WO2019021899A1 - Aluminum alloy plate and method for producing same - Google Patents

Aluminum alloy plate and method for producing same Download PDF

Info

Publication number
WO2019021899A1
WO2019021899A1 PCT/JP2018/026827 JP2018026827W WO2019021899A1 WO 2019021899 A1 WO2019021899 A1 WO 2019021899A1 JP 2018026827 W JP2018026827 W JP 2018026827W WO 2019021899 A1 WO2019021899 A1 WO 2019021899A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
temperature
less
range
alloy sheet
Prior art date
Application number
PCT/JP2018/026827
Other languages
French (fr)
Japanese (ja)
Inventor
喜文 新里
健史 永井
峰生 浅野
Original Assignee
株式会社Uacj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Uacj filed Critical 株式会社Uacj
Priority to KR1020207003047A priority Critical patent/KR20200034729A/en
Priority to CN201880049900.1A priority patent/CN110945153A/en
Publication of WO2019021899A1 publication Critical patent/WO2019021899A1/en
Priority to US16/752,490 priority patent/US20200157668A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon

Definitions

  • the present invention relates to members and parts used in various vehicles represented by car body sheets and body panels, members and parts used in ships, aircraft, etc., or construction materials, structural materials, and various other machine tools, Aluminum alloy sheets used after forming and painting baking as materials for home appliances and parts thereof, particularly Al which has excellent press formability and stress corrosion cracking resistance while having high tensile strength.
  • the present invention relates to a Mg-based aluminum alloy sheet and a method of manufacturing the same.
  • an Al-Mg based alloy for example, a 5000 series Al alloy containing 3.5 mass% or more of Mg such as 5056, 5082, 5182, 5083, 5086 is used.
  • Mg metal-organic compound
  • These Al-Mg based alloys are used as welded structural members because they have high strength, good formability, and excellent weldability.
  • Patent Document 1 cooling after solution treatment is performed subsequent to hot rolling and cold rolling is performed in two stages under different cooling rate conditions in the high temperature region and the low temperature region, and the low temperature region is A method of manufacturing an Al-Mg-Cu-based aluminum alloy sheet for forming processing which can prevent continuous precipitation of ⁇ phase at grain boundaries during cooling by increasing the cooling rate in the above is described.
  • Patent Document 2 contains Mg: 3.5 to 5.5%, the strength after final annealing is 250 N / mm 2 or more, and the conductivity after the annealing is 26.5 to 29.
  • the structural aluminum alloy plate is described as having 6 IACS%, and according to the description, the conductivity is 296 IACS% or less, and the strength is obtained by causing precipitation of all precipitates including the ⁇ phase and solid solution state. It is said that it is possible to improve stress corrosion cracking resistance without deteriorating the properties.
  • the aluminum alloy sheet described in Patent Document 1 has a large content of Cu of 0.5 to 1.8 mass%, so that the hot workability is lowered and a coarse compound is formed, and the formability is inferior.
  • the hot workability is lowered and a coarse compound is formed, and the formability is inferior.
  • the structural aluminum alloy sheet described in Patent Document 2 has only Mg as an essential component and limits the strength and conductivity after final annealing treatment, but contains a specific component other than Mg.
  • the cooling rate during casting It is necessary to make the cooling rate faster in the intermediate annealing in cold rolling and in the cooling after heating in the final annealing after cold rolling, which means an increase in the number of manufacturing steps and manufacturing conditions.
  • the strict control of the above causes a decrease in productivity.
  • the present invention was made in view of such circumstances, and its object is to provide an aluminum alloy sheet having high tensile strength and excellent in press formability and stress corrosion cracking resistance, in particular An Al-Mg-based aluminum alloy sheet and a method of manufacturing the same.
  • the present inventors conducted various experiments and studies on composition components and manufacturing processes of Al-Mg-based alloys in order to solve the above problems, and limit the composition components and manufacturing processes to appropriate conditions. Found that it is possible to control the size and number density of the intermetallic compounds present in the aluminum alloy sheet, thereby providing excellent press formability and stress corrosion resistance while maintaining high tensile strength. We succeeded in the development of the aluminum alloy sheet which also has the properties and came to complete the present invention.
  • each embodiment of an aluminum alloy plate and its manufacturing method is as follows.
  • (1) By mass%, Si: 0.03 to 0.35%, Fe: 0.03 to 0.35%, Mg: 3.0 to 5.0%, Cu: 0.09% or more and 0.50
  • An aluminum alloy sheet characterized by containing less than 10% and Mn: more than 0.05% and not more than 0.35%, and having a composition comprising the balance of Al and unavoidable impurities.
  • (2) The number density of the intermetallic compound having a circle equivalent diameter of 0.1 to 0.5 ⁇ m and containing no Cu is 1 ⁇ 10 6 / mm 2 or less.
  • Aluminum alloy sheet as described.
  • the equivalent circle diameter is 0.3 to 4 ⁇ m, and the number density of the Cu-containing intermetallic compound is 1 ⁇ 10 4 pieces / mm 2 or more.
  • Aluminum alloy sheet (4) The aluminum alloy sheet according to the above (1), characterized in that Cu: 0.13 to 0.35 mass%. (5) The aluminum alloy according to (1), wherein the composition further contains one or two of Ti: 0.05% by mass or less and B: 0.05% by mass or less Board.
  • a method for producing an aluminum alloy sheet comprising: winding at a third temperature within the range of (1), and then performing cold rolling and final annealing treatment sequentially.
  • the first temperature is in the range of 500 to 570 ° C.
  • Said second temperature is in the range of 440-490 ° C .
  • Si 0.03 to 0.35%
  • Fe 0.03 to 0.35%
  • Mg 3.0 to 5.0%
  • Cu 0.09%
  • Si 0.03 to 0.35%
  • Fe 0.03 to 0.35%
  • Mg 3.0 to 5.0%
  • Cu 0.09%
  • Si 0.03 to 0.35%
  • Fe 0.03 to 0.35%
  • Mg 3.0 to 5.0%
  • Cu 0.09%
  • the aluminum alloy sheet according to one embodiment is, by mass%, Si: 0.03 to 0.35%, Fe: 0.03 to 0.35%, Mg: 3.0 to 5.0%, Cu: 0.09 %, Less than 0.50% and Mn: more than 0.05% and 0.35% or less, and the balance has a composition consisting of Al and unavoidable impurities.
  • Si Chemical composition ⁇ Si: 0.03 to 0.35%> Si (silicon) has an effect of improving stress corrosion cracking resistance, and is one of the important components in one embodiment. If the Si content is less than 0.03%, it is not possible to prevent preferential precipitation of ⁇ phase (Al 3 Mg 2 ) to the grain boundaries, stress corrosion cracking resistance deteriorates, and crystal grains after final annealing become This is because roughening tends to occur and rough skin is likely to occur. On the other hand, if the Si content exceeds 0.35%, an intermetallic compound is formed to deteriorate press formability, in particular, stretchability and deep drawability. Therefore, the Si content is in the range of 0.03 to 0.35%, preferably in the range of 0.09 to 0.25%.
  • Fe iron
  • Fe (iron) also has an effect of improving stress corrosion cracking resistance, similarly to Si, and is one of the important components in one embodiment. If the Fe content is less than 0.03%, it is not possible to prevent the preferential precipitation of ⁇ phase (Al 3 Mg 2 ) to the grain boundaries, stress corrosion cracking resistance deteriorates, and the crystal grains after final annealing become It becomes coarse and it becomes easy to generate rough skin. On the other hand, if the Fe content exceeds 0.35%, an intermetallic compound is formed to deteriorate press formability, in particular, stretchability and deep drawability. Therefore, the Fe content is in the range of 0.03 to 0.35%, preferably in the range of 0.09 to 0.25%.
  • Mg manganesium
  • Mg content is in the range of 3.0 to 5.0%, preferably in the range of 3.2 to 4.7%.
  • Cu more than 0.09% and less than 0.50%>
  • Cu (copper) is a component having the effect of enhancing work hardenability as well as Mg and improving stretchability and deep drawability. Further, Cu also has an action of suppressing the intergranular precipitation of the ⁇ phase to improve stress corrosion cracking resistance by forming an Al-Mg-Cu based compound. In order to exert such an effect, it is necessary to contain the Cu content in excess of 0.09%. In addition, when the Cu content is 0.50% or more, while the hot workability is lowered, a coarse compound is formed, and the press formability is lowered. Therefore, the Cu content is in the range of more than 0.09% and less than 0.50%, preferably in the range of more than 0.09% and 0.35%.
  • Mn manganese
  • the Mn content exceeds 0.35%, the size of the recrystallized grains becomes too small, and the stretcher / strain mark (strain pattern (wrinkling on the surface of the alloy sheet) appears on the surface of the press-formed alloy sheet. ) Is likely to occur, and the formability also decreases.
  • the aluminum alloy sheet according to one embodiment contains Si, Fe, Mg, Cu and Mn as essential components, but if necessary, Ti: 0.05% or less and B: 0.05% or less.
  • Si Si, Fe, Mg, Cu and Mn as essential components, but if necessary, Ti: 0.05% or less and B: 0.05% or less.
  • Ti and B are components having the function of refining the crystal grains of the ingot.
  • the content of each of Ti and B is in the range of 0.05% or less because the content of each of Ti and B does not adversely affect the press formability and the stress corrosion cracking resistance unless the content is more than 0.05%.
  • the circle equivalent diameter is 0.1 to 0.5 ⁇ m, and the number density of Cu-free intermetallic compounds is 1 ⁇ 10 6 / mm 2 or less
  • the aluminum alloy plate of one embodiment preferably has a circle equivalent diameter of 0.1 to 0.5 ⁇ m, and the number density of the Cu-free intermetallic compound is preferably 1 ⁇ 10 6 / mm 2 or less.
  • Intermetallic compounds that do not contain Cu have poor press formability and resistance to stress corrosion cracking when the equivalent circle diameter exceeds 0.5 ⁇ m or the number density exceeds 1 ⁇ 10 6 / mm 2.
  • the equivalent circle diameter of the intermetallic compound not containing Cu is less than 0.1 ⁇ m, although the formability is good, the stress corrosion cracking resistance tends to decrease. Therefore, it is preferable that the equivalent circle diameter is 0.1 to 0.5 ⁇ m and the number density of the Cu-free intermetallic compound is 1 ⁇ 10 6 / mm 2 or less.
  • the lower limit of the number density of the Cu-free intermetallic compound is not particularly limited, but is preferably 0.5 ⁇ 10 4 / mm 2 from the viewpoint of press formability.
  • the term "equivalent circle diameter” as used herein means the diameter (equivalent circle diameter) when the area of the observed particles is converted to circle equivalent.
  • the circle equivalent diameter is 0.3 to 4 ⁇ m, and the number density of the Cu-containing intermetallic compound is 1 ⁇ 10 4 pieces / mm 2 or more.
  • the aluminum alloy plate has a circle equivalent.
  • the number density of the intermetallic compound having a diameter of 0.3 to 4 ⁇ m and containing Cu is preferably 1 ⁇ 10 4 pieces / mm 2 or more.
  • the equivalent circle diameter of the Cu-containing intermetallic compound is more than 4 ⁇ m, the press formability tends to be deteriorated. Therefore, the equivalent circle diameter is preferably 0.3 to 4 ⁇ m, and the number density of the Cu-containing intermetallic compound is preferably 1 ⁇ 10 4 / mm 2 or more.
  • the upper limit of the number density of the Cu-containing intermetallic compound is not particularly limited, but is preferably 7 ⁇ 10 5 pieces / mm 2 from the viewpoint of press formability.
  • the equivalent circle diameter and the number density of the intermetallic compounds present in the aluminum alloy plate are measured by analyzing the observation photograph obtained by observing the thin film sample prepared from the aluminum alloy plate with a transmission electron microscope. be able to.
  • the precipitates to be observed are Cu-containing intermetallic compounds or copper-free intermetallic compounds.
  • an elemental analyzer equipped in a transmission electron microscope It can be identified by conducting elemental analysis of the precipitate.
  • the circle equivalent diameter and the number density of the Cu-containing intermetallic compound and the copper-free intermetallic compound are different from the manufacturing conditions (treatment or treatment conditions under which the solid solution state or precipitation state of the intermetallic compound changes, such as heat treatment during manufacture). Since it changes largely with process, it can control by manufacturing an aluminum alloy plate by the manufacturing method mentioned later.
  • the above component composition (by mass, Si: 0.03 to 0.35%, Fe: 0.03 to 0.35%, Mg: 3.0 to 5.0%, Cu: more than 0.09% Aluminum alloy containing less than 0.50% and Mn: more than 0.05% and 0.35% or less, and the balance being composed of Al and unavoidable impurities) is melted according to a conventional method, continuous casting method, semi-continuous Select a regular casting method such as casting method at appropriate time and cast.
  • the resulting ingot is then subjected to homogenization treatment at a first temperature in the range of 490 to 580 ° C., preferably 500 to 570 ° C.
  • the treatment time of the homogenization treatment is not particularly limited, and can be, for example, in the range of 0.5 hours to 24 hours.
  • the formation of the Cu-containing intermetallic compound has the effect of improving the stress corrosion cracking resistance, while the formation of the Cu-free intermetallic compound has the effect of reducing the stress corrosion cracking resistance.
  • the average cooling rate exceeds 3000 ° C./h, the formation of Cu-containing intermetallic compounds is impeded, and the stress corrosion cracking resistance tends to decrease, and the average cooling rate is 500 ° C./hour. If it is less than h, the formation of Cu-free intermetallic compounds is promoted and the stress corrosion cracking resistance tends to be reduced.
  • the measurement position of the average cooling rate is set to “1 ⁇ 4 thickness position” because the temperature history of the 1 ⁇ 4 thickness position largely affects the performance of the material. Further, the reason for limiting the second temperature to the range of 430 to 500 ° C.
  • the average cooling rate is 500 to 3000 ° C./° to a second temperature within the range of 430 to 500 ° C. and lower than the first temperature. After cooling so as to be within the range of h, hot rolling is started at the second temperature.
  • the hot rolling After the hot rolling, it is wound at a third temperature in the range of 320 to 380 ° C., preferably in the range of 340 to 360 ° C., and then cold rolling and final annealing are sequentially performed.
  • the reason for limiting the coiling temperature to the third temperature in the range of 320 to 380 ° C. is that if the third temperature is less than 320 ° C., no recrystallized structure is obtained after hot rolling, and surface defects after press forming (rolling If the third temperature exceeds 380 ° C., crystal grains become coarse after hot rolling, and surface roughening may occur.
  • An aluminum alloy having the composition shown in Table 1 was melted and formed into a block by DC casting.
  • the obtained ingot (thickness 30 mm, width 175 mm) is heated to 560 ° C. (first temperature) and held at this first temperature for 4 hours, and then the ingot is shown in Table 2 from the first temperature.
  • the temperature range up to the temperature is cooled at the average cooling rate shown in Table 2 and held at the second temperature for 15 minutes, after which hot rolling is started at the second temperature (hot rolling start temperature), and a plate of 4 mm thickness And
  • the coiling temperature (3rd temperature) after hot rolling was 360 degreeC. Next, this plate was cold-rolled to a thickness of 1 mm, then heated at 540 ° C.
  • the aluminum alloy plates of the example and the comparative example were manufactured by the above steps.
  • Test method Method of measuring crystal grain size
  • the crystal grain size was measured for each of the manufactured aluminum alloy plates.
  • a sample is taken from the width center of the aluminum alloy plate, the grain structure is photographed on the rolling surface, and 5 straight lines at equal intervals in the longitudinal direction and in the horizontal direction in the field of 3 mm ⁇ 3 mm
  • the crystal grain size was measured by the section method, and the average value of the measured crystal grain sizes was calculated as an average crystal grain size ( ⁇ m). In this example, those having a crystal grain size of less than 50 ⁇ m were accepted, and those having a grain size of 50 ⁇ m or more were rejected (surface roughening).
  • a disc having a diameter of 110 mm is formed from each of the produced aluminum alloy plates, a low viscosity lubricating oil is applied to form a test material, and a lock bead is not provided on the die using an Erichsen tester.
  • a flat head punch with a diameter of 50 mm is used under the conditions of a wrinkle suppression force of 10 kN and a forming speed of 2.0 mm / s to measure the limit drawing height (mm) at which cracking does not occur. was evaluated.
  • the overhang formability in the overhang formability, the one having an overhang height of 17 mm or more is passed, the one having an overhang height of less than 17 mm is disqualified, and the deep drawability is an aperture height. Although the thing of 15 mm or more passed, the thing of less than 15 mm was disqualified.
  • Stress corrosion cracking resistance is obtained by cold-rolling a test specimen collected from the width center of each of the manufactured aluminum alloy plates at a processing rate of 30% and then subjecting it to a sensitization treatment of heat treatment at 120 ° C. for 7 days A chromic acid solution (pure water 1) heated to 95 ° C. in a stress-loaded state in which the test specimen subjected to the sensitization treatment is bent in a U shape having a bending radius of 2 mm and 3 mm and both ends of the U shape are restrained.
  • the aluminum alloy sheet of one embodiment has high strength, good press formability, and excellent resistance to stress corrosion cracking, and therefore, members used in various automobiles represented by automobile body sheets and body panels in particular. It is suitable for use in materials such as components and parts used in ships, aircraft, etc., as well as materials such as construction materials, structural materials, other various machine tools, household appliances and their parts, in addition to components and parts. The value is great.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

This aluminum alloy plate has a composition which contains, in mass%, 0.03-0.35% of Si, 0.03-0.35% of Fe, 3.0-5.0% of Mg, more than 0.9% but less than 0.50% of Cu and more than 0.05% but 0.35% or less of Mn, with the balance made up of Al and unavoidable impurities.

Description

アルミニウム合金板およびその製造方法Aluminum alloy sheet and method of manufacturing the same
 この発明は、例えば自動車ボディシート、ボディパネルに代表される各種自動車に使用される部材や部品、船舶、航空機等に使用される部材や部品、あるいは建築材料、構造材料、その他の各種機械器具、家電製品やその部品等の素材として、成形加工および塗装焼付を施して使用されるアルミニウム合金板、特に高い引張強さを有しながら、プレス成形性および耐応力腐食割れ性にも優れたAl-Mg系のアルミニウム合金板、およびその製造方法に関する。 The present invention relates to members and parts used in various vehicles represented by car body sheets and body panels, members and parts used in ships, aircraft, etc., or construction materials, structural materials, and various other machine tools, Aluminum alloy sheets used after forming and painting baking as materials for home appliances and parts thereof, particularly Al which has excellent press formability and stress corrosion cracking resistance while having high tensile strength. The present invention relates to a Mg-based aluminum alloy sheet and a method of manufacturing the same.
 自動車に使用されるボディシートには、従来は冷延鋼板を使用することが多かったが、最近では地球温暖化の抑制やエネルギーコストの低減等を図る観点から、自動車を軽量化して燃費を向上させる要望が高まっており、そこで従来の冷延鋼板に代えて冷延鋼板とほぼ同等の強度で比重が約1/3であるアルミニウム合金板を自動車のボディシートに使用する傾向が増加しつつある。 In the past, cold-rolled steel sheets were often used for body sheets used in automobiles, but recently, from the viewpoint of suppressing global warming, reducing energy costs, etc., automobiles are made lighter to improve fuel efficiency. There is an increasing demand for increasing the tendency to use an aluminum alloy sheet having approximately the same strength as that of a cold-rolled steel sheet and a specific gravity of about 1/3 instead of a conventional cold-rolled steel sheet for automobile body sheets. .
 ところで、自動車ボディシート用アルミニウム合金としては、Al-Mg系合金、例えば5056、5082、5182、5083、5086等のMgを3.5質量%以上含有する5000系Al合金が使用されている。これらのAl-Mg系合金は、高い強度を持ち、成形性が良好であり、溶接性も優れているため、溶接構造部材として使用されている。 By the way, as an aluminum alloy for automobile body sheets, an Al-Mg based alloy, for example, a 5000 series Al alloy containing 3.5 mass% or more of Mg such as 5056, 5082, 5182, 5083, 5086 is used. These Al-Mg based alloys are used as welded structural members because they have high strength, good formability, and excellent weldability.
 しかし、上記のAl-Mg系合金を構造材として応力が負荷された状態で長時間使用した場合、Mg含有量が多いため、応力腐食割れが発生しやすいという問題がある。この応力腐食割れを防止するためには、Al-Mg系合金からなる基材上に、塗装などの表面処理を施すことが有効であるが、この基材を構造材として無塗装で使用せざるをえない場合もあることから、Al-Mg系合金からなる基材自体が、優れた耐応力腐食割れ性を有することが求められている。 However, when the above-described Al--Mg alloy is used as a structural material for a long time in a stressed state, there is a problem that stress corrosion cracking is likely to occur because the content of Mg is large. In order to prevent this stress corrosion cracking, it is effective to apply a surface treatment such as painting on a substrate made of an Al-Mg based alloy, but this substrate should not be used as a structural material without painting. In some cases, it is required that the substrate itself made of an Al-Mg-based alloy has excellent stress corrosion cracking resistance.
 Al-Mg系合金における応力腐食割れは、時間の経過とともにβ相(AlMg)が粒界に優先的に連続析出し、この粒界析出したβ相によって促進されることが知られている。このため従来から、Mg含有量が多いAl-Mg系合金の応力腐食割れを防ぐため、β相の粒界に対する連続的な析出を抑制することが種々提案されている。 It is known that stress corrosion cracking in Al-Mg-based alloys is promoted by the β phase which is preferentially precipitated continuously in the β phase (Al 3 Mg 2 ) with the passage of time. There is. Therefore, in order to prevent stress corrosion cracking of an Al--Mg-based alloy having a high Mg content, various proposals have been conventionally made to suppress continuous precipitation with respect to grain boundaries of the β phase.
 例えば、特許文献1には、熱間圧延および冷間圧延に引き続いて溶体化処理を行った後の冷却を、高温域と低温域とで異なる冷却速度の条件にて2段階で行い、低温域での冷却速度を速くすることで、冷却中の粒界へのβ相の連続析出を防ぐことができる成形加工用Al-Mg-Cu系アルミニウム合金板の製造方法が記載されている。 For example, in Patent Document 1, cooling after solution treatment is performed subsequent to hot rolling and cold rolling is performed in two stages under different cooling rate conditions in the high temperature region and the low temperature region, and the low temperature region is A method of manufacturing an Al-Mg-Cu-based aluminum alloy sheet for forming processing which can prevent continuous precipitation of β phase at grain boundaries during cooling by increasing the cooling rate in the above is described.
 また、特許文献2には、Mg:3.5~5.5%を含み、最終焼鈍処理後の強度が250N/mm以上であり、前記焼鈍処理後の導電率を26.5~29.6IACS%とした構造用アルミニウム合金板が記載され、かかる記載によれば、前記導電率を29.6IACS%以下という、β相を含めた析出物トータルの析出および固溶状態とすることにより、強度特性を低下させずに、耐応力腐食割れ性を向上させることが可能であるとしている。 Further, Patent Document 2 contains Mg: 3.5 to 5.5%, the strength after final annealing is 250 N / mm 2 or more, and the conductivity after the annealing is 26.5 to 29. The structural aluminum alloy plate is described as having 6 IACS%, and according to the description, the conductivity is 296 IACS% or less, and the strength is obtained by causing precipitation of all precipitates including the β phase and solid solution state. It is said that it is possible to improve stress corrosion cracking resistance without deteriorating the properties.
特開2003-231956号公報Unexamined-Japanese-Patent No. 2003-231956 特開2001-32031号公報JP 2001-32031 A
 しかしながら、特許文献1に記載のアルミニウム合金板は、Cuの含有量が0.5~1.8mass%と多いため、熱間加工性が低下するとともに粗大な化合物が形成され、成形性が劣るという問題があり、加えて、かかるアルミニウム合金板を製造するには、溶体化処理を行った後の冷却を2段階で行うとともに、低温域での冷却速度を速くする必要があるが、冷却速度を速くすると処理後の平坦度などの形状精度が悪くなるという問題もある。 However, the aluminum alloy sheet described in Patent Document 1 has a large content of Cu of 0.5 to 1.8 mass%, so that the hot workability is lowered and a coarse compound is formed, and the formability is inferior. There is a problem, and in addition, in order to produce such an aluminum alloy sheet, it is necessary to perform cooling after solution treatment in two steps and to increase the cooling rate in the low temperature range. If the speed is increased, there is also a problem that the shape accuracy such as flatness after processing is deteriorated.
 また、特許文献2に記載の構造用アルミニウム合金板は、Mgだけを必須の含有成分とするとともに、最終焼鈍処理後の強度と導電率を限定したものであるが、Mg以外の特定成分の含有によっては、引張強さ、プレス成形性および耐応力腐食割れ性の優劣に影響する点については開示も示唆もなく、また、このようなアルミニウム合金板を製造するには、鋳造の際の冷却速度を速くするとともに、冷間圧延の際の中間焼鈍、および冷間圧延後の最終焼鈍での加熱後の冷却における冷却速度を速くする必要があり、これは、製造工程数の増加や、製造条件の厳密な制御によって、生産性の低下を招くという問題がある。 Further, the structural aluminum alloy sheet described in Patent Document 2 has only Mg as an essential component and limits the strength and conductivity after final annealing treatment, but contains a specific component other than Mg. There is no disclosure or suggestion on the influence of tensile strength, press formability and resistance to stress corrosion cracking depending on the conditions, and to manufacture such an aluminum alloy sheet, the cooling rate during casting It is necessary to make the cooling rate faster in the intermediate annealing in cold rolling and in the cooling after heating in the final annealing after cold rolling, which means an increase in the number of manufacturing steps and manufacturing conditions There is a problem that the strict control of the above causes a decrease in productivity.
 この発明は、このような事情に着目してなされたものであって、その目的は、高い引張強さを有しながら、プレス成形性および耐応力腐食割れ性にも優れたアルミニウム合金板、特にAl-Mg系のアルミニウム合金板およびその製造方法を提供するものである。 The present invention was made in view of such circumstances, and its object is to provide an aluminum alloy sheet having high tensile strength and excellent in press formability and stress corrosion cracking resistance, in particular An Al-Mg-based aluminum alloy sheet and a method of manufacturing the same.
 本発明者らは、上記問題点の解決のために、Al-Mg系合金の組成成分および製造プロセスについて種々の実験・検討を行ったところ、組成成分および製造プロセスを適切な条件に限定することによって、アルミニウム合金板に存在する金属間化合物のサイズおよび個数密度を制御することが可能であることを見出し、これにより、高い引張強さを維持しつつ、優れたプレス成形性および耐応力腐食割れ性も有するアルミニウム合金板の開発に成功し、本発明を完成するに至った。 The present inventors conducted various experiments and studies on composition components and manufacturing processes of Al-Mg-based alloys in order to solve the above problems, and limit the composition components and manufacturing processes to appropriate conditions. Found that it is possible to control the size and number density of the intermetallic compounds present in the aluminum alloy sheet, thereby providing excellent press formability and stress corrosion resistance while maintaining high tensile strength. We succeeded in the development of the aluminum alloy sheet which also has the properties and came to complete the present invention.
 すなわち、アルミニウム合金板およびその製造方法の各実施形態は以下のとおりである。
(1)質量%で、Si:0.03~0.35%、Fe:0.03~0.35%、Mg:3.0~5.0%、Cu:0.09%超え0.50%未満およびMn:0.05%超え0.35%以下を含有し、残部がAlおよび不可避的不純物からなる組成を有することを特徴とするアルミニウム合金板。
(2)円相当直径が0.1~0.5μmであり、Cuを含有しない金属間化合物の個数密度は、1×10個/mm以下であることを特徴とする上記(1)に記載のアルミニウム合金板。
(3)円相当直径が0.3~4μmであり、Cuを含有する金属間化合物の個数密度は、1×10個/mm以上であることを特徴とする上記(1)に記載のアルミニウム合金板。
(4)Cu:0.13~0.35質量%であることを特徴とする上記(1)に記載のアルミニウム合金板。
(5)前記組成は、Ti:0.05質量%以下およびB:0.05質量%以下のうちの1種または2種をさらに含有することを特徴とする上記(1)に記載のアルミニウム合金板。
(6)質量%で、Si:0.03~0.35%、Fe:0.03~0.35%、Mg:3.0~5.0%、Cu:0.09%超え0.50%未満およびMn:0.05%超え0.35%以下を含有し、残部がAlおよび不可避的不純物からなる組成を有するアルミニウム合金板を製造する方法であって、
 前記組成を有するアルミニウム合金素材を鋳造して得た鋳塊に、490~580℃の範囲内の第1温度で均質化処理を施し、その後、430~500℃の範囲内でかつ前記第1温度よりも低い第2温度まで、平均冷却速度を500~3000℃/hの範囲内になるように冷却してから、前記第2温度のままで熱間圧延を開始し、次いで、320~380℃の範囲内の第3温度で巻き取り、その後、冷間圧延および最終焼鈍処理を順次行うことを特徴とするアルミニウム合金板の製造方法。
(7)前記第1温度が500~570℃の範囲内であり、
 前記第2温度が440~490℃の範囲内であり、
 前記第3温度が340~360℃の範囲内であることを特徴とする上記(6)に記載のアルミニウム合金板の製造方法。
That is, each embodiment of an aluminum alloy plate and its manufacturing method is as follows.
(1) By mass%, Si: 0.03 to 0.35%, Fe: 0.03 to 0.35%, Mg: 3.0 to 5.0%, Cu: 0.09% or more and 0.50 An aluminum alloy sheet characterized by containing less than 10% and Mn: more than 0.05% and not more than 0.35%, and having a composition comprising the balance of Al and unavoidable impurities.
(2) The number density of the intermetallic compound having a circle equivalent diameter of 0.1 to 0.5 μm and containing no Cu is 1 × 10 6 / mm 2 or less. Aluminum alloy sheet as described.
(3) The equivalent circle diameter is 0.3 to 4 μm, and the number density of the Cu-containing intermetallic compound is 1 × 10 4 pieces / mm 2 or more. Aluminum alloy sheet.
(4) The aluminum alloy sheet according to the above (1), characterized in that Cu: 0.13 to 0.35 mass%.
(5) The aluminum alloy according to (1), wherein the composition further contains one or two of Ti: 0.05% by mass or less and B: 0.05% by mass or less Board.
(6) In mass%, Si: 0.03 to 0.35%, Fe: 0.03 to 0.35%, Mg: 3.0 to 5.0%, Cu: 0.09 to more than 0.50 % And Mn: more than 0.05% and 0.35% or less, and the balance is a method for manufacturing an aluminum alloy sheet having a composition consisting of Al and unavoidable impurities,
The ingot obtained by casting the aluminum alloy material having the above composition is subjected to homogenization treatment at a first temperature in the range of 490 to 580 ° C., and thereafter, in the range of 430 to 500 ° C. and at the first temperature After the average cooling rate is cooled to be within the range of 500 to 3000 ° C./h to a second temperature lower than the second temperature, hot rolling is started at the second temperature, and then 320 to 380 ° C. A method for producing an aluminum alloy sheet comprising: winding at a third temperature within the range of (1), and then performing cold rolling and final annealing treatment sequentially.
(7) The first temperature is in the range of 500 to 570 ° C.,
Said second temperature is in the range of 440-490 ° C .;
The method for producing an aluminum alloy sheet according to the above (6), wherein the third temperature is in the range of 340 to 360 ° C.
 一実施形態によれば、質量%で、Si:0.03~0.35%、Fe:0.03~0.35%、Mg:3.0~5.0%、Cu:0.09%超え0.50%未満およびMn:0.05%超え0.35%以下を含有し、残部がAlおよび不可避的不純物からなる組成を有することによって、高い引張強さを有しながら、プレス成形性および耐応力腐食割れ性にも優れたアルミニウム合金板、特にAl-Mg系のアルミニウム合金板およびその製造方法の提供が可能になった。 According to one embodiment, by mass, Si: 0.03 to 0.35%, Fe: 0.03 to 0.35%, Mg: 3.0 to 5.0%, Cu: 0.09% While having high tensile strength by having a composition containing more than 0.50% and less than 0.50% and Mn: more than 0.05% and 0.35% or less, and the balance being Al and unavoidable impurities, it has press formability while having high tensile strength. It has become possible to provide an aluminum alloy sheet which is also excellent in stress corrosion cracking resistance, particularly an Al-Mg-based aluminum alloy sheet, and a method for producing the same.
 次に、好適な実施形態について説明する。
 一実施形態に従うアルミニウム合金板は質量%で、Si:0.03~0.35%、Fe:0.03~0.35%、Mg:3.0~5.0%、Cu:0.09%超え0.50%未満およびMn:0.05%超え0.35%以下を含有し、残部がAlおよび不可避的不純物からなる組成を有している。
Next, a preferred embodiment will be described.
The aluminum alloy sheet according to one embodiment is, by mass%, Si: 0.03 to 0.35%, Fe: 0.03 to 0.35%, Mg: 3.0 to 5.0%, Cu: 0.09 %, Less than 0.50% and Mn: more than 0.05% and 0.35% or less, and the balance has a composition consisting of Al and unavoidable impurities.
 以下、一実施形態に従うアルミニウム合金板の化学組成の限定理由を示す。なお、化学組成における元素の含有量の単位はいずれも「質量%」であるが、以下、特に断らない限り、単に「%」で示す。 Hereinafter, the reasons for limitation of the chemical composition of the aluminum alloy sheet according to one embodiment will be shown. In addition, although the unit of content of the element in a chemical composition is all "mass%", unless otherwise indicated, it only shows by "%" unless it refuses.
(I)化学組成
<Si:0.03~0.35%>
 Si(ケイ素)は、耐応力腐食割れ性を向上させる作用を有し、一実施形態では重要な成分の一つである。Si含有量が0.03%未満だと、β相(AlMg)の粒界への優先析出を防ぐことができず、耐応力腐食割れ性が悪くなり、最終焼鈍後の結晶粒が粗大化して肌荒れが発生しやすくなるからである。また、Si含有量が0.35%超えだと、金属間化合物を形成してプレス成形性、特に張出し性や深絞り性が悪化するからである。このため、Si含有量は0.03~0.35%の範囲とし、好ましくは0.09~0.25%の範囲とする。
(I) Chemical composition <Si: 0.03 to 0.35%>
Si (silicon) has an effect of improving stress corrosion cracking resistance, and is one of the important components in one embodiment. If the Si content is less than 0.03%, it is not possible to prevent preferential precipitation of β phase (Al 3 Mg 2 ) to the grain boundaries, stress corrosion cracking resistance deteriorates, and crystal grains after final annealing become This is because roughening tends to occur and rough skin is likely to occur. On the other hand, if the Si content exceeds 0.35%, an intermetallic compound is formed to deteriorate press formability, in particular, stretchability and deep drawability. Therefore, the Si content is in the range of 0.03 to 0.35%, preferably in the range of 0.09 to 0.25%.
<Fe:0.03~0.35%>
 Fe(鉄)もまた、Siと同様、耐応力腐食割れ性を向上させる作用を有し、一実施形態では重要な成分の一つである。Fe含有量が0.03%未満だと、β相(AlMg)の粒界への優先析出を防ぐことができず、耐応力腐食割れ性が悪くなり、最終焼鈍後の結晶粒が粗大化して肌荒れが発生しやすくなる。また、Fe含有量が0.35%超えだと、金属間化合物を形成してプレス成形性、特に張出し性や深絞り性が悪化する。このため、Fe含有量は0.03~0.35%の範囲とし、好ましくは0.09~0.25%の範囲とする。
<Fe: 0.03 to 0.35%>
Fe (iron) also has an effect of improving stress corrosion cracking resistance, similarly to Si, and is one of the important components in one embodiment. If the Fe content is less than 0.03%, it is not possible to prevent the preferential precipitation of β phase (Al 3 Mg 2 ) to the grain boundaries, stress corrosion cracking resistance deteriorates, and the crystal grains after final annealing become It becomes coarse and it becomes easy to generate rough skin. On the other hand, if the Fe content exceeds 0.35%, an intermetallic compound is formed to deteriorate press formability, in particular, stretchability and deep drawability. Therefore, the Fe content is in the range of 0.03 to 0.35%, preferably in the range of 0.09 to 0.25%.
<Mg:3.0~5.0%>
 Mg(マグネシウム)は、加工硬化性を高くし、張出し性及び深絞り性を向上させる作用を有する成分である。かかる作用を発揮するため、Mg含有量を3.0%以上含有させることが必要である。また、Mg含有量を5.0%超えとしても、上記特性の更なる向上効果は期待できないばかりか、耐応力腐食割れ性や熱間圧延性が著しく低下する。このため、Mg含有量は3.0~5.0%の範囲とし、好ましくは3.2~4.7%の範囲とする。
<Mg: 3.0 to 5.0%>
Mg (magnesium) is a component having the effect of enhancing work hardenability and improving stretchability and deep drawability. In order to exert such an effect, it is necessary to contain Mg content of 3.0% or more. Further, even if the Mg content exceeds 5.0%, not only the effect of further improving the above-mentioned properties can not be expected, but also the stress corrosion cracking resistance and the hot rolling property are remarkably reduced. Therefore, the Mg content is in the range of 3.0 to 5.0%, preferably in the range of 3.2 to 4.7%.
<Cu:0.09%超え0.50%未満>
 Cu(銅)は、Mgと同様に加工硬化性を高くし、張出し性及び深絞り性を向上させる作用を有する成分である。また、Cuは、Al-Mg-Cu系の化合物を形成することにより、β相の粒界析出を抑制して耐応力腐食割れ性を向上させる作用も有する。かかる作用を発揮するため、Cu含有量を0.09%超えで含有させることが必要である。また、Cu含有量が0.50%以上であると、熱間加工性が低下するとともに粗大な化合物が形成され、プレス成形性が低下する。このため、Cu含有量は0.09%超え0.50%未満の範囲とし、好ましくは0.09超え0.35%の範囲とする。
<Cu: more than 0.09% and less than 0.50%>
Cu (copper) is a component having the effect of enhancing work hardenability as well as Mg and improving stretchability and deep drawability. Further, Cu also has an action of suppressing the intergranular precipitation of the β phase to improve stress corrosion cracking resistance by forming an Al-Mg-Cu based compound. In order to exert such an effect, it is necessary to contain the Cu content in excess of 0.09%. In addition, when the Cu content is 0.50% or more, while the hot workability is lowered, a coarse compound is formed, and the press formability is lowered. Therefore, the Cu content is in the range of more than 0.09% and less than 0.50%, preferably in the range of more than 0.09% and 0.35%.
<Mn:0.05%超え0.35%以下>
 Mn(マンガン)は、最終熱処理後の再結晶粒の微細化と強度を向上させる作用を有する成分である。上記作用を発揮するため、Mn含有量は0.05%超えとすることが必要である。一方、Mn含有量が0.35%超えだと、再結晶粒の大きさが小さくなりすぎてプレス成形した合金板の表面に、ストレッチャー・ストレインマーク(合金板の表面に現れる歪み模様(しわ))が発生しやすくなり、さらに成形性も低下する。
<Mn: more than 0.05% and 0.35% or less>
Mn (manganese) is a component having the effect of improving the refinement and strength of recrystallized grains after final heat treatment. In order to exhibit the said effect | action, it is necessary to make Mn content more than 0.05%. On the other hand, if the Mn content exceeds 0.35%, the size of the recrystallized grains becomes too small, and the stretcher / strain mark (strain pattern (wrinkling on the surface of the alloy sheet) appears on the surface of the press-formed alloy sheet. ) Is likely to occur, and the formability also decreases.
 一実施形態のアルミニウム合金板は、上述の通り、Si、Fe、Mg、CuおよびMnを必須の含有成分とするが、必要に応じてTi:0.05%以下およびB:0.05%以下のうちの1種または2種をさらに含有させることができる。 As described above, the aluminum alloy sheet according to one embodiment contains Si, Fe, Mg, Cu and Mn as essential components, but if necessary, Ti: 0.05% or less and B: 0.05% or less One or two of the following can be further contained.
<Ti:0.05%以下およびB:0.05%以下のうちの1種または2種>
 TiおよびBは、鋳塊の結晶粒を微細化する作用を有する成分である。TiおよびBの含有量は、いずれも0.05%よりも多くなければプレス成形性や耐応力腐食割れ性に悪影響を及ぼさないことから0.05%以下の範囲とする。
<Ti: not more than 0.05% and B: not more than 0.05%>
Ti and B are components having the function of refining the crystal grains of the ingot. The content of each of Ti and B is in the range of 0.05% or less because the content of each of Ti and B does not adversely affect the press formability and the stress corrosion cracking resistance unless the content is more than 0.05%.
<残部:Alおよび不可避的不純物>
 上記各元素の他は、Al(アルミニウム)および不可避的不純物である。
<Remainder: Al and unavoidable impurities>
Other than the above-mentioned elements are Al (aluminum) and unavoidable impurities.
 V、Sc、Na、Be、Biが0.1%以下の範囲で含まれていても、一実施形態の実施には影響が無い。 Even if V, Sc, Na, Be, Bi are contained in the range of 0.1% or less, there is no influence on the implementation of one embodiment.
(II)金属間化合物の個数密度
(i)円相当直径が0.1~0.5μmであり、Cuを含有しない金属間化合物の個数密度は、1×10個/mm以下であること
 一実施形態のアルミニウム合金板は、円相当直径が0.1~0.5μmであり、Cuを含有しない金属間化合物の個数密度は、1×10個/mm以下であることが好ましい。Cuを含有しない金属間化合物は、円相当直径が0.5μm超えであるか、あるいは、個数密度が1×10個/mm超えであると、プレス成形性および耐応力腐食割れ性が低下する傾向があるからである。また、Cuを含有しない金属間化合物の円相当直径が0.1μm未満であると、成形性は良好であるものの、耐応力腐食割れ性は低下する傾向があるからである。このため、円相当直径が0.1~0.5μmであり、Cuを含有しない金属間化合物の個数密度は、1×10個/mm以下であることが好ましい。なお、Cuを含有しない金属間化合物の個数密度の下限値は、特に限定はしないが、プレス成形性の観点から、0.5×10個/mmとすることが好ましい。なお、ここでいう「円相当径」とは、観察された粒子の面積を円等価に換算した際の直径(円相当径)を意味する。
(II) Number density of intermetallic compounds (i) The circle equivalent diameter is 0.1 to 0.5 μm, and the number density of Cu-free intermetallic compounds is 1 × 10 6 / mm 2 or less The aluminum alloy plate of one embodiment preferably has a circle equivalent diameter of 0.1 to 0.5 μm, and the number density of the Cu-free intermetallic compound is preferably 1 × 10 6 / mm 2 or less. Intermetallic compounds that do not contain Cu have poor press formability and resistance to stress corrosion cracking when the equivalent circle diameter exceeds 0.5 μm or the number density exceeds 1 × 10 6 / mm 2. Because they tend to When the circle equivalent diameter of the intermetallic compound not containing Cu is less than 0.1 μm, although the formability is good, the stress corrosion cracking resistance tends to decrease. Therefore, it is preferable that the equivalent circle diameter is 0.1 to 0.5 μm and the number density of the Cu-free intermetallic compound is 1 × 10 6 / mm 2 or less. The lower limit of the number density of the Cu-free intermetallic compound is not particularly limited, but is preferably 0.5 × 10 4 / mm 2 from the viewpoint of press formability. The term "equivalent circle diameter" as used herein means the diameter (equivalent circle diameter) when the area of the observed particles is converted to circle equivalent.
(ii)円相当直径が0.3~4μmであり、Cuを含有する金属間化合物の個数密度は、1×10個/mm以上であること
 一実施形態のアルミニウム合金板は、円相当直径が0.3~4μmであり、Cuを含有する金属間化合物の個数密度は、1×10個/mm以上であることが好ましい。Cuを含有する金属間化合物は、円相当直径が0.3μm未満であるか、あるいは、個数密度が1×10個/mm未満であると、成形性は良好であるものの、β相(AlMg)の粒界への析出抑制が十分に得られなくなり、応力腐食割れ性が低下する傾向があるからである。また、Cuを含有する金属間化合物の円相当直径が4μm超えであると、プレス成形性が悪化する傾向があるからである。このため、円相当直径が0.3~4μmであり、Cuを含有する金属間化合物の個数密度は、1×10個/mm以上であることが好ましい。なお、Cuを含有する金属間化合物の個数密度の上限値は、特に限定はしないが、プレス成形性の観点から、7×10個/mmとすることが好ましい。さらに、アルミニウム合金板中に存在する金属間化合物の円相当直径や個数密度は、アルミニウム合金板から作製した薄膜サンプルを、透過型電子顕微鏡により観察して得られる観察写真を解析することにより測定することができる。また、観察される析出物が、Cuを含有する金属間化合物であるか、あるいは銅を含有しない金属間化合物であるかは、透過型電子顕微鏡に具備されている元素分析装置を用いて個々の析出物の元素分析を行うことにより同定することができる。さらに、Cuを含有する金属間化合物および銅を含有しない金属間化合物の円相当直径や個数密度は、製造中の熱処理等、金属間化合物の固溶状態や析出状態が変化する製造条件(処理又は工程)により大きく変わるので、後述する製造方法でアルミニウム合金板を製造することによって制御することができる。
(Ii) The circle equivalent diameter is 0.3 to 4 μm, and the number density of the Cu-containing intermetallic compound is 1 × 10 4 pieces / mm 2 or more. In one embodiment, the aluminum alloy plate has a circle equivalent. The number density of the intermetallic compound having a diameter of 0.3 to 4 μm and containing Cu is preferably 1 × 10 4 pieces / mm 2 or more. Although the formability of the intermetallic compound containing Cu is good when the circle equivalent diameter is less than 0.3 μm or the number density is less than 1 × 10 4 pieces / mm 2 , the β phase ( al 3 Mg 2) inhibiting the deposition of the grain boundaries is not sufficiently obtained, and stress corrosion cracking resistance tend to decrease. In addition, when the circle equivalent diameter of the Cu-containing intermetallic compound is more than 4 μm, the press formability tends to be deteriorated. Therefore, the equivalent circle diameter is preferably 0.3 to 4 μm, and the number density of the Cu-containing intermetallic compound is preferably 1 × 10 4 / mm 2 or more. The upper limit of the number density of the Cu-containing intermetallic compound is not particularly limited, but is preferably 7 × 10 5 pieces / mm 2 from the viewpoint of press formability. Furthermore, the equivalent circle diameter and the number density of the intermetallic compounds present in the aluminum alloy plate are measured by analyzing the observation photograph obtained by observing the thin film sample prepared from the aluminum alloy plate with a transmission electron microscope. be able to. In addition, whether the precipitates to be observed are Cu-containing intermetallic compounds or copper-free intermetallic compounds can be determined individually using an elemental analyzer equipped in a transmission electron microscope. It can be identified by conducting elemental analysis of the precipitate. Furthermore, the circle equivalent diameter and the number density of the Cu-containing intermetallic compound and the copper-free intermetallic compound are different from the manufacturing conditions (treatment or treatment conditions under which the solid solution state or precipitation state of the intermetallic compound changes, such as heat treatment during manufacture). Since it changes largely with process, it can control by manufacturing an aluminum alloy plate by the manufacturing method mentioned later.
(III)アルミニウム合金板の製造方法
 次に、一実施形態のアルミニウム合金板の製造方法の好適な実施形態を以下で説明する。
 一実施形態に係るアルミニウム合金板の製造方法は、鋳塊に均質化処理を施した時点からの冷却速度、およびその後に行う熱間圧延の開始温度を適正範囲に制御することが特に重要である。
(III) Method of Manufacturing Aluminum Alloy Plate Next, a preferred embodiment of a method of manufacturing an aluminum alloy plate according to one embodiment will be described below.
In the method of manufacturing an aluminum alloy sheet according to one embodiment, it is particularly important to control the cooling rate from the time when the ingot is homogenized and the start temperature of hot rolling thereafter performed in an appropriate range .
 まず、上記成分組成(質量%で、Si:0.03~0.35%、Fe:0.03~0.35%、Mg:3.0~5.0%、Cu:0.09%超え0.50%未満およびMn:0.05%超え0.35%以下を含有し、残部がAlおよび不可避的不純物からなる組成)のアルミニウム合金を常法に従って溶製し、連続鋳造法、半連続鋳造法などの通常の鋳造法を適時選択して鋳造する。そして得られた鋳塊に対して、490~580℃、好ましくは500~570℃の範囲内の第1温度で均質化処理を施す。前記第1温度が490℃未満だと、鋳造時に形成した添加元素の偏析が解消されず、十分な成形性が得られないおそれがあり、また、580℃超えだと、処理時に共晶融解が発生し、熱延時に割れが発生するおそれがあるからである。均質化処理の処理時間は、特に限定されず、例えば0.5時間以上24時間以下の範囲にすることができる。 First, the above component composition (by mass, Si: 0.03 to 0.35%, Fe: 0.03 to 0.35%, Mg: 3.0 to 5.0%, Cu: more than 0.09% Aluminum alloy containing less than 0.50% and Mn: more than 0.05% and 0.35% or less, and the balance being composed of Al and unavoidable impurities) is melted according to a conventional method, continuous casting method, semi-continuous Select a regular casting method such as casting method at appropriate time and cast. The resulting ingot is then subjected to homogenization treatment at a first temperature in the range of 490 to 580 ° C., preferably 500 to 570 ° C. If the first temperature is less than 490 ° C., segregation of the additive element formed at the time of casting may not be eliminated, and sufficient formability may not be obtained, and if it exceeds 580 ° C., eutectic melting occurs during processing. It is because it may generate and a crack may occur at the time of hot rolling. The treatment time of the homogenization treatment is not particularly limited, and can be, for example, in the range of 0.5 hours to 24 hours.
 次に、鋳塊に上記の均質化処理を施した後に、430~500℃の範囲内、好ましくは440~490℃の範囲内で、かつ第1温度よりも低い第2温度まで、平均冷却速度、より好適には鋳塊の1/4厚さ位置にて測定した平均冷却速度が500~3000℃/hの範囲内になるように冷却してから、前記第2温度のままで熱間圧延を開始する。ここで、Cuを含有する金属間化合物の形成は耐応力腐食割れ性を向上させる作用を有し、一方、Cuを含有しない金属間化合物の形成は、耐応力腐食割れ性を低下させる作用を有するが、前記平均冷却速度が3000℃/h超えだと、Cuを含有する金属間化合物の形成が妨げられて耐応力腐食割れ性が低下する傾向があり、また、前記平均冷却速度が500℃/h未満だと、Cuを含有しない金属間化合物の形成が促進されて耐応力腐食割れ性が低下する傾向がある。ここで、平均冷却速度の測定位置を「1/4厚さ位置」としたのは、1/4厚さ位置の温度履歴が材料の性能に及ぼす影響が大きいためである。また、第2温度を430~500℃の範囲内に限定した理由は、第2温度が430℃未満だと、熱延時に噛みこみ不良が発生するおそれがあり、また、第2温度が500℃超えだと、熱延時に割れが発生するおそれがあるからである。このため、一実施形態では、鋳塊に上記の均質化処理を施した後に、430~500℃の範囲内でかつ第1温度よりも低い第2温度まで、平均冷却速度が500~3000℃/hの範囲内になるように冷却してから、第2温度のままで熱間圧延を開始する。 Next, after the ingot is subjected to the above-mentioned homogenization treatment, the average cooling rate to a second temperature lower than the first temperature within the range of 430 to 500 ° C., preferably within the range of 440 to 490 ° C. More preferably, after cooling so that the average cooling rate measured at a quarter thickness position of the ingot falls within the range of 500 to 3000 ° C./h, hot rolling is performed at the second temperature. To start. Here, the formation of the Cu-containing intermetallic compound has the effect of improving the stress corrosion cracking resistance, while the formation of the Cu-free intermetallic compound has the effect of reducing the stress corrosion cracking resistance. However, if the average cooling rate exceeds 3000 ° C./h, the formation of Cu-containing intermetallic compounds is impeded, and the stress corrosion cracking resistance tends to decrease, and the average cooling rate is 500 ° C./hour. If it is less than h, the formation of Cu-free intermetallic compounds is promoted and the stress corrosion cracking resistance tends to be reduced. Here, the measurement position of the average cooling rate is set to “1⁄4 thickness position” because the temperature history of the 1⁄4 thickness position largely affects the performance of the material. Further, the reason for limiting the second temperature to the range of 430 to 500 ° C. is that if the second temperature is less than 430 ° C., there is a possibility that biting failure may occur during hot rolling, and the second temperature is 500 ° C. If it exceeds, cracking may occur during hot rolling. Therefore, in one embodiment, after the ingot is subjected to the above-described homogenization treatment, the average cooling rate is 500 to 3000 ° C./° to a second temperature within the range of 430 to 500 ° C. and lower than the first temperature. After cooling so as to be within the range of h, hot rolling is started at the second temperature.
 上記熱間圧延後に、320~380℃の範囲内、好ましくは340~360℃の範囲内の第3温度で巻き取り、その後、冷間圧延および最終焼鈍処理を順次行う。巻取温度を320~380℃の範囲内の第3温度に限定する理由は、第3温度が320℃未満だと、熱間圧延後に再結晶組織が得られず、プレス成形後に表面不良(圧延方向のスジ)が発生するおそれがあり、また、第3温度が380℃超えだと、熱間圧延後に結晶粒が粗大化し、肌荒れが発生するおそれがあるからである。 After the hot rolling, it is wound at a third temperature in the range of 320 to 380 ° C., preferably in the range of 340 to 360 ° C., and then cold rolling and final annealing are sequentially performed. The reason for limiting the coiling temperature to the third temperature in the range of 320 to 380 ° C. is that if the third temperature is less than 320 ° C., no recrystallized structure is obtained after hot rolling, and surface defects after press forming (rolling If the third temperature exceeds 380 ° C., crystal grains become coarse after hot rolling, and surface roughening may occur.
 上述したところは、この発明のいくつかの実施形態を示したにすぎず、請求の範囲において種々の変更を加えることができる。 The above descriptions show only some embodiments of the present invention, and various modifications can be made in the claims.
 以下に、一実施形態の実施例を説明する。
 表1に示す組成を有するアルミニウム合金を溶解し、DC鋳造により造塊した。得られた鋳塊(厚さ30mm、幅175mm)を560℃(第1温度)まで加熱し、この第1温度で4時間保持した後、鋳塊を前記第1温度から表2に示す第2温度までの温度範囲を、表2に示す平均冷却速度で冷却し、第2温度で15分保持した後に、第2温度(熱延開始温度)で熱間圧延を開始し、4mm厚さの板材とした。熱間圧延後の巻取温度(第3温度)は360℃とした。次に、この板材を1mm厚さまで冷間圧延し、その後、塩浴炉で540℃、30秒の条件で加熱し、室温付近までファンにて強制空冷する軟化処理(最終焼鈍処理)を施した。以上の工程により、実施例および比較例のアルミニウム合金板を製造した。
Hereinafter, an example of one embodiment will be described.
An aluminum alloy having the composition shown in Table 1 was melted and formed into a block by DC casting. The obtained ingot (thickness 30 mm, width 175 mm) is heated to 560 ° C. (first temperature) and held at this first temperature for 4 hours, and then the ingot is shown in Table 2 from the first temperature. The temperature range up to the temperature is cooled at the average cooling rate shown in Table 2 and held at the second temperature for 15 minutes, after which hot rolling is started at the second temperature (hot rolling start temperature), and a plate of 4 mm thickness And The coiling temperature (3rd temperature) after hot rolling was 360 degreeC. Next, this plate was cold-rolled to a thickness of 1 mm, then heated at 540 ° C. for 30 seconds in a salt bath furnace, and subjected to softening treatment (final annealing treatment) that forced air cooling was carried out with a fan to around room temperature. . The aluminum alloy plates of the example and the comparative example were manufactured by the above steps.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(試験方法)
[結晶粒径の測定方法]
 作製した上記各アルミニウム合金板について、結晶粒径を測定した。確認の方法として、アルミニウム合金板の幅中央部からサンプルを採取し、圧延表面において、その結晶粒組織を撮影し、3mm×3mmの視野において、縦方向および横方向に5本ずつ等間隔に直線を引き、切片法により結晶粒径を測定し、測定した結晶粒径の平均値を平均結晶粒径(μm)として算出した。本実施例では、結晶粒径が50μm未満のものを合格、50μm以上のものを不合格(肌荒れ発生)とした。
(Test method)
[Method of measuring crystal grain size]
The crystal grain size was measured for each of the manufactured aluminum alloy plates. As a method of confirmation, a sample is taken from the width center of the aluminum alloy plate, the grain structure is photographed on the rolling surface, and 5 straight lines at equal intervals in the longitudinal direction and in the horizontal direction in the field of 3 mm × 3 mm The crystal grain size was measured by the section method, and the average value of the measured crystal grain sizes was calculated as an average crystal grain size (μm). In this example, those having a crystal grain size of less than 50 μm were accepted, and those having a grain size of 50 μm or more were rejected (surface roughening).
[金属間化合物の個数密度の算出方法]
 作製した上記各アルミニウム合金板について、板幅中央部より圧延面と平行な断面の中央部を、日本電子株式会社製JEM-2010を用いて、10,000倍の倍率で透過型電子顕微鏡(TEM)によって観察した。得られた画像中の金属間化合物の面積を、画像解析ソフト「Winroof」を用いて測定し、円等価に換算した際の直径(円相当径)で評価した値である。なお、化合物にCuを含有するか否かはEDS(Energy Dispersive X-ray Spectroscopy)を用いて分析した。円相当径が0.1~0.5μmのCuを含有しない金属間化合物の個数密度(個/mm)と、円相当径が0.3~4μmのCuを含有する金属間化合物の個数密度を(個/mm)を求めた。観察は3視野で行い、平均値を採用した。
[Method of calculating the number density of intermetallic compounds]
With respect to each of the manufactured aluminum alloy plates, a central portion of a cross section parallel to the rolling surface from the central portion of the plate width is a transmission electron microscope (TEM with a magnification of 10,000 times using JEM-2010 manufactured by JEOL Ltd.) Observed by). The area of the intermetallic compound in the obtained image is measured using an image analysis software "Winroof", and the value is evaluated by the diameter (equivalent circle diameter) when converted to circle equivalent. In addition, it was analyzed using EDS (Energy Dispersive X-ray Spectroscopy) whether or not the compound contains Cu. Number density of Cu-free intermetallic compounds having a circle equivalent diameter of 0.1 to 0.5 μm (pieces / mm 2 ) and number density of Cu-containing intermetallic compounds having a circle equivalent diameter of 0.3 to 4 μm The (pieces / mm 2 ) was determined. Observation was performed in 3 fields of view, and the average value was adopted.
[引張特性]
 作製した上記各アルミニウム合金板について、圧延方向に対して直角な方向にJIS5号試験片を切り出し、引張試験により引張強さ(MPa)、耐力(MPa)および破断伸び(%)を測定した。なお、本実施例では、引張強さが240MPa以上のものを合格、240MPa未満のものを不合格とし、また、耐力に関しては、100MPa以上のものを合格、100MPa未満のものを不合格とした。
[Tensive properties]
For each of the produced aluminum alloy sheets, a JIS No. 5 test piece was cut out in a direction perpendicular to the rolling direction, and tensile strength (MPa), yield strength (MPa) and breaking elongation (%) were measured by a tensile test. In the present example, those having a tensile strength of 240 MPa or more passed, those having less than 240 MPa failed, and those having a tensile strength of 100 MPa or more passed, and those having less than 100 MPa failed.
[プレス成形性]
 プレス成形を調べるため張出成形試験と絞り成形試験を行った。
 張出成形試験は、作製した上記各アルミニウム合金板の幅中央部から、1辺が120mmの正方形のブランクを切り出して、エリクセン試験機によりビード付金型を用いて、直径50mmのパンチにより、しわ抑え力40kN、成形速度2.0mm/sでの条件で行い、割れの発生しない限界の張出高さ(mm)を測定し、張出高さの測定値からプレス成形性を評価した。
 絞り成形試験は、作製した上記各アルミニウム合金板から直径110mmの円板を成形し、低粘度潤滑油を塗布して試験材とし、エリクセン試験機を用いて、ダイスにはロックビードを設けず、直径50mmの平頭パンチにより、しわ抑え力10kN、成形速度2.0mm/sの条件で行い、割れの発生しない限界の絞り高さ(mm)を測定し、絞り高さの測定値からプレス成形性を評価した。
 なお、プレス成形性の評価は、本実施例では、張り出し成形性では、張出高さが17mm以上のものを合格、17mm未満のものを不合格とし、また、深絞り性では、絞り高さが15mm以上のものを合格、15mm未満のものを不合格とした。
[Press formability]
A stretch forming test and a draw forming test were conducted to investigate press forming.
In the overhang forming test, a square blank having a side of 120 mm is cut out from the center of the width of each of the manufactured aluminum alloy plates and wrinkled by a punch with a diameter of 50 mm using a beaded die by an Erichsen testing machine. The pressing force was evaluated from the measured value of the overhanging height by measuring the overhanging height (mm) at the limit where no cracking occurs, under the conditions of a restraining force of 40 kN and a forming speed of 2.0 mm / s.
In the draw forming test, a disc having a diameter of 110 mm is formed from each of the produced aluminum alloy plates, a low viscosity lubricating oil is applied to form a test material, and a lock bead is not provided on the die using an Erichsen tester. A flat head punch with a diameter of 50 mm is used under the conditions of a wrinkle suppression force of 10 kN and a forming speed of 2.0 mm / s to measure the limit drawing height (mm) at which cracking does not occur. Was evaluated.
In the evaluation of press formability, in the present example, in the overhang formability, the one having an overhang height of 17 mm or more is passed, the one having an overhang height of less than 17 mm is disqualified, and the deep drawability is an aperture height. Although the thing of 15 mm or more passed, the thing of less than 15 mm was disqualified.
[耐応力腐食割れ性]
 耐応力腐食割れ性は、作製した上記各アルミニウム合金板の幅中央部から採取した試験片を30%の加工率で冷間圧延した後、120℃、7日間の熱処理を行う鋭敏化処理を施し、この鋭敏化処理を施した試験片を、曲げ半径が2mmおよび3mmのU字状に曲げ、U字状の両端を拘束した応力負荷状態で、95℃に加熱したクロム酸溶液(純水1リットルにCrO:36g、KCr:30gおよびNaCl:3gを含む水溶液)に浸漬し、応力腐食割れが発生するまでの時間を測定し、曲げ半径2mmで24時間以内に割れが発生した場合を「×」、24時間で割れが発生しない場合を「○」、そして、96時間で割れが発生しない場合を「◎」とした。
 本実施例で製造したアルミニウム合金板材の引張特性、プレス成形性および耐応力腐食割れ性の評価結果を表3に示す。
[Stress corrosion cracking resistance]
The stress corrosion cracking resistance is obtained by cold-rolling a test specimen collected from the width center of each of the manufactured aluminum alloy plates at a processing rate of 30% and then subjecting it to a sensitization treatment of heat treatment at 120 ° C. for 7 days A chromic acid solution (pure water 1) heated to 95 ° C. in a stress-loaded state in which the test specimen subjected to the sensitization treatment is bent in a U shape having a bending radius of 2 mm and 3 mm and both ends of the U shape are restrained. Immersed in an aqueous solution containing 36 g of CrO 3 , 30 g of K 2 Cr 2 O 7, and 3 g of NaCl in 3 liters of L), and measured the time until stress corrosion cracking occurs. The case where generation | occurrence | production was set to "x", the case where a crack does not generate | occur | produce in 24 hours was made into "(circle)", and the case where a crack does not generate | occur | produce in 96 hours was made into "(double-circle)".
The evaluation results of the tensile properties, press formability and stress corrosion cracking resistance of the aluminum alloy sheet produced in the present example are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示す評価結果から、本発明例1~23はいずれも、引張強さが240MPa以上と高く、張出高さが17mm以上で絞り高さも15mm以上と高く、耐応力腐食割れ性も優れていた。これに対し、本発明の適正範囲外の組成を有する比較例1~10および17~19、および本発明の適正範囲外の製造条件で製造した比較例11~16はいずれも、引張特性、プレス成形性および耐応力腐食割れ性の少なくとも1つが劣っていた。 According to the evaluation results shown in Table 3, all of the invention examples 1 to 23 have high tensile strength of 240 MPa or more, overhang height of 17 mm or more, high drawing height of 15 mm or more, and excellent resistance to stress corrosion cracking. It was On the other hand, in Comparative Examples 1 to 10 and 17 to 19 having a composition outside the appropriate range of the present invention, and Comparative Examples 11 to 16 produced under manufacturing conditions outside the appropriate range of the present invention, tensile properties, press At least one of formability and stress corrosion cracking resistance was inferior.
 一実施形態のアルミニウム合金板は、強度が高く、プレス成形性が良好でかつ耐応力腐食割れ性も優れていることから、特に自動車ボディシート、ボディパネルに代表される各種自動車に使用される部材や部品の他、船舶、航空機等に使用される部材や部品、あるいは建築材料、構造材料、その他の各種機械器具、家電製品やその部品等の素材に使用するのに適しており、その工業的価値は大きい。 The aluminum alloy sheet of one embodiment has high strength, good press formability, and excellent resistance to stress corrosion cracking, and therefore, members used in various automobiles represented by automobile body sheets and body panels in particular. It is suitable for use in materials such as components and parts used in ships, aircraft, etc., as well as materials such as construction materials, structural materials, other various machine tools, household appliances and their parts, in addition to components and parts. The value is great.

Claims (7)

  1.  質量%で、Si:0.03~0.35%、Fe:0.03~0.35%、Mg:3.0~5.0%、Cu:0.09%超え0.50%未満およびMn:0.05%超え0.35%以下を含有し、残部がAlおよび不可避的不純物からなる組成を有することを特徴とするアルミニウム合金板。 Si: 0.03 to 0.35%, Fe: 0.03 to 0.35%, Mg: 3.0 to 5.0%, Cu: more than 0.09% and less than 0.50% by mass% Mn: An aluminum alloy sheet containing 0.05% or more and 0.35% or less of Mn and having a composition in which the balance is Al and unavoidable impurities.
  2.  円相当直径が0.1~0.5μmであり、Cuを含有しない金属間化合物の個数密度は、1×10個/mm以下であることを特徴とする請求項1に記載のアルミニウム合金板。 The aluminum alloy according to claim 1, wherein the number density of the intermetallic compound having a circle equivalent diameter of 0.1 to 0.5 μm and not containing Cu is 1 × 10 6 pieces / mm 2 or less. Board.
  3.  円相当直径が0.3~4μmであり、Cuを含有する金属間化合物の個数密度は、1×10個/mm以上であることを特徴とする請求項1に記載のアルミニウム合金板。 The aluminum alloy sheet according to claim 1, wherein the circle equivalent diameter is 0.3 to 4 μm, and the number density of the Cu-containing intermetallic compound is 1 × 10 4 pieces / mm 2 or more.
  4.  Cu:0.13~0.35質量%であることを特徴とする請求項1に記載のアルミニウム合金板。 The aluminum alloy sheet according to claim 1, characterized in that Cu: 0.13 to 0.35 mass%.
  5.  前記組成は、Ti:0.05質量%以下およびB:0.05質量%以下のうちの1種または2種をさらに含有することを特徴とする請求項1に記載のアルミニウム合金板。 The aluminum alloy sheet according to claim 1, wherein the composition further contains one or two of Ti: 0.05% by mass or less and B: 0.05% by mass or less.
  6.  質量%で、Si:0.03~0.35%、Fe:0.03~0.35%、Mg:3.0~5.0%、Cu:0.09%超え0.50%未満およびMn:0.05%超え0.35%以下を含有し、残部がAlおよび不可避的不純物からなる組成を有するアルミニウム合金板を製造する方法であって、
     前記組成を有するアルミニウム合金素材を鋳造して得た鋳塊に、490~580℃の範囲内の第1温度で均質化処理を施し、その後、430~500℃の範囲内でかつ前記第1温度よりも低い第2温度まで、平均冷却速度を500~3000℃/hの範囲内になるように冷却してから、前記第2温度のままで熱間圧延を開始し、次いで、320~380℃の範囲内の第3温度で巻き取り、その後、冷間圧延および最終焼鈍処理を順次行うことを特徴とするアルミニウム合金板の製造方法。
    Si: 0.03 to 0.35%, Fe: 0.03 to 0.35%, Mg: 3.0 to 5.0%, Cu: more than 0.09% and less than 0.50% by mass% Mn: A method for producing an aluminum alloy sheet containing 0.05% or more and 0.35% or less and the balance comprising Al and inevitable impurities,
    The ingot obtained by casting the aluminum alloy material having the above composition is subjected to homogenization treatment at a first temperature in the range of 490 to 580 ° C., and thereafter, in the range of 430 to 500 ° C. and at the first temperature After the average cooling rate is cooled to be within the range of 500 to 3000 ° C./h to a second temperature lower than the second temperature, hot rolling is started at the second temperature, and then 320 to 380 ° C. A method for producing an aluminum alloy sheet comprising: winding at a third temperature within the range of (1), and then performing cold rolling and final annealing treatment sequentially.
  7.  前記第1温度が500~570℃の範囲内であり、
     前記第2温度が440~490℃の範囲内であり、
     前記第3温度が340~360℃の範囲内であることを特徴とする請求項6に記載のアルミニウム合金板の製造方法。
    The first temperature is in the range of 500 to 570 ° C.,
    Said second temperature is in the range of 440-490 ° C .;
    The method for producing an aluminum alloy sheet according to claim 6, wherein the third temperature is in a range of 340 to 360 ° C.
PCT/JP2018/026827 2017-07-26 2018-07-18 Aluminum alloy plate and method for producing same WO2019021899A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207003047A KR20200034729A (en) 2017-07-26 2018-07-18 Aluminum alloy plate and its manufacturing method
CN201880049900.1A CN110945153A (en) 2017-07-26 2018-07-18 Aluminum alloy sheet and method for producing same
US16/752,490 US20200157668A1 (en) 2017-07-26 2020-01-24 Aluminum alloy plate and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-144874 2017-07-26
JP2017144874A JP2019026876A (en) 2017-07-26 2017-07-26 Aluminum alloy sheet and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/752,490 Continuation US20200157668A1 (en) 2017-07-26 2020-01-24 Aluminum alloy plate and method for producing the same

Publications (1)

Publication Number Publication Date
WO2019021899A1 true WO2019021899A1 (en) 2019-01-31

Family

ID=65041175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026827 WO2019021899A1 (en) 2017-07-26 2018-07-18 Aluminum alloy plate and method for producing same

Country Status (5)

Country Link
US (1) US20200157668A1 (en)
JP (1) JP2019026876A (en)
KR (1) KR20200034729A (en)
CN (1) CN110945153A (en)
WO (1) WO2019021899A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024534911A (en) * 2021-09-03 2024-09-26 スペイラ ゲゼルシャフト ミット ベシュレンクテル ハフツング Aluminum alloy strip optimized for forming and method for manufacturing

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6050141A (en) * 1983-08-27 1985-03-19 Kobe Steel Ltd Hard aluminum alloy sheet for can end and its production
JPH04301055A (en) * 1991-03-28 1992-10-23 Sumitomo Light Metal Ind Ltd Production of aluminum alloy sheet for forming excellent in deep darwability
JPH10219412A (en) * 1997-02-04 1998-08-18 Shinko Alcoa Yuso Kizai Kk Manufacture of rolled aluminum alloy sheet excellent in external appearance characteristic after forming
JP2007100182A (en) * 2005-10-06 2007-04-19 Furukawa Sky Kk Aluminum alloy sheet for cap and method for producing the same
WO2015125791A1 (en) * 2014-02-18 2015-08-27 株式会社神戸製鋼所 Aluminum alloy plate for can lids
CN104894442A (en) * 2015-05-05 2015-09-09 山东南山铝业股份有限公司 Aluminum alloy sheet material for vehicles and preparation method thereof
JP2016141886A (en) * 2015-02-05 2016-08-08 株式会社神戸製鋼所 Aluminum alloy sheet for can top

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001032031A (en) 1999-07-22 2001-02-06 Kobe Steel Ltd Aluminum alloy sheet for structural material, excellent in stress corrosion cracking resistance
JP2003231956A (en) 2002-02-12 2003-08-19 Sky Alum Co Ltd PROCESS FOR MANUFACTURING Al-Mg-Cu ALUMINUM ALLOY PLATE FOR FABRICATION

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6050141A (en) * 1983-08-27 1985-03-19 Kobe Steel Ltd Hard aluminum alloy sheet for can end and its production
JPH04301055A (en) * 1991-03-28 1992-10-23 Sumitomo Light Metal Ind Ltd Production of aluminum alloy sheet for forming excellent in deep darwability
JPH10219412A (en) * 1997-02-04 1998-08-18 Shinko Alcoa Yuso Kizai Kk Manufacture of rolled aluminum alloy sheet excellent in external appearance characteristic after forming
JP2007100182A (en) * 2005-10-06 2007-04-19 Furukawa Sky Kk Aluminum alloy sheet for cap and method for producing the same
WO2015125791A1 (en) * 2014-02-18 2015-08-27 株式会社神戸製鋼所 Aluminum alloy plate for can lids
JP2016141886A (en) * 2015-02-05 2016-08-08 株式会社神戸製鋼所 Aluminum alloy sheet for can top
CN104894442A (en) * 2015-05-05 2015-09-09 山东南山铝业股份有限公司 Aluminum alloy sheet material for vehicles and preparation method thereof

Also Published As

Publication number Publication date
JP2019026876A (en) 2019-02-21
CN110945153A (en) 2020-03-31
US20200157668A1 (en) 2020-05-21
KR20200034729A (en) 2020-03-31

Similar Documents

Publication Publication Date Title
JP5203772B2 (en) Aluminum alloy sheet excellent in paint bake hardenability and suppressing room temperature aging and method for producing the same
JP3819263B2 (en) Aluminum alloy material with excellent room temperature aging control and low temperature age hardening
JP5852534B2 (en) Aluminum alloy sheet with excellent bake hardenability
US20190153577A1 (en) Method of making 6xxx aluminium sheets
JP6165687B2 (en) Aluminum alloy plate
EP2612938B1 (en) Heat exchanger aluminum alloy fin material and method for producing same
US11591674B2 (en) Aluminum-alloy sheet
CN105838927A (en) High strength aluminum alloy sheet
JP2010116594A (en) Al-Mg-Si-BASED ALUMINUM ALLOY SHEET SUPERIOR IN BENDABILITY
JP2008303455A (en) MANUFACTURING METHOD OF Al-Mg-Si BASED ALUMINUM ALLOY PLATE FOR PRESS MOLDING AND Al-Mg-Si BASED ALUMINUM ALLOY PLATE FOR PRESS MOLDING
JP2006257475A (en) Al-Mg-Si ALLOY SHEET SUPERIOR IN PRESS FORMABILITY, MANUFACTURING METHOD THEREFOR AND AUTOMOTIVE SKIN PLATE OBTAINED FROM THE SHEET MATERIAL
US20170349979A1 (en) Aluminum alloy sheet
JP5054364B2 (en) Method for producing aluminum alloy plate
JP4328242B2 (en) Aluminum alloy plate with excellent ridging mark characteristics
JP2018204116A (en) Aluminum alloy sheet
JP3740086B2 (en) A method for producing an aluminum alloy plate that is excellent in hemmability after aging at room temperature and is hemmed after stretch forming
JP2004010982A (en) Aluminum alloy sheet having excellent bending workability and press formability
JP3754624B2 (en) Method for producing automotive aluminum alloy panel material excellent in room temperature aging suppression and low temperature age hardening ability, and automotive aluminum alloy panel material
JP2008231475A (en) Aluminum alloy sheet for forming workpiece, and producing method therefor
WO2019021899A1 (en) Aluminum alloy plate and method for producing same
JP2004027253A (en) Aluminum alloy sheet for molding, and method of producing the same
JP2017210673A (en) Aluminum alloy sheet for press molding small in anisotropy of r value and manufacturing method therefor
JP6585436B2 (en) Aluminum alloy plate for automobile body panel excellent in yarn rust resistance, paint bake hardenability and processability, and production method thereof, and automobile body panel using the same and production method thereof
JP4257185B2 (en) Aluminum alloy plate for forming and method for producing the same
JP2001262265A (en) Hot rolling stock of high formability aluminum alloy sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18838688

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207003047

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18838688

Country of ref document: EP

Kind code of ref document: A1