JP7358759B2 - Scroll member and scroll forging product manufacturing method - Google Patents
Scroll member and scroll forging product manufacturing method Download PDFInfo
- Publication number
- JP7358759B2 JP7358759B2 JP2019060327A JP2019060327A JP7358759B2 JP 7358759 B2 JP7358759 B2 JP 7358759B2 JP 2019060327 A JP2019060327 A JP 2019060327A JP 2019060327 A JP2019060327 A JP 2019060327A JP 7358759 B2 JP7358759 B2 JP 7358759B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- scroll
- aluminum alloy
- scroll member
- mpa
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005242 forging Methods 0.000 title claims description 15
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 229910000838 Al alloy Inorganic materials 0.000 claims description 30
- 239000000463 material Substances 0.000 claims description 15
- 239000012535 impurity Substances 0.000 claims description 12
- 229910052802 copper Inorganic materials 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 150000002739 metals Chemical class 0.000 claims description 4
- 239000000047 product Substances 0.000 description 18
- 239000002245 particle Substances 0.000 description 11
- 239000011856 silicon-based particle Substances 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 9
- 230000005496 eutectics Effects 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 238000009864 tensile test Methods 0.000 description 6
- 229910052726 zirconium Inorganic materials 0.000 description 6
- 229910052804 chromium Inorganic materials 0.000 description 5
- 229910052748 manganese Inorganic materials 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 238000005266 casting Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 238000004381 surface treatment Methods 0.000 description 3
- 229910018084 Al-Fe Inorganic materials 0.000 description 2
- 229910018192 Al—Fe Inorganic materials 0.000 description 2
- 229910018191 Al—Fe—Si Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910017082 Fe-Si Inorganic materials 0.000 description 2
- 229910017133 Fe—Si Inorganic materials 0.000 description 2
- 229910019018 Mg 2 Si Inorganic materials 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000000265 homogenisation Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 230000001050 lubricating effect Effects 0.000 description 2
- 239000010687 lubricating oil Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 230000001376 precipitating effect Effects 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 229910018131 Al-Mn Inorganic materials 0.000 description 1
- 229910018461 Al—Mn Inorganic materials 0.000 description 1
- 229910018507 Al—Ni Inorganic materials 0.000 description 1
- 229910018580 Al—Zr Inorganic materials 0.000 description 1
- 229910018565 CuAl Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- QQHSIRTYSFLSRM-UHFFFAOYSA-N alumanylidynechromium Chemical compound [Al].[Cr] QQHSIRTYSFLSRM-UHFFFAOYSA-N 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000004512 die casting Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/043—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21J—FORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
- B21J1/00—Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
- B21J1/003—Selecting material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21K—MAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
- B21K23/00—Making other articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21K—MAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
- B21K3/00—Making engine or like machine parts not covered by sub-groups of B21K1/00; Making propellers or the like
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/02—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/02—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
- F04C18/0207—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
- F04C18/0215—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/02—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
- F04C18/0207—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
- F04C18/0246—Details concerning the involute wraps or their base, e.g. geometry
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2230/00—Manufacture
- F04C2230/20—Manufacture essentially without removing material
- F04C2230/25—Manufacture essentially without removing material by forging
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2201/00—Metals
- F05C2201/02—Light metals
- F05C2201/021—Aluminium
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Rotary Pumps (AREA)
Description
本発明は、電気自動車やハイブリッド自動車等の自動車のエアコン用コンプレッサー等に用いられるスクロール部材およびスクロール鍛造品の製造方法に関する。 TECHNICAL FIELD The present invention relates to a scroll member used in an air conditioner compressor of a motor vehicle such as an electric vehicle or a hybrid vehicle, and a method for manufacturing a scroll forged product.
近年、電気自動車やハイブリッド自動車等の自動車の車載用電動コンプレッサーで採用されるコンプレッサーは、スクロール式が多く、このスクロール式は、高効率であり静粛性に優れている点が特徴である。スクロール式コンプレッサーは、図3に示すように、底板(フランジ)52の上に渦巻き型の羽根部51を設けた固定スクロール50と、該固定スクロールの羽根部51に対面して略嵌合して揺動する同様形状の渦巻き型の羽根部と底板を備えた揺動スクロールとで構成される。
In recent years, many scroll type compressors have been adopted in on-board electric compressors for automobiles such as electric cars and hybrid cars, and this scroll type is characterized by high efficiency and excellent quietness. As shown in FIG. 3, the scroll compressor includes a
揺動スクロールは、軽量化のためにアルミニウム合金で形成されている。その製造方法としては、鋳造、ダイカスト、鍛造等の製造方法があるが、部品としての強度、信頼性、渦巻き状の複雑な形状に成形する等の観点から、鍛造による製造方法が有利である。 The oscillating scroll is made of aluminum alloy to reduce weight. The manufacturing method includes casting, die casting, forging, etc., but the manufacturing method by forging is advantageous from the viewpoints of strength and reliability as a part, molding into a complicated spiral shape, etc.
一方、車載用電動コンプレッサーに採用されている揺動スクロールは耐摩耗性に優れていることが求められているが、表面にアルマイト処理やメッキ処理を施すことで皮膜硬さを付与して耐摩耗性を確保している。また、薄肉化して軽量化を実現するために、最も負荷のかかる羽根の付け根部分の機械的強度に優れていることも要求されている(具体的にはスクロールの底板の面方向の引張強さに優れていることが求められている)。即ち、表面処理性と機械的強度の両方に優れていることが求められている。 On the other hand, the oscillating scrolls used in automotive electric compressors are required to have excellent wear resistance. Ensures sex. In addition, in order to achieve thinner walls and lighter weight, it is also required that the root part of the blade, which bears the most load, has excellent mechanical strength (specifically, the tensile strength in the plane direction of the bottom plate of the scroll (required to be excellent at) That is, it is required to be excellent in both surface treatment properties and mechanical strength.
特許文献1では、高強度耐摩耗性アルミニウム合金押出材として、Si:6~12%(重量%、以下同じ)、Fe:0.1~1.0%、Cu:1.0~5.0%、Mn:0.1~1.0%、Mg:0.4~2.0%、Ti:0.01~0.3%、Sr:0.005~0.2%を含有し、不純物としてのNiを0.05%未満に制限し、残部Alおよび不純物からなり、マトリックス中に分散する共晶Si粒子の平均粒径が1.5~5.0μmであり、該平均粒径の共晶Si粒子が5000個/mm2以上10000個/mm2未満存在した構成のものが記載されている。
In
また、特許文献2では、Si:5~12%(質量%、以下同じ)、Fe:0.1~1%、Cu:1%未満、Mg:0.3~1.5%を含有し、残部Al及び不純物からなり、マトリックス中に分散する共晶Si粒子の粒径が0.4~5.5μmの幅で存在し、その内の共晶Si粒子の粒径が0.8~2.4μmの大きさで60%以上を占め、かつ共晶Si粒子が4000個/mm2以上40000個/mm2未満存在し、アルマイト処理後の皮膜硬さHvが400以上である構成のものが記載されている。
Further, in
特許文献1では、アルミニウム合金の耐摩耗性と強度向上のためにCuやMgの含有率を調整しているが、アルマイト処理後の皮膜硬さHvが310~370程度であり、十分な皮膜硬さが得られないという問題があった。
In
特許文献2では、アルマイト処理後の皮膜硬さがHv400以上であるが、機械的強度に関しては、実施例に記載の押出材では、押出方向と同じ方向で引張試験を行っており、引張試験結果に有利な方向でのみ評価されている。しかしながら、上述したとおり、スクロールにおいては、最も負荷のかかる羽根の付け根部分の機械的強度が最も重要であり、具体的にはスクロールの底板の面方向の引張強さに優れていることが重要である。押出材の場合においては、スクロールの底板の面方向は、押出加工方向に垂直な方向であるため、特許文献2では、このような機械的特性の面で十分でない恐れがある。
In
本発明は、かかる技術的背景に鑑みてなされたものであって、最も負荷のかかる羽根の付け根部分の機械的強度に優れると共に、十分な硬さのアルマイト皮膜が形成されるスクロール部材およびスクロール鍛造品の製造方法を提供することを目的とする。 The present invention was made in view of the above technical background, and the present invention provides a scroll member and a scroll forging that have excellent mechanical strength at the root portion of the blade, which is subjected to the greatest load, and in which an alumite film of sufficient hardness is formed. The purpose is to provide a method for manufacturing products.
前記目的を達成するために、本発明は以下の手段を提供する。 In order to achieve the above object, the present invention provides the following means.
[1]Si:8.0質量%~12.0質量%、Fe:0.1質量%~0.5質量%、Cu:0.6質量%~1.1質量%、Mg:0.2質量%~0.8質量%を含有し、残部がAl及び不可避不純物からなるアルミニウム合金製のスクロール鍛造品の表面に、ビッカース硬さが400以上のアルマイト皮膜が形成されてなるスクロール部材であって、
前記スクロール鍛造品の底板の面方向の引張強さが350MPa以上400MPa未満であることを特徴とするスクロール部材。
[1] Si: 8.0 mass% to 12.0 mass%, Fe: 0.1 mass% to 0.5 mass%, Cu: 0.6 mass% to 1.1 mass%, Mg: 0.2 A scroll member in which an alumite film having a Vickers hardness of 400 or more is formed on the surface of a scroll forged product made of an aluminum alloy containing 0.8% by mass and the remainder consisting of Al and unavoidable impurities. ,
A scroll member characterized in that the bottom plate of the scroll forged product has a tensile strength in a plane direction of 350 MPa or more and less than 400 MPa.
[2]前記アルミニウム合金は、さらに、Ti:0.01質量%~0.3質量%、B:0.0001質量%~0.05質量%、Sr:0.001質量%~0.1質量%、からなる群より選ばれる1種又は2種以上の金属を前記含有率で含有する前項1に記載のスクロール部材。 [2] The aluminum alloy further contains Ti: 0.01% by mass to 0.3% by mass, B: 0.0001% by mass to 0.05% by mass, and Sr: 0.001% by mass to 0.1% by mass. %.
[3]前記アルミニウム合金は、さらに、Mn:0.01質量%~0.3質量%、Cr:0.01質量%~0.3質量%、Ni:0.01質量%~0.3質量%、Zr:0.01質量%~0.3質量%、V:0.01質量%~0.1質量%、からなる群より選ばれる1種又は2種以上の金属を前記含有率で含有する前項1または2に記載のスクロール部材。
[3] The aluminum alloy further includes Mn: 0.01% by mass to 0.3% by mass, Cr: 0.01% by mass to 0.3% by mass, and Ni: 0.01% by mass to 0.3% by mass. %, Zr: 0.01% by mass to 0.3% by mass, V: 0.01% by mass to 0.1% by mass, containing one or more metals at the above content rate. The scroll member according to
[4]Si:8.0質量%~12.0質量%、Fe:0.1質量%~0.5質量%、Cu:0.6質量%~1.1質量%、Mg:0.2質量%~0.8質量%を含有し、残部がAl及び不可避不純物からなるアルミニウム合金連続鋳造材を押出加工を行うことなく鍛造加工することにより、底板の面方向の引張強さが350MPa以上400MPa未満であるスクロール鍛造品を得ることを特徴とするスクロール鍛造品の製造方法。 [4] Si: 8.0 mass% to 12.0 mass%, Fe: 0.1 mass% to 0.5 mass%, Cu: 0.6 mass% to 1.1 mass%, Mg: 0.2 By forging an aluminum alloy continuous cast material containing % by mass to 0.8% by mass and the remainder consisting of Al and unavoidable impurities without extruding, the tensile strength in the plane direction of the bottom plate is 350 MPa or more and 400 MPa. A method for producing a scroll forged product characterized by obtaining a scroll forged product that is less than or equal to
[1]の発明では、最も負荷のかかる羽根の付け根部分の機械的強度に優れると共に、十分な硬さのアルマイト皮膜が形成されるスクロール部材を提供できる。 According to the invention [1], it is possible to provide a scroll member that has excellent mechanical strength at the root portion of the blade, which is subjected to the greatest load, and in which an alumite film of sufficient hardness is formed.
[2]の発明では、アルミニウム合金の組織構造を微細化することができて、機械的強度をさらに向上させることができる。 In the invention [2], the microstructure of the aluminum alloy can be made finer, and the mechanical strength can be further improved.
[3]の発明では、Mn、Cr又はZrを含有させることで、アルミニウム合金の組織構造を微細化することができて機械的強度をさらに向上させることができるし、Ni又はVを含有させた場合には高温域での機械的強度を向上させることができる。 In the invention [3], by containing Mn, Cr or Zr, the microstructure of the aluminum alloy can be refined and the mechanical strength can be further improved, and by containing Mn, Cr or Zr, the mechanical strength can be further improved. In some cases, mechanical strength at high temperatures can be improved.
[4]の発明では、押出加工を行うことなく鍛造加工すること等により、スクロール鍛造品の底板の面方向の引張強さを十分に確保できて、最も負荷のかかる羽根の付け根部分の強度を十分に確保できる。 In the invention [4], by forging without extrusion, sufficient tensile strength in the plane direction of the bottom plate of the scroll forged product can be ensured, and the strength of the root portion of the blade, which is subjected to the most load, can be increased. We can secure enough.
本発明に係るスクロール部材1は、Si:8.0質量%~12.0質量%、Fe:0.1質量%~0.5質量%、Cu:0.6質量%~1.1質量%、Mg:0.2質量%~0.8質量%を含有し、残部がAl及び不可避不純物からなるアルミニウム合金製のスクロール鍛造品2の表面にアルマイト皮膜3が形成されてなるスクロール部材であって(図2参照)、前記スクロール鍛造品2の底板21の面方向の引張強さが350MPa以上400MPa未満であることを特徴とする。このような構成であることにより、最も負荷のかかる羽根部22の付け根部分の機械的強度に優れると共に、十分な硬さのアルマイト皮膜3が形成されるスクロール部材1が提供される(図1、2参照)。なお、前記面方向の引張強さが400MPa以上になると、鍛造成形が困難になる恐れがある。
The
本発明に係るスクロール部材1の一実施形態を図1、2に示す。スクロール部材1は、略円盤状の底板21の上に渦巻き型の羽根部22が突設形成されてなる。このスクロール部材1は、鍛造加工により形成されたものである。
An embodiment of a
前記アルミニウム合金は、さらに、Ti:0.01質量%~0.3質量%、B:0.0001質量%~0.05質量%、Sr:0.001質量%~0.1質量%、からなる群より選ばれる1種又は2種以上の金属を前記含有率で含有するのが好ましい。この場合には、アルミニウム合金の組織構造を微細化することができて、機械的強度をさらに向上させることができる。 The aluminum alloy further comprises Ti: 0.01% by mass to 0.3% by mass, B: 0.0001% by mass to 0.05% by mass, and Sr: 0.001% by mass to 0.1% by mass. It is preferable to contain one or more metals selected from the group consisting of: at the above content rate. In this case, the microstructure of the aluminum alloy can be made finer, and the mechanical strength can be further improved.
また、前記アルミニウム合金は、さらに、Mn:0.01質量%~0.3質量%、Cr:0.01質量%~0.3質量%、Ni:0.01質量%~0.3質量%、Zr:0.01質量%~0.3質量%、V:0.01質量%~0.1質量%、からなる群より選ばれる1種又は2種以上の金属を前記含有率で含有するのが好ましい。Mn、Cr又はZrを含有する場合には、アルミニウム合金の組織構造を微細化することができて機械的強度をさらに向上させることができるし、Ni又はVを含有する場合には高温域での機械的強度を向上させることができる。 Further, the aluminum alloy further includes Mn: 0.01% by mass to 0.3% by mass, Cr: 0.01% by mass to 0.3% by mass, and Ni: 0.01% by mass to 0.3% by mass. , Zr: 0.01% by mass to 0.3% by mass, V: 0.01% by mass to 0.1% by mass, at the above content rate. is preferable. When Mn, Cr or Zr is contained, the microstructure of the aluminum alloy can be made finer and the mechanical strength can be further improved. Mechanical strength can be improved.
次に、本発明に係るスクロール鍛造品の製造方法について説明する。本製造方法は、Si:8.0質量%~12.0質量%、Fe:0.1質量%~0.5質量%、Cu:0.6質量%~1.1質量%、Mg:0.2質量%~0.8質量%を含有し、残部がAl及び不可避不純物からなるアルミニウム合金連続鋳造材を押出加工を行うことなく鍛造加工することにより、底板21の面方向の引張強さが350MPa以上400MPa未満であるスクロール鍛造品を得ることを特徴とする。この製造方法によれば、スクロール鍛造品の底板21の面方向の引張強さを十分に確保できて、最も負荷のかかる羽根の付け根部分の強度を十分に確保できる。
Next, a method for manufacturing a scroll forged product according to the present invention will be described. This production method includes Si: 8.0% by mass to 12.0% by mass, Fe: 0.1% by mass to 0.5% by mass, Cu: 0.6% by mass to 1.1% by mass, and Mg: 0% by mass. By forging an aluminum alloy continuous cast material containing .2% by mass to 0.8% by mass, with the remainder consisting of Al and unavoidable impurities, without extruding, the tensile strength in the plane direction of the
次に、上述した本発明に係るスクロール部材および本発明に係るスクロール鍛造品の製造方法における「アルミニウム合金」の組成について以下詳述する。 Next, the composition of the "aluminum alloy" in the scroll member according to the present invention and the method for manufacturing a scroll forged product according to the present invention described above will be described in detail below.
前記Si(成分)は、Mgと共存してMg2Si粒子を析出してアルミニウム合金の強度を向上させることができると共に、共晶Siの存在により強度と耐摩耗性を向上させる。Si含有率が8.0質量%未満では、強度や耐摩耗性を高める効果が乏しい。一方、Si含有率が12.0質量%を超えると、初晶Siが晶出して表面処理性(アルマイト性)を悪化させる。従って、Si含有率は、8.0質量%~12.0質量%の範囲とする。中でも、Si含有率は、9.0質量%~11.0質量%の範囲とするのが好ましい。 The Si (component) can improve the strength of the aluminum alloy by precipitating Mg 2 Si particles in coexistence with Mg, and also improves the strength and wear resistance due to the presence of eutectic Si. If the Si content is less than 8.0% by mass, the effect of increasing strength and wear resistance is poor. On the other hand, if the Si content exceeds 12.0% by mass, primary Si crystallizes and deteriorates surface treatment properties (alumite properties). Therefore, the Si content is in the range of 8.0% by mass to 12.0% by mass. Among these, the Si content is preferably in the range of 9.0% by mass to 11.0% by mass.
前記Fe(成分)は、Al-Fe系粒子やAl-Fe-Si系粒子を析出させて、鍛造成形後の熱処理での再結晶を抑制し、スクロール部材の延性や靱性を向上させる。Fe含有率が0.1質量%未満では、延性向上、靱性向上の効果に乏しい。一方、Fe含有率が0.5質量%を超えると、Al-Fe系やAl-Fe-Si系の粗大晶出物が増加して表面処理性(アルマイト性)を悪化させる。従って、Fe含有率は、0.1質量%~0.5質量%の範囲とする。中でも、Fe含有率は、0.15質量%~0.30質量%の範囲とするのが好ましい。 The Fe (component) precipitates Al-Fe-based particles and Al-Fe-Si-based particles, suppresses recrystallization during heat treatment after forging, and improves the ductility and toughness of the scroll member. If the Fe content is less than 0.1% by mass, the effect of improving ductility and toughness is poor. On the other hand, if the Fe content exceeds 0.5% by mass, coarse Al-Fe-based or Al-Fe-Si-based crystallized substances increase, deteriorating surface treatment properties (alumite properties). Therefore, the Fe content is in the range of 0.1% by mass to 0.5% by mass. Among these, the Fe content is preferably in the range of 0.15% by mass to 0.30% by mass.
前記Cu(成分)は、CuAl2粒子を析出してアルミニウム合金の強度向上と硬さ向上に寄与する。Cu含有率が0.6質量%未満では、強度向上、硬さ向上の効果に乏しい。一方、Cu含有率が1.1質量%を超えると、アルマイト皮膜の硬さが低下する。従って、Cu含有率は、0.6質量%~1.1質量%の範囲とする。中でも、Cu含有率は、0.7質量%~1.0質量%の範囲とするのが好ましい。なお、Cuは、アルマイト処理の際に溶解するが、溶解したCuイオンは、貴な金属イオンであるため、再びアルミニウム合金母材の表面にCuが析出し、アルマイト皮膜が形成し難くなり、皮膜の緻密性も低下するが、Cu含有率を上記範囲内に制御することで、アルマイト皮膜の成形性と緻密性を向上させることができて、アルマイト皮膜の硬さを向上させることができる。 The Cu (component) precipitates CuAl 2 particles and contributes to improving the strength and hardness of the aluminum alloy. If the Cu content is less than 0.6% by mass, the effect of improving strength and hardness is poor. On the other hand, when the Cu content exceeds 1.1% by mass, the hardness of the alumite film decreases. Therefore, the Cu content is in the range of 0.6% by mass to 1.1% by mass. Among these, the Cu content is preferably in the range of 0.7% by mass to 1.0% by mass. Note that Cu is dissolved during alumite treatment, but since the dissolved Cu ions are noble metal ions, Cu precipitates again on the surface of the aluminum alloy base material, making it difficult to form an alumite film, and causing the film to deteriorate. However, by controlling the Cu content within the above range, the formability and density of the alumite film can be improved, and the hardness of the alumite film can be improved.
前記Mg(成分)は、Siと共存してMg2Si粒子を析出してアルミニウム合金の強度を向上させることができる。Mg含有率が0.2質量%未満では、強度向上効果に乏しい。一方、Mg含有率が0.8質量%を超えると、加工性が低下する。従って、Mg含有率は、0.2質量%~0.8質量%の範囲とする。中でも、Mg含有率は、0.3質量%~0.7質量%の範囲とするのが好ましい。 The Mg (component) can coexist with Si and precipitate Mg 2 Si particles, thereby improving the strength of the aluminum alloy. If the Mg content is less than 0.2% by mass, the effect of improving strength is poor. On the other hand, when the Mg content exceeds 0.8% by mass, processability decreases. Therefore, the Mg content is in the range of 0.2% by mass to 0.8% by mass. Among these, the Mg content is preferably in the range of 0.3% by mass to 0.7% by mass.
また、前記アルミニウム合金は、Ti:0.01質量%~0.3質量%、B:0.0001質量%~0.05質量%、Sr:0.001質量%~0.1質量%、からなる群より選ばれる1種又は2種以上の金属を前記含有率で含有することは、以下の理由から好ましい。即ち、Tiの含有やBの含有は、いずれも鋳塊の組織を微細化して鋳造時の鋳塊割れを防止し、さらには鋳塊の加工性を向上させるので、鍛造加工時に複雑な形状に成形することが可能である。Ti含有率が0.01質量%未満では、上記の効果に乏しい。一方、Ti含有率が0.3質量%を超えると、巨大な金属間化合物が晶出して加工性やアルマイト処理性に悪影響を及ぼす。また、Srの含有は、共晶Siを微細化し、加工性やアルマイト性を向上させる。Sr含有率が0.001質量%未満では、上記の効果に乏しい。一方、Sr含有率が0.1質量%を超えた場合も、上記効果に乏しいものとなる。 Further, the aluminum alloy includes Ti: 0.01% by mass to 0.3% by mass, B: 0.0001% by mass to 0.05% by mass, and Sr: 0.001% by mass to 0.1% by mass. It is preferable to contain one or more metals selected from the group consisting of the following at the above content rate. In other words, the inclusion of Ti and B both refine the structure of the ingot, prevent ingot cracking during casting, and further improve the workability of the ingot, making it easier to form complex shapes during forging. It is possible to mold it. If the Ti content is less than 0.01% by mass, the above effects will be poor. On the other hand, if the Ti content exceeds 0.3% by mass, huge intermetallic compounds will crystallize, which will have a negative effect on workability and alumite processability. Further, the inclusion of Sr makes the eutectic Si finer and improves workability and alumite property. If the Sr content is less than 0.001% by mass, the above effects will be poor. On the other hand, if the Sr content exceeds 0.1% by mass, the above effects will also be poor.
また、前記アルミニウム合金は、さらに、Mn:0.01質量%~0.3質量%、Cr:0.01質量%~0.3質量%、Ni:0.01質量%~0.3質量%、Zr:0.01質量%~0.3質量%、V:0.01質量%~0.1質量%、からなる群より選ばれる1種又は2種以上の金属を前記含有率で含有することは、以下の理由から好ましい。これらを含有させることで、Al-Mn系粒子、Al-Mn-Fe-Si系粒子、Al-Cr系粒子、Al-Cr-Fe-Si系粒子、Al-Ni粒子、Al-Zr系粒子、Al-V系粒子を析出して、鍛造後の熱処理で再結晶を抑制できて、延性や靱性を向上させることができる。Mnが0.01質量%未満、Crが0.01質量%未満、Niが0.01質量%未満、Zrが0.01質量%未満、Vが0.01質量%未満では、延性向上、靱性向上の効果が小さい。Mnが0.3質量%を超え、Crが0.3質量%を超え、Niが0.3質量%を超え、Zrが0.3質量%を超え、Vが0.1質量%を超えると、粗大な晶出物が増加してアルマイト性に悪影響を及ぼしたり、アルミニウム合金の延性や靱性を低下させる。 Further, the aluminum alloy further includes Mn: 0.01% by mass to 0.3% by mass, Cr: 0.01% by mass to 0.3% by mass, and Ni: 0.01% by mass to 0.3% by mass. , Zr: 0.01% by mass to 0.3% by mass, V: 0.01% by mass to 0.1% by mass, at the above content rate. This is preferable for the following reasons. By containing these, Al-Mn particles, Al-Mn-Fe-Si particles, Al-Cr particles, Al-Cr-Fe-Si particles, Al-Ni particles, Al-Zr particles, By precipitating Al-V particles, recrystallization can be suppressed by heat treatment after forging, and ductility and toughness can be improved. When Mn is less than 0.01 mass%, Cr is less than 0.01 mass%, Ni is less than 0.01 mass%, Zr is less than 0.01 mass%, and V is less than 0.01 mass%, ductility is improved and toughness is improved. The improvement effect is small. When Mn exceeds 0.3 mass%, Cr exceeds 0.3 mass%, Ni exceeds 0.3 mass%, Zr exceeds 0.3 mass%, and V exceeds 0.1 mass%. , coarse crystallized substances increase, which adversely affects the alumite properties and reduces the ductility and toughness of the aluminum alloy.
次に、本発明の具体的実施例について説明するが、本発明はこれら実施例のものに特に限定されるものではない。 Next, specific examples of the present invention will be described, but the present invention is not particularly limited to these examples.
<実施例1>
Si:8.0質量%、Fe:0.25質量%、Cu:0.9質量%、Mg:0.5質量%を含有し、残部がAl及び不可避不純物からなるアルミニウム合金溶湯をホットトップ連続鋳造加工することによって外径が117mm、長さ1000mmの鋳造材を得た。得られた鋳造材を490℃×7時間加熱する均質化熱処理を行った後、外径104mmまで面削加工を行った。次に、前記鋳造材を厚さ25mmに切断したものを加熱炉で200℃まで加熱後、黒鉛系の水溶性潤滑油に数秒間浸漬した後、取り出し、潤滑皮膜を形成した。次に、厚さ25mmの鋳造材を400℃に加熱した状態で鍛造加工を行うことによって、図1、2に示すスクロール鍛造品を得た。スクロール鍛造品の羽根部22の高さ(H)は40mm、羽根部22の厚さ(W)は5mm、底板21の厚さ(T)は10mmであった。
<Example 1>
A molten aluminum alloy containing 8.0% by mass of Si, 0.25% by mass of Fe, 0.9% by mass of Cu, and 0.5% by mass of Mg, with the balance consisting of Al and unavoidable impurities is continuously heated on a hot top. By casting, a cast material having an outer diameter of 117 mm and a length of 1000 mm was obtained. The obtained cast material was subjected to homogenization heat treatment by heating at 490° C. for 7 hours, and then surface milled to an outer diameter of 104 mm. Next, the cast material was cut to a thickness of 25 mm and heated to 200° C. in a heating furnace, immersed in graphite-based water-soluble lubricating oil for several seconds, and then taken out to form a lubricating film. Next, a scroll forged product shown in FIGS. 1 and 2 was obtained by forging a 25 mm thick cast material while heating it to 400°C. The height (H) of the
次に、得られたスクロール鍛造品にアルマイト処理を行った。このアルマイト処理は、電解浴として15質量%硫酸を使用し、電流密度3A/dm2、浴温5℃で実施し、スクロール鍛造品2の表面に約40μmの厚さのアルマイト皮膜3を形成して、スクロール部材1を得た。
Next, the obtained scroll forged product was subjected to alumite treatment. This alumite treatment was carried out using 15% by mass sulfuric acid as an electrolytic bath at a current density of 3 A/dm 2 and a bath temperature of 5° C. to form an
<実施例2~16>
表1に示す合金組成(不可避不純物を含有する)のアルミニウム合金溶湯を用いた以外は、実施例1と同様にして、スクロール部材1を得た。
<Examples 2 to 16>
Scroll
<比較例1~13>
表1に示す合金組成(不可避不純物を含有する)のアルミニウム合金溶湯を用いた以外は、実施例1と同様にして、スクロール部材を得た。
<Comparative Examples 1 to 13>
A scroll member was obtained in the same manner as in Example 1, except that a molten aluminum alloy having the alloy composition (containing unavoidable impurities) shown in Table 1 was used.
<比較例14>
実施例2と同一組成のアルミニウム合金溶湯をホットトップ連続鋳造加工することによって外径が203mm、長さ1000mmの鋳造材を得た。得られた鋳造材を490℃×7時間加熱する均質化熱処理を行った後、外径104mmで押出加工を実施した。次に、前記押出材を厚さ25mmに切断したものを加熱炉で200℃まで加熱後、黒鉛系の水溶性潤滑油に数秒間浸漬した後、取り出し、潤滑皮膜を形成した。次に、厚さ25mmの押出材を400℃に加熱した状態で鍛造加工を行うことによって、スクロール鍛造品を得た以外は、実施例1と同様にして、スクロール部材を得た。
<Comparative example 14>
A cast material having an outer diameter of 203 mm and a length of 1000 mm was obtained by hot-top continuous casting of a molten aluminum alloy having the same composition as in Example 2. The obtained cast material was subjected to homogenization heat treatment by heating at 490° C. for 7 hours, and then extruded to an outer diameter of 104 mm. Next, the extruded material was cut to a thickness of 25 mm, heated to 200° C. in a heating furnace, immersed in graphite-based water-soluble lubricating oil for several seconds, and then taken out to form a lubricating film. Next, a scroll member was obtained in the same manner as in Example 1, except that a scroll forged product was obtained by forging an extruded material having a thickness of 25 mm while heated to 400°C.
上記のようにして得られた各スクロール部材について下記評価法に基づいて評価を行った。 Each scroll member obtained as described above was evaluated based on the following evaluation method.
<引張強さ試験法>
引張試験を行うため、スクロール部材の厚さ10mmの底板から、図2の点線で示すような位置からASTM-R3号試験片を採取した。得られた試験片に対して島津製作所製のAG100kNXplusを用いて底板の面方向に引張試験を行い、25℃における引張強さ(MPa)を測定した。測定結果を表2、4に示す。n数を3個とし、3個の平均値を引張強さとした。表2では、引張強さが350MPa以上400MPa未満であるものを評価「○」と表記する一方、引張強さが前記範囲を逸脱しているものを評価「×」と表記した。
<Tensile strength test method>
To conduct a tensile test, an ASTM-R3 test piece was taken from the 10 mm thick bottom plate of the scroll member at the position shown by the dotted line in FIG. A tensile test was performed on the obtained test piece in the plane direction of the bottom plate using AG100kNXplus manufactured by Shimadzu Corporation, and the tensile strength (MPa) at 25° C. was measured. The measurement results are shown in Tables 2 and 4. The number n was set to 3, and the average value of the three was taken as the tensile strength. In Table 2, those whose tensile strength was 350 MPa or more and less than 400 MPa were evaluated as "○", while those whose tensile strength was outside the above range were evaluated as "x".
<耐力測定法>
上記引張試験結果から25℃における0.2%耐力を求めた。測定結果を表2、4に示す。n数を3個とし、3個の平均値を0.2%耐力とした。表2、4では、0.2%耐力が250MPa以上300MPa以下であるものを評価「○」と表記する一方、0.2%耐力が前記範囲を逸脱しているものを評価「×」と表記した。
<Yield strength measurement method>
The 0.2% proof stress at 25° C. was determined from the above tensile test results. The measurement results are shown in Tables 2 and 4. The number n was set to 3, and the average value of the three was set as 0.2% yield strength. In Tables 2 and 4, those with a 0.2% yield strength of 250 MPa or more and 300 MPa or less are marked with an evaluation of "○", while those whose 0.2% proof stress is outside the above range are marked with an evaluation of "×". did.
<アルマイト皮膜のビッカース硬さ評価法>
アルマイト皮膜が形成されているスクロール部材を所定の大きさに切断し、これを樹脂枠に埋め込み、アルマイト皮膜硬さが測定可能な範囲まで表面のミクロ研磨を実施した後、アルマイト皮膜のビッカース硬さを測定した。n数を3個とし、3個の平均値をビッカース硬さとした。表2、4では、ビッカース硬さ(HV)が400以上であるものを評価「○」と表記する一方、ビッカース硬さ(HV)が400未満であるものを評価「×」と表記した。
<Vickers hardness evaluation method of alumite film>
The scroll member on which the alumite film is formed is cut into a predetermined size, embedded in a resin frame, and the surface is micro-polished to the extent that the alumite film hardness can be measured.The Vickers hardness of the alumite film is then measured. was measured. The number n was set to 3, and the average value of the three was taken as the Vickers hardness. In Tables 2 and 4, those with a Vickers hardness (HV) of 400 or more are marked with an evaluation of "○", while those with a Vickers hardness (HV) of less than 400 are marked with an evaluation of "x".
表から明らかなように、実施例1~16のスクロール部材は、底板の面方向の引張強さが350MPa以上400MPa未満であり、最も負荷のかかる羽根の付け根部分の機械的強度に優れていると共に、アルマイト皮膜のビッカース硬さ(HV)が400以上でありアルマイト皮膜の硬度が大きいものであった。 As is clear from the table, the scroll members of Examples 1 to 16 have a tensile strength in the plane direction of the bottom plate of 350 MPa or more and less than 400 MPa, and have excellent mechanical strength at the root portion of the blade, which is subjected to the highest load. The Vickers hardness (HV) of the alumite film was 400 or more, and the hardness of the alumite film was high.
これに対し、本発明の規定範囲を逸脱する比較例1~14では、底板の面方向の引張強さ及びアルマイト皮膜硬さ(アルマイト性)のうち少なくともいずれか一方の特性に劣っていた。 On the other hand, Comparative Examples 1 to 14, which deviate from the specified range of the present invention, were inferior in at least one of the tensile strength in the plane direction of the bottom plate and the alumite film hardness (alumite property).
本発明に係るスクロール部材は、電気自動車やハイブリッド自動車等の自動車の車載用電動スクロールとして好適に用いられる。 The scroll member according to the present invention is suitably used as an on-vehicle electric scroll for automobiles such as electric cars and hybrid cars.
1…スクロール部材
2…スクロール鍛造品
3…アルマイト皮膜
21…底板
22…羽根部
1... Scroll
Claims (4)
前記スクロール鍛造品の底板の面方向の引張強さが350MPa以上400MPa未満であることを特徴とするスクロール部材。 Si: 8.0 mass% to 12.0 mass%, Fe: 0.1 mass% to 0.5 mass%, Cu: 0.6 mass% to 1.1 mass%, Mg: 0.2 mass% to A scroll member in which an alumite film having a Vickers hardness of 400 or more is formed on the surface of a scroll forged product made of an aluminum alloy containing 0.8% by mass and the remainder consisting of Al and unavoidable impurities,
A scroll member characterized in that the bottom plate of the scroll forged product has a tensile strength in a plane direction of 350 MPa or more and less than 400 MPa.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019060327A JP7358759B2 (en) | 2019-03-27 | 2019-03-27 | Scroll member and scroll forging product manufacturing method |
KR1020217016375A KR102589669B1 (en) | 2019-03-27 | 2019-12-12 | Method of manufacturing scroll members and scroll forgings |
PCT/JP2019/048674 WO2020194906A1 (en) | 2019-03-27 | 2019-12-12 | Scroll member and method for producing scroll forged article |
CN201980086152.9A CN113227422A (en) | 2019-03-27 | 2019-12-12 | Scroll member and method for manufacturing scroll forged product |
EP19921526.0A EP3950985A4 (en) | 2019-03-27 | 2019-12-12 | Scroll member and method for producing scroll forged article |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019060327A JP7358759B2 (en) | 2019-03-27 | 2019-03-27 | Scroll member and scroll forging product manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020158844A JP2020158844A (en) | 2020-10-01 |
JP7358759B2 true JP7358759B2 (en) | 2023-10-12 |
Family
ID=72609417
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019060327A Active JP7358759B2 (en) | 2019-03-27 | 2019-03-27 | Scroll member and scroll forging product manufacturing method |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP3950985A4 (en) |
JP (1) | JP7358759B2 (en) |
KR (1) | KR102589669B1 (en) |
CN (1) | CN113227422A (en) |
WO (1) | WO2020194906A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7517081B2 (en) * | 2020-10-30 | 2024-07-17 | 株式会社レゾナック | Aluminum alloys for sliding parts and sliding parts |
JP7517080B2 (en) * | 2020-10-30 | 2024-07-17 | 株式会社レゾナック | Aluminum alloys for sliding parts and sliding parts |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001077398A1 (en) | 2000-04-10 | 2001-10-18 | Showa Denko K.K. | Forged scroll part and production method therefor |
JP2004232087A (en) | 2002-11-22 | 2004-08-19 | Showa Denko Kk | Aluminum alloy, rod-shape material, forging shaped article, machining shaped article, wear-resistant aluminum alloy having excellent hardness of anodically oxidized film using the same, sliding part, and their production method |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09209069A (en) * | 1995-11-29 | 1997-08-12 | Furukawa Electric Co Ltd:The | Wear resistant al alloy for elongation, scroll made of this wear resistant al alloy for elongation, and their production |
JPH10130764A (en) * | 1996-10-31 | 1998-05-19 | Kobe Steel Ltd | Forged scroll member made of aluminum alloy |
JP3261056B2 (en) | 1997-01-14 | 2002-02-25 | 住友軽金属工業株式会社 | High-strength wear-resistant aluminum alloy extruded material excellent in ease of forming anodized film and uniformity of film thickness and method for producing the same |
US20050109429A1 (en) * | 2003-11-21 | 2005-05-26 | Showa Denko K.K. | Aluminum alloy, bar-like material, forge-formed article, machine-formed article, wear-resistant aluminum alloy with excellent anodized coat using the same and production methods thereof |
EP1715084B1 (en) * | 2003-11-21 | 2019-01-16 | Showa Denko K.K. | Anodized aluminum alloy and manufacturing method thereof |
KR101417549B1 (en) * | 2009-12-22 | 2014-07-08 | 쇼와 덴코 가부시키가이샤 | Aluminum alloy for anodization and aluminum alloy component |
JP6627836B2 (en) | 2017-09-28 | 2020-01-08 | コベルコ建機株式会社 | Internal combustion engine unit and crane |
-
2019
- 2019-03-27 JP JP2019060327A patent/JP7358759B2/en active Active
- 2019-12-12 KR KR1020217016375A patent/KR102589669B1/en active IP Right Grant
- 2019-12-12 WO PCT/JP2019/048674 patent/WO2020194906A1/en unknown
- 2019-12-12 CN CN201980086152.9A patent/CN113227422A/en active Pending
- 2019-12-12 EP EP19921526.0A patent/EP3950985A4/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001077398A1 (en) | 2000-04-10 | 2001-10-18 | Showa Denko K.K. | Forged scroll part and production method therefor |
JP2004232087A (en) | 2002-11-22 | 2004-08-19 | Showa Denko Kk | Aluminum alloy, rod-shape material, forging shaped article, machining shaped article, wear-resistant aluminum alloy having excellent hardness of anodically oxidized film using the same, sliding part, and their production method |
Also Published As
Publication number | Publication date |
---|---|
KR20210084585A (en) | 2021-07-07 |
WO2020194906A1 (en) | 2020-10-01 |
EP3950985A1 (en) | 2022-02-09 |
KR102589669B1 (en) | 2023-10-17 |
EP3950985A4 (en) | 2022-12-07 |
CN113227422A (en) | 2021-08-06 |
JP2020158844A (en) | 2020-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101311283B (en) | High-temperature aluminium alloy | |
JP5703881B2 (en) | High strength magnesium alloy and method for producing the same | |
EP2036993A1 (en) | Casting aluminum alloy, cast compressor impeller comprising the alloy, and process for producing the same | |
EP2563944A1 (en) | Damage tolerant aluminium material having a layered microstructure | |
RU2673593C1 (en) | High-strength aluminium-based alloy | |
CA2950075C (en) | Method for manufacturing aluminum alloy member and aluminum alloy member manufactured by the same | |
JP7358759B2 (en) | Scroll member and scroll forging product manufacturing method | |
JP2017503086A (en) | Aluminum casting alloy with improved high temperature performance | |
JPWO2019167469A1 (en) | Al-Mg-Si based aluminum alloy material | |
JP4511156B2 (en) | Aluminum alloy manufacturing method and aluminum alloy, rod-shaped material, sliding part, forged molded product and machined molded product manufactured thereby | |
JP2020100863A (en) | Aluminum alloy for compressor slide component, forging product of compressor slide component and production method thereof | |
JPH0440418B2 (en) | ||
JP5004032B2 (en) | Aluminum-based alloy having excellent high-temperature strength and low thermal expansibility and method for producing the same | |
WO2007114737A2 (en) | Aluminium-based alloy | |
JP5476452B2 (en) | High strength, high toughness aluminum alloy forging material with excellent corrosion resistance, its manufacturing method, and suspension parts | |
JP7318284B2 (en) | Aluminum alloys for compressor sliding parts and forgings for compressor sliding parts | |
KR101499096B1 (en) | Aluminum alloy and manufacturing method thereof | |
KR102489980B1 (en) | Aluminum alloy | |
JP5590413B2 (en) | High thermal conductivity magnesium alloy | |
JPH09209069A (en) | Wear resistant al alloy for elongation, scroll made of this wear resistant al alloy for elongation, and their production | |
KR100909699B1 (en) | Aluminum alloy with improved impact energy and extrusion made from the same | |
JP5083965B2 (en) | Casting compressor impeller | |
JP3731911B2 (en) | Aluminum alloy extruded material with excellent surface properties, manufacturing method thereof, and aluminum alloy motorcycle frame | |
EP3950986A1 (en) | Aluminium casting alloy | |
KR102566343B1 (en) | 6xxx series aluminium alloy extruded material with excellent tensile properties and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20211216 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220927 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221117 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20230131 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20230201 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20230307 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230329 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230829 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230911 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7358759 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |