JP2008150652A - Weldable aluminum alloy for forging having excellent stress corrosion cracking resistance, and forged part using the same - Google Patents

Weldable aluminum alloy for forging having excellent stress corrosion cracking resistance, and forged part using the same Download PDF

Info

Publication number
JP2008150652A
JP2008150652A JP2006338170A JP2006338170A JP2008150652A JP 2008150652 A JP2008150652 A JP 2008150652A JP 2006338170 A JP2006338170 A JP 2006338170A JP 2006338170 A JP2006338170 A JP 2006338170A JP 2008150652 A JP2008150652 A JP 2008150652A
Authority
JP
Japan
Prior art keywords
forging
aluminum alloy
corrosion cracking
stress corrosion
forged product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006338170A
Other languages
Japanese (ja)
Other versions
JP4933890B2 (en
Inventor
Toshiya Okada
俊哉 岡田
Harutaka Yoshida
晴高 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky KK
Original Assignee
Furukawa Sky KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky KK filed Critical Furukawa Sky KK
Priority to JP2006338170A priority Critical patent/JP4933890B2/en
Publication of JP2008150652A publication Critical patent/JP2008150652A/en
Application granted granted Critical
Publication of JP4933890B2 publication Critical patent/JP4933890B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an Al-Zn-Mg based weldable high strength aluminum material for forging having excellent stress corrosion cracking resistance, and, particularly, even in a state after welding, having excellent stress corrosion cracking resistance. <P>SOLUTION: The aluminum alloy for forging has a composition comprising 2.0 to 3.9% Zn and 0.1 to 3.5% Mg in such a manner that the total content of Zn+Mg lies within the range of 4.0 to 6.0%, further comprising 0.02 to 0.20% Cu, further comprising one or more kinds selected from 0.20 to 0.70% Mn, 0.10 to 0.30% Cr, 0.05 to 0.30% Zr and 0.01 to 0.10% V in such a manner that the total content of Mn, Cr, Zr and V is ≥0.25%, and further comprising one or more kinds selected from 0.01 to 0.20% Ti, 0.001 to 0.05% B and 0.01 to 0.5% C, and the balance substantially Al. The total content of Zn+Mg is preferably controlled to the range of 4.3 to 5.5%. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、一般溶接構造部材や、航空機、鉄道車両、自動車等、あらゆる分野の高強度が要求される部材や部品として好適に使用される鍛造用高強度アルミニウム合金、およびその合金を用いた鍛造品に関するものであり、特に耐応力腐食割れ性に優れると同時に、溶接が可能な鍛造用アルミニウム合金、および鍛造品に関するものである。   The present invention relates to a general welded structural member, a high-strength aluminum alloy for forging suitably used as a member or part that requires high strength in various fields, such as aircraft, railway vehicles, and automobiles, and forging using the alloy In particular, the present invention relates to an aluminum alloy for forging that is excellent in stress corrosion cracking resistance and can be welded, and a forged product.

従来、高強度を必要とする各種構造材あるいは各種部品等に使用される鍛造用アルミニウム合金としては、7050合金、7075合金、7175合金、7475合金、7N01合金等のAl−Zn−Mg−Cu系合金もしくはAl−Zn−Mg系の合金が多用されている。   Conventionally, as forging aluminum alloys used for various structural materials or various parts that require high strength, Al-Zn-Mg-Cu alloys such as 7050 alloy, 7075 alloy, 7175 alloy, 7475 alloy, 7N01 alloy, etc. Alloys or Al—Zn—Mg alloys are often used.

ところで各種構造材や部品などについては、近年はよりその形状が複雑化する傾向が強く、また製造コストの低減の要請も強いため、鍛造用としては型鍛造材より自由鍛造材が多く用いられるようになっており、また鍛造後に溶接を行なうケースも増えてきている。しかしながら、前述のような従来の鍛造用合金のうち、7050合金、7075合金、7175合金、7475合金は、いずれも溶接性が著しく劣り、そのため鍛造後に溶接する用途には適用することが困難であり、そこで溶接を必要とする場合には、強度を若干犠牲にして7N01合金を用いることがある。   By the way, as for various structural materials and parts, the shape tends to become more complicated in recent years, and there is a strong demand for reduction in manufacturing cost. Therefore, free forging is used more frequently for forging than die forging. In addition, there are an increasing number of cases where welding is performed after forging. However, among the conventional forging alloys as described above, 7050 alloy, 7075 alloy, 7175 alloy, and 7475 alloy are all inferior in weldability, so that it is difficult to apply to applications for welding after forging. Therefore, when welding is required, the 7N01 alloy may be used at the expense of some strength.

具体的には、JIS H4140 アルミニウムおよびアルミニウム鍛造合金(自由鍛造材)に規定される数値を示せば、A7050FH−T7452材では、最大厚みが50〜80mmの場合、L方向で引張強さ495N/mm2以上、耐力420N/mm2以上、伸び9%以上とされているのに対し、A7N01FH−T6材では、最大厚み150mm以下、L方向で引張強さ335N/mm2以上、耐力275N/mm2以上、伸び10%以上とされていて、A7050FH−T7452材と比べて、引張強さ、耐力がともに約30%低下する。 Specifically, if the numerical value prescribed | regulated to JISH4140 aluminum and aluminum forging alloy (free forging material) is shown, in A7050FH-T7452 material, when the maximum thickness is 50-80 mm, tensile strength 495N / mm in the L direction 2 or more, proof stress 420N / mm 2 or more, whereas there is a stretch of 9% or more, in A7N01FH-T6 material, maximum thickness 150mm or less, tensile L direction strength 335n / mm 2 or more, proof stress 275 N / mm 2 As described above, the elongation is 10% or more, and both the tensile strength and the proof stress are reduced by about 30% as compared with the A7050FH-T7452 material.

一方、前述のような用途について、溶接が可能なAl−Mg系合金(例えば5083合金)を用いる場合もあるが、Al−Mg系合金はAl−Zn−Mg−Cu系合金またはAl−Zn−Mg系合金と比べて強度がかなり低いため、構造材や部品として所望の強さを得るためには厚肉化が必要となり、そのため重量増加を招いてしまう。   On the other hand, there is a case where an Al—Mg-based alloy (for example, 5083 alloy) that can be welded is used for the above-described applications, but the Al—Mg-based alloy is an Al—Zn—Mg—Cu-based alloy or Al—Zn—. Since the strength is considerably lower than that of the Mg-based alloy, it is necessary to increase the thickness in order to obtain a desired strength as a structural material or a component, which leads to an increase in weight.

具体的には、JIS H4140によれば、A5083FH−O材については、最大厚み200mm以下の場合、L方向で引張強さ275N/mm2以上、耐力120N/mm2以上、伸び16%以上とされており、A7050FH−T7452材と比べて、引張強さは約40%の低下、耐力は約70%の低下となり、またA7N01FH−T6材に対しても引張強さは約20%低下、耐力は約60%の低下となってしまう。 Specifically, according to JIS H4140, for the A5083FH-O material, when the maximum thickness is 200 mm or less, the tensile strength in the L direction is 275 N / mm 2 or more, the yield strength is 120 N / mm 2 or more, and the elongation is 16% or more. Compared to the A7050FH-T7452 material, the tensile strength is reduced by about 40% and the proof stress is reduced by about 70%. Also, the tensile strength is reduced by about 20% compared to the A7N01FH-T6 material. It will be about 60% lower.

そこで、種々の複雑な形状を有する構造材や部品向けの材料として、高強度を有し、しかも溶接、特に自由鍛造が可能な材料の開発が強く求められている。   Therefore, development of materials having high strength and capable of welding, particularly free forging, is strongly demanded as materials for structural materials and parts having various complicated shapes.

一方、一般に高強度材と称されているAl−Zn−Mg−Cu系合金やAl−Zn−Mg系合金の場合、高強度になるほど応力腐食割れが生じやすくなること、すなわち応力腐食割れ感受性が増大するという問題がある。このような応力腐食割れの問題に対しては、従来から微量元素の添加、組織の形状や方向の制御、熱処理などを組み合わせる対策が従来から講じられている(例えば非特許文献1参照)。   On the other hand, in the case of Al-Zn-Mg-Cu alloy and Al-Zn-Mg alloy, which are generally called high strength materials, stress corrosion cracking is more likely to occur as the strength becomes higher. There is a problem of increasing. Conventionally, countermeasures that combine the addition of trace elements, the control of the shape and direction of the structure, heat treatment, and the like have been taken to deal with such a problem of stress corrosion cracking (see Non-Patent Document 1, for example).

具体的には、先ず微量元素の効果としては、Mn、Cr、Ti、Zr、V等を添加することにより、結晶粒が微細となって応力腐食割れ感受性が緩和させることが知られており、既にこれらの元素を含有した合金が実用化されている。また組織の形状や方向の制御としては、再結晶組織を避けて、長手方向に一様な繊維状組織(ファイバー組織)とすることにより応力腐食割れ感受性を緩和させることが公知であり、高強度材でも押出形材の場合は、このような組織制御により耐応力腐食割れ性が良好となることが知られている(例えば特許文献1参照)。さらに熱処理としては、主に時効条件を過時効状態(調質T73、T74等)にすることによって若干強度を下げ、応力腐食割れ感受性を緩和させる方法が一般的に多く用いられている(例えば非特許文献2参照)。また結晶粒径を制御することにより応力腐食割れ感受性を防ぐ方法も知られている(例えば特許文献2、特許文献3参照)
特開平11−6044号公報 特開平9−287046号公報 特開平11−1737号公報 「アルミニウムの組織と性質」1991年、296頁〜322頁、軽金属学会 「Aluminium,4」1968年、403頁〜411頁、W.Gruhl and H.Cordier
Specifically, as an effect of trace elements, it is known that by adding Mn, Cr, Ti, Zr, V, etc., the crystal grains become fine and stress corrosion cracking susceptibility is reduced. Alloys containing these elements have already been put into practical use. In addition, as a control of the shape and direction of the structure, it is known that stress corrosion cracking susceptibility is eased by avoiding the recrystallized structure and forming a uniform fibrous structure (fiber structure) in the longitudinal direction. It is known that stress corrosion cracking resistance is improved by such a structure control in the case of both extruded and extruded materials (see, for example, Patent Document 1). Furthermore, as the heat treatment, a method in which the strength is slightly lowered and the susceptibility to stress corrosion cracking is generally reduced by mainly changing the aging condition to an overaging state (tempered T73, T74, etc.) (for example, non-aging). Patent Document 2). Also known is a method for preventing stress corrosion cracking susceptibility by controlling the crystal grain size (see, for example, Patent Document 2 and Patent Document 3).
Japanese Patent Laid-Open No. 11-6044 Japanese Patent Laid-Open No. 9-287046 JP-A-11-1737 "Structure and properties of aluminum", 1991, pp. 296-322, Japan Institute of Light Metals “Aluminium, 4”, 1968, pp. 403-411; Gruhl and H.M. Cordier

前述のようなAl−Zn−Mg−Cu系合金やAl−Zn−Mg系合金などの高強度材に対する応力腐食割れ感受性の緩和策のうち、微量添加元素による効果は、鍛造材のままの状態で用いる場合は有効であり、また、熱処理による対策も鍛造後に行なうことにより効果が得られ、耐応力腐食割れ性の良好な鍛造材を得ることが可能である。   Among the above-mentioned mitigation measures for stress corrosion cracking susceptibility to high strength materials such as Al-Zn-Mg-Cu alloys and Al-Zn-Mg alloys, the effect of trace added elements remains in the forged state. In addition, it is effective when a countermeasure for heat treatment is also performed after forging, and it is possible to obtain a forging material having good stress corrosion cracking resistance.

しかしながら、鍛造材に対して溶接を行なった場合には、溶接時の入熱によって、微量元素により得られていた微細な結晶粒が粒成長して粗大化し、また繊維状組織は部分的に分断されて再結晶組織となってしまい、耐応力腐食割れ性向上の効果が失われてしまうおそれがある。さらに、溶接部近傍はT4調質の領域が形成されるため、過時効の状態がキャンセルされてしまい、その結果、部分的に耐応力腐食割れ性に優れた部位と劣る部位が混合した製品となってしまう危険性がある。ここで、溶接施工後に熱処理を施すことも可能ではあるが、製品形状やサイズによっては熱処理を行えない場合も多く、したがってこれも完全な対策とはなり得ない。   However, when welding is performed on the forged material, the fine crystal grains obtained by the trace elements grow and become coarse due to heat input during welding, and the fibrous structure is partially divided. As a result, a recrystallized structure is formed, and the effect of improving the stress corrosion cracking resistance may be lost. Furthermore, since a T4 tempered region is formed in the vicinity of the welded portion, the over-aged state is canceled, and as a result, a product in which a portion having a portion excellent in stress corrosion cracking resistance and a portion inferior in resistance are mixed. There is a risk of becoming. Here, it is possible to perform heat treatment after welding, but there are many cases where heat treatment cannot be performed depending on the product shape and size, and therefore this cannot be a complete measure.

そこで、鍛造後に溶接が行われて再結晶組織が生成されても、応力腐食割れ感受性が変わらない高強度の合金材料を開発することが望まれており、そのような合金材料が実現すれば、種々の製品への適用が可能となるとともに、複雑形状の構造部材、部品を製造することが可能となり、その用途を広げることができる。   Therefore, it is desired to develop a high-strength alloy material that does not change the susceptibility to stress corrosion cracking even if a recrystallized structure is generated by welding after forging, and if such an alloy material is realized, Application to various products becomes possible, and it becomes possible to manufacture structural members and parts having complicated shapes, and the application can be expanded.

なおここで、高強度のAl−Zn−Mg−Cu系合金またはAl−Zn−Mg系合金(7050合金、7075合金、7175合金、7475合金等)は、従来一般には、前述のように溶接性に適さない合金とされており、そこで鍛造用アルミニウム合金としては、少なくともA7N01FH−T6レベルの高強度を有していて、しかも溶接可能でかつ耐応力腐食割れ性にも優れていることが強く求められている。   Here, a high-strength Al—Zn—Mg—Cu alloy or Al—Zn—Mg alloy (7050 alloy, 7075 alloy, 7175 alloy, 7475 alloy, etc.) is generally weldable as described above. Therefore, aluminum alloys for forging are strongly required to have at least A7N01FH-T6 level strength, weldability and excellent resistance to stress corrosion cracking. It has been.

この発明は以上の事情を背景としてなされたもので、自由鍛造に適した鍛造用合金として少なくともA7NO1FH−T6レベルの高強度を有していて、しかも鍛造後の溶接が可能であり、さらに耐応力腐食割れ性に優れていて、鍛造後の溶接により再結晶組織が生成されても、充分な耐応力腐食割れ性を維持することが可能な鍛造用Al−Zn−Mg系合金を提供することを課題とするものである。また同時に、その鍛造用合金を用いて得られた鍛造品を提供する。   This invention was made against the background described above, and has at least A7NO1FH-T6 level strength as a forging alloy suitable for free forging, and can be welded after forging. To provide an Al-Zn-Mg alloy for forging that is excellent in corrosion cracking property and can maintain sufficient stress corrosion cracking resistance even if a recrystallized structure is generated by welding after forging. It is to be an issue. At the same time, a forged product obtained using the forging alloy is provided.

本発明等は前述の課題を解決するために種々検討を重ねた結果、Al−Zn−Mg系合金をベースとして、そのZn、Mg、Cu等の添加量を適切に制御することにより、強度を損うことなく、L方向、LT方向、ST方向のいずれの方向(各方向の定義については後に改めて示す)において再結晶組織が生成されても応力腐食割れが生じにくい高強度アルミニウム合金が得られることを見出した。そしてまたこのように適切な成分調整を行なった合金を用いた鍛造材では、鍛造後の溶接も可能であって、溶接後の強度も約1ヶ月の自然時効により母材の80%まで回復し、なおかつ、母材と同等の耐応力腐食割れ性も有することを見出し、この発明をなすに至った。   As a result of various investigations in order to solve the above-mentioned problems, the present invention and the like are based on an Al-Zn-Mg alloy, and by appropriately controlling the addition amount of Zn, Mg, Cu, etc., the strength is improved. Without damaging, a high-strength aluminum alloy is obtained in which stress corrosion cracking hardly occurs even if a recrystallized structure is generated in any of the L direction, the LT direction, and the ST direction (the definition of each direction will be described later). I found out. In addition, forgings using alloys that have been appropriately adjusted in this way can be welded after forging, and the strength after welding is restored to 80% of the base metal due to natural aging for about one month. In addition, the present inventors have found that it has a stress corrosion cracking resistance equivalent to that of the base material and has made the present invention.

