JP2006265582A - Heat treatment method of aluminum alloy - Google Patents

Heat treatment method of aluminum alloy Download PDF

Info

Publication number
JP2006265582A
JP2006265582A JP2005081595A JP2005081595A JP2006265582A JP 2006265582 A JP2006265582 A JP 2006265582A JP 2005081595 A JP2005081595 A JP 2005081595A JP 2005081595 A JP2005081595 A JP 2005081595A JP 2006265582 A JP2006265582 A JP 2006265582A
Authority
JP
Japan
Prior art keywords
alloy
temperature
heat treatment
partial melting
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005081595A
Other languages
Japanese (ja)
Other versions
JP4635669B2 (en
Inventor
Hironori Tateishi
浩規 立石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005081595A priority Critical patent/JP4635669B2/en
Publication of JP2006265582A publication Critical patent/JP2006265582A/en
Application granted granted Critical
Publication of JP4635669B2 publication Critical patent/JP4635669B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat treatment method of an aluminum alloy which realizes prevention of occurrence of partial melting and shortening of a treatment time. <P>SOLUTION: In the heat treatment method, such as solution heat treatment or homogenization treatment, a first term heating process of holding the alloy until the partial melting occurrence temperature of the alloy under the heat treatment attains nearly the same temperature as the solidus temperature of the average composition of the alloy in the treatment temperature below the partial melting occurrence temperature of the alloy prior to the heat treatment and a later stage heating process of holding the alloy until the alloy elements attain the suitably solutionized state or diffused state at the temperature below the solidus temperature are executed. With the maximum value among the minor diameters of the deposited material or crystallized material of the compound included in the alloy prior to the heat treatment defined as x, the maximum value of the diffusion time t obtained based on the formula to determine the relation between a diffusion coefficient D and the diffusion time t is estimated as the time required for the temperature generated by the partial melting in the alloy under the heat treatment to attain the nearly the same temperature as the solidus temperature of the average composition for the alloy. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、アルミニウム合金の溶体化処理や均質化処理等の熱処理の方法に関する。   The present invention relates to a heat treatment method such as solution treatment or homogenization treatment of an aluminum alloy.

アルミニウム合金製の鋳造品は、鋳造後に機械的性質を改善するために熱処理が施される。一般に、この熱処理として、均質化処理や溶体化処理などが施される。
均質化処理は、合金を熱的に平衡状態となるように高温に加熱して、高温で原子の拡散を起こさせる熱処理であり、合金成分や組織の均一化、内部応力の除去等を図るものである。
溶体化処理は、合金を均一固溶体範囲の温度に加熱して、合金元素を固溶化させる熱処理であり、この溶体化処理に続く焼入れ処理にて急冷することで、常温における合金元素の固溶化を図るものである。この溶体化処理、焼入れ処理ののち、飽和固溶体を比較的低温に保持する時効処理を施すことにて、均一な析出物が形成され合金の諸性質が改変される。
A cast product made of aluminum alloy is subjected to heat treatment to improve mechanical properties after casting. In general, a homogenization treatment, a solution treatment, or the like is performed as the heat treatment.
Homogenization treatment is a heat treatment that heats the alloy to a high temperature so that it is in thermal equilibrium and causes diffusion of atoms at a high temperature, and homogenizes the alloy composition and structure, and removes internal stress. It is.
The solution treatment is a heat treatment in which the alloy is heated to a temperature in the range of a uniform solid solution to solidify the alloy element. By quenching in the quenching treatment following this solution treatment, the alloy element is solidified at room temperature. It is intended. After the solution treatment and quenching treatment, an aging treatment is performed to keep the saturated solid solution at a relatively low temperature, whereby uniform precipitates are formed and various properties of the alloy are modified.

例えば、Al−Si−Mg系のアルミニウム合金に熱処理として溶体化処理を施す場合、合金を、溶体化処理にて共晶点より低い520℃程度で5〜6時間以上保持したのち、焼入れ処理にて急冷し、次いで、人工時効処理にて200℃以下で4〜10時間保持する処理過程が、特許文献1に記載されている。
特開2000−17413号公報
For example, when a solution treatment is performed as a heat treatment on an Al—Si—Mg-based aluminum alloy, the alloy is held at about 520 ° C., which is lower than the eutectic point, for 5 to 6 hours or more in the solution treatment, and then subjected to a quenching treatment. Patent Document 1 describes a treatment process in which the sample is rapidly cooled and then maintained at 200 ° C. or lower for 4 to 10 hours by artificial aging treatment.
JP 2000-17413 A

ところで、合金に部分融解(バーニング)が発生する温度(以降「部分融解発生温度」と記載する)は、アルミニウム合金の溶体化処理や均質化処理等の熱処理中において、合金の温度上昇に伴い徐々に上昇することが知られている。しかし、熱処理中の合金の部分融解発生温度の経時変化を把握することが困難であるため、処理開始段階での合金の部分融解発生温度(以降「初期部分融解発生温度」と記載する)よりも低い温度範囲での熱処理が行われる。   By the way, the temperature at which partial melting (burning) occurs in the alloy (hereinafter referred to as “partial melting generation temperature”) is gradually increased as the temperature of the alloy increases during heat treatment such as solution treatment or homogenization treatment of the aluminum alloy. Is known to rise. However, since it is difficult to grasp the temporal change of the partial melting occurrence temperature of the alloy during the heat treatment, it is more than the partial melting occurrence temperature of the alloy at the start of processing (hereinafter referred to as “initial partial melting occurrence temperature”). Heat treatment is performed in a low temperature range.

例えば、上記特許文献1では、合金の部分融解を防止するため、Al−Si−Mg系合金の溶体化処理温度を部分融解が発生する可能性が十分に低い550℃以下とすることが記載されている。また、JIS規格では、Al−Si−Mg系合金(JIS規格記号AC4C)の溶体化処理温度は約525℃とされている。この溶体化処理温度は、Al−Si−Mg系合金の共晶点よりも50℃程度低い温度である。   For example, Patent Document 1 describes that in order to prevent partial melting of the alloy, the solution treatment temperature of the Al—Si—Mg-based alloy is set to 550 ° C. or less where the possibility of partial melting is sufficiently low. ing. According to the JIS standard, the solution treatment temperature of the Al—Si—Mg alloy (JIS standard symbol AC4C) is about 525 ° C. This solution treatment temperature is about 50 ° C. lower than the eutectic point of the Al—Si—Mg alloy.

均質化処理や溶体化処理は長時間を必要とする処理であることから、生産性が低くエネルギー消費量が大きいという問題点がある。この問題の解決のために、処理時間の短縮を図って、処理温度を上げることも考え得るが、初期部分融解発生温度より処理温度を上げれば部分融解が起きる可能性があるため、単純に処理温度を上昇させるだけでは、問題点の解決に至らない。   Since the homogenization treatment and solution treatment are treatments that require a long time, there is a problem that productivity is low and energy consumption is large. In order to solve this problem, it is possible to shorten the processing time and increase the processing temperature. However, if the processing temperature is raised from the initial partial melting generation temperature, partial melting may occur. Just raising the temperature does not solve the problem.

そこで、本発明では、熱処理中の部分融解発生温度の経時変化を推定し、初期部分融解発生温度より高い温度でも処理物の熱処理を行うことで、部分融解の発生の防止と、処理時間の短縮を実現する、合金の熱処理方法を提案する。   Therefore, in the present invention, the temporal change of the partial melting occurrence temperature during the heat treatment is estimated, and the heat treatment of the processed material is performed even at a temperature higher than the initial partial melting occurrence temperature, thereby preventing partial melting and shortening the processing time. We propose a heat treatment method for alloys that realizes

本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。   The problems to be solved by the present invention are as described above. Next, means for solving the problems will be described.

即ち、請求項1においては、合金の熱処理において、処理温度を処理開始時の合金の部分融解発生温度よりも低い温度とする前期加熱過程と、処理温度を前期加熱過程よりも高く合金の平均組成の固相線温度よりも低い温度とする後期加熱過程とを含む、合金の熱処理方法である。   That is, in the heat treatment of the alloy, in the heat treatment of the alloy, the preheating process in which the treatment temperature is lower than the partial melting occurrence temperature of the alloy at the start of the treatment, This is a heat treatment method for an alloy, which includes a later heating process in which the temperature is lower than the solidus temperature.

請求項2においては、前記合金の熱処理方法において、前期加熱過程は、少なくとも合金の部分融解発生温度が合金の平均組成の固相線温度と略同一となるまで処理を行うものである。   According to a second aspect of the present invention, in the heat treatment method for an alloy, the preheating process is performed until at least the partial melting temperature of the alloy is substantially the same as the solidus temperature of the average composition of the alloy.

請求項3においては、前記熱処理中の合金の部分融解発生温度が合金の平均組成の固相線温度と略同一となるために要する時間を、熱処理前の合金に含有される化合物の析出物・晶出物の短径のうち最大値を拡散距離とし、前記拡散距離を拡散するための拡散時間を、拡散距離と拡散係数と拡散時間との関係を決定する式を用いて各合金元素について求め、得られた拡散時間のうち最大値と推定するものである。   In claim 3, the time required for the partial melting occurrence temperature of the alloy during the heat treatment to be substantially the same as the solidus temperature of the average composition of the alloy is determined by the amount of precipitates of compounds contained in the alloy before the heat treatment. The maximum value of the minor axis of the crystallized material is taken as the diffusion distance, and the diffusion time for diffusing the diffusion distance is obtained for each alloy element using an equation that determines the relationship between the diffusion distance, the diffusion coefficient, and the diffusion time. The estimated diffusion time is estimated to be the maximum value.

本発明の効果として、以下に示すような効果を奏する。   As effects of the present invention, the following effects can be obtained.

請求項1においては、処理中に上昇する合金の部分融解発生温度に基づいて、処理温度を変化させることができる。従って、処理開始時の処理温度に設定される処理開始段階での部分融解発生温度よりも、高い温度(固相線温度により近い温度)を処理温度とすることができ、処理温度の上昇による処理時間の短縮を図ることができる。
特に、溶体化処理においては、処理温度上昇に基づく合金元素の固溶量の増大によって、合金の機械的性質(硬さ、引張強度、耐力等)の向上を図ることができる。
In the first aspect, the processing temperature can be changed based on the partial melting occurrence temperature of the alloy rising during the processing. Accordingly, the processing temperature can be set to a temperature higher than the partial melting occurrence temperature at the processing start stage set to the processing temperature at the start of processing (a temperature closer to the solidus temperature), and processing due to an increase in processing temperature. Time can be shortened.
In particular, in the solution treatment, the mechanical properties (hardness, tensile strength, proof stress, etc.) of the alloy can be improved by increasing the solid solution amount of the alloy element based on the treatment temperature rise.

請求項2においては、前期加熱過程を終えた時点で、合金の部分融解発生温度が合金の平均組成の固相線温度と略同一となっているので、後期加熱過程では、処理開始段階での部分融解発生温度よりも高い温度を処理温度とすることができるので、処理温度の上昇による処理時間の短縮を図ることができる。   In claim 2, since the partial melting occurrence temperature of the alloy is substantially the same as the solidus temperature of the average composition of the alloy when the first heating process is finished, in the second heating process, Since the temperature higher than the partial melting occurrence temperature can be set as the processing temperature, the processing time can be shortened by increasing the processing temperature.

請求項3においては、熱処理中の合金の部分融解発生温度が合金の平均組成の固相線温度と略同一となるために要する時間を推定することができ、これに基づいて前期加熱過程を定めることができる。   In claim 3, the time required for the partial melting temperature of the alloy during the heat treatment to be substantially the same as the solidus temperature of the average composition of the alloy can be estimated, and based on this, the previous heating process is determined. be able to.

次に、発明の実施の形態を説明する。
図1は本発明の実施例に係る溶体化処理の流れ図、図2は本発明の実施例に係る溶体化処理のプロセスを説明する図、図3は合金における析出物・晶出物の様子を示す図である。
図4は合金に含有される化合物の析出物・晶出物とその短径の測定結果の一例を示す図表、図5はアルミニウム合金のAl中の各合金元素の拡散距離の計算結果の一例を示す図表である。
Next, embodiments of the invention will be described.
FIG. 1 is a flow chart of a solution treatment according to an embodiment of the present invention, FIG. 2 is a diagram for explaining a process of a solution treatment according to an embodiment of the present invention, and FIG. 3 shows a state of precipitates and crystallized materials in an alloy. FIG.
FIG. 4 is a chart showing an example of measurement results of precipitates / crystallized compounds and their minor diameters contained in the alloy, and FIG. 5 is an example of calculation results of diffusion distances of each alloy element in Al of the aluminum alloy. It is a chart shown.

図1に示す如く、合金の熱処理方法は、その加熱処理工程において、前期加熱過程(S11a)と、後期加熱過程(S11b)とを少なくとも実行し、図2(b)に示す如く、前期加熱過程(S11a)と後期加熱過程(S11b)とで異なる温度環境を処理物に与えることを特徴としている。
なお、本発明に係る合金の熱処理方法は、合金の均質化処理や溶体化処理等の熱処理の方法に適用させることができる。
As shown in FIG. 1, in the heat treatment process of the alloy, in the heat treatment process, at least the first heating process (S11a) and the second heating process (S11b) are executed, and as shown in FIG. A different temperature environment is given to a processed material in (S11a) and a late heating process (S11b), It is characterized by the above-mentioned.
The alloy heat treatment method according to the present invention can be applied to heat treatment methods such as alloy homogenization treatment and solution treatment.

以下に示す本実施例では、本発明に係る合金の熱処理方法を採用した熱処理の例として、溶体化処理について説明する。
なお、溶体化処理の処理物は、溶体化処理前のアルミニウム合金であり、以下「合金」と記載する。
In the present embodiment described below, solution treatment will be described as an example of heat treatment employing the alloy heat treatment method according to the present invention.
In addition, the processed material of the solution treatment is an aluminum alloy before the solution treatment, and is hereinafter referred to as “alloy”.

図1に示す如く、溶体化処理(S11)と、焼入れ処理(S12)と、時効処理(S13)との、アルミニウム合金の一連の熱処理を行う場合に、このうち溶体化処理(S11)において、前期加熱過程(S11a)と、後期加熱過程(S11b)とを行う。   As shown in FIG. 1, in the case of performing a series of heat treatments of an aluminum alloy including solution treatment (S11), quenching treatment (S12), and aging treatment (S13), of these, in solution treatment (S11), The first heating process (S11a) and the second heating process (S11b) are performed.

前期溶体化処理(S11)の第一段階である前期加熱過程(S11a)において、合金を、前期加熱処理温度で、前期加熱処理時間だけ保持させる。
図2(a)に示す如く、前期加熱過程(S11a)での処理温度である前期加熱処理温度は、溶体化処理前の合金に部分融解(バーニング)が発生する温度(以下「初期部分融解発生温度」と記載する)よりも低い温度とする。初期部分融解発生温度は、合金に基づいて決定され、前期加熱処理温度は、合金に部分融解が発生しないために十分な程度に初期部分融解発生温度よりも低い温度が採用される。
In the first heating step (S11a), which is the first stage of the first solution treatment (S11), the alloy is held at the first heating temperature for the first heating time.
As shown in FIG. 2 (a), the pre-heating temperature, which is the processing temperature in the pre-heating process (S11a), is the temperature at which partial melting (burning) occurs in the alloy before solution treatment (hereinafter referred to as "initial partial melting occurrence"). The temperature is lower than that described in “Temperature”. The initial partial melting occurrence temperature is determined on the basis of the alloy, and a temperature lower than the initial partial melting occurrence temperature is adopted as the initial heat treatment temperature sufficiently to prevent partial melting in the alloy.

また、前期加熱過程(S11a)での処理時間である前期加熱処理時間は、処理温度を前期加熱処理温度まで昇温してから、溶体化処理中の部分融解発生温度が、合金の平均組成の固相線温度(以下「固相線温度」と記載する)と略同一となるまでの時間以上の時間とする。なお、固相線温度は、合金の平均組成において、固相と液相との境界を形成する温度であり、加熱により固相の一部が溶け始める温度である。   The pre-heating time, which is the processing time in the pre-heating process (S11a), is that the partial melting occurrence temperature during the solution treatment is equal to the average composition of the alloy after the processing temperature is raised to the pre-heating temperature. The time is equal to or longer than the time until it becomes substantially the same as the solidus temperature (hereinafter referred to as “solidus temperature”). The solidus temperature is a temperature that forms a boundary between the solid phase and the liquid phase in the average composition of the alloy, and is a temperature at which a part of the solid phase starts to melt by heating.

溶体化処理前の合金は、組成が均一でないため、平均組成の合金に部分融解が発生するとされる温度よりも、低い温度でも部分融解を発生することがある。また、合金の加熱により合金元素の固溶化が進行すれば、組成のばらつきが低減し、合金に部分融解が発生する温度は、平均組成の合金が融解する温度(平均組成の固相線温度)となる。すなわち、合金の部分融解発生温度は、溶体化処理の進行に伴い上昇することとなる。
従って、溶体化処理の進行に伴って、初期部分融解発生温度であった部分融解発生温度は、上昇して、固相線温度と略同一となる状態が発生することとなる。前期加熱処理時間の求め方については後述する。
Since an alloy before solution treatment is not uniform in composition, partial melting may occur even at a temperature lower than the temperature at which partial melting occurs in an alloy having an average composition. Moreover, if the alloy element is solidified by heating the alloy, the variation in composition is reduced, and the temperature at which partial melting occurs in the alloy is the temperature at which the alloy with the average composition melts (the solidus temperature of the average composition). It becomes. That is, the partial melting occurrence temperature of the alloy increases as the solution treatment progresses.
Therefore, as the solution treatment progresses, the partial melting generation temperature, which was the initial partial melting generation temperature, increases, and a state that is substantially the same as the solidus temperature occurs. The method for obtaining the first heat treatment time will be described later.

上記前期加熱過程(S11a)に続いて行われる後期加熱過程(S11b)では、合金を、後期加熱処理温度で、後期加熱処理時間だけ保持させる。   In the late heating process (S11b) performed subsequent to the early heating process (S11a), the alloy is held at the late heating temperature for the late heating time.

後期加熱過程(S11b)での処理温度である後期加熱処理温度は、固相線温度よりも低い温度とする。後期加熱過程(S11b)では、部分融解発生温度は固相線温度よりも高くなるため、固相線温度以下であれば合金に部分融解は発生しない。なお、後期加熱処理温度は、処理時間の短縮のために、初期部分融解発生温度と固相線温度の間の温度であって、固相線温度により近い温度とすることが好ましい。   The late heat treatment temperature, which is the treatment temperature in the late heating step (S11b), is set to a temperature lower than the solidus temperature. In the latter heating process (S11b), the partial melting occurrence temperature becomes higher than the solidus temperature, and therefore, the partial melting does not occur in the alloy as long as it is equal to or lower than the solidus temperature. The late heat treatment temperature is preferably a temperature between the initial partial melting occurrence temperature and the solidus temperature, and is closer to the solidus temperature in order to shorten the treatment time.

後期加熱過程(S11b)での処理時間である後期加熱処理時間は、前期加熱過程ののち、処理温度を後期加熱処理温度まで昇温してから、合金元素(合金を構成する元素)が適当に固溶化した状態に拡散するまでの時間である。後期加熱処理時間の求め方については後述する。
なお、上記前期加熱処理時間・後期加熱処理時間は、合金をそれぞれ前期加熱処理温度・後期加熱処理温度で保持する時間とする。すなわち、合金の昇温時間は処理時間に含まれない。
The late heat treatment time, which is the treatment time in the late heating process (S11b), is set so that the alloying elements (elements constituting the alloy) are appropriately set after raising the treatment temperature to the late heating temperature after the early heating process. This is the time until diffusion into a solid solution state. The method for obtaining the late heat treatment time will be described later.
The above-mentioned first heat treatment time and late heat treatment time are the times for holding the alloy at the first heat treatment temperature and the latter heat treatment temperature, respectively. That is, the temperature raising time of the alloy is not included in the processing time.

上記後期加熱過程(S11b)に続いて、焼入れ処理(S12)では、溶体化処理(S11)を終えた合金を強制的に冷却する。これにより、合金は常温において合金元素が固溶化した過飽和固溶体となる。
さらに、焼入れ処理(S12)に続いて、時効処理(S13)にて、過飽和固溶体を比較的低温に保持し、均一な析出物を形成させ、合金の機械的性質を向上させる。
Subsequent to the latter heating step (S11b), in the quenching process (S12), the alloy after the solution treatment (S11) is forcibly cooled. As a result, the alloy becomes a supersaturated solid solution in which the alloy elements are solid solution at room temperature.
Further, in the aging treatment (S13) following the quenching treatment (S12), the supersaturated solid solution is maintained at a relatively low temperature to form uniform precipitates and improve the mechanical properties of the alloy.

図2(a)に示す如く、従来の一般的な溶体化処理では、合金は、合金の初期部分融解発生温度よりも低い略一定の温度環境で、所定の処理時間保持されたのち、冷却される。
これに対して、本発明の実施例に係る溶体化処理では、合金に二段階の温度環境を与えている。つまり、一段階目の環境では、部分融解発生温度が固相線温度と略同一と推定される状態となるまでは初期部分融解発生温度よりも低い処理温度を与え、二段階目の環境となるそれ以降は、一段階目よりも高い処理温度で、かつ固相線温度により近い処理温度を与えている。
これにより、合金に部分融解を発生させずに高温で処理することが可能となり、処理時間の大幅な短縮が図られ、生産性の向上とエネルギー消費量の低減に寄与することができる。
As shown in FIG. 2 (a), in the conventional general solution treatment, the alloy is cooled after being maintained for a predetermined treatment time in a substantially constant temperature environment lower than the initial partial melting occurrence temperature of the alloy. The
On the other hand, in the solution treatment according to the embodiment of the present invention, a two-stage temperature environment is given to the alloy. In other words, in the first stage environment, a process temperature lower than the initial partial melting generation temperature is given until the partial melting generation temperature is estimated to be substantially the same as the solidus temperature, and the second stage environment is obtained. Thereafter, a processing temperature higher than that of the first stage and a processing temperature closer to the solidus temperature is given.
As a result, the alloy can be processed at a high temperature without causing partial melting, the processing time can be greatly shortened, and the productivity can be improved and the energy consumption can be reduced.

また、溶体化処理の処理温度を従来と比較して高く設定できるので、処理温度上昇に基づく合金元素の固溶量の増大によって、合金の機械的性質(硬さ、引張強度、耐力等)を向上させることが期待される。   In addition, since the treatment temperature of the solution treatment can be set higher than in the past, the mechanical properties (hardness, tensile strength, proof stress, etc.) of the alloy can be increased by increasing the solid solution amount of the alloy element based on the treatment temperature rise. It is expected to improve.

次に、前記前期加熱処理時間の求め方について説明する。
まず、熱処理される合金に含有される析出物・晶出物の化合物相の同定を行い、析出物・晶出物を構成する化合物を特定する。
そして、合金に含有される化合物について、最も大きな短径dを有する析出物・晶出物の短径dの大きさを測定する。なお、析出物・晶出物は様々な形状であるが、図3に示す如く、略楕円体と捉えてこの短径dを測定する。なお、析出物・晶出物がネットワーク状に現れている場合は、ネットワークの幅を短径dとする。
Next, the method for obtaining the previous heat treatment time will be described.
First, the compound phase of the precipitate / crystallized substance contained in the alloy to be heat-treated is identified, and the compound constituting the precipitate / crystallized substance is specified.
And about the compound contained in an alloy, the magnitude | size of the minor axis d of the precipitate and crystallization thing which has the largest minor axis d is measured. Although the precipitates and crystallized substances have various shapes, as shown in FIG. In the case where precipitates / crystallized substances appear in a network shape, the width of the network is defined as the minor axis d.

続いて、合金元素の拡散距離xが、上記短径dの値と略同一となる拡散時間tを、下記[数1]に基づいて算出する。そして、全ての合金元素の中で、最も大きな値の拡散時間tを、熱処理中の部分融解発生温度が固相線温度と略同一となるために要する時間と推定し、これを前期加熱処理時間とする。
なお、[数1]において、xは拡散距離、Dは拡散係数、tは拡散時間である。
Subsequently, a diffusion time t at which the diffusion distance x of the alloy element is substantially the same as the value of the minor axis d is calculated based on the following [Equation 1]. Of all the alloy elements, the diffusion time t having the largest value is estimated as the time required for the partial melting occurrence temperature during the heat treatment to be substantially the same as the solidus temperature, and this is the previous heat treatment time. And
In [Expression 1], x is a diffusion distance, D is a diffusion coefficient, and t is a diffusion time.

[数1]
X=(Dt)0.5
[Equation 1]
X = (Dt) 0.5

次に、前記後期加熱処理時間の求め方について説明する。
合金に含有されるそれぞれの化合物について、合金元素の目標拡散距離を決定する。目標拡散距離は実験的に得られた値に基づいて任意に定められる値である。例えば、従来の溶体化処理方法にて溶体化処理されたあとの合金より実験的に得られた値に基づいて目標拡散距離を決定することができる。
目標拡散距離は、前期加熱過程と後期加熱過程とにおける合金元素の拡散距離を合わせたものであり、後期加熱過程での合金元素の拡散距離は、目標拡散距離から前期加熱過程での拡散距離を除いたものとなる。
上記の如く決定した後期加熱過程での合金元素の拡散距離の値を用いて、前記前期加熱処理時間を求めるときと同様に、[数1]を用いて、後期加熱処理時間を算出する。
Next, how to determine the latter heat treatment time will be described.
For each compound contained in the alloy, a target diffusion distance of the alloy element is determined. The target diffusion distance is an arbitrarily determined value based on an experimentally obtained value. For example, the target diffusion distance can be determined based on a value experimentally obtained from an alloy after solution treatment by a conventional solution treatment method.
The target diffusion distance is the sum of the diffusion distances of the alloy elements in the early heating process and the late heating process. The diffusion distance of the alloy elements in the late heating process is the diffusion distance in the early heating process from the target diffusion distance. Excluded.
Using the value of the diffusion distance of the alloy element in the late heating process determined as described above, the late heat treatment time is calculated using [Equation 1] in the same manner as when obtaining the previous heat treatment time.

なお、本実施例においては、前期加熱処理時及び後期加熱処理時間は、熱処理される合金に含有される析出物・晶出物の大きさと、合金元素の目標拡散処理とに基づいて決定しているが、前期加熱処理時及び後期加熱処理時間ともに、実験により得た値に基づいて定めることもできる。   In this example, the first heat treatment time and the second heat treatment time are determined based on the size of the precipitate / crystallized material contained in the heat-treated alloy and the target diffusion treatment of the alloy element. However, both the first heat treatment time and the second heat treatment time can be determined based on values obtained by experiments.

続いて、上記溶体化処理の実施例について説明する。
本実施例では、主な析出物・晶出物がAl2CuとMg2Siであるアルミニウム合金を処理物として溶体化処理を行った。この溶体化処理では、従来の溶体化処理の手法にて、480℃で240分加熱保持したものと略同様の合金元素の拡散距離を得ることを目標とした。
なお、図5に示す図表は、[数1]に基づいて各処理温度におけるAl中の各合金元素の拡散距離を示すものであり、この図5に示す図表に基づいて各合金元素の目標とするAl中の拡散距離(480℃で240分加熱保持した場合のAl中の拡散距離)を推定すると、Mgの目標拡散距離は約39μmであり、Siの目標拡散距離は約37μmであり、Cuの目標拡散距離は約20μmである。
Next, examples of the solution treatment will be described.
In this example, the solution treatment was performed using an aluminum alloy whose main precipitates / crystallized materials are Al 2 Cu and Mg 2 Si as a processed material. In this solution treatment, the aim was to obtain a diffusion distance of alloy elements substantially the same as that obtained by heating and holding at 480 ° C. for 240 minutes by a conventional solution treatment method.
The chart shown in FIG. 5 shows the diffusion distance of each alloy element in Al at each processing temperature based on [Equation 1]. Based on the chart shown in FIG. Estimating the diffusion distance in Al (diffusion distance in Al when kept heated at 480 ° C. for 240 minutes), the target diffusion distance of Mg is about 39 μm, the target diffusion distance of Si is about 37 μm, and Cu The target diffusion distance is about 20 μm.

まず、合金に含まれる化合物の相の同定を行ったところ、化合物は主にAl2CuとMg2Siであり、主な合金元素はAl、Mg、Si、Cuであった。そして、これらの化合物において析出物・晶出物の最も大きな短径dを計測したところ、Al2Cuではd=0.3μm、Mg2Siではd=5μmであった(図4)。 First, the phases of the compounds contained in the alloy were identified. The compounds were mainly Al 2 Cu and Mg 2 Si, and the main alloy elements were Al, Mg, Si, and Cu. In these compounds, the largest minor axis d of the precipitate / crystallized substance was measured, and d = 0.3 μm for Al 2 Cu and d = 5 μm for Mg 2 Si (FIG. 4).

そこで、初期部分融解発生温度よりも低い温度である480℃を前期加熱処理温度と設定し、480℃のAlの中において、MgとSiとが拡散距離x=5μmだけ拡散する拡散時間、Cuが拡散距離x=0.3μmだけ拡散する拡散時間を、[数1]に基づいてそれぞれ算出し、これらのうち最も大きな値となったものを、前期加熱処理時間とした。この結果、前期加熱処理時間を5分と設定した。   Therefore, 480 ° C., which is lower than the initial partial melting occurrence temperature, is set as the initial heat treatment temperature, and in Al at 480 ° C., the diffusion time in which Mg and Si diffuse by the diffusion distance x = 5 μm, Cu is The diffusion time for diffusing by the diffusion distance x = 0.3 μm was calculated based on [Equation 1], and the largest value among them was defined as the previous heat treatment time. As a result, the previous heat treatment time was set to 5 minutes.

また、後期加熱処理温度を固相線温度よりも低い温度である540℃と設定した。480℃で5分保持した場合の各元素のAl中での拡散距離は、Mgは約6μm、Siは約5μm、Cuは約3μmと推定される。従って、後期溶体化処理過程では、540℃のAlの中において、Mgを拡散距離x=約33μm、Siを拡散距離x=約32μm、Cuを拡散距離x=約17μmだけ拡散する拡散時間tを、[数1]に基づいてそれぞれ算出し、これらのうち最も大きな値となったものを、後期加熱処理時間とした。この結果、後期加熱処理時間を40分と設定した。   The late heat treatment temperature was set to 540 ° C., which is lower than the solidus temperature. The diffusion distance of each element in Al when held at 480 ° C. for 5 minutes is estimated to be about 6 μm for Mg, about 5 μm for Si, and about 3 μm for Cu. Therefore, in the late solution treatment process, in Al at 540 ° C., the diffusion time t for diffusing Mg by the diffusion distance x = about 33 μm, Si by the diffusion distance x = about 32 μm, and Cu by the diffusion distance x = about 17 μm is set. , [Equation 1] was calculated, and the largest value among these was determined as the late heat treatment time. As a result, the late heat treatment time was set to 40 minutes.

上述の如く、従来の溶体化処理の手法にて、480℃で240分加熱保持したものと略同様の合金元素の拡散距離を得るために、本発明では、前期加熱過程において、前期加熱処理温度を480℃、前期加熱処理時間を5分とし、後期加熱過程において、後期加熱処理温度を540℃、後期加熱処理時間を40分とした。溶体化処理において加熱保持する時間は、従来の240分から45分に大幅に短縮されたことになる。   As described above, in the present invention, in order to obtain the diffusion distance of the alloy element substantially the same as that obtained by heating and maintaining at 480 ° C. for 240 minutes by the conventional solution treatment method, Was 480 ° C., the first heat treatment time was 5 minutes, and the second heat treatment temperature was 540 ° C. and the second heat treatment time was 40 minutes in the latter heating process. The time for heating and holding in the solution treatment is greatly reduced from the conventional 240 minutes to 45 minutes.

なお、上記実施例では、アルミニウム合金の熱処理のうち、溶体化処理について述べているが、均質化処理の場合も、上記合金の熱処理方法を適用させることができる。
すなわち、均質化処理において、初期部分融解発生温度以下の温度で、処理中の部分融解発生温度が合金の平均組成の固相線温度となるまで加熱する前期加熱過程と、平均組成の固相線により近い温度で、合金元素が十分に拡散されるまで加熱する後期加熱過程を行うのである。なお、前期熱処理過程の前期加熱処理時間は、上述の溶体化処理の場合と同様に、熱処理前の合金に含有される析出物・晶出物の大きさに基づいて定めることができる。
In the above embodiment, the solution treatment is described as the heat treatment of the aluminum alloy. However, the heat treatment method of the alloy can be applied also in the case of the homogenization treatment.
That is, in the homogenization process, the initial heating process in which heating is performed at a temperature equal to or lower than the initial partial melting generation temperature until the partial melting generation temperature during the process reaches the solidus temperature of the average composition of the alloy, and the solidus line of the average composition The latter heating process is performed at a temperature closer to the temperature until the alloy elements are sufficiently diffused. In addition, the heat treatment time of the first heat treatment process can be determined based on the size of the precipitate / crystallized material contained in the alloy before the heat treatment, as in the case of the solution treatment described above.

本発明の実施例に係る溶体化処理の流れ図。The flowchart of the solution treatment which concerns on the Example of this invention. 本発明の実施例に係る溶体化処理のプロセスを説明する図。The figure explaining the process of the solution treatment which concerns on the Example of this invention. 合金における析出物・晶出物の様子を示す図。The figure which shows the mode of the precipitate and crystallized substance in an alloy. 合金に含有される化合物の析出物・晶出物とその短径の測定結果の一例を示す図表。The table | surface which shows an example of the measurement result of the deposit and the crystallized substance of the compound contained in an alloy, and its short axis. アルミニウム合金のAl中の各合金元素の拡散距離の計算結果の一例を示す図表。The chart which shows an example of the calculation result of the diffusion distance of each alloy element in Al of aluminum alloy.

Claims (3)

アルミニウム合金の熱処理において、
処理温度を処理開始時の合金の部分融解発生温度よりも低い温度とする前期加熱過程と、処理温度を前期加熱過程よりも高く合金の平均組成の固相線温度よりも低い温度とする後期加熱過程とを含むことを
特徴とする合金の熱処理方法。
In heat treatment of aluminum alloy,
Early heating process in which the processing temperature is lower than the partial melting occurrence temperature of the alloy at the start of processing, and late heating in which the processing temperature is higher than the previous heating process and lower than the solidus temperature of the average composition of the alloy And a heat treatment method for the alloy.
前記合金の熱処理方法において、
前期加熱過程は、少なくとも合金の部分融解発生温度が合金の平均組成の固相線温度と略同一となるまで処理を行う、
請求項1に記載の合金の熱処理方法。
In the heat treatment method of the alloy,
The first heating process is performed until at least the partial melting temperature of the alloy is substantially the same as the solidus temperature of the average composition of the alloy.
The heat processing method of the alloy of Claim 1.
前記熱処理中の合金の部分融解発生温度が合金の平均組成の固相線温度と略同一となるために要する時間を、
熱処理前の合金に含有される化合物の析出物・晶出物の短径のうち最大値を拡散距離とし、
前記拡散距離を拡散するための拡散時間を、拡散距離と拡散係数と拡散時間との関係を決定する式を用いて各合金元素について求め、
得られた拡散時間のうち最大値と推定する、
請求項2に記載の合金の熱処理方法。

The time required for the partial melting occurrence temperature of the alloy during the heat treatment to be substantially the same as the solidus temperature of the average composition of the alloy,
The maximum value of the short diameters of the precipitates and crystallized compounds contained in the alloy before heat treatment is the diffusion distance,
The diffusion time for diffusing the diffusion distance is determined for each alloy element using an equation that determines the relationship between the diffusion distance, the diffusion coefficient, and the diffusion time,
Estimate the maximum value of the obtained diffusion time.
A method for heat-treating the alloy according to claim 2.

JP2005081595A 2005-03-22 2005-03-22 Alloy heat treatment method Expired - Fee Related JP4635669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005081595A JP4635669B2 (en) 2005-03-22 2005-03-22 Alloy heat treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005081595A JP4635669B2 (en) 2005-03-22 2005-03-22 Alloy heat treatment method

Publications (2)

Publication Number Publication Date
JP2006265582A true JP2006265582A (en) 2006-10-05
JP4635669B2 JP4635669B2 (en) 2011-02-23

Family

ID=37201854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005081595A Expired - Fee Related JP4635669B2 (en) 2005-03-22 2005-03-22 Alloy heat treatment method

Country Status (1)

Country Link
JP (1) JP4635669B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104532172A (en) * 2014-12-09 2015-04-22 中国科学院上海技术物理研究所 Heat treatment method for eliminating tellurium-rich precipitate-phase defect in tellurium-zinc-cadmium material through two-step process
JP2018520267A (en) * 2015-04-28 2018-07-26 コンソリデイテット エンジニアリング カンパニー,インコーポレイテッド System and method for heat treating aluminum alloy castings

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61163232A (en) * 1985-01-11 1986-07-23 Kobe Steel Ltd High strength al-mg-si alloy and its manufacture
JPH06220564A (en) * 1992-12-28 1994-08-09 Nippon Light Metal Co Ltd Aluminum alloy excellent in corrosion resistance and undercoat coating treatability and its production
JPH1171663A (en) * 1997-06-18 1999-03-16 Tateyama Alum Ind Co Ltd Artificial aging treatment of aluminum-magnesium-silicon series aluminum alloy
JP2001279359A (en) * 2000-01-25 2001-10-10 Nippon Light Metal Co Ltd Method for producing pellicle frame and hollow extruded material for pellicle frame
JP2002348631A (en) * 2001-05-22 2002-12-04 Aisin Seiki Co Ltd Aluminum-zinc-magnesium aluminum alloy for casting and forging, aluminum-zinc-magnesium cast and forged article, and manufacturing method therefor
JP2003253367A (en) * 2002-03-05 2003-09-10 Asahi Tec Corp PRECIPITATION HARDENED Al ALLOY
JP2003286552A (en) * 2002-03-28 2003-10-10 Kobe Steel Ltd METHOD FOR MANUFACTURING Al-Mg-Si ALLOY SHEET

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61163232A (en) * 1985-01-11 1986-07-23 Kobe Steel Ltd High strength al-mg-si alloy and its manufacture
JPH06220564A (en) * 1992-12-28 1994-08-09 Nippon Light Metal Co Ltd Aluminum alloy excellent in corrosion resistance and undercoat coating treatability and its production
JPH1171663A (en) * 1997-06-18 1999-03-16 Tateyama Alum Ind Co Ltd Artificial aging treatment of aluminum-magnesium-silicon series aluminum alloy
JP2001279359A (en) * 2000-01-25 2001-10-10 Nippon Light Metal Co Ltd Method for producing pellicle frame and hollow extruded material for pellicle frame
JP2002348631A (en) * 2001-05-22 2002-12-04 Aisin Seiki Co Ltd Aluminum-zinc-magnesium aluminum alloy for casting and forging, aluminum-zinc-magnesium cast and forged article, and manufacturing method therefor
JP2003253367A (en) * 2002-03-05 2003-09-10 Asahi Tec Corp PRECIPITATION HARDENED Al ALLOY
JP2003286552A (en) * 2002-03-28 2003-10-10 Kobe Steel Ltd METHOD FOR MANUFACTURING Al-Mg-Si ALLOY SHEET

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104532172A (en) * 2014-12-09 2015-04-22 中国科学院上海技术物理研究所 Heat treatment method for eliminating tellurium-rich precipitate-phase defect in tellurium-zinc-cadmium material through two-step process
JP2018520267A (en) * 2015-04-28 2018-07-26 コンソリデイテット エンジニアリング カンパニー,インコーポレイテッド System and method for heat treating aluminum alloy castings
US11408062B2 (en) 2015-04-28 2022-08-09 Consolidated Engineering Company, Inc. System and method for heat treating aluminum alloy castings

Also Published As

Publication number Publication date
JP4635669B2 (en) 2011-02-23

Similar Documents

Publication Publication Date Title
Ma et al. Microstructural refinement and property enhancement of cast light alloys via friction stir processing
JP5711253B2 (en) Method of forming a component of complex shape from sheet material
JP5295951B2 (en) Treatment of Al / Zn based alloy coated products
CA2921895C (en) Method for the manufacturing of al-mg-si and al-mg-si-cu extrusion alloys
RU2015132953A (en) CORROSION-RESISTANT ALUMINUM ALLOYS WITH HIGH MAGNESIUM CONTENT AND METHODS FOR PRODUCING THEM
JP2008101264A (en) Heat-resistant aluminum-alloy extruded material and heat treatment method therefor
JP6064874B2 (en) Method for producing aluminum alloy material
Pezda The effect of the T6 heat treatment on hardness and microstructure of the EN AC-AlSi12CuNiMg alloy
JP4635669B2 (en) Alloy heat treatment method
Kaiser Effect of Solution Treatment on the Age-Hardening Behavior of Al-12Si-1Mg-1Cu Piston Alloy with Trace-Zr Addition
JP2007070685A (en) Highly workable magnesium alloy, and method for producing the same
JP2009203516A (en) Aluminum alloy
CN103119190B (en) Method for heat-treating a cast component
CN106350756B (en) A kind of homogenization heat treatment method of magnesium-rare earth casting
JPH07116574B2 (en) Method for heat treating a cast nickel-base superalloy article
JP5279119B2 (en) Partially modified aluminum alloy member and manufacturing method thereof
JP6026431B2 (en) Lead-free rolled aluminum plain bearing
JP2011127163A (en) Magnesium alloy sheet material having excellent formability, and method for production thereof
JP2008127665A (en) Method for producing aluminum alloy cylinder block
JP2007239029A (en) Malleable heat-resistant aluminum alloy
JP4110620B2 (en) Heat treatment method of aluminum alloy
US20110030855A1 (en) CORROSION RESISTANCE OF THE CAST Mg ALLOYS BY NOVEL MICROSTRUCTURAL PHASE MODIFICATIONS
TW200303368A (en) Cu-based alloy and method of manufacturing high strength and high thermal conductive forged article using the same
JP2008002957A (en) Creep characteristics evaluation and formulation method of aluminum alloy material, estimation method for the creep characteristics of aluminum alloy, and manufacturing method of aluminum alloy casting
JP2010106335A (en) Magnesium alloy for forging

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100521

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100806

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101108

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees