2002348631A/en
Publication of JP2002348631A publication Critical patent/JP2002348631A/en
Pending legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an Al-Zn-Mg alloy for casting and forging with high strength, advantageous for improving stress corrosion cracking(SCC) resistance and a manufacturing cost, Al-Zn-Mg cast and forged articles, and a method for manufacturing the Al-Zn-Mg articles. SOLUTION: The Al-Zn-Mg alloy for casting and forging superior in casting properties and forging properties includes, by mass%, 3-5% zinc, 1-3% magnesium, 0.20-1.0% copper 0.15-0.30% titanium, 0.10-0.40% zirconium, 0.30% or less silicon, 0.50% or less iron, and the balance aluminum with unavoidable impurities.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、溶湯を注湯して凝
固させて形成した最終製品形状に類似した形状を有する
鋳造材を強圧して鍛造を施すアルミニウム−亜鉛−マグ
ネシウム系の鋳造鍛造用アルミニウム合金、アルミニウ
ム−亜鉛−マグネシウム系の鋳造鍛造品、及び、鋳造鍛
造品の製造方法に関する。本発明は軽量化の他に高強
度、高靱性及び耐応力腐食割れ性を要請されるアルミニ
ウム合金に適用できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum-zinc-magnesium cast forging forging and forging a cast material having a shape similar to the shape of a final product formed by pouring and solidifying a molten metal. The present invention relates to an aluminum alloy, an aluminum-zinc-magnesium cast forged product, and a method for manufacturing a cast forged product. The present invention can be applied to aluminum alloys that require high strength, high toughness and stress corrosion cracking resistance in addition to weight reduction.

【0002】[0002]

【従来の技術】従来、Al−Si−Mg系合金が、良好
な耐食性、耐応力腐食割れ性(以下、耐SCC性ともい
う)、適度な強度を兼ね備えていることから、広い分野
で使用されている。この種の合金においては、鍛造用合
金として6061合金、鋳造用合金としてAC4CHが
JIS規格の代表的な合金である。
2. Description of the Related Art Conventionally, Al-Si-Mg based alloys have been used in a wide range of fields because they have good corrosion resistance, stress corrosion cracking resistance (hereinafter also referred to as SCC resistance) and moderate strength. ing. In this type of alloy, 6061 alloy is a forging alloy and AC4CH is a typical alloy in accordance with JIS as a casting alloy.

【0003】しかしながら、上記した鍛造用合金では、
強度や伸び、信頼性に優れている反面、通常は押出棒で
ある素材を、複数工程(荒地鍛造、仕上げ鍛造など)を
経て鍛造するため、鍛造費が高く、最終的な製造コスト
が必然的に高くなる。更に鍛造1回の成形能には限界が
あるため、一般的には、目標類似形状を得るまでの荒地
鍛造は複数回実施される。また上記した鍛造用合金は鍛
造限界もあり、薄肉複雑な形状には不向きであった。
However, in the forging alloy described above,
Although it is excellent in strength, elongation and reliability, the material, which is usually an extruded rod, is forged through multiple steps (forged land forging, finish forging, etc.), so the forging cost is high and the final manufacturing cost is inevitable Become higher. Further, since there is a limit to the forming ability of one forging, rough land forging is generally performed a plurality of times until a target similar shape is obtained. Further, the above-mentioned forging alloy has a forging limit, and is not suitable for a thin and complicated shape.

【0004】一方、上記した鋳造用合金は、溶湯を成形
型のキャビティに注湯して形成されるため、低コストで
薄肉複雑な形状を容易に造形できる反面、強度や伸びが
必ずしも充分ではなく、上記鍛造用合金に比較して信頼
性に欠ける問題があった。
On the other hand, the above-mentioned casting alloy is formed by pouring molten metal into a cavity of a molding die, so that a low-cost, thin and complicated shape can be easily formed, but strength and elongation are not always sufficient. However, there is a problem that the reliability is lower than that of the forging alloy.

【0005】また、上記した鋳造用合金を鍛造しようと
しても、塑性加工性が悪いため、鍛造割れ等の鍛造欠陥
を発生し易い。また逆に、鍛造用合金を用いて鋳造しよ
うとしても、湯流れ、引け、鋳造割れ等が発生し易く、
鋳造性が悪い。
[0005] Further, when attempting to forge the above-mentioned casting alloy, forging defects such as forging cracks are liable to occur due to poor plastic workability. Conversely, even if it is attempted to cast using a forging alloy, molten metal flow, shrinkage, casting cracks, etc. are likely to occur,
Poor castability.

【0006】そこで、近年、鋳造性及び鍛造性の双方を
有するアルミニウム系合金の溶湯を用い、製品最終形状
に類似した形状を有する鋳造材を鋳造で成形し、その鋳
造材を強圧して鍛造を施すことによって、高コストを誘
発する鍛造工程における鍛造回数を低減させつつ、鍛造
品並みの引張強度や伸び等の機械的性質を得、これによ
り高信頼性を従来の鍛造品よりも低コストで得んとする
試みの鋳造鍛造用アルミニウム合金、及び、鋳造鍛造品
の製造方法がAl−Si−Mg系で開発されている(特
開平5−9637号公報、特開平6−73482号公
報、特開平9−272941号公報)。
Therefore, in recent years, a cast material having a shape similar to the final shape of a product is formed by casting using a molten metal of an aluminum alloy having both castability and forgeability, and forging is performed by forcibly pressing the cast material. By applying, while reducing the number of times of forging in the forging process that induces high cost, it obtains mechanical properties such as tensile strength and elongation comparable to forged products, thereby providing high reliability at lower cost than conventional forged products Al-Si-Mg-based aluminum alloys for casting and forging and methods for producing cast and forged products that have been attempted have been developed (JP-A-5-9637, JP-A-6-73482, JP-A-9-272941).

【0007】[0007]

【発明が解決しようとする課題】ところで、近年、更な
る軽量化及び高強度化が要請されている。これらのニー
ズに対し、上記したAl−Si−Mg系合金とした鋳造
鍛造用アルミニウム合金では、強度面で必ずしも充分で
はなく、一層の高強度化が要請されている。
Incidentally, in recent years, further weight reduction and higher strength have been demanded. To meet these needs, the aluminum alloy for casting and forging made of the Al-Si-Mg-based alloy described above is not always sufficient in strength, and further higher strength is required.

【0008】また、高力アルミニウム合金としてはAl
−Zn−Mg系合金(JIS 7000系)が知られて
いる。この合金の鍛造品は航空機部品等に使用されてい
るが、耐応力腐食割れ性(耐SCC性)に問題があり、
用途の制限が大きかった。
[0008] As a high-strength aluminum alloy, Al is used.
-A Zn-Mg based alloy (JIS 7000 based) is known. Forgings of this alloy are used in aircraft parts, etc., but have a problem in stress corrosion cracking resistance (SCC resistance).
The restrictions on use were great.

【0009】これに対して、特開平10−1758号公
報に係るAl合金において、実施例ではAl−Zn−M
g系合金(7050合金)の鍛造品に複雑な熱処理を施
すことで、耐SCC性を向上している。しかし、最小製
品形状に類似した形状に至る造形を鋳造ではなく、冷間
鍛造によって行っているため、薄肉複雑な形状の製品を
安価に得ることは困難であった。鍛造では鍛造限界の関
係上、薄肉複雑な形状の製品を形成しにくく、鍛造コス
トも鋳造コストよりも高いからである。
On the other hand, in the Al alloy according to Japanese Patent Application Laid-Open No. 10-1758, the Al-Zn-M
By subjecting a forged product of a g-based alloy (7050 alloy) to a complicated heat treatment, the SCC resistance is improved. However, since shaping to a shape similar to the minimum product shape is performed not by casting but by cold forging, it has been difficult to obtain a product having a thin and complicated shape at low cost. This is because, in the forging, it is difficult to form a product having a thin and complicated shape due to the limit of forging, and the forging cost is higher than the casting cost.

【0010】本発明は上記した実情に鑑みてなされたも
のであり、従来のAl−Si−Mg系合金(鍛造品、鋳
造品、鋳造鍛造品)に対して高強度であり、且つ、従来
のAl−Zn−Mg系合金の鍛造品の課題である耐SC
C性と製造コストを改善するのに有利なAl−Zn−M
g系の鋳造鍛造用合金、Al−Zn−Mg系の鋳造鍛造
品、Al−Zn−Mg系の鋳造鍛造品の製造方法を提供
することを課題とする。
The present invention has been made in view of the above circumstances, and has a high strength with respect to a conventional Al-Si-Mg alloy (forged product, cast product, cast forged product), and has a high strength. SC resistance, which is a problem of forged Al-Zn-Mg alloys
Al-Zn-M advantageous for improving C properties and manufacturing cost
It is an object of the present invention to provide a method for producing a g-based casting forging alloy, an Al-Zn-Mg based casting forging, and an Al-Zn-Mg based casting forging.

【0011】[0011]

【課題を解決するための手段】第1発明に係るAl−Z
n−Mg系の鋳造鍛造用合金は、質量%で、亜鉛:3〜
5%、マグネシウム:1〜3%、銅:0.20〜1.0
%、チタン:0.15〜0.30%、ジルコニウム:
0.10〜0.40%、シリコン:0.30%以下、
鉄:0.50%以下、残部がアルミニウム及び不可避不
純物からなることを特徴とする鋳造性及び鍛造性に優れ
たAl−Zn−Mg系の鋳造鍛造用合金である。
An Al-Z according to the first invention is provided.
The alloy for casting and forging of the n-Mg system is, in mass%, zinc: 3 to
5%, magnesium: 1-3%, copper: 0.20-1.0
%, Titanium: 0.15 to 0.30%, zirconium:
0.10 to 0.40%, silicon: 0.30% or less,
Iron: An Al-Zn-Mg-based alloy for casting and forging having excellent castability and forgeability, characterized by 0.50% or less, with the balance being aluminum and unavoidable impurities.

【0012】この場合、任意成分として、マンガン:
0.20〜0.70%及びクロム:0.20〜0.60
%のうちの1種または2種を含むことができる。
In this case, as an optional component, manganese:
0.20 to 0.70% and chromium: 0.20 to 0.60
%.

【0013】第2発明に係るAl−Zn−Mg系の鋳造
鍛造品は、請求項1または請求項2に係る鋳造鍛造用ア
ルミニウム合金の溶湯を鋳造して形成した鋳造材を強圧
して鍛造を施して形成したことを特徴とする鋳造性及び
鍛造性に優れたAl−Zn−Mg系の鋳造鍛造品であ
る。鍛造は熱間鍛造が好ましいが、場合によっては温間
鍛造、冷間鍛造でも良い。熱間鍛造は再結晶温度以上で
の鍛造を意味する。
According to a second aspect of the present invention, there is provided an Al-Zn-Mg cast forged product, wherein forging is performed by forcibly pressing a cast material formed by casting a molten aluminum alloy for casting forging according to the first or second aspect. It is an Al-Zn-Mg based cast and forged product excellent in castability and forgeability, characterized by being formed by applying. Forging is preferably hot forging, but may be warm forging or cold forging in some cases. Hot forging means forging above the recrystallization temperature.

【0014】第3発明に係るAl−Zn−Mg系の鋳造
鍛造品の製造方法は、請求項1または請求項2に係る鋳
造鍛造用アルミニウム合金の溶湯を成形型のキャビティ
に注湯し、最終製品に類似した形状を有する鋳造材を形
成する鋳造工程と、鋳造材を強圧して鍛造する鍛造工程
とを順に実施することを特徴とする鋳造性及び鍛造性に
優れたAl−Zn−Mg系の鋳造鍛造品の製造方法であ
る。鋳造工程では、溶湯を成形型のキャビティに注湯し
てキャビティ内で凝固させることにより、最終製品に類
似した形状を有する鋳造材を形成する。成形型としては
金型、砂型等を採用できる。
According to a third aspect of the present invention, there is provided a method for producing an Al-Zn-Mg cast forged product, wherein a molten metal of the aluminum alloy for casting and forging according to claim 1 or 2 is poured into a cavity of a mold. An Al-Zn-Mg based alloy excellent in castability and forgeability characterized by sequentially performing a casting process of forming a casting having a shape similar to a product, and a forging process of forging by forcibly pressing the casting. This is a method for producing a cast forged product. In the casting step, a molten metal is poured into a cavity of a mold and solidified in the cavity to form a cast material having a shape similar to a final product. A mold, a sand mold, or the like can be employed as a molding die.

【0015】このように最終製品に類似した形状を有す
る鋳造材を形成する鋳造工程を経るため、従来の荒地鍛
造を廃止またはその回数を低減させることができる。鍛
造工程としては熱間鍛造が好ましいが、場合によっては
温間鍛造、冷間鍛造でも良い。熱間鍛造する場合には、
本発明に係る鋳造材の温度を再結晶温度以上とする。一
般的には380〜480℃とする。本発明に係る製造方
法によれば、鋳造材の形状が最終製品形状に類似した形
状であるため、鍛造工程における荒地鍛造の回数を低減
または廃止でき、鍛造の回数を低減するのに有利であ
る。
As described above, since the casting process for forming a cast material having a shape similar to the final product is performed, the conventional rough terrain forging can be eliminated or the number of times of forging can be reduced. As the forging process, hot forging is preferable, but in some cases, warm forging or cold forging may be used. When hot forging,
The temperature of the cast material according to the present invention is equal to or higher than the recrystallization temperature. Generally, it is 380-480 ° C. According to the manufacturing method of the present invention, since the shape of the cast material is similar to the shape of the final product, the number of times of rough land forging in the forging process can be reduced or abolished, which is advantageous in reducing the number of times of forging. .

【0016】本発明に係るAl−Zn−Mg系の鋳造鍛
造用合金は、Al−Si−Mg系ではなく、Al−Zn
−Mg系である。本発明に係る好ましい形態によれば、
鍛造工程において圧下率としては15%以上とすること
ができる。圧下率15%以上であれば、機械的性質の改
善に有効である。殊に、後述の表3に例示するように、
伸び及び疲労強度の改善に有効である。圧下率として
は、好ましくは30%以上、より好ましくは50%以上
を採用できる。鍛造の際に鍛造割れ等を抑えることがで
きれば、圧下率は更に高めることができる。
The Al-Zn-Mg alloy for casting and forging according to the present invention is not Al-Si-Mg alloy but Al-Zn-Mg alloy.
-Mg-based. According to a preferred embodiment of the present invention,
In the forging step, the rolling reduction can be 15% or more. A reduction of 15% or more is effective for improving mechanical properties. In particular, as exemplified in Table 3 below,
It is effective for improving elongation and fatigue strength. The rolling reduction is preferably 30% or more, more preferably 50% or more. If forging cracks and the like can be suppressed during forging, the draft can be further increased.

【0017】本発明に係る合金、本発明に係る鋳造鍛造
品、本発明に係る製造方法によれば、鍛造工程を実施し
た後に、合金、鋳造鍛造品を溶体化処理温度に加熱する
溶体化処理を行なった後に急冷(一般的には常温まで急
冷)し、更に加熱して時効処理を行うことが好ましい。
これにより機械的性質の一層の向上を図り得る。溶体化
処理温度としては一般的には440〜480℃を採用で
きる。なお時効処理としては、一段の時効処理でも良い
し、二段の時効処理でも良い。また常温に長時間放置し
て時効硬化させるものでも良い。
According to the alloy of the present invention, the cast and forged product of the present invention, and the manufacturing method of the present invention, after the forging step is performed, the alloy and the cast and forged product are heated to a solution heat treatment temperature. After quenching, quenching is performed (generally, quenching to normal temperature), and further aging is preferably performed by heating.
Thereby, the mechanical properties can be further improved. Generally, 440 to 480 ° C. can be adopted as the solution treatment temperature. The aging process may be a one-stage aging process or a two-stage aging process. Alternatively, the composition may be left at room temperature for a long time to age harden.

【0018】また本発明に係る好ましい形態によれば、
二段の時効処理の場合には次のように行い得る。即ち、
鍛造工程の後に、440〜480℃で溶体化処理した
後、急冷し、その後、100〜140℃の範囲の処理温
度で一段目の時効処理を行い、次に、一段目の時効処理
の処理温度よりも20〜50℃高温の温度で且つ180
℃を越えない温度で二段目の時効処理を行う形態を採用
することができる。この場合、二段目の時効処理の処理
温度を、180℃を越えない温度で、一段目の時効処理
の処理温度よりも高くする。180℃を越えると、時効
硬化が低減される。上記したようにすれば、図5に例示
するように、時効硬さを確保しつつ短時間で時効処理を
行い得る。合金の組成やサイズや形状にもよるが、44
0〜480℃で溶体化処理する時間としては0.5〜3
0時間を例示でき、一段目の時効処理の時間としては3
〜48時間を例示でき、二段目の時効処理の時間として
は3〜48時間を例示できる。本発明に係るAl−Zn
−Mg系の鋳造鍛造用合金における組成の限定理由につ
いて説明を加える。
According to a preferred embodiment of the present invention,
In the case of the two-stage aging treatment, the following can be performed. That is,
After the forging process, after a solution treatment at 440 to 480 ° C., quenching is performed, and then a first aging treatment is performed at a treatment temperature in a range of 100 to 140 ° C., and then a treatment temperature of the first aging treatment is performed. 20 to 50 ° C. higher than 180 ° C.
A form in which the second-stage aging treatment is performed at a temperature not exceeding ℃ can be adopted. In this case, the processing temperature of the second-stage aging treatment is set to a temperature not exceeding 180 ° C. and higher than the processing temperature of the first-stage aging treatment. Above 180 ° C., age hardening is reduced. According to the above, as illustrated in FIG. 5, the aging treatment can be performed in a short time while securing the aging hardness. Depending on the composition, size and shape of the alloy, 44
The time for the solution treatment at 0 to 480 ° C is 0.5 to 3 times.
0 hours can be exemplified, and the time of the first stage aging treatment is 3 hours.
For example, the time for the second-stage aging treatment may be 3 to 48 hours. Al-Zn according to the present invention
-The reason for limiting the composition of the Mg-based alloy for casting and forging will be described.

【0019】・Zn:3〜5% Znは機械的性質の向上に有効である。Znが不足の場
合には機械的性質が不足する。Znが過剰の場合には、
鋳造割れ等が発生し易くなり、鋳造性、鍛造性、耐応力
腐食割れ性、伸びが低下する。そこでZnは3〜5%と
している。Znは好ましくは3.5〜4.5%、より好
ましくは3.7〜4.2%を採用できる。また上記した
事情を考慮して上記範囲内においてZnの下限値として
は3.2%、3.4%等を採用でき、下限値と対応する
Znの上限値としては4.8%、4.5%等を採用でき
る。なお本明細書では特に断らない限り、%は質量%
(=重量%)を意味する。
Zn: 3 to 5% Zn is effective for improving mechanical properties. When Zn is insufficient, mechanical properties are insufficient. When Zn is excessive,
Casting cracks and the like are likely to occur, and castability, forgeability, stress corrosion cracking resistance, and elongation are reduced. Therefore, Zn is set to 3 to 5%. Zn can be preferably used in an amount of 3.5 to 4.5%, and more preferably 3.7 to 4.2%. In consideration of the above circumstances, 3.2%, 3.4%, etc. can be adopted as the lower limit of Zn within the above range, and the upper limit of Zn corresponding to the lower limit is 4.8%, 4. 5% etc. can be adopted. In this specification,% is% by mass unless otherwise specified.
(=% By weight).

【0020】・Mg:1〜3% Mgは機械的性質の向上に有効である。Mgが不足の場
合には機械的性質が不足する。Mgが過剰の場合には鋳
造性、鍛造性、耐応力腐食割れ性、伸びが低下する。そ
こでMgは1〜3%としている。Mgは合金の押出性を
低下させるため、溶湯を凝固させてビレット素材の形成
→ビレット素材の押出→押出材の鍛造を経る場合には、
Mgは減少させることが好ましい。しかし本発明合金で
はアルミニウム合金の溶湯を鋳造し、最終形状に類似す
る鋳造材を直接的に得て、その鋳造材を強圧して鍛造す
るため、押出工程でビレット素材を形成する工程が廃止
されるため、押出性の制約がなく、よって押出性の制約
からMgを減少させずとも良い。従ってMgが上記含有
量に確保されている。上記した事情を考慮してMgは好
ましくは1.8〜2.5%、より好ましくは2.0〜
2.3%を採用できる。また上記した事情を考慮して上
記範囲内においてMgの下限値としては1.2%、1.
5%等を採用でき、下限値と対応するMgの上限値とし
ては2.8%、2.6%等を採用できる。
Mg: 1-3% Mg is effective for improving mechanical properties. When Mg is insufficient, mechanical properties are insufficient. If Mg is excessive, castability, forgeability, stress corrosion cracking resistance, and elongation decrease. Therefore, Mg is set to 1 to 3%. Mg reduces the extrudability of the alloy, so when solidifying the molten metal and forming a billet material → extruding the billet material → forging the extruded material,
Mg is preferably reduced. However, in the alloy of the present invention, a molten aluminum alloy is cast, a cast material similar to the final shape is directly obtained, and the cast material is strongly pressed and forged. Therefore, there is no restriction on the extrudability, and it is not necessary to reduce Mg due to the restriction on the extrudability. Therefore, Mg is ensured at the above content. Considering the above circumstances, Mg is preferably 1.8 to 2.5%, more preferably 2.0 to 2.5%.
2.3% can be adopted. In consideration of the above-mentioned circumstances, the lower limit of Mg is 1.2% within the above range.
5% or the like can be adopted, and 2.8%, 2.6% or the like can be adopted as the upper limit of Mg corresponding to the lower limit.

【0021】・Cu:0.20〜1.0% Cuは機械的性質の向上、耐応力腐食割れ性の改善に有
効である。Cuが不足の場合には機械的性質が不足し、
耐応力腐食割れ性の改善が不足する。Cuが過剰の場合
には耐食性、伸びが低下する。そこでCuは0.20〜
1.0%としている。Cuは好ましくは0.30〜0.
70%、より好ましくは0.45〜0.60%を採用で
きる。また上記した事情を考慮して上記範囲内において
Cuの下限値としては0.25%、0.30%等を採用
でき、下限値と対応するCuの上限値としては0.9
%、0.8%等を採用できる。
Cu: 0.20 to 1.0% Cu is effective in improving mechanical properties and stress corrosion cracking resistance. When Cu is insufficient, the mechanical properties are insufficient,
Insufficient improvement in stress corrosion cracking resistance. If the amount of Cu is excessive, the corrosion resistance and elongation decrease. So Cu is 0.20
1.0%. Cu is preferably from 0.30 to 0.1.
70%, more preferably 0.45 to 0.60% can be adopted. In consideration of the above-described circumstances, the lower limit of Cu can be 0.25%, 0.30%, or the like within the above range, and the upper limit of Cu corresponding to the lower limit is 0.9.
%, 0.8%, etc. can be adopted.

【0022】・Ti:0.15〜0.30% Tiは凝固組織の結晶粒の微細化に有効である。Tiが
不足の場合には結晶粒が粗大となって、鋳造時の割れ、
鍛造時の肌荒れが生じる。Tiを過剰としても、効果が
頭打ちになり、さらに不溶性化合物が増加して機械的性
質が劣化する。そこでTiは0.15〜0.30%とし
ている。Tiは好ましくは0.16〜0.27%、0.
22〜0.27%を採用できる。上記した事情を考慮し
て上記範囲内においてTiの下限値としては0.16%
等を採用でき、下限値と対応するTiの上限値としては
0.28%等を採用できる。
Ti: 0.15 to 0.30% Ti is effective for refining the crystal grains of the solidified structure. If Ti is insufficient, the crystal grains become coarse, cracking during casting,
Rough skin occurs during forging. Even if the amount of Ti is excessive, the effect reaches a plateau, and the insoluble compounds increase to deteriorate the mechanical properties. Therefore, Ti is set to 0.15 to 0.30%. Ti is preferably 0.16 to 0.27%, and 0.1 to 0.27%.
22-0.27% can be adopted. In consideration of the above circumstances, the lower limit of Ti is 0.16% within the above range.
And the like, and the upper limit of Ti corresponding to the lower limit may be 0.28% or the like.

【0023】・Zr:0.10〜0.40% Zrは本発明合金の特徴の一つであり、熱処理等の加熱
時における再結晶の防止に有効であり、ひいては耐応力
腐食割れ性、機械的性質の確保に有効である。殊に熱処
理の際の再結晶の防止に有効である。Zrが不足の場合
には熱処理等において加熱されると再結晶組織となっ
て、結晶粒が粗大化し、耐応力腐食割れ性、機械的性質
が劣化する。Zrが過剰の場合には効果が頭打ちにな
り、さらに不溶性化合物が増加して機械的性質が劣化す
る。そこでZrは0.10〜0.40%としている。Z
rは好ましくは0.10〜0.35%、0.12〜0.
35%、0.17〜0.25%を採用できる。上記した
事情を考慮して上記範囲内においてZrの下限値として
は0.11%、0.13%等を採用でき、下限値と対応
するZrの上限値としては0.39%、0.38%等を
採用できる。
Zr: 0.10 to 0.40% Zr is one of the features of the alloy of the present invention, and is effective in preventing recrystallization during heating such as heat treatment, and furthermore, resistance to stress corrosion cracking and mechanical stress. It is effective to secure the characteristic. It is particularly effective for preventing recrystallization during heat treatment. When Zr is insufficient, when heated in heat treatment or the like, a recrystallized structure is formed, crystal grains are coarsened, and stress corrosion cracking resistance and mechanical properties are deteriorated. When the amount of Zr is excessive, the effect reaches a plateau, and the insoluble compounds increase to deteriorate the mechanical properties. Therefore, Zr is set to 0.10 to 0.40%. Z
r is preferably 0.10 to 0.35%, 0.12 to 0.
35%, 0.17 to 0.25% can be adopted. In consideration of the above circumstances, the lower limit of Zr can be 0.11%, 0.13%, or the like within the above range, and the upper limit of Zr corresponding to the lower limit is 0.39%, 0.38%. % Etc. can be adopted.

【0024】・任意成分としてMn:0.20〜0.7
0%、Cr:0.20〜0.60%の1種または2種 Mn,Crは本発明に係る合金において任意成分であ
り、熱処理等の加熱時における再結晶化の防止に有効で
あり、更に耐応力腐食割れ性、機械的性質の向上に有効
である。Mn,Crが過剰の場合にはその効果が頭打ち
になり、さらに不溶性化合物が増加して機械的性質が劣
化することがある。好ましくはMnは0.25〜0.5
5%、0.25〜0.45%を採用でき、Crは0.2
5〜0.50%、0.25〜0.40%を採用できる。
なお、Mn及びCrはそれぞれ単独で含有されていても
良いし、双方含有されていても良い。
Mn: 0.20 to 0.7 as an optional component
0%, Cr: 0.20 to 0.60% 1 or 2 types Mn and Cr are optional components in the alloy according to the present invention, and are effective in preventing recrystallization during heating such as heat treatment. Further, it is effective for improving stress corrosion cracking resistance and mechanical properties. If the amount of Mn or Cr is excessive, the effect reaches a plateau, and the amount of insoluble compounds increases, and the mechanical properties may deteriorate. Preferably Mn is 0.25 to 0.5
5%, 0.25 to 0.45% can be adopted, and Cr is 0.2%.
5 to 0.50% and 0.25 to 0.40% can be adopted.
Note that Mn and Cr may each be contained alone or both may be contained.

【0025】・Si:0.30%以下、Fe:0.50
%以下 Si,Feはアルミニウムの精錬及び鋳造の過程で混入
し易い不純物であり、含有量が多くなると機械的性質を
劣化させる。好ましくはSiは0.25%以下、0.1
0%以下が好ましく、Feは0.35%以下、0.25
%以下が好ましい。
Si: 0.30% or less, Fe: 0.50
% Or less Si and Fe are impurities that are easily mixed in the process of refining and casting aluminum, and when the content is large, the mechanical properties are deteriorated. Preferably, Si is 0.25% or less, 0.1% or less.
0% or less is preferable, and Fe is 0.35% or less, and 0.25% or less.
% Or less is preferable.

【0026】[0026]

【発明の実施の形態】本発明を具体化した実施形態につ
いて比較形態と共に図面を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments embodying the present invention will be described together with comparative examples with reference to the drawings.

【0027】(実施形態1)化学成分の影響 表1に示す化学成分を有するアルミニウム合金を溶解温
度750℃で溶製した。その溶湯を金型試験片鋳型(J
IS H 5202付図1,鋳型温度150℃)に鋳造
し、凝固させ、鋳造材を得た。なお、代表的な鍛造用素
材である6061合金(JIS)の化学成分の範囲も併
せて表1に示す。表1から理解できるよう、比較合金N
o.1〜No.5は、本発明合金の組成と類似するもの
の、本発明合金よりもZr量が少ない。
(Embodiment 1) Influence of Chemical Components Aluminum alloys having the chemical components shown in Table 1 were melted at a melting temperature of 750 ° C. The molten metal is used as a mold test piece mold (J
(The mold temperature was 150 ° C. with ISH5202) and solidified to obtain a cast material. Table 1 also shows the range of chemical components of 6061 alloy (JIS), which is a typical forging material. As can be seen from Table 1, the comparative alloy N
o. 1 to No. 5 is similar in composition to the alloy of the present invention, but has a lower Zr content than the alloy of the present invention.

【0028】得られた鋳造材から、圧下率30%の鍛練
を加えるため、幅19.7mm、厚み24.3mmの矩
形断面で長さ88mmの試験片を切出し、切出材を得
た。切出材について、図1(A)(B)に示す形状の鍛
造用金型(上型100,下型120,鍛造キャビティ1
30)にて強圧して熱間鍛造し、鍛造材とした。この場
合、熱間鍛造の直前に、熱間鍛造対象物である切出材を
熱間状態(約430℃)に加熱した。切出材の鍛造温度
は約400℃、鍛造用金型の型温は約200℃とした。
なお、圧下率(%)は〔1−(鍛造後の厚み/鍛造前の
厚み)×100〕で定義される。
From the obtained cast material, a test piece having a rectangular cross section of 19.7 mm in width and 24.3 mm in thickness and having a length of 88 mm in length was cut out to obtain forging with 30% reduction in forging. For the cut material, a forging die (upper die 100, lower die 120, forged cavity 1) having the shape shown in FIGS.
At 30), a strong forging was performed under strong pressure to obtain a forged material. In this case, immediately before hot forging, the cut material to be hot forged was heated to a hot state (about 430 ° C.). The forging temperature of the cut material was about 400 ° C., and the die temperature of the forging die was about 200 ° C.
The rolling reduction (%) is defined by [1− (thickness after forging / thickness before forging) × 100].

【0029】上記した鍛造材を大気雰囲気で450℃で
6時間加熱保持し、溶体化処理を行った。その後、鍛造
材を80℃の温水にて急冷した。次に、人工時効処理を
行った。即ち、一段目の時効処理として120℃で24
時間加熱し、二段目の時効処理として150℃(一段目
の時効処理の温度よりも30℃高温)で24時間加熱し
た。
The above forged material was heated and held at 450 ° C. for 6 hours in an air atmosphere to perform a solution treatment. Thereafter, the forged material was quenched with hot water of 80 ° C. Next, an artificial aging treatment was performed. That is, at 120 ° C. as 24
Heating was performed for 24 hours at 150 ° C. (30 ° C. higher than the temperature of the first aging treatment) as a second aging treatment.

【0030】上記したように熱処理を施した鍛造材か
ら、図2に示す形状を有する引張試験片200、図3
(A)(B)に示す形状を有するSCC試験片300を
それぞれ採取した。そして引張試験片200について引
張試験を実施し、SCC試験片300について応力腐食
割れ試験(SCC試験)を実施した。SCC試験片30
0は、SCC感受性が高くなるように、鍛造材の型割線
上に試験部が位置し、メタルフローに対して垂直に試験
応力が付与する方向に採取した。上記したSCC試験
は、ボルト締めによる曲げでSCC試験片300の試験
部表面に約250MPaの引張応力を付与し、そのSC
C試験片300を沸騰クロム酸水溶液に浸漬して、割れ
発生までの時間を測定した。沸騰クロム酸水溶液につい
ては、組成は36g/リットルCrO3 −30g/リッ
トルK2 Cr2 7 −3g/リットルNaClとし、温
度は90℃以上とした。沸騰クロム酸水溶液を用いたの
は、本発明合金は優れた耐SCC性を有するため、通常
の腐食性水溶液では応力腐食割れが発生しにくいためで
ある。
From the forged material subjected to the heat treatment as described above, a tensile test piece 200 having the shape shown in FIG.
(A) SCC test pieces 300 having the shapes shown in (B) were collected. Then, a tensile test was performed on the tensile test piece 200, and a stress corrosion cracking test (SCC test) was performed on the SCC test piece 300. SCC test piece 30
The sample No. 0 was taken in a direction in which the test portion was located on the parting line of the forged material and the test stress was applied perpendicularly to the metal flow so as to increase the SCC sensitivity. In the above-described SCC test, a tensile stress of about 250 MPa is applied to the test portion surface of the SCC test piece 300 by bending by bolting, and the SC
C test piece 300 was immersed in a boiling chromic acid aqueous solution, and the time until crack generation was measured. For the aqueous boiling chromic acid solution, the composition was 36 g / liter CrO 3 -30 g / liter K 2 Cr 2 O 7 -3 g / liter NaCl, and the temperature was 90 ° C. or higher. The reason why the boiling chromic acid aqueous solution was used is that the alloy of the present invention has excellent SCC resistance, so that stress corrosion cracking hardly occurs in a normal corrosive aqueous solution.

【0031】上記した引張試験、SCC試験の試験結果
を表2に示す。なお、上記した6061系における代表
的な鍛造品であるA6061FD−T6(6061の代
表例)の試験結果についても、表2に併せて示す。
Table 2 shows the results of the tensile test and the SCC test described above. Table 2 also shows the test results of A6061FD-T6 (a representative example of 6061) which is a representative forged product in the 6061 series described above.

【0032】表2に示すように、引張強さ、0.2%耐
力、伸びといった機械的性質については、本発明合金N
o.1〜No.7は比較合金No.1〜No.5と大差
はなかった。
As shown in Table 2, the mechanical properties such as tensile strength, 0.2% proof stress, and elongation of the alloy N
o. 1 to No. 7 is Comparative Alloy No. 1 to No. There was no big difference from 5.

【0033】また、耐SCC性を示す割れ発生時間につ
いては、本発明合金No.1〜No.7では500分以
上であり、耐SCC性が優れていた。これに対して比較
合金No.1〜No.5では20〜120分であり、割
れ発生までの時間が短かく、耐SCC性は劣っていた。
このように本発明合金は比較合金よりも耐SCC性に優
れていた。
Regarding the crack initiation time showing SCC resistance, the alloy No. 1 of the present invention was used. 1 to No. No. 7 was 500 minutes or more, and the SCC resistance was excellent. On the other hand, Comparative Alloy No. 1 to No. In No. 5, the time was 20 to 120 minutes, the time until crack generation was short, and the SCC resistance was poor.
Thus, the alloy of the present invention was more excellent in SCC resistance than the comparative alloy.

【0034】また、本発明合金No.1〜No.7につ
いては、従来合金のA6061FD−T6に比較して、
伸び及び耐SCC性がほぼ同等であるものの、引張強
さ、0.2%耐力が大幅に優れていた。
Further, the alloy No. 1 of the present invention was used. 1 to No. About No. 7, compared with the conventional alloy A6061FD-T6,
Although the elongation and the SCC resistance were almost equal, the tensile strength and the 0.2% proof stress were significantly excellent.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】(実施形態2)圧下率の影響 表1に示す本発明合金No.1の化学成分を有するアル
ミニウム合金を用い、実施形態1の場合と同様の方法で
鋳造材を得た。更に、得られた鋳造材から、所定の圧下
率が得られるよう厚みを設定した幅19.7mmの矩形
断面で長さ88mmの切出片を切出した。そして実施形
態1の場合と同様の方法で切出片を加熱した状態で強圧
して熱間鍛造し、鍛造材を得た。更に鍛造材について実
施形態1の場合と同条件で熱処理(溶体化処理、急冷処
理、一段目の時効処理、二段目の時効処理)を施した。
その後、図2に示す形状を有する引張試験片200、図
4に示す形状を有する回転曲げ疲労試験片500を採取
した。そして引張試験片200について引張試験を実施
し、回転曲げ疲労試験片500について回転曲げ疲労試
験(107サイクル)を実施した。
(Embodiment 2) Effect of rolling reduction A cast material was obtained in the same manner as in Embodiment 1 using an aluminum alloy having the chemical composition of No. 1. Further, a cut piece having a rectangular cross section of 19.7 mm width and a length of 88 mm having a thickness set so as to obtain a predetermined rolling reduction was cut out from the obtained cast material. Then, in the same manner as in the first embodiment, the cut piece was heated and strongly forged in a heated state to obtain a forged material. Further, the forged material was subjected to heat treatment (solution treatment, quenching treatment, first-stage aging treatment, second-stage aging treatment) under the same conditions as in the first embodiment.
Thereafter, a tensile test piece 200 having a shape shown in FIG. 2 and a rotating bending fatigue test piece 500 having a shape shown in FIG. 4 were collected. Then, a tensile test was performed on the tensile test piece 200, and a rotary bending fatigue test (10 7 cycles) was performed on the rotary bending fatigue test piece 500.

【0038】得られた試験結果を表3に示す。表3に示
すように、鍛造工程における圧下率が増加するにつれ
て、引張強さ、伸び、疲労強度が向上していた。ここで
引張強さについては、15%程度の圧下率では圧下率5
0%の場合と遜色がなくなる。しかし、鍛造工程におけ
る圧下率が増加すれば、伸び及び疲労強度が更に上昇し
ていた。従って本発明に合金において鋳造鍛造品の伸び
及び疲労強度を重視する場合には、鍛造工程における圧
下率を15%以上に高めることが有効である。鋳造鍛造
品の優れた疲労強度を確保するためには圧下率30%以
上が好ましい。更に優れた疲労強度を確保するためには
40%以上、50%以上が好ましい。
Table 3 shows the obtained test results. As shown in Table 3, as the rolling reduction in the forging process increased, the tensile strength, elongation, and fatigue strength were improved. Here, with respect to the tensile strength, at a rolling reduction of about 15%, the rolling reduction is 5%.
There is no inferiority to the case of 0%. However, when the rolling reduction in the forging process was increased, the elongation and the fatigue strength were further increased. Therefore, when emphasis is placed on the elongation and fatigue strength of the cast forged product in the present invention, it is effective to increase the rolling reduction in the forging process to 15% or more. In order to ensure excellent fatigue strength of the cast and forged product, the rolling reduction is preferably 30% or more. In order to secure more excellent fatigue strength, the content is preferably 40% or more and 50% or more.

【0039】[0039]

【表3】 [Table 3]

【0040】(実施形態3)二段時効の影響 表1に示す本発明合金No.1の化学成分を有するアル
ミニウム合金を用い、実施形態1の場合と同様の方法で
鍛造材を得た。そして鍛造材を450℃で6時間保持し
て溶体化処理した後、80℃の温水にて急冷し、第1試
験片〜第5試験片を形成した。その後、その第1試験片
について120℃の等温保持した時効処理を行った。第
2試験片については、150℃に等温保持して時効処理
を行った。また第3試験片については170℃に等温保
持して時効処理を行った。第4試験片については、一段
目の時効処理を120℃で24時間保持して行った後、
二段目の時効処理を150℃で等温保持して行った。ま
た第5試験片については、一段目の時効処理を120℃
で24時間保持して行った後、二段目の時効処理を17
0℃で等温保持して行った。上記した時効処理は大気雰
囲気で行った。
(Embodiment 3) Effect of two-stage aging A forged material was obtained in the same manner as in the first embodiment using an aluminum alloy having the chemical composition of No. 1. After the forged material was held at 450 ° C. for 6 hours for solution treatment, it was quenched with hot water at 80 ° C. to form first to fifth test pieces. Thereafter, the first test piece was subjected to an aging treatment while maintaining the temperature at 120 ° C. About the 2nd test piece, it kept isothermally at 150 degreeC and performed the aging treatment. The third test piece was aged at 170 ° C. while maintaining the same temperature. For the fourth test piece, after performing the first-stage aging treatment at 120 ° C. for 24 hours,
The second-stage aging treatment was carried out while maintaining the temperature at 150 ° C. isothermally. For the fifth test piece, the first-stage aging treatment was performed at 120 ° C.
For 24 hours, and then the second-stage aging treatment is performed for 17 hours.
The test was carried out while maintaining the temperature isothermally at 0 ° C. The above aging treatment was performed in an air atmosphere.

【0041】これらの各試験片について硬さ変化を測定
した。測定結果を図5の特性線A〜特性線Eとして示
す。図5の特性線Aに示すように、120℃の一段時効
では100時間を要しても試験片はピ−ク硬度に達しな
かった。図5の特性線B、特性線Cに示すように、15
0℃の時効処理、170℃の時効処理では、短時間でピ
ーク硬度に達するものの、硬度自体は必ずしも充分では
なく、充分に満足できる高強度は得られない。一方、人
工時効処理として一段目の時効処理を120℃で24時
間、二段目の時効処理を150℃で行った場合は、図5
の特性線Dに示すように、比較的短時間で高いピーク硬
度が得られた。同様に、人工時効処理として一段目の時
効処理を120℃で24時間、二段目の時効処理を17
0℃で行った場合は、図5の特性線Eに示すように、比
較的短時間で高いピーク硬度が得られた。一般的には硬
度と機械的性質とは対応するため、硬度の確保は、機械
的性質の確保につながる。
The change in hardness was measured for each of these test pieces. The measurement results are shown as characteristic lines A to E in FIG. As shown by the characteristic line A in FIG. 5, the test piece did not reach the peak hardness even after 100 hours in the one-stage aging at 120 ° C. As shown by the characteristic lines B and C in FIG.
The aging treatment at 0 ° C. and the aging treatment at 170 ° C. reach the peak hardness in a short time, but the hardness itself is not always sufficient, and a sufficiently satisfactory high strength cannot be obtained. On the other hand, when the first-stage aging treatment was performed at 120 ° C. for 24 hours and the second-stage aging treatment was performed at 150 ° C. as the artificial aging treatment, FIG.
As shown by the characteristic line D, a high peak hardness was obtained in a relatively short time. Similarly, as the artificial aging treatment, the first aging treatment is performed at 120 ° C. for 24 hours, and the second aging treatment is performed at 17 ° C.
When performed at 0 ° C., a high peak hardness was obtained in a relatively short time as shown by the characteristic line E in FIG. Generally, since hardness corresponds to mechanical properties, securing hardness leads to securing mechanical properties.

【0042】図5に示す結果によれば、上記した本発明
合金を用いる場合には、鍛造の後に440〜480℃で
溶体化処理した後、急冷し、その後、100〜140℃
の範囲の処理温度で一段目の時効処理を行い、次に、一
段目の時効処理の処理温度よりも20〜50℃高温の温
度で且つ180℃を越えない温度で二段目の時効処理を
行えば、時効硬化性を高めるのに有効であることがわか
る。
According to the results shown in FIG. 5, when the alloy of the present invention is used, after forging, solution treatment at 440 to 480 ° C., rapid cooling, and then 100 to 140 ° C.
The first-stage aging treatment is performed at a treatment temperature in the range of, and then the second-stage aging treatment is performed at a temperature 20 to 50 ° C. higher than the treatment temperature of the first-stage aging treatment and not exceeding 180 ° C. It can be seen that if performed, it is effective to enhance age hardening.

【0043】(適用形態)図6は適用形態を示す。この
場合には、鋳造工程においては、上記したAl−Zn−
Mg系の鋳造鍛造用アルミニウム合金の溶湯を用い、そ
の溶湯を成形型(金型、砂型等)のキャビティに注湯し
た。成形型のキャビティは、最終製品である鋳造鍛造品
に類似した形状を有する。成形型のキャビティ内に注湯
した溶湯が凝固すれば、鋳造材500が得られる。凝固
後に鋳造材500を成形型から離型する。鋳造材500
は、最終製品である鋳造鍛造品に類似した形状を有す
る。その後に、熱間状態(一般的には380〜480
℃)の鋳造材500を鍛造型により所定の圧下率で強圧
して熱間鍛造する鍛造工程を実施し、鍛造材600とす
る。鍛造工程直前の鋳造材500としては、鋳造直後の
熱を有するものでも良いし、鋳造後に冷却して熱間状態
に再加熱したものでも良い。鍛造材600は周囲にばり
部610を有する。そして、ばり部610をトリミング
処理により打ち抜き、鋳造鍛造品700を得る。本適用
形態によれば、鋳造材500は最終製品に類似した形状
を有するため、素材から目標荒地形状を得るまでの荒地
鍛造工程を廃止することができる。従って本適用形態で
は鍛造工程は仕上鍛造としての1回だけであり、コスト
高な鍛造コストの低減を図り得る。
(Application) FIG. 6 shows an application. In this case, in the casting process, the Al-Zn-
A molten metal of a Mg-based aluminum alloy for casting and forging was used, and the molten metal was poured into a cavity of a molding die (die, sand mold, etc.). The cavity of the mold has a shape similar to the final product, a forged casting. If the molten metal poured into the cavity of the mold solidifies, the cast material 500 is obtained. After the solidification, the casting 500 is released from the mold. Casting material 500
Has a shape similar to the cast and forged product that is the final product. Thereafter, the hot state (generally 380-480)
C), and a forging step of hot forging by forcibly pressing the cast material 500 at a predetermined reduction rate with a forging die is performed to obtain a forged material 600. As the cast material 500 immediately before the forging step, a material having heat immediately after casting may be used, or a material that has been cooled after casting and reheated to a hot state may be used. The forged material 600 has a flash portion 610 around the periphery. Then, the burrs 610 are punched out by a trimming process to obtain a casting and forging 700. According to this application mode, since the cast material 500 has a shape similar to the final product, the wasteland forging process until the target wasteland shape is obtained from the material can be eliminated. Therefore, in this application form, the forging process is performed only once as finish forging, and costly forging cost can be reduced.

【0044】本発明に係る鋳造鍛造用アルミニウム合
金、鋳造鍛造品は、軽量性の他に高強度及び高靱性が要
請される部品(例えば車両部品)に適用することができ
る。例えば、車両のサスペンションアーム(アッパーア
ーム、ロアアーム、コントロールロッドなど)に適用で
き、更にナックルステアリング、アクチュエータボデ
ィ、デリバリーパイプ等に適用できる。
The aluminum alloy for casting and forging and the cast and forged product according to the present invention can be applied to parts (for example, vehicle parts) requiring high strength and high toughness in addition to light weight. For example, the present invention can be applied to a suspension arm (upper arm, lower arm, control rod, etc.) of a vehicle, and further can be applied to a knuckle steering, an actuator body, a delivery pipe, and the like.

【0045】図7〜図11は各適用形態を示す。図7は
車両用のアッパーアームを示す。アッパーアームは、複
数のアーム部10と、アーム部10の先端に設けられた
筒部11と、取付部12とをもつ。図8は車両用のロア
アームを示す。ロアアームは、複数のアーム部20と、
アーム部20の先端に設けられた筒部21と、取付部2
2とをもつ。図9は車両用のナックルステアリングを示
す。ナックルステアリングは、複数のアーム部30と、
アーム部30を繋ぐ筒部31とをもつ。図10は車両用
のアクチュエータボディを示す。アクチュエータボディ
は、箱状部40で形成されている。図11はフューエル
等を供給するデリバリーパイプを示す。デリバリーパイ
プは中央孔50aを有するパイプ部50をもつ。これら
の各部品に本発明に係るアルミニウム合金、鋳造鍛造
品、本発明に係る製造方法を適用すれば、軽量性の他
に、高強度及び高靱性を図り得、更に耐応力腐食割れ性
を向上させ得る。なお本発明の用途は上記に限定される
ものではないことは勿論である。
FIGS. 7 to 11 show each application form. FIG. 7 shows an upper arm for a vehicle. The upper arm has a plurality of arm portions 10, a tubular portion 11 provided at a tip of the arm portion 10, and a mounting portion 12. FIG. 8 shows a lower arm for a vehicle. The lower arm includes a plurality of arm units 20;
A cylindrical portion 21 provided at the tip of the arm portion 20;
With 2. FIG. 9 shows a knuckle steering for a vehicle. The knuckle steering includes a plurality of arm portions 30,
And a tubular portion 31 connecting the arm portion 30. FIG. 10 shows an actuator body for a vehicle. The actuator body is formed by a box-shaped portion 40. FIG. 11 shows a delivery pipe for supplying fuel and the like. The delivery pipe has a pipe part 50 having a central hole 50a. If the aluminum alloy according to the present invention, the cast forged product, and the manufacturing method according to the present invention are applied to each of these parts, in addition to lightness, high strength and high toughness can be achieved, and stress corrosion cracking resistance is further improved. I can make it. It should be noted that the application of the present invention is not limited to the above.

【0046】(他の例)上記した実施形態によれば、鍛
造後に二段の時効処理を行っているが、これに限られる
ものではなく、一段の時効処理でも良いし、常温に長時
間放置して時効硬化させるものでも良い。その他、本発
明は上記した且つ図面に示した例にのみ限定されるもの
ではなく、要旨を逸脱しない範囲内で、必要に応じて適
宜変更して実施できるものである。各表に記載した各合
金元素の含有量、合金の機械的性質等の物性値を上限値
または/及び下限値として各請求項に限定することによ
り本発明に係る技術的思想を特定することもできる。
(Other Examples) According to the above-described embodiment, the two-stage aging treatment is performed after forging. However, the present invention is not limited to this. One-stage aging treatment may be performed, or the aging treatment may be performed at room temperature for a long time. And then age-hardened. In addition, the present invention is not limited to the examples described above and shown in the drawings, but can be implemented with appropriate modifications as needed without departing from the gist. The technical idea according to the present invention may be specified by limiting the content of each alloy element described in each table and the physical property values such as mechanical properties of the alloy to the upper limit value and / or the lower limit value in each claim. it can.

【0047】(付記)本明細書及び図面から次の技術的
思想も把握できる。 [付記項1]引張強度が380MPa以上(または40
0MPa以上)であることを特徴とする各請求項または
付記項に係る鋳造鍛造用アルミニウム合金、鋳造鍛造
品、鋳造鍛造品の製造方法。 [付記項2]0.2%耐力が330MPa以上(または
350MPa以上)であることを特徴とする各請求項ま
たは各付記項に係る鋳造鍛造用アルミニウム合金、鋳造
鍛造品、鋳造鍛造品の製造方法。 [付記項3]伸びが10%以上であることを特徴とする
各請求項または各付記項に係る鋳造鍛造用アルミニウム
合金、鋳造鍛造品、鋳造鍛造品の製造方法。
(Supplementary Note) The following technical idea can be understood from the present specification and the drawings. [Appendix 1] The tensile strength is 380 MPa or more (or 40
0 MPa or more). A method for producing an aluminum alloy for casting and forging, a casting forging, and a casting forging according to each of the claims or the supplementary items. [Appendix 2] The method for producing an aluminum alloy for casting and forging, a cast forged product, and a cast forged product according to each claim or each additional item, wherein the 0.2% proof stress is 330 MPa or more (or 350 MPa or more). . [Appendix 3] The method for producing an aluminum alloy for casting and forging, a cast forged product, and a cast forged product according to each claim or each additional feature, wherein the elongation is 10% or more.

【0048】[0048]

【発明の効果】本発明に係る鋳造鍛造用アルミニウム合
金、鋳造鍛造品、鋳造鍛造品の製造方法よれば、引張強
度、0.2%耐力、伸び等の機械的性質を向上させ得る
ばかりか、耐応力腐食割れ性についても向上させること
ができる。また最終製品に類似した形状を有する鋳造材
を鍛造する。このため、最終製品に類似した粗形材を鍛
造で形成する荒地鍛造を廃止したり、荒地鍛造の回数を
減少させたりすることができ、コスト高の鍛造コストの
低減を図り得る。
According to the method for producing an aluminum alloy for casting and forging, the casting forging, and the casting forging according to the present invention, not only mechanical properties such as tensile strength, 0.2% proof stress, elongation and the like can be improved, The stress corrosion cracking resistance can also be improved. Also, forging a cast material having a shape similar to the final product. For this reason, it is possible to abolish the rough land forging for forming a rough shaped material similar to the final product by forging, to reduce the number of times of the rough land forging, and to reduce the costly forging cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】鍛造型の構成図であり、(A)(B)はそれぞ
れ異なる方向の断面図である。
FIG. 1 is a configuration diagram of a forging die, and (A) and (B) are cross-sectional views in different directions.

【図2】引張試験片の構成図である。FIG. 2 is a configuration diagram of a tensile test piece.

【図3】SCC試験片の構成図であり、(A)(B)は
それぞれ異なる方向からみた外観図である。
FIG. 3 is a configuration diagram of an SCC test piece, and (A) and (B) are external views viewed from different directions.

【図4】疲労試験片の構成図である。FIG. 4 is a configuration diagram of a fatigue test piece.

【図5】時効処理の結果を示すグラフである。FIG. 5 is a graph showing a result of an aging process.

【図6】適用形態に係り、鋳造鍛造品が製造される過程
を模式的に示す工程図である。
FIG. 6 is a process diagram schematically showing a process of manufacturing a casting and forging according to an application mode.

【図7】車両用のアッパーアームの斜視図である。FIG. 7 is a perspective view of an upper arm for a vehicle.

【図8】車両用のロアアームの斜視図である。FIG. 8 is a perspective view of a lower arm for a vehicle.

【図9】車両用のナックルステアリングの斜視図であ
る。
FIG. 9 is a perspective view of a knuckle steering for a vehicle.

【図10】車両用のアクチュエータボディの斜視図であ
る。
FIG. 10 is a perspective view of an actuator body for a vehicle.

【図11】フューエル等を供給するデリバリーパイプの
正面図である。
FIG. 11 is a front view of a delivery pipe for supplying fuel and the like.

【符号の説明】[Explanation of symbols]

図中、500は鋳造材、600は鍛造材、700は鋳造
鍛造品を示す。
In the figure, 500 indicates a cast material, 600 indicates a forged material, and 700 indicates a cast and forged product.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 611 C22F 1/00 611 630 630A 630B 630C 630G 630K 640 640A 683 683 691 691B 692 692A 694 694A Fターム(参考) 4E087 AA10 BA04 BA20 BA24 CA11 CB01 DB15 DB24 GA02 HA28 HA31 HA82 ──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) Term (reference) 4E087 AA10 BA04 BA20 BA24 CA11 CB01 DB15 DB24 GA02 HA28 HA31 HA82

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】質量%で、亜鉛:3〜5%、マグネシウ
ム:1〜3%、銅:0.20〜1.0%、チタン:0.
15〜0.30%、ジルコニウム:0.10〜0.40
%、シリコン:0.30%以下、鉄:0.50%以下、
残部がアルミニウム及び不可避不純物からなることを特
徴とする鋳造性及び鍛造性に優れたアルミニウム−亜鉛
−マグネシウム系の鋳造鍛造用アルミニウム合金。
1. In mass%, zinc: 3 to 5%, magnesium: 1 to 3%, copper: 0.20 to 1.0%, titanium: 0.1 to 1.0%.
15 to 0.30%, zirconium: 0.10 to 0.40
%, Silicon: 0.30% or less, iron: 0.50% or less,
An aluminum-zinc-magnesium-based aluminum alloy for casting and forging having excellent castability and forgeability, with the balance being aluminum and unavoidable impurities.
【請求項2】請求項1において、マンガン:0.20〜
0.70%及びクロム:0.20〜0.60%のうちの
1種または2種を含むことを特徴とする鋳造性及び鍛造
性に優れたアルミニウム−亜鉛−マグネシウム系の鋳造
鍛造用アルミニウム合金。
2. The method according to claim 1, wherein manganese is from 0.20 to 0.20.
Aluminum-zinc-magnesium-based aluminum alloy for casting and forging having excellent castability and forgeability, characterized by containing one or two of 0.70% and chromium: 0.20 to 0.60%. .
【請求項3】請求項1または請求項2に係る鋳造鍛造用
アルミニウム合金の溶湯を鋳造して形成した最終製品に
類似した形状を有する鋳造材を強圧して鍛造を施して形
成したことを特徴とする鋳造性及び鍛造性に優れたアル
ミニウム−亜鉛−マグネシウム系の鋳造鍛造品。
3. A cast material having a shape similar to that of a final product formed by casting a molten aluminum alloy for casting and forging according to claim 1 or 2, and forged by forcibly pressing the cast material. An aluminum-zinc-magnesium cast and forged product excellent in castability and forgeability.
【請求項4】請求項1または請求項2に係る鋳造鍛造用
アルミニウム合金の溶湯を成形型のキャビティに注湯
し、最終製品に類似した形状を有する鋳造材を形成する
鋳造工程と、前記鋳造材を強圧して鍛造する鍛造工程と
を順に実施することを特徴とする鋳造性及び鍛造性に優
れたアルミニウム−亜鉛−マグネシウム系の鋳造鍛造品
の製造方法。
4. A casting step of pouring a molten metal of the aluminum alloy for casting and forging according to claim 1 or 2 into a cavity of a molding die to form a cast material having a shape similar to a final product. And a forging step of forging the material by forcibly pressing the material in order. A method for producing an aluminum-zinc-magnesium cast forged product excellent in castability and forgeability, characterized in that:
【請求項5】請求項4において、前記鍛造工程におい
て、圧下率は15%以上であることを特徴とする鋳造性
及び鍛造性に優れたアルミニウム−亜鉛−マグネシウム
系の鋳造鍛造品の製造方法。
5. The method according to claim 4, wherein, in the forging step, a rolling reduction is 15% or more, and the cast and forged aluminum-zinc-magnesium alloy has excellent castability and forgeability.
【請求項6】請求項4または請求項5において、前記鍛
造工程の後に、440〜480℃で溶体化処理した後、
急冷し、その後、100〜140℃の範囲の処理温度で
一段目の時効処理を行い、次に、一段目の時効処理の処
理温度よりも20〜50℃高温の温度で且つ180℃を
越えない温度で二段目の時効処理を行うことを特徴とす
る鋳造性及び鍛造性に優れたアルミニウム−亜鉛−マグ
ネシウム系の鋳造鍛造品の製造方法。
6. The method according to claim 4, wherein after the forging step, a solution treatment is performed at 440 to 480 ° C.
After quenching, the first-stage aging treatment is performed at a treatment temperature in the range of 100 to 140 ° C., and then the temperature is 20 to 50 ° C. higher than the treatment temperature of the first-stage aging treatment and does not exceed 180 ° C. A method for producing an aluminum-zinc-magnesium cast forged product excellent in castability and forgeability, wherein a second-stage aging treatment is performed at a temperature.
JP2001152658A 2001-05-22 2001-05-22 Aluminum-zinc-magnesium aluminum alloy for casting and forging, aluminum-zinc-magnesium cast and forged article, and manufacturing method therefor Pending JP2002348631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001152658A JP2002348631A (en) 2001-05-22 2001-05-22 Aluminum-zinc-magnesium aluminum alloy for casting and forging, aluminum-zinc-magnesium cast and forged article, and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001152658A JP2002348631A (en) 2001-05-22 2001-05-22 Aluminum-zinc-magnesium aluminum alloy for casting and forging, aluminum-zinc-magnesium cast and forged article, and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2002348631A true JP2002348631A (en) 2002-12-04

Family

ID=18997292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001152658A Pending JP2002348631A (en) 2001-05-22 2001-05-22 Aluminum-zinc-magnesium aluminum alloy for casting and forging, aluminum-zinc-magnesium cast and forged article, and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2002348631A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265582A (en) * 2005-03-22 2006-10-05 Toyota Motor Corp Heat treatment method of aluminum alloy
JP2007070672A (en) * 2005-09-06 2007-03-22 Furukawa Sky Kk Method for producing aluminum alloy thick plate having excellent fatigue property
WO2007114737A2 (en) * 2006-04-03 2007-10-11 Public Stock Company 'vsmpo-Avisma Corporation' Aluminium-based alloy
JP2008150652A (en) * 2006-12-15 2008-07-03 Furukawa Sky Kk Weldable aluminum alloy for forging having excellent stress corrosion cracking resistance, and forged part using the same
WO2011155609A1 (en) * 2010-06-11 2011-12-15 昭和電工株式会社 Method for producing al alloy joined body
EP2425911A1 (en) * 2009-04-30 2012-03-07 Showa Denko K.K. Process for producing cast aluminum alloy member
KR101211989B1 (en) * 2012-05-25 2012-12-13 이상순 A hot forging method for gas burner head of aluminium
JP2013209714A (en) * 2012-03-30 2013-10-10 Kobe Steel Ltd Aluminum alloy forged member for automobile and production method of the material
CN105200287A (en) * 2015-10-26 2015-12-30 东北轻合金有限责任公司 Manufacturing method of super-high-strength aluminium alloy circular ingots
JP2018513270A (en) * 2015-10-30 2018-05-24 ノベリス・インコーポレイテッドNovelis Inc. High strength 7XXX aluminum alloy and manufacturing method thereof
CN108080548A (en) * 2017-12-20 2018-05-29 西南铝业(集团)有限责任公司 A kind of processing method of 2024 aluminium alloy open die forgings
CN108127344A (en) * 2017-12-20 2018-06-08 西南铝业(集团)有限责任公司 A kind of processing method of 6082 aluminium alloy open die forgings
CN111500909A (en) * 2020-05-12 2020-08-07 吉林市江机机械设备制造有限公司 Cast aluminum alloy material and preparation method thereof
CN114934214A (en) * 2022-06-07 2022-08-23 江苏嘉盈装饰新材料有限公司 Processing method for improving strength and toughness of aluminum alloy material

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265582A (en) * 2005-03-22 2006-10-05 Toyota Motor Corp Heat treatment method of aluminum alloy
JP4635669B2 (en) * 2005-03-22 2011-02-23 トヨタ自動車株式会社 Alloy heat treatment method
JP2007070672A (en) * 2005-09-06 2007-03-22 Furukawa Sky Kk Method for producing aluminum alloy thick plate having excellent fatigue property
WO2007114737A2 (en) * 2006-04-03 2007-10-11 Public Stock Company 'vsmpo-Avisma Corporation' Aluminium-based alloy
WO2007114737A3 (en) * 2006-04-03 2007-12-21 Public Stock Company Vsmpo Avi Aluminium-based alloy
JP2008150652A (en) * 2006-12-15 2008-07-03 Furukawa Sky Kk Weldable aluminum alloy for forging having excellent stress corrosion cracking resistance, and forged part using the same
EP2425911A4 (en) * 2009-04-30 2014-06-18 Showa Denko Kk Process for producing cast aluminum alloy member
EP2425911A1 (en) * 2009-04-30 2012-03-07 Showa Denko K.K. Process for producing cast aluminum alloy member
US9194029B2 (en) 2009-04-30 2015-11-24 Showa Denko K.K. Process for producing cast aluminum alloy member
WO2011155609A1 (en) * 2010-06-11 2011-12-15 昭和電工株式会社 Method for producing al alloy joined body
JP5819294B2 (en) * 2010-06-11 2015-11-24 昭和電工株式会社 Method for producing Al alloy joined body
JP2013209714A (en) * 2012-03-30 2013-10-10 Kobe Steel Ltd Aluminum alloy forged member for automobile and production method of the material
KR101211989B1 (en) * 2012-05-25 2012-12-13 이상순 A hot forging method for gas burner head of aluminium
CN105200287A (en) * 2015-10-26 2015-12-30 东北轻合金有限责任公司 Manufacturing method of super-high-strength aluminium alloy circular ingots
JP2018513270A (en) * 2015-10-30 2018-05-24 ノベリス・インコーポレイテッドNovelis Inc. High strength 7XXX aluminum alloy and manufacturing method thereof
JP2020045575A (en) * 2015-10-30 2020-03-26 ノベリス・インコーポレイテッドNovelis Inc. High strength 7xxx aluminum alloys and methods of making the same
US11421309B2 (en) 2015-10-30 2022-08-23 Novelis Inc. High strength 7xxx aluminum alloys and methods of making the same
CN108080548A (en) * 2017-12-20 2018-05-29 西南铝业(集团)有限责任公司 A kind of processing method of 2024 aluminium alloy open die forgings
CN108127344A (en) * 2017-12-20 2018-06-08 西南铝业(集团)有限责任公司 A kind of processing method of 6082 aluminium alloy open die forgings
CN111500909A (en) * 2020-05-12 2020-08-07 吉林市江机机械设备制造有限公司 Cast aluminum alloy material and preparation method thereof
CN114934214A (en) * 2022-06-07 2022-08-23 江苏嘉盈装饰新材料有限公司 Processing method for improving strength and toughness of aluminum alloy material

Similar Documents

Publication Publication Date Title
JP6481052B2 (en) High strength and easily moldable AlMg strip and method for producing the same
US5409555A (en) Method of manufacturing a forged magnesium alloy
CN106062225B (en) The manufacture method of aluminium alloy plastically worked article
EP3026135B1 (en) Alloy casting material and method for manufacturing alloy object
CA2496140A1 (en) Casting of an aluminium alloy
JP6990527B2 (en) Aluminum alloy material
JP2002348631A (en) Aluminum-zinc-magnesium aluminum alloy for casting and forging, aluminum-zinc-magnesium cast and forged article, and manufacturing method therefor
JP2008542534A (en) Aluminum casting alloy, aluminum alloy casting, and manufacturing method of aluminum alloy casting
JP5756091B2 (en) Method for producing aluminum alloy forged member
US20180010214A1 (en) High strength high creep-resistant cast aluminum alloys and hpdc engine blocks
JP2008542533A (en) Aluminum casting alloy and method for producing the same
JP2017503086A (en) Aluminum casting alloy with improved high temperature performance
WO2019167469A1 (en) Al-mg-si system aluminum alloy material
WO2018161311A1 (en) Aluminum alloys
JP2001020047A (en) Stock for aluminum alloy forging and its production
US6719859B2 (en) High strength aluminum base alloy
JP2001226731A (en) Aluminum-zinc-magnesium series aluminum alloy for casting and forging, aluminum-zinc-magnesium series cast and forged product, and its producing method
JPH0673482A (en) Aluminum alloy member and its production
JPH06330264A (en) Production of aluminum alloy forged material excellent in strength and toughness
CN110387489A (en) Aluminium alloy for die casting and the method using its manufacture aluminium alloy castings
JP2006161103A (en) Aluminum alloy member and manufacturing method therefor
JP3509163B2 (en) Manufacturing method of magnesium alloy member
JPH07150312A (en) Manufacture of aluminum alloy forged base stock
JP2000087199A (en) Manufacture of rolled product of magnesium alloy, method of press working magnesium alloy, and press worked product
JPH06248402A (en) Production of member made of magnesium alloy