具体的には請求項1の発明の鍛造用アルミニウム合金は、Zn2.0〜3.9%、Mg0.1〜3.5%を含有し、しかもZnおよびMgの合計含有量が4.0〜6.0%の範囲内にあり、さらにCu0.02〜0.20%を含有し、またMn0.20〜0.70%、Cr0.10〜0.30%、Zr0.05〜0.30%、V0.01〜0.10%のうちから選ばれた1種または2種以上を含有し、かつMn、Cr、Zr、Vの合計量が0.25%以上であり、さらにTi0.01〜0.20%、B0.001〜0.05%、C0.01〜0.5%のうちから選ばれた1種または2種以上を含み、残部がAlおよび不可避的不純物からなることを特徴とするものである。   Specifically, the forging aluminum alloy of the invention of claim 1 contains Zn 2.0 to 3.9%, Mg 0.1 to 3.5%, and the total content of Zn and Mg is 4.0 to 4.0. It is in the range of 6.0%, and further contains Cu 0.02 to 0.20%, Mn 0.20 to 0.70%, Cr 0.10 to 0.30%, Zr 0.05 to 0.30% , V0.01 to 0.10%, or one or more selected from V0.01 to 0.10%, and the total amount of Mn, Cr, Zr, and V is 0.25% or more, and Ti0.01 to Including one or more selected from 0.20%, B0.001 to 0.05%, and C0.01 to 0.5%, with the balance being made of Al and inevitable impurities To do.

また請求項2の発明の鍛造用アルミニウム合金は、請求項1に記載の鍛造用アルミニウム合金において、さらにZnおよびMgの合計量が4.3〜5.5%の範囲内とされていることを特徴とするものである。   The forging aluminum alloy of the invention of claim 2 is the forging aluminum alloy of claim 1, wherein the total amount of Zn and Mg is further in the range of 4.3 to 5.5%. It is a feature.

さらに請求項3の発明のアルミニウム合金鍛造品は、請求項1もしくは請求項2に記載の鍛造用アルミニウム合金を用いて製造したアルミニウム合金鍛造品であって、該アルミニウム合金鍛造品を溶接した後1ヶ月間の自然時効により鍛造品溶接材の引張強さが鍛造品母材の80%以上まで回復することを特徴とするものである。   Furthermore, an aluminum alloy forged product according to the invention of claim 3 is an aluminum alloy forged product manufactured using the aluminum alloy for forging according to claim 1 or 2, and after the aluminum alloy forged product is welded, The tensile strength of the forged product weld material is recovered to 80% or more of the forged product base material by natural aging for months.

また請求項4の発明のアルミニウム合金鍛造品は、請求項1もしくは請求項2に記載の鍛造用アルミニウム合金を用いて製造したアルミニウム合金鍛造品であって、該アルミニウム合金鍛造品を溶接した鍛造品溶接材が、鍛造品母材と実質的に同等の耐応力腐食割れ性を有することを特徴とするものである。   Further, an aluminum alloy forged product according to the invention of claim 4 is an aluminum alloy forged product manufactured by using the aluminum alloy for forging according to claim 1 or 2, wherein the forged product is formed by welding the aluminum alloy forged product. The welding material is characterized by having a stress corrosion cracking resistance substantially equal to that of the forged product base material.

さらに請求項5の発明のアルミニウム合金鍛造品は、請求項1もしくは請求項2に記載の鍛造用アルミニウム合金を用いて製造したアルミニウム合金鍛造品であって、該アルミニウム合金鍛造品を溶接した後1ヶ月間の自然時効を行なった鍛造品溶接材の引張強さが209N/mm2以上、耐力が163N/mm2以上、かつ伸びが20%以上であることを特徴とするものである。 Further, the aluminum alloy forged product of the invention of claim 5 is an aluminum alloy forged product manufactured by using the aluminum alloy for forging according to claim 1 or 2, and after the aluminum alloy forged product is welded, The welded forging material subjected to natural aging for months has a tensile strength of 209 N / mm 2 or more, a proof stress of 163 N / mm 2 or more, and an elongation of 20% or more.

この発明によれば、Al−Zn−Mg系合金の成分組成を適切に調整することにより、耐応力腐食割れ性に優れ、また溶接が可能であって、溶接により再結晶組織が生じても、充分な耐応力腐食割れ性を維持できるとともに、溶接後も高強度を維持することが可能な鍛造用アルミニウム合金を提供することができる。したがってこの発明の鍛造用アルミニウム合金は、溶接を施して使用される鍛造材向けの合金として、一般構造溶接部材や、航空機、鉄道車両、自動車など、高強度が要求されるあらゆる部材、部品に広く適用することができ、多様化する製品ニーズに対応することができる。   According to the present invention, by appropriately adjusting the component composition of the Al—Zn—Mg alloy, it is excellent in resistance to stress corrosion cracking and can be welded. It is possible to provide an aluminum alloy for forging capable of maintaining sufficient stress corrosion cracking resistance and maintaining high strength even after welding. Therefore, the forging aluminum alloy of the present invention is widely used for general structural welding members, aircraft, railway vehicles, automobiles, and all other members and parts that require high strength as alloys for forging materials used by welding. It can be applied to meet diversifying product needs.

まずこの発明の鍛造用アルミニウム合金における成分元素の添加理由について説明する。   First, the reason for adding the component elements in the forging aluminum alloy of the present invention will be described.

Zn:
Znは材料に強度を付与するための必須元素である。すなわちZnは析出効果により、またMgと結合して合金相を生成し、鍛造材の強度を保つ元素である。ここで、Znの含有量が2.0%未満では充分な強度が得られず、一方Zn量が3.9%を越えた場合、強度は向上するが、耐応力腐食割れ性が低下する。したがって、この発明におけるZnの添加量範囲は、2.0〜3.9%とした。なお構造部材、部品として高強度を保ちつつ良好な耐応力腐食割れ性を得るためのZn量の望ましい範囲は、2.5〜3.5%である。
Zn:
Zn is an essential element for imparting strength to the material. That is, Zn is an element that maintains the strength of the forged material by forming an alloy phase by the precipitation effect and by combining with Mg. Here, when the Zn content is less than 2.0%, sufficient strength cannot be obtained. On the other hand, when the Zn content exceeds 3.9%, the strength is improved, but the stress corrosion cracking resistance is lowered. Therefore, the Zn addition amount range in the present invention is set to 2.0 to 3.9%. In addition, the desirable range of Zn amount for obtaining favorable stress corrosion cracking resistance while maintaining high strength as a structural member or component is 2.5 to 3.5%.

Mg:
MgもZnと同様に強度を付与する元素であり、析出効果により、またZnと結合して合金相を生成して鍛造材の強度を保つために寄与する。ここで、Mg含有量が0.1%未満では充分な強度が得られず、一方3.5%を越えれば、強度は向上するが、耐応力腐食割れ性が著しく低下する。したがってこの発明におけるMgの添加量範囲は、0.1〜3.5%とした。なお構造部材、部品として高強度を保ちつつ良好な耐応力腐食割れ性を得るためのMg量の望ましい範囲は、0.5〜3.0%である。
Mg:
Mg is also an element that imparts strength in the same manner as Zn, and contributes to the effect of precipitation and to maintain the strength of the forging material by combining with Zn to form an alloy phase. Here, if the Mg content is less than 0.1%, sufficient strength cannot be obtained. On the other hand, if it exceeds 3.5%, the strength is improved, but the stress corrosion cracking resistance is remarkably lowered. Therefore, the Mg addition amount range in this invention is set to 0.1 to 3.5%. In addition, the desirable range of Mg amount for obtaining good stress corrosion cracking resistance while maintaining high strength as a structural member or component is 0.5 to 3.0%.

Zn+Mg:
ZnおよびMgはいずれも前述のように強度に寄与すると同時に耐応力腐食割れ性に影響を与えるから、この発明ではZnおよびMgの合計量をも規制することとした。ZnおよびMgの合計量が4.0%未満では充分な強度が得られず、一方6.0%を越えれば、強度は向上するものの、耐応力腐食割れ性が著しく低下する。したがって、この発明においては、Zn+Mgの合計添加量を、4.0%以上、6.0%以下と規定した。なお構造部材、部品として高強度を保ちつつ良好な耐応力腐食割れ性を得るためのZn+Mgの望ましい範囲は、4.5%以上、5.5%以下であり、さらに望ましい範囲は、4.5%以上、5.0%以下である。
Zn + Mg:
Since both Zn and Mg contribute to the strength as described above and at the same time affect the stress corrosion cracking resistance, the total amount of Zn and Mg is also regulated in the present invention. If the total amount of Zn and Mg is less than 4.0%, sufficient strength cannot be obtained. On the other hand, if it exceeds 6.0%, the strength is improved, but the stress corrosion cracking resistance is remarkably lowered. Therefore, in this invention, the total addition amount of Zn + Mg is defined as 4.0% or more and 6.0% or less. A desirable range of Zn + Mg for obtaining good stress corrosion cracking resistance while maintaining high strength as a structural member or component is 4.5% or more and 5.5% or less, and a more desirable range is 4.5 % Or more and 5.0% or less.

Cu:
Cuは、アルミニウムマトリックスに固溶して、固溶体中の溶質の過飽和度を上げるなどして、強度を付与する元素である。Cuの含有量が0.02%未満では、充分な強度向上効果が得られず、一方0.2%を越えれば、強度は向上するが耐応力腐食割れ性が著しく低下し、さらには溶接割れを発生させる危険性も生じる。したがって構造部材、部品として高強度を保ちつつ良好な耐応力腐食割れ性を得、かつ溶接性も良好とするためには、Cu量は0.05〜0.20%の範囲内とする必要がある。
Cu:
Cu is an element that imparts strength, for example, by dissolving in an aluminum matrix and increasing the degree of supersaturation of the solute in the solid solution. If the Cu content is less than 0.02%, a sufficient strength improvement effect cannot be obtained. On the other hand, if it exceeds 0.2%, the strength is improved but the stress corrosion cracking resistance is remarkably lowered, and further, the weld cracking is further reduced. There is also a risk of generating. Therefore, in order to obtain good stress corrosion cracking resistance while maintaining high strength as a structural member or component, and to improve weldability, the Cu content needs to be in the range of 0.05 to 0.20%. is there.

Mn、Cr、Zr、V:
Mn、Cr、Zr、Vは、再結晶粒の微細化に有効であり、ひいては耐応力腐食割れ性の向上に寄与する元素である。すなわちこれらの元素はアルミニウムと結合して、Al−Mn、Al−Cr、Al−Zr、Al−Vの化合物を作り、これらの化合物が再結晶粒微細化に寄与し、耐応力腐食割れ性を向上させる。それぞれの含有量が下限(Mn0.20%、Cr0.10%、Zr0.05%、V0.01%)未満ではこれらの効果が充分に得られず、一方上限(Mn0.70%,Cr0.30%、Zr0.30%,V0.10%)を越えれば、巨大な金属間化合物を生成し、強度低下を招く原因となるから、それぞれの含有量の上限、下限を定めた。ここで、再結晶粒を微細化して耐応力腐食割れ性を向上させるためには、これらの元素のうち、1種または2種以上を添加すれば良い。なお、Cr、Zr、Vの各添加量の上限がMnの添加量上限と比べて低いのは、Cr、Zr、Vの添加量を多くすれば、焼き入れ感受性が敏感になり、強度低下を招くからである。またここで、Mn、Cr、Zr、Vの合計量も重要であり、これらの元素の合計量が0.25%未満では再結晶粒微細化、耐応力腐食割れ性の向上効果が充分に得られないから、これらのMn+Cr+Zr+Vの合計添加量を0.25%以上とする。さらに望ましくは、これらの合計量は0.40%以上とする。
Mn, Cr, Zr, V:
Mn, Cr, Zr, and V are elements that are effective in making the recrystallized grains finer and thus contribute to the improvement of the resistance to stress corrosion cracking. That is, these elements combine with aluminum to form Al-Mn, Al-Cr, Al-Zr, and Al-V compounds. These compounds contribute to recrystallized grain refinement and have stress corrosion cracking resistance. Improve. If each content is less than the lower limit (Mn 0.20%, Cr 0.10%, Zr 0.05%, V 0.01%), these effects cannot be obtained sufficiently, while the upper limit (Mn 0.70%, Cr 0.30). %, Zr 0.30%, V0.10%), a huge intermetallic compound is formed and causes a decrease in strength. Therefore, an upper limit and a lower limit of each content are determined. Here, in order to refine the recrystallized grains and improve the stress corrosion cracking resistance, one or more of these elements may be added. In addition, the upper limit of each addition amount of Cr, Zr, V is lower than the upper limit of the addition amount of Mn. If the addition amount of Cr, Zr, V is increased, the quenching sensitivity becomes more sensitive and the strength decreases. Because it invites. Here, the total amount of Mn, Cr, Zr, and V is also important. If the total amount of these elements is less than 0.25%, the effect of improving recrystallization grain refinement and stress corrosion cracking resistance can be sufficiently obtained. Therefore, the total addition amount of Mn + Cr + Zr + V is set to 0.25% or more. More preferably, the total amount of these is 0.40% or more.

Ti、B、C:
Tiは通常のアルミニウム合金において鋳造組織の微細化のために添加される元素であるが、この発明の場合、Tiの添加は鋳造組織の微細化のみならず、再結晶粒の微細化、ひいては溶接後の耐応力腐食割れ性のためにも有効である。またBはTiとともに鋳塊組織微細化のために添加することが多い元素であるが、この発明の場合、Tiとともに添加することによって、鋳塊組織の微細化のみならず、再結晶粒の微細化にも寄与する。さらにCも、Tiとともに添加することにより再結晶粒微細化の効果が得られる。ここで、Tiが0.01%未満、Bが0.001%未満、Cが0.01%未満では、再結晶粒微細化の効果が充分に得られず、一方Tiが0.20%、Bが0.05%、Cが0.5%を越えれば、その効果は飽和するばかりでなく、粗大化合物の生成のおそれがあり、そこでTiは0.01〜0.20%、Bは0.001〜0.05%、Cは0.01〜0.5%の範囲内とした。なおこれらのTi、B、Cはいずれか1種または2種以上を添加すれば良いが、BはTiとともに添加することによってその効果を最大限に発揮でき、またCもTiとともに添加することによってその効果を最大限に発揮することができるから、B,Cは、それぞれTiとともに添加することがのぞましい。
Ti, B, C:
Ti is an element added for refinement of the cast structure in ordinary aluminum alloys. In the present invention, addition of Ti not only refines the cast structure, but also refines the recrystallized grains, and thus welds. It is also effective for later stress corrosion cracking resistance. In addition, B is an element that is often added together with Ti for refining the ingot structure. In the case of the present invention, addition of Ti not only makes the ingot structure fine, but also recrystallized grains. It also contributes to Furthermore, the effect of recrystallizing grains can be obtained by adding C together with Ti. Here, when Ti is less than 0.01%, B is less than 0.001%, and C is less than 0.01%, the effect of recrystallizing grains cannot be sufficiently obtained, while Ti is 0.20%, If B exceeds 0.05% and C exceeds 0.5%, the effect is not only saturated but also a coarse compound may be formed, where Ti is 0.01 to 0.20% and B is 0. 0.001 to 0.05% and C was in the range of 0.01 to 0.5%. Any one or more of these Ti, B, and C may be added. However, the effect of B can be maximized by adding together with Ti, and C can also be added together with Ti. Since the effect can be exhibited to the maximum, it is preferable to add B and C together with Ti.

以上のような各元素の残部は、基本的にはAlおよび不可避的不純物とすれば良い。なお一般のアルミニウム合金には、不可避的不純物としてFe、Siが含まれるのが通常である。これらのFe、Siは、通常使用される地金に含まれる不純物量程度であれば特に問題がなく、この発明においても特に積極的に添加するものではない。通常使用される工業純度の99.7%アルミニウム地金においては、Feは0.15%以下、Si0.10%以下程度含有されることが多く、この発明においては、Fe0.20%以下、Si0.15%以下程度までは特に支障はない。   The remainder of each element as described above may basically be Al and inevitable impurities. A general aluminum alloy usually contains Fe and Si as inevitable impurities. These Fe and Si are not particularly problematic as long as they are about the amount of impurities contained in normally used bullion, and are not particularly positively added in the present invention. In a commonly used industrial purity 99.7% aluminum ingot, Fe is often contained in an amount of about 0.15% or less and Si of about 0.10% or less. In this invention, Fe of 0.20% or less, Si0 There is no particular problem up to about 15% or less.

この発明においては、以上のような成分組成の鍛造用アルミニウム合金、およびそれを用いた鍛造品を規定している。ここで、アルミニウム合金の鍛造方法としては、一般に冷間鍛造および熱間鍛造があるが、この発明では特に限定されるものではない。前者の冷間鍛造は、室温で鍛造されるため、材料の変形抵抗が高く、そのため鍛造時の加圧力も高くする必要があり、したがって小サイズに限定されるのが通常である。一方熱間鍛造は、再結晶温度以上、固相線温度未満の温度範囲(約300〜500℃)で行われ、大小様々なサイズの製品に対応することができる。   In the present invention, the forging aluminum alloy having the above component composition and the forged product using the same are defined. Here, as a method for forging an aluminum alloy, there are generally cold forging and hot forging, but the invention is not particularly limited. Since the former cold forging is forged at room temperature, the deformation resistance of the material is high, so it is necessary to increase the pressing force during forging, and therefore it is usually limited to a small size. On the other hand, hot forging is performed in a temperature range (about 300 to 500 ° C.) that is higher than the recrystallization temperature and lower than the solidus temperature, and can correspond to products of various sizes.

鍛造品は、一般に自由鍛造品と型鍛造品に分類される。自由鍛造品は油圧プレスあるいはハンマを用いて金敷の上で鍛造されるものであり、基本形状は角柱、円柱、円板、棒、リング等であり、後述するような型鍛造が不可能な大物鍛造品を製造する場合に用いるのが通常である。一方型鍛造品は、金型を用いて複雑な形状の製品を製造する方法であり、ブロッカタイプ鍛造品、普通級鍛造品、精密級鍛造品に細分類される。いずれの工法も最終形状に近い形まで鍛造するため、複数回の鍛造や寸法精度の高い金型が必要となり、生産数量が少ない場合はコスト高になる反面、メタルフローを分断せずに加工でき、そのため機械的特性の低減も少ないという利点がある。   Forged products are generally classified into free forged products and die forged products. Free forged products are forged on anvils using a hydraulic press or hammer, and the basic shapes are prisms, cylinders, disks, bars, rings, etc. It is usually used when manufacturing a forged product. On the other hand, the die forging is a method of manufacturing a product having a complicated shape using a mold, and is subdivided into a blocker type forging, a normal grade forging, and a precision grade forging. Each method forges to a shape close to the final shape, so multiple forgings and high dimensional accuracy dies are required. If the production quantity is small, the cost is high, but the metal flow can be processed without being divided. Therefore, there is an advantage that there is little reduction in mechanical properties.

次に鍛造品の機械的特性について説明する。一般に鍛造品の機械的特性は、鍛錬成形比(鍛造比または鍛錬比とも言われる)とメタルフローによって影響される。鍛造における材料の鍛錬成形比は三方向の主ひずみ中、常に最大ひずみの方向の変形比で表され、通常、JISG0701「鋼材鍛錬作業の鍛錬成形比の表し方」に規定された方法で示されることが多い。また、鍛錬成形比の増加にしたがって機械的特性も改善されため、高特性を得たい場合には、高い鍛錬比での成形が望まれる。ここで、一般に鍛造などにより、塑性変形を受けた材料は、メタルフローによって機械的な性質の異方性を生ずる。機械的強さと伸びは、メタルフローと平行な方向(L方向)で最も優れ、メタルフローに直角で、鍛造のプレス方向に平行な方向(ST方向)では劣る。さらにL方向とST方向に直角な方向(LT方向)では中間の性質を示す。   Next, the mechanical characteristics of the forged product will be described. In general, the mechanical properties of a forged product are affected by the forging ratio (also referred to as forging ratio or forging ratio) and metal flow. The forging ratio of the material in forging is always represented by the deformation ratio in the direction of maximum strain among the three main strains, and is usually indicated by the method defined in JIS G0701, “How to express the forging ratio of steel forging work”. There are many cases. In addition, since mechanical characteristics are improved as the forging ratio increases, molding with a high forging ratio is desired to obtain high characteristics. Here, in general, a material that has undergone plastic deformation by forging or the like causes anisotropy of mechanical properties due to metal flow. Mechanical strength and elongation are best in a direction parallel to the metal flow (L direction), and inferior in a direction perpendicular to the metal flow and parallel to the forging press direction (ST direction). Further, it exhibits intermediate properties in the direction perpendicular to the L direction and the ST direction (LT direction).

この発明において、鍛造品の製造工程は特に限定されるものではないが、半連続水冷鋳造等の一般的な鋳造法により得られた鋳塊に、所定の温度にて均質化処理を施し、所定のサイズに加工した後、冷間鍛造を適用する場合は室温にて油圧プレスやハンマにて鍛造を行ない、一方熱間鍛造を適用する場合には、鋳塊を300〜500℃程度に加熱して、鍛造を行う。この場合製品のサイズや形状によっては、加熱、鍛造を数回繰り返すこともある。その後、熱処理合金の場合は溶体化処理、焼入れ、時効処理を施し、出荷前検査等を行なうことにより、一連の工程が完了する。非熱処理合金の場合は鍛造後に出荷前検査等を行なうことにより、一連の工程が完了する。   In this invention, the manufacturing process of the forged product is not particularly limited, but the ingot obtained by a general casting method such as semi-continuous water-cooled casting is subjected to a homogenization treatment at a predetermined temperature, When cold forging is applied, forging is performed with a hydraulic press or hammer at room temperature. On the other hand, when hot forging is applied, the ingot is heated to about 300 to 500 ° C. And forging. In this case, heating and forging may be repeated several times depending on the size and shape of the product. Thereafter, in the case of a heat-treated alloy, a series of steps is completed by performing solution treatment, quenching, aging treatment, pre-shipment inspection, and the like. In the case of a non-heat-treatable alloy, a series of processes is completed by performing inspection before shipment after forging.

この発明においては、前述のような一般的な鍛造方法を用いて得られる素材の合金成分組成を適切に制御することにより、L、LT、ST方向いずれにおいて再結晶組織を有していても、応力腐食割れ発生がなく、かつ構造部材に必要な強度の確保を実現することができた。   In this invention, by appropriately controlling the alloy component composition of the material obtained using the general forging method as described above, even if it has a recrystallized structure in any of L, LT, ST direction, There was no stress corrosion cracking, and it was possible to secure the necessary strength for the structural members.

次にこの発明の実施例として、自由鍛造により作製したブロック状の鍛造材を用いて、各種特性の調査を行った。以下に、鍛造材の材料製造工程および調査結果を示す。   Next, as an example of the present invention, various characteristics were investigated using a block-shaped forged material produced by free forging. The forging material manufacturing process and the survey results are shown below.

先ず鍛造材の材料製造工程について説明する。   First, the material manufacturing process for forging will be described.

表1および表2の合金No.1〜No.48に示す成分組成の各合金を用いて、半連続水冷鋳造により外径345mm×長さ3000mmの鋳塊を得た後、460℃で26時間の均質化処理を行ない、超音波探傷検査を実施し、内部欠陥の有無を確認した。さらに外径を320mmφに切削加工し、表面の酸化皮膜等を除去して、長さ400mmに切断し、鍛造用のスラブを作製した。さらに、このスラブを誘導過熱により420℃に加熱し、断面寸法が高さ100mm×幅200mm×長さ1700mmのブロック状に鍛造加工した。なお、鍛錬比は6とした。その後、460℃×4時間の溶体化処理を行なった後、80℃の温水にて焼入れ、105℃×8Hr+155℃×16Hrの2段時効によるT6処理を実施した。   Alloy No. 1 in Table 1 and Table 2 1-No. After obtaining an ingot with an outer diameter of 345 mm and a length of 3000 mm by semi-continuous water-cooling casting using each alloy having the component composition shown in No. 48, homogenization treatment was performed at 460 ° C. for 26 hours, and ultrasonic flaw detection was conducted. The presence of internal defects was confirmed. Further, the outer diameter was cut to 320 mmφ, the surface oxide film and the like were removed, and the outer diameter was cut to 400 mm to produce a slab for forging. Furthermore, this slab was heated to 420 ° C. by induction overheating, and forged into a block shape having a cross-sectional dimension of 100 mm high × 200 mm wide × 1700 mm long. The training ratio was 6. Thereafter, solution treatment was performed at 460 ° C. for 4 hours, followed by quenching with warm water at 80 ° C., and T6 treatment by two-stage aging at 105 ° C. × 8 Hr + 155 ° C. × 16 Hr.

得られたブロック状の鍛造加工材(母材)について、次のように機械的特性を調べた。すなわち、ブロック状鍛造加工材から、JIS Z2201に基づく試験片を、各メタルフロー(L、LT、ST)方向(図1参照)に平行に断面の中心部から2本ずつ採取して、JIS Z2241に基づき引張試験を実施し、引張強さ、耐力、伸びをそれぞれ求めた。   The resulting block-shaped forged material (base material) was examined for mechanical properties as follows. That is, two test pieces based on JIS Z2201 were sampled from the block forging material in parallel from each metal flow (L, LT, ST) direction (see FIG. 1) from the center of the cross section, and JIS Z2241 Based on the above, a tensile test was carried out to determine tensile strength, proof stress, and elongation.

また、前記ブロック状鍛造加工材(母材)の結晶粒形状および結晶粒径を、次のようにして調べた。すなわち、ブロックの中心部から、L−LT,LT−ST,L−ST断面の組織が観察できるように20mm角の試験片を採取し、バーカー法によるエッチングを施した後、光学顕微鏡にて結晶粒の形状を確認するとともに、100倍の組織写真を5視野撮影し、その写真からJIS H0501に規定する切断法にて結晶粒径を求め、5視野の平均値を平均結晶粒径とした。   Further, the crystal grain shape and crystal grain size of the block-like forged material (base material) were examined as follows. That is, a 20 mm square test piece was collected from the center of the block so that the structure of the L-LT, LT-ST, and L-ST cross sections could be observed, etched by the Barker method, and then crystallized with an optical microscope. While confirming the shape of the grains, five field images of a 100-fold structure photograph were taken, and the crystal grain size was determined from the photograph by a cutting method specified in JIS H0501, and the average value of the five fields of view was taken as the average crystal grain size.

さらに、前記ブロック状鍛造加工材(母材)の耐応力腐食割れ性次のようにして評価した。すなわち、JIS H8711に基づいて、定荷重方式(Cリング試験片)による耐応力腐食割れ性試験を実施した。試験片は、前述のブロック状鍛造加工材材から採取し(n=3個)、最大負荷がかかる方向をST方向とした(図3参照)。試験方法としては、燐酸クロム酸試験液に所定時間浸漬を行う連続浸漬法を採用して、割れの有無を目視評価した。耐応力腐食割れ試験液としては、1l(リットル)のイオン交換により得た純水に、酸化クロム(無水クロム酸)36g,二酸化カリウム(重クロム酸カリウム)30g、塩化ナトリウム3gを混合した溶液を用い、この試験液に前記試験片を浸漬し、15分毎に60分まで割れの有無を確認し、以降30分毎に割れの有無を観察し、最長420分試験を行なった。そして、最低1つの試験片に割れが発生した時点で試験を終了させた。なお、各試験片に負荷する応力としては、それぞれの実耐力値の75%と比較材A7N01FD−T6の実耐力値の75%(225N/mm2)の2種類を採用した。 Furthermore, the stress corrosion cracking resistance of the block-like forged material (base material) was evaluated as follows. That is, based on JIS H8711, the stress corrosion cracking resistance test by a constant load system (C ring test piece) was implemented. The test piece was sampled from the block-shaped forged material (n = 3), and the direction in which the maximum load was applied was defined as the ST direction (see FIG. 3). As a test method, a continuous dipping method in which the sample was dipped in a chromic phosphate test solution for a predetermined time was employed, and the presence or absence of cracks was visually evaluated. As a stress corrosion cracking test solution, a solution obtained by mixing 36 g of chromium oxide (anhydrous chromic acid), 30 g of potassium dioxide (potassium dichromate) and 3 g of sodium chloride in pure water obtained by ion exchange of 1 l (liter). The test piece was immersed in this test solution, and the presence or absence of cracks was confirmed every 15 minutes until 60 minutes. Thereafter, the presence or absence of cracks was observed every 30 minutes, and the test was conducted for a maximum of 420 minutes. The test was terminated when a crack occurred in at least one test piece. In addition, as stress applied to each test piece, two kinds of 75% (225 N / mm 2 ) of the actual proof stress value of each material and 75% (225 N / mm 2 ) of the actual proof stress value of the comparative material A7N01FD-T6 were adopted.

次に、前述のようにして得られた鍛造加工材にを用いて溶接を行ない、その溶接材について、溶接割れ試験を、図3に示すようなフィッシュボーン形溶接割れ試験片にて行なった。すなわち、前述の鍛造加工材から、肉厚3mmの所定の大きさ(66.8mm×105mm)のフィッシュボーン形溶接割れ試験片を各5枚ずつ作製した。そしてティグ溶接法により、溶加材を用いないノーフィラーでの溶接と、溶加材A5356BY(φ2.4mm)を用いた溶接との2種類の溶接法により、表3に示す条件で、試験片の切り込みの浅い方から深い方に向かって溶接を行なった。溶接割れ性は、発生した割れの長さをノギスにて測定して評価した。評価基準は、5枚の溶接割れ長さの平均値が0〜75mm未満を○、75〜100mm未満を△、100mm(全割れ)を×とした。   Next, welding was performed using the forged material obtained as described above, and a weld crack test was performed on the welded material with a fishbone type weld crack test piece as shown in FIG. That is, five fishbone weld crack test pieces each having a predetermined thickness (66.8 mm × 105 mm) with a thickness of 3 mm were produced from the forged material described above. Then, by the TIG welding method, the test piece was tested under the conditions shown in Table 3 by two kinds of welding methods, that is, welding with no filler without using a filler material and welding with filler material A5356BY (φ2.4 mm). Welding was performed from the shallowest to the deepest. Weld crackability was evaluated by measuring the length of the generated crack with calipers. Evaluation criteria set the average value of five weld crack lengths as 0 to less than 75 mm, Δ to 75 to less than 100 mm, and 100 mm (total crack) as x.

また溶接材についての機械的特性を次のようにして調べた。すなわち、強度測定方法については、前述のブロック状鍛造加工材から板材を切り出し、I開先の1パスのティグ溶接(突合せ)にて溶接材を作製した(図4参照)。溶加材としては、A5356BY(φ2.4mm)を用いた。溶接実施後、1ヶ月間室温(25℃)にて自然時効を行い、JIS Z2201に基づく引張試験片13B号にてJIS Z2241に基づく引張試験を実施した。なお、試験片は溶接ビードをつけたままの状態でそれぞれn=3本試験を行なった。   The mechanical properties of the weld material were examined as follows. That is, for the strength measurement method, a plate material was cut out from the block-shaped forged material described above, and a welding material was produced by I-groove 1-pass TIG welding (butting) (see FIG. 4). A5356BY (φ2.4 mm) was used as the filler material. After welding, natural aging was performed at room temperature (25 ° C.) for one month, and a tensile test based on JIS Z2241 was performed using a tensile test piece No. 13B based on JIS Z2201. The test pieces were each subjected to n = 3 tests with the weld beads attached.

次に溶接材についての耐応力腐食割れ性を、JISH8711に基づく4点曲げ試験により評価した(図5参照)。ここで、一般に結晶組織が未再結晶組織の場合には応力腐食割れが発生しにくいことが知られているが、溶接を施した鍛造を材は、材料組織が再結晶組織部も有するため、応力腐食割れが発生する可能性があることから、母材とは別に溶接材についても耐応力腐食割れ試験を行なった。   Next, the stress corrosion cracking resistance of the welded material was evaluated by a four-point bending test based on JISH8711 (see FIG. 5). Here, it is generally known that stress corrosion cracking is less likely to occur when the crystal structure is an unrecrystallized structure, but the forged material subjected to welding has a recrystallized structure part, Since stress corrosion cracking may occur, a stress corrosion cracking test was conducted on the welded material separately from the base metal.

溶接材に対する耐応力腐食割れ試験における負荷応力としては、それぞれ実耐力値の75%の応力および比較材A7N01FH−T6の実耐力値の75%(191N/mm2)の2種類を負荷した。試験は燐酸クロム酸試験液に所定時間浸漬を行ない、割れの有無を評価した。耐応力腐食割れ試験液としては、1l(リットル)のイオン交換により得た純水に、酸化クロム(無水クロム酸)36g,二酸化カリウム(重クロム酸カリウム)30g、塩化ナトリウム3gを混合した溶液を用いた。この試験液に前記試験片を浸漬し、15分毎に割れの有無を確認した。 As the load stress in the stress corrosion cracking test for the welded material, two kinds of stress were applied: 75% of the actual proof stress value and 75% (191 N / mm 2 ) of the actual proof stress value of the comparative material A7N01FH-T6. The test was performed by immersing in a chromic phosphate test solution for a predetermined time to evaluate the presence or absence of cracks. As a stress corrosion cracking test solution, a solution obtained by mixing 36 g of chromium oxide (anhydrous chromic acid), 30 g of potassium dioxide (potassium dichromate) and 3 g of sodium chloride in pure water obtained by ion exchange of 1 l (liter). Using. The said test piece was immersed in this test liquid, and the presence or absence of the crack was confirmed every 15 minutes.

さらに溶接材についての耐応力腐食割れ性試験としては、上記のものとはべつに、同じくJISH8711に基づく交互浸漬法による定ひずみ単軸引張試験をも併せて行なった。試験液は3.5%±0.1mas%の塩化ナトリウム溶液(PH6.4〜7.2)を用い、試験環境は温度25℃±3℃、相対湿度40〜70%とし、交互浸漬のサイクルは、10分間試験液に浸漬して50分間大気中保持するサイクルとし、30日間の試験期間とした。試験片はASTM B557に準拠した(図6参照)。荷重負荷は、ボルトによる張力としてA7N01FH−T6の実耐力値の75%(191N/mm2)を適用し、フレーム式による定ひずみ法とした(図7参照)。割れの確認は試験開始後3日、1週間経過後、それ以降は1週間ごとに行ない、3mm以上の亀裂を割れと判定した。 Further, as a stress corrosion cracking resistance test for the welded material, a constant strain uniaxial tensile test by an alternate dipping method based on JISH8711 was also performed in addition to the above test. The test solution was a 3.5% ± 0.1 mass% sodium chloride solution (PH 6.4 to 7.2), the test environment was a temperature of 25 ° C. ± 3 ° C., a relative humidity of 40 to 70%, and an alternate immersion cycle. Was a cycle of immersion in a test solution for 10 minutes and holding in the air for 50 minutes, and a test period of 30 days. The test piece was compliant with ASTM B557 (see FIG. 6). As the load applied, 75% (191 N / mm 2 ) of the actual proof stress value of A7N01FH-T6 was applied as a tension by a bolt, and a constant strain method by a frame method was used (see FIG. 7). Cracks were confirmed 3 days after the start of the test, 1 week later, and thereafter every week thereafter, and cracks of 3 mm or more were determined as cracks.

表1、表2に示す材料についての、母材(鍛造加工材)の状態での機械的特性、結晶粒形状および結晶粒径、および耐応力腐食割れ性試験結果と、溶接材とした状態でのフィッシュボーン溶接割れ試験、機械的特性、および耐応力腐食割れ試験結果を、表4〜表7に示す。   With regard to the materials shown in Tables 1 and 2, mechanical properties in the state of the base material (forged material), crystal grain shape and crystal grain size, and stress corrosion cracking resistance test results, and in the state of welding material Tables 4 to 7 show the fishbone weld cracking test, mechanical characteristics, and stress corrosion cracking resistance test results.

Figure 2008150652
Figure 2008150652

Figure 2008150652
Figure 2008150652

Figure 2008150652
Figure 2008150652

Figure 2008150652
Figure 2008150652

Figure 2008150652
Figure 2008150652

Figure 2008150652
Figure 2008150652

Figure 2008150652
Figure 2008150652

これらの結果から明らかなように、本発明材の応力腐食割れ性は、母材(鍛造加工材)のままの状態で、いずれも420分後の観察においても応力腐食割れを発生することはなかった。また溶接材の状態でも、促進試験では2時間経過後も応力腐食割れは発生せず、定ひずみ単軸引張試験においても30日経過後も割れの発生は見られなかった。したがって本発明材は、特に耐応力腐食割れ性について、従来材と比較して遥かに改善されたことが明らかである。なお機械的特性についても、母材の状態で、高強度材として従来材と遜色なく、さらに鍛造材を溶接した後1ヶ月間の自然時効により鍛造品溶接材の引張強さが鍛造品母材の80%以上に回復し、引張強さが209N/mm2以上、耐力が163N/mm2以上、かつ伸びが20%以上となることが明らかである。 As is clear from these results, the stress corrosion cracking property of the material of the present invention is the state of the base material (forged material), and no stress corrosion cracking occurs even in the observation after 420 minutes. It was. Even in the state of the weld material, no stress corrosion cracking occurred after 2 hours in the accelerated test, and no cracking was observed even after 30 days in the constant strain uniaxial tensile test. Therefore, it is apparent that the material of the present invention is far improved compared to the conventional material, particularly with respect to stress corrosion cracking resistance. Regarding the mechanical properties, the tensile strength of the forged product welded material is the same as that of the conventional material as a high-strength material and the forged product welded material has a natural aging for one month after welding. It is apparent that the tensile strength is 209 N / mm 2 or more, the proof stress is 163 N / mm 2 or more, and the elongation is 20% or more.

一方、成分組成がこの発明で規定する範囲を外れた比較例では、いずれか一つ以上の性能が劣ることが明らかである。   On the other hand, it is clear that any one or more performances are inferior in the comparative example in which the component composition is outside the range specified in the present invention.

鍛造品のメタルフローを説明するための略解的な斜視図である。It is an approximate perspective view for explaining the metal flow of a forged product. 実施例で適用した低荷重方式による耐応力腐食割れ試験におけるCリング型応力腐食割れ試験片の採取状況を示す略解的な斜視図である。It is a rough perspective view which shows the extraction | collection condition of the C ring type stress corrosion cracking test piece in the stress corrosion cracking resistance test by the low load system applied in the Example. 実施例で適用した溶接割れ試験で用いたフィッシュボーン形溶接割れ試験片を示す平面図である。It is a top view which shows the fishbone type weld crack test piece used by the weld crack test applied in the Example. 実施例で作成した溶接材を示す平面図および正面図である。It is the top view and front view which show the welding material created in the Example. 実施例で適用した溶接材の応力腐食割れ試験の試験片および試験方法(4点曲げ試験法)を示す略解的な正面図である。It is a rough front view which shows the test piece and the test method (four-point bending test method) of the stress corrosion cracking test of the welding material applied in the Example. 実施例で適用したASTM B557に準拠した応力腐食割れ試験の試験片を示す平面図である。It is a top view which shows the test piece of the stress corrosion cracking test based on ASTM B557 applied in the Example. 図6に示す試験片(溶接材)に対する応力腐食割れ試験方法(定ひずみ単軸引張試験法)を示す略解的な平面図である。FIG. 7 is a schematic plan view showing a stress corrosion cracking test method (constant strain uniaxial tensile test method) for the test piece (welding material) shown in FIG. 6.

Claims (5)

Zn2.0〜3.9%(mass%、以下同じ)、Mg0.1〜3.5%を含有し、しかもZnおよびMgの合計量が4.0〜6.0%の範囲内にあり、さらにCu0.02〜0.20%を含有し、またMn0.20〜0.70%、Cr0.10〜0.30%、Zr0.05〜0.30%、V0.01〜0.10%のうちから選ばれた1種または2種以上を含有し、かつMn、Cr、Zr、Vの合計量が0.25%以上であり、さらにTi0.01〜0.20%、B0.001〜0.05%、C0.01〜0.5%のうちから選ばれた1種または2種以上を含み、残部がAlおよび不可避的不純物からなることを特徴とする、耐応力腐食割れ性に優れた溶接可能な鍛造用アルミニウム合金。   Zn 2.0-3.9% (mass%, the same shall apply hereinafter), Mg 0.1-3.5%, and the total amount of Zn and Mg is within the range of 4.0-6.0%, Further, it contains Cu 0.02 to 0.20%, Mn 0.20 to 0.70%, Cr 0.10 to 0.30%, Zr 0.05 to 0.30%, V 0.01 to 0.10% It contains one or more selected from among them, and the total amount of Mn, Cr, Zr, and V is 0.25% or more, and Ti 0.01 to 0.20%, B0.001 to 0 .Excellent stress corrosion cracking resistance, characterized in that it contains one or more selected from 0.05% and C0.01-0.5%, and the balance consists of Al and inevitable impurities Weldable aluminum alloy for forging. 請求項1に記載の鍛造用アルミニウム合金において、さらにZnおよびMgの合計量が4.3〜5.5%の範囲内とされていることを特徴とする、耐応力腐食割れ性に優れた溶接可能な鍛造用アルミニウム合金。   The welding aluminum alloy for forging according to claim 1, wherein the total amount of Zn and Mg is in the range of 4.3 to 5.5%. Possible forging aluminum alloy. 請求項1もしくは請求項2に記載の鍛造用アルミニウム合金を用いて製造したアルミニウム合金鍛造品であって、該アルミニウム合金鍛造品を溶接した後1ヶ月間の自然時効により鍛造品溶接材の引張強さが鍛造品母材の80%以上まで回復することを特徴とするアルミニウム合金鍛造品。   An aluminum alloy forged product manufactured using the forging aluminum alloy according to claim 1 or 2, wherein the tensile strength of the forged product weld material by natural aging for one month after welding the aluminum alloy forged product. Forged aluminum alloy, characterized in that it recovers to more than 80% of the base material of the forged product. 請求項1もしくは請求項2に記載の鍛造用アルミニウム合金を用いて製造したアルミニウム合金鍛造品であって、該アルミニウム合金鍛造品を溶接した鍛造品溶接材が、鍛造品母材と実質的に同等の耐応力腐食割れ性を有することを特徴とするアルミニウム合金鍛造品。   An aluminum alloy forged product manufactured using the forging aluminum alloy according to claim 1 or 2, wherein a forged product welded to the aluminum alloy forged product is substantially equivalent to a forged product base material. An aluminum alloy forged product characterized by having a stress corrosion cracking resistance. 請求項1もしくは請求項2に記載の鍛造用アルミニウム合金を用いて製造したアルミニウム合金鍛造品であって、該アルミニウム合金鍛造品を溶接した後1ヶ月間の自然時効を行なった鍛造品溶接材の引張強さが209N/mm2以上、耐力が163N/mm2以上、かつ伸びが20%以上であることを特徴とするアルミニウム合金鍛造品。 An aluminum alloy forged product manufactured using the forging aluminum alloy according to claim 1 or 2, wherein the forged product weld material has been subjected to natural aging for one month after welding the aluminum alloy forged product. A forged aluminum alloy having a tensile strength of 209 N / mm 2 or more, a proof stress of 163 N / mm 2 or more, and an elongation of 20% or more.
JP2006338170A 2006-12-15 2006-12-15 Weldable forging aluminum alloy with excellent stress corrosion cracking resistance and forged products using the same Expired - Fee Related JP4933890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006338170A JP4933890B2 (en) 2006-12-15 2006-12-15 Weldable forging aluminum alloy with excellent stress corrosion cracking resistance and forged products using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006338170A JP4933890B2 (en) 2006-12-15 2006-12-15 Weldable forging aluminum alloy with excellent stress corrosion cracking resistance and forged products using the same

Publications (2)

Publication Number Publication Date
JP2008150652A true JP2008150652A (en) 2008-07-03
JP4933890B2 JP4933890B2 (en) 2012-05-16

Family

ID=39653142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006338170A Expired - Fee Related JP4933890B2 (en) 2006-12-15 2006-12-15 Weldable forging aluminum alloy with excellent stress corrosion cracking resistance and forged products using the same

Country Status (1)

Country Link
JP (1) JP4933890B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116144994A (en) * 2022-12-29 2023-05-23 东北轻合金有限责任公司 Aluminum alloy thick plate with high strength, high hardness, high fatigue resistance and high corrosion resistance, and preparation method and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4871711A (en) * 1971-12-29 1973-09-28
JPS6256552A (en) * 1985-09-06 1987-03-12 Kobe Steel Ltd Al-zn-mg alloy for forging
JPS63157830A (en) * 1986-12-22 1988-06-30 Sumitomo Light Metal Ind Ltd High-strength aluminum alloy for cold forging
JPH0270044A (en) * 1988-09-06 1990-03-08 Mitsubishi Alum Co Ltd Manufacture of cast aluminum-alloy bar for hot forging
JP2001226731A (en) * 2000-02-15 2001-08-21 Aisin Seiki Co Ltd Aluminum-zinc-magnesium series aluminum alloy for casting and forging, aluminum-zinc-magnesium series cast and forged product, and its producing method
JP2002348631A (en) * 2001-05-22 2002-12-04 Aisin Seiki Co Ltd Aluminum-zinc-magnesium aluminum alloy for casting and forging, aluminum-zinc-magnesium cast and forged article, and manufacturing method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4871711A (en) * 1971-12-29 1973-09-28
JPS6256552A (en) * 1985-09-06 1987-03-12 Kobe Steel Ltd Al-zn-mg alloy for forging
JPS63157830A (en) * 1986-12-22 1988-06-30 Sumitomo Light Metal Ind Ltd High-strength aluminum alloy for cold forging
JPH0270044A (en) * 1988-09-06 1990-03-08 Mitsubishi Alum Co Ltd Manufacture of cast aluminum-alloy bar for hot forging
JP2001226731A (en) * 2000-02-15 2001-08-21 Aisin Seiki Co Ltd Aluminum-zinc-magnesium series aluminum alloy for casting and forging, aluminum-zinc-magnesium series cast and forged product, and its producing method
JP2002348631A (en) * 2001-05-22 2002-12-04 Aisin Seiki Co Ltd Aluminum-zinc-magnesium aluminum alloy for casting and forging, aluminum-zinc-magnesium cast and forged article, and manufacturing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116144994A (en) * 2022-12-29 2023-05-23 东北轻合金有限责任公司 Aluminum alloy thick plate with high strength, high hardness, high fatigue resistance and high corrosion resistance, and preparation method and application thereof
CN116144994B (en) * 2022-12-29 2023-12-05 东北轻合金有限责任公司 Aluminum alloy thick plate with high strength, high hardness, high fatigue resistance and high corrosion resistance, and preparation method and application thereof

Also Published As

Publication number Publication date
JP4933890B2 (en) 2012-05-16

Similar Documents

Publication Publication Date Title
EP2899287B1 (en) Aluminum alloy plate for automobile part
RU2413025C2 (en) Product out of deformed aluminium alloy of aa7000 series and procedure for production of said product
JP5356510B2 (en) Method for producing Al alloy cast member
JP2019131890A (en) Strip having excellent corrosion resistance after blazing
JP6165687B2 (en) Aluminum alloy plate
JP3819263B2 (en) Aluminum alloy material with excellent room temperature aging control and low temperature age hardening
JP2017155251A (en) Aluminum alloy forging material excellent in strength and ductility and manufacturing method therefor
JP4431194B2 (en) Al-Mg alloy products for welded structures
JP4933891B2 (en) Weldable forging aluminum alloy with excellent stress corrosion cracking resistance and forged products using the same
WO2016204043A1 (en) High strength aluminum alloy hot-forged material
WO2008069049A1 (en) Magnesium alloy material and process for production thereof
EP3880857A2 (en) Improved 7xxx aluminum alloys
US20020014290A1 (en) Al-si-mg aluminum alloy aircraft structural component production method
JP6223670B2 (en) Aluminum alloy sheet for automobile parts
JP6223669B2 (en) Aluminum alloy sheet for automobile parts
JP5308907B2 (en) Method for producing Al alloy forged product
JP4933890B2 (en) Weldable forging aluminum alloy with excellent stress corrosion cracking resistance and forged products using the same
KR20180095116A (en) Aluminum alloy sheet
Degner et al. Manufacturing and characterization of multilayered 7000-series aluminum with improved corrosion behavior processed via accumulative roll bonding
JP2002206152A (en) Method for producing aluminum alloy material excellent in suppression of room temperature aging and low temperature age hardenability and the aluminum alloy material
JP5860372B2 (en) Method for manufacturing aluminum alloy automobile member
JP4764636B2 (en) Compact structural parts with excellent impact formability using Al-Mg-Zn alloy
WO2019021899A1 (en) Aluminum alloy plate and method for producing same
JP2004292892A (en) High strength aluminum alloy forging material, and forged product obtained by using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091127

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20100507

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120217

R150 Certificate of patent or registration of utility model

Ref document number: 4933890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees