JP2020158844A - Scroll member and method for manufacturing scroll forging - Google Patents

Scroll member and method for manufacturing scroll forging Download PDF

Info

Publication number
JP2020158844A
JP2020158844A JP2019060327A JP2019060327A JP2020158844A JP 2020158844 A JP2020158844 A JP 2020158844A JP 2019060327 A JP2019060327 A JP 2019060327A JP 2019060327 A JP2019060327 A JP 2019060327A JP 2020158844 A JP2020158844 A JP 2020158844A
Authority
JP
Japan
Prior art keywords
mass
scroll
aluminum alloy
mpa
scroll member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019060327A
Other languages
Japanese (ja)
Other versions
JP7358759B2 (en
Inventor
恵造 北村
Keizo Kitamura
恵造 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2019060327A priority Critical patent/JP7358759B2/en
Priority to KR1020217016375A priority patent/KR102589669B1/en
Priority to CN201980086152.9A priority patent/CN113227422A/en
Priority to PCT/JP2019/048674 priority patent/WO2020194906A1/en
Priority to EP19921526.0A priority patent/EP3950985A4/en
Publication of JP2020158844A publication Critical patent/JP2020158844A/en
Application granted granted Critical
Publication of JP7358759B2 publication Critical patent/JP7358759B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/003Selecting material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K23/00Making other articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K3/00Making engine or like machine parts not covered by sub-groups of B21K1/00; Making propellers or the like
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/20Manufacture essentially without removing material
    • F04C2230/25Manufacture essentially without removing material by forging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/02Light metals
    • F05C2201/021Aluminium

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Rotary Pumps (AREA)

Abstract

To provide a scroll member having excellent mechanical strength of a root portion of a blade receiving the largest load and including an alumite coating having sufficient hardness.SOLUTION: An alumite coating 3 having a Vickers hardness of 400 or more is formed on the surface of an aluminium alloy scroll forging 2 including Si:8.0-12.0 mass%, Fe:0.1-0.5 mass%, Cu:0.6-1.1 mass%, Mg:0.2-0.8 mass% and the remainder consisting of Al and inevitable impurities, and the tensile strength of the scroll forging in the surface direction of the base plate 21 is 350 MPa or more and less than 400 MPa.SELECTED DRAWING: Figure 2

Description

本発明は、電気自動車やハイブリッド自動車等の自動車のエアコン用コンプレッサー等に用いられるスクロール部材およびスクロール鍛造品の製造方法に関する。 The present invention relates to a method for manufacturing a scroll member and a scroll forged product used in a compressor for an air conditioner of an automobile such as an electric vehicle or a hybrid vehicle.

近年、電気自動車やハイブリッド自動車等の自動車の車載用電動コンプレッサーで採用されるコンプレッサーは、スクロール式が多く、このスクロール式は、高効率であり静粛性に優れている点が特徴である。スクロール式コンプレッサーは、図3に示すように、底板(フランジ)52の上に渦巻き型の羽根部51を設けた固定スクロール50と、該固定スクロールの羽根部51に対面して略嵌合して揺動する同様形状の渦巻き型の羽根部と底板を備えた揺動スクロールとで構成される。 In recent years, many compressors used in in-vehicle electric compressors of automobiles such as electric vehicles and hybrid vehicles are scroll type, and this scroll type is characterized by high efficiency and excellent quietness. As shown in FIG. 3, the scroll type compressor is substantially fitted to a fixed scroll 50 having a spiral blade portion 51 provided on a bottom plate (flange) 52 facing the blade portion 51 of the fixed scroll. It consists of a swirling blade with a similar shape that swings and a swing scroll with a bottom plate.

揺動スクロールは、軽量化のためにアルミニウム合金で形成されている。その製造方法としては、鋳造、ダイカスト、鍛造等の製造方法があるが、部品としての強度、信頼性、渦巻き状の複雑な形状に成形する等の観点から、鍛造による製造方法が有利である。 The swing scroll is made of aluminum alloy for weight reduction. As the manufacturing method, there are manufacturing methods such as casting, die casting, and forging, but the manufacturing method by forging is advantageous from the viewpoints of strength and reliability as a part, molding into a spiral complex shape, and the like.

一方、車載用電動コンプレッサーに採用されている揺動スクロールは耐摩耗性に優れていることが求められているが、表面にアルマイト処理やメッキ処理を施すことで皮膜硬さを付与して耐摩耗性を確保している。また、薄肉化して軽量化を実現するために、最も負荷のかかる羽根の付け根部分の機械的強度に優れていることも要求されている(具体的にはスクロールの底板の面方向の引張強さに優れていることが求められている)。即ち、表面処理性と機械的強度の両方に優れていることが求められている。 On the other hand, the swing scroll used in in-vehicle electric compressors is required to have excellent wear resistance, but the surface is alumite-treated or plated to impart film hardness and wear resistance. The sex is secured. In addition, in order to reduce the wall thickness and weight, it is also required to have excellent mechanical strength at the base of the blade, which is the most loaded (specifically, the tensile strength in the surface direction of the bottom plate of the scroll). Is required to be excellent). That is, it is required to be excellent in both surface treatment property and mechanical strength.

特許文献1では、高強度耐摩耗性アルミニウム合金押出材として、Si:6〜12%(重量%、以下同じ)、Fe:0.1〜1.0%、Cu:1.0〜5.0%、Mn:0.1〜1.0%、Mg:0.4〜2.0%、Ti:0.01〜0.3%、Sr:0.005〜0.2%を含有し、不純物としてのNiを0.05%未満に制限し、残部Alおよび不純物からなり、マトリックス中に分散する共晶Si粒子の平均粒径が1.5〜5.0μmであり、該平均粒径の共晶Si粒子が5000個/mm2以上10000個/mm2未満存在した構成のものが記載されている。 In Patent Document 1, as a high-strength abrasion-resistant aluminum alloy extruded material, Si: 6 to 12% (weight%, the same applies hereinafter), Fe: 0.1 to 1.0%, Cu: 1.0 to 5.0. %, Mn: 0.1-1.0%, Mg: 0.4-2.0%, Ti: 0.01-0.3%, Sr: 0.005-0.2%, impurities The average particle size of the eutectic Si particles dispersed in the matrix, which is composed of the balance Al and impurities, is 1.5 to 5.0 μm, and the average particle size of the eutectic Si particles is 1.5 to 5.0 μm. The structure in which eutectic Si particles are present in an amount of 5,000 / mm 2 or more and less than 10,000 / mm 2 is described.

また、特許文献2では、Si:5〜12%(質量%、以下同じ)、Fe:0.1〜1%、Cu:1%未満、Mg:0.3〜1.5%を含有し、残部Al及び不純物からなり、マトリックス中に分散する共晶Si粒子の粒径が0.4〜5.5μmの幅で存在し、その内の共晶Si粒子の粒径が0.8〜2.4μmの大きさで60%以上を占め、かつ共晶Si粒子が4000個/mm2以上40000個/mm2未満存在し、アルマイト処理後の皮膜硬さHvが400以上である構成のものが記載されている。 Further, in Patent Document 2, Si: 5 to 12% (mass%, the same applies hereinafter), Fe: 0.1 to 1%, Cu: less than 1%, Mg: 0.3 to 1.5% is contained. The particle size of the eutectic Si particles dispersed in the matrix, which consists of the balance Al and impurities, exists in a width of 0.4 to 5.5 μm, and the particle size of the eutectic Si particles is 0.8 to 2. A configuration in which the size of 4 μm occupies 60% or more, the number of eutectic Si particles is 4000 / mm 2 or more and less than 40,000 / mm 2 is present, and the film hardness Hv after alumite treatment is 400 or more is described. Has been done.

特許第3261056号公報Japanese Patent No. 3261056 特許第4511156号公報Japanese Patent No. 4511156

特許文献1では、アルミニウム合金の耐摩耗性と強度向上のためにCuやMgの含有率を調整しているが、アルマイト処理後の皮膜硬さHvが310〜370程度であり、十分な皮膜硬さが得られないという問題があった。 In Patent Document 1, the content of Cu and Mg is adjusted in order to improve the wear resistance and strength of the aluminum alloy, but the film hardness Hv after the alumite treatment is about 310 to 370, which is a sufficient film hardness. There was a problem that it could not be obtained.

特許文献2では、アルマイト処理後の皮膜硬さがHv400以上であるが、機械的強度に関しては、実施例に記載の押出材では、押出方向と同じ方向で引張試験を行っており、引張試験結果に有利な方向でのみ評価されている。しかしながら、上述したとおり、スクロールにおいては、最も負荷のかかる羽根の付け根部分の機械的強度が最も重要であり、具体的にはスクロールの底板の面方向の引張強さに優れていることが重要である。押出材の場合においては、スクロールの底板の面方向は、押出加工方向に垂直な方向であるため、特許文献2では、このような機械的特性の面で十分でない恐れがある。 In Patent Document 2, the film hardness after alumite treatment is Hv400 or more, but with respect to the mechanical strength, the extruded material described in the examples is subjected to a tensile test in the same direction as the extrusion direction, and the tensile test result is obtained. It is evaluated only in the direction that is advantageous to. However, as described above, in scrolling, the mechanical strength of the base of the blade, which is the most loaded, is the most important, and specifically, it is important that the scroll bottom plate has excellent tensile strength in the surface direction. is there. In the case of the extruded material, the surface direction of the bottom plate of the scroll is the direction perpendicular to the extrusion processing direction, so that Patent Document 2 may not be sufficient in terms of such mechanical properties.

本発明は、かかる技術的背景に鑑みてなされたものであって、最も負荷のかかる羽根の付け根部分の機械的強度に優れると共に、十分な硬さのアルマイト皮膜が形成されるスクロール部材およびスクロール鍛造品の製造方法を提供することを目的とする。 The present invention has been made in view of such a technical background, and is a scroll member and scroll forging in which an alumite film having sufficient hardness is formed while having excellent mechanical strength at the base portion of the blade to which the load is most applied. The purpose is to provide a method of manufacturing an article.

前記目的を達成するために、本発明は以下の手段を提供する。 In order to achieve the above object, the present invention provides the following means.

[1]Si:8.0質量%〜12.0質量%、Fe:0.1質量%〜0.5質量%、Cu:0.6質量%〜1.1質量%、Mg:0.2質量%〜0.8質量%を含有し、残部がAl及び不可避不純物からなるアルミニウム合金製のスクロール鍛造品の表面に、ビッカース硬さが400以上のアルマイト皮膜が形成されてなるスクロール部材であって、
前記スクロール鍛造品の底板の面方向の引張強さが350MPa以上400MPa未満であることを特徴とするスクロール部材。
[1] Si: 8.0% by mass to 12.0% by mass, Fe: 0.1% by mass to 0.5% by mass, Cu: 0.6% by mass to 1.1% by mass, Mg: 0.2 A scroll member in which an alumite film having a Vickers hardness of 400 or more is formed on the surface of a scroll forged product made of an aluminum alloy containing mass% to 0.8% by mass and the balance being Al and unavoidable impurities. ,
A scroll member characterized in that the tensile strength of the bottom plate of the scroll forged product in the surface direction is 350 MPa or more and less than 400 MPa.

[2]前記アルミニウム合金は、さらに、Ti:0.01質量%〜0.3質量%、B:0.0001質量%〜0.05質量%、Sr:0.001質量%〜0.1質量%、からなる群より選ばれる1種又は2種以上の金属を前記含有率で含有する前項1に記載のスクロール部材。 [2] The aluminum alloy further contains Ti: 0.01% by mass to 0.3% by mass, B: 0.0001% by mass to 0.05% by mass, and Sr: 0.001% by mass to 0.1% by mass. The scroll member according to item 1 above, which contains one or more metals selected from the group consisting of%, in the above-mentioned content rate.

[3]前記アルミニウム合金は、さらに、Mn:0.01質量%〜0.3質量%、Cr:0.01質量%〜0.3質量%、Ni:0.01質量%〜0.3質量%、Zr:0.01質量%〜0.3質量%、V:0.01質量%〜0.1質量%、からなる群より選ばれる1種又は2種以上の金属を前記含有率で含有する前項1または2に記載のスクロール部材。 [3] The aluminum alloy further contains Mn: 0.01% by mass to 0.3% by mass, Cr: 0.01% by mass to 0.3% by mass, and Ni: 0.01% by mass to 0.3% by mass. %, Zr: 0.01% by mass to 0.3% by mass, V: 0.01% by mass to 0.1% by mass, containing one or more metals selected from the group at the above content. The scroll member according to item 1 or 2 above.

[4]Si:8.0質量%〜12.0質量%、Fe:0.1質量%〜0.5質量%、Cu:0.6質量%〜1.1質量%、Mg:0.2質量%〜0.8質量%を含有し、残部がAl及び不可避不純物からなるアルミニウム合金連続鋳造材を押出加工を行うことなく鍛造加工することにより、底板の面方向の引張強さが350MPa以上400MPa未満であるスクロール鍛造品を得ることを特徴とするスクロール鍛造品の製造方法。 [4] Si: 8.0% by mass to 12.0% by mass, Fe: 0.1% by mass to 0.5% by mass, Cu: 0.6% by mass to 1.1% by mass, Mg: 0.2 By forging an aluminum alloy continuous cast material containing mass% to 0.8% by mass and the balance of which is Al and unavoidable impurities without extrusion processing, the tensile strength of the bottom plate in the surface direction is 350 MPa or more and 400 MPa. A method for manufacturing a scroll forged product, which comprises obtaining a scroll forged product that is less than or equal to.

[1]の発明では、最も負荷のかかる羽根の付け根部分の機械的強度に優れると共に、十分な硬さのアルマイト皮膜が形成されるスクロール部材を提供できる。 According to the invention of [1], it is possible to provide a scroll member which is excellent in mechanical strength of a base portion of a blade to which a load is most applied and also has a sufficiently hard alumite film formed.

[2]の発明では、アルミニウム合金の組織構造を微細化することができて、機械的強度をさらに向上させることができる。 In the invention of [2], the structure of the aluminum alloy can be miniaturized, and the mechanical strength can be further improved.

[3]の発明では、Mn、Cr又はZrを含有させることで、アルミニウム合金の組織構造を微細化することができて機械的強度をさらに向上させることができるし、Ni又はVを含有させた場合には高温域での機械的強度を向上させることができる。 In the invention of [3], by containing Mn, Cr or Zr, the structural structure of the aluminum alloy can be made finer and the mechanical strength can be further improved, and Ni or V is contained. In some cases, the mechanical strength in the high temperature range can be improved.

[4]の発明では、押出加工を行うことなく鍛造加工すること等により、スクロール鍛造品の底板の面方向の引張強さを十分に確保できて、最も負荷のかかる羽根の付け根部分の強度を十分に確保できる。 In the invention of [4], the tensile strength of the bottom plate of the scroll forged product in the surface direction can be sufficiently secured by forging without extrusion processing, and the strength of the base portion of the blade to which the load is most applied can be increased. It can be secured sufficiently.

本発明に係るスクロール部材の一例を示す平面図である。It is a top view which shows an example of the scroll member which concerns on this invention. 図1におけるA−A線での断面図である(なお、点線部は、引張試験片採取位置を示す)。It is a cross-sectional view taken along the line AA in FIG. 1 (note that the dotted line portion indicates the position where the tensile test piece is collected). 固定スクロールの一例を示す斜視図である。It is a perspective view which shows an example of a fixed scroll.

本発明に係るスクロール部材1は、Si:8.0質量%〜12.0質量%、Fe:0.1質量%〜0.5質量%、Cu:0.6質量%〜1.1質量%、Mg:0.2質量%〜0.8質量%を含有し、残部がAl及び不可避不純物からなるアルミニウム合金製のスクロール鍛造品2の表面にアルマイト皮膜3が形成されてなるスクロール部材であって(図2参照)、前記スクロール鍛造品2の底板21の面方向の引張強さが350MPa以上400MPa未満であることを特徴とする。このような構成であることにより、最も負荷のかかる羽根部22の付け根部分の機械的強度に優れると共に、十分な硬さのアルマイト皮膜3が形成されるスクロール部材1が提供される(図1、2参照)。なお、前記面方向の引張強さが400MPa以上になると、鍛造成形が困難になる恐れがある。 The scroll member 1 according to the present invention has Si: 8.0% by mass to 12.0% by mass, Fe: 0.1% by mass to 0.5% by mass, and Cu: 0.6% by mass to 1.1% by mass. , Mg: A scroll member in which an alumite film 3 is formed on the surface of a scroll forged product 2 made of an aluminum alloy containing 0.2% by mass to 0.8% by mass and the balance being Al and unavoidable impurities. (See FIG. 2), the bottom plate 21 of the scroll forged product 2 is characterized in that the tensile strength in the surface direction is 350 MPa or more and less than 400 MPa. With such a configuration, there is provided a scroll member 1 in which the base portion of the blade portion 22 to which the load is most applied is excellent in mechanical strength and an alumite film 3 having sufficient hardness is formed (FIG. 1, FIG. 1). 2). If the tensile strength in the plane direction is 400 MPa or more, forging may become difficult.

本発明に係るスクロール部材1の一実施形態を図1、2に示す。スクロール部材1は、略円盤状の底板21の上に渦巻き型の羽根部22が突設形成されてなる。このスクロール部材1は、鍛造加工により形成されたものである。 An embodiment of the scroll member 1 according to the present invention is shown in FIGS. 1 and 2. The scroll member 1 has a spiral-shaped blade portion 22 projectingly formed on a substantially disk-shaped bottom plate 21. The scroll member 1 is formed by forging.

前記アルミニウム合金は、さらに、Ti:0.01質量%〜0.3質量%、B:0.0001質量%〜0.05質量%、Sr:0.001質量%〜0.1質量%、からなる群より選ばれる1種又は2種以上の金属を前記含有率で含有するのが好ましい。この場合には、アルミニウム合金の組織構造を微細化することができて、機械的強度をさらに向上させることができる。 The aluminum alloy further comprises Ti: 0.01% by mass to 0.3% by mass, B: 0.0001% by mass to 0.05% by mass, Sr: 0.001% by mass to 0.1% by mass. It is preferable to contain one kind or two or more kinds of metals selected from the above group at the above-mentioned content rate. In this case, the structure of the aluminum alloy can be miniaturized, and the mechanical strength can be further improved.

また、前記アルミニウム合金は、さらに、Mn:0.01質量%〜0.3質量%、Cr:0.01質量%〜0.3質量%、Ni:0.01質量%〜0.3質量%、Zr:0.01質量%〜0.3質量%、V:0.01質量%〜0.1質量%、からなる群より選ばれる1種又は2種以上の金属を前記含有率で含有するのが好ましい。Mn、Cr又はZrを含有する場合には、アルミニウム合金の組織構造を微細化することができて機械的強度をさらに向上させることができるし、Ni又はVを含有する場合には高温域での機械的強度を向上させることができる。 Further, the aluminum alloy further contains Mn: 0.01% by mass to 0.3% by mass, Cr: 0.01% by mass to 0.3% by mass, and Ni: 0.01% by mass to 0.3% by mass. , Zr: 0.01% by mass to 0.3% by mass, V: 0.01% by mass to 0.1% by mass, containing one or more metals selected from the group at the above content. Is preferable. When Mn, Cr or Zr is contained, the structure of the aluminum alloy can be refined to further improve the mechanical strength, and when Ni or V is contained, it is in a high temperature range. The mechanical strength can be improved.

次に、本発明に係るスクロール鍛造品の製造方法について説明する。本製造方法は、Si:8.0質量%〜12.0質量%、Fe:0.1質量%〜0.5質量%、Cu:0.6質量%〜1.1質量%、Mg:0.2質量%〜0.8質量%を含有し、残部がAl及び不可避不純物からなるアルミニウム合金連続鋳造材を押出加工を行うことなく鍛造加工することにより、底板21の面方向の引張強さが350MPa以上400MPa未満であるスクロール鍛造品を得ることを特徴とする。この製造方法によれば、スクロール鍛造品の底板21の面方向の引張強さを十分に確保できて、最も負荷のかかる羽根の付け根部分の強度を十分に確保できる。 Next, a method for manufacturing the scroll forged product according to the present invention will be described. In this production method, Si: 8.0% by mass to 12.0% by mass, Fe: 0.1% by mass to 0.5% by mass, Cu: 0.6% by mass to 1.1% by mass, Mg: 0 . By forging an aluminum alloy continuous casting material containing 2% by mass to 0.8% by mass and the balance of which is Al and unavoidable impurities without extrusion processing, the tensile strength of the bottom plate 21 in the surface direction can be increased. It is characterized in that a scroll forged product having a mass of 350 MPa or more and less than 400 MPa is obtained. According to this manufacturing method, the tensile strength of the bottom plate 21 of the scroll forged product in the surface direction can be sufficiently secured, and the strength of the base portion of the blade to which the load is most applied can be sufficiently secured.

次に、上述した本発明に係るスクロール部材および本発明に係るスクロール鍛造品の製造方法における「アルミニウム合金」の組成について以下詳述する。 Next, the composition of the "aluminum alloy" in the above-mentioned method for manufacturing the scroll member according to the present invention and the scroll forged product according to the present invention will be described in detail below.

前記Si(成分)は、Mgと共存してMg2Si粒子を析出してアルミニウム合金の強度を向上させることができると共に、共晶Siの存在により強度と耐摩耗性を向上させる。Si含有率が8.0質量%未満では、強度や耐摩耗性を高める効果が乏しい。一方、Si含有率が12.0質量%を超えると、初晶Siが晶出して表面処理性(アルマイト性)を悪化させる。従って、Si含有率は、8.0質量%〜12.0質量%の範囲とする。中でも、Si含有率は、9.0質量%〜11.0質量%の範囲とするのが好ましい。 The Si (component) can coexist with Mg to precipitate Mg 2 Si particles to improve the strength of the aluminum alloy, and the presence of eutectic Si improves the strength and abrasion resistance. If the Si content is less than 8.0% by mass, the effect of increasing the strength and abrasion resistance is poor. On the other hand, when the Si content exceeds 12.0% by mass, primary crystal Si crystallizes and the surface treatability (anodizing property) is deteriorated. Therefore, the Si content is in the range of 8.0% by mass to 12.0% by mass. Above all, the Si content is preferably in the range of 9.0% by mass to 11.0% by mass.

前記Fe(成分)は、Al−Fe系粒子やAl−Fe−Si系粒子を析出させて、鍛造成形後の熱処理での再結晶を抑制し、スクロール部材の延性や靱性を向上させる。Fe含有率が0.1質量%未満では、延性向上、靱性向上の効果に乏しい。一方、Fe含有率が0.5質量%を超えると、Al−Fe系やAl−Fe−Si系の粗大晶出物が増加して表面処理性(アルマイト性)を悪化させる。従って、Fe含有率は、0.1質量%〜0.5質量%の範囲とする。中でも、Fe含有率は、0.15質量%〜0.30質量%の範囲とするのが好ましい。 The Fe (component) precipitates Al-Fe-based particles and Al-Fe-Si-based particles, suppresses recrystallization in heat treatment after forging, and improves ductility and toughness of the scroll member. If the Fe content is less than 0.1% by mass, the effects of improving ductility and toughness are poor. On the other hand, when the Fe content exceeds 0.5% by mass, coarse crystals of Al-Fe-based or Al-Fe-Si-based are increased and the surface treatability (anodizing property) is deteriorated. Therefore, the Fe content is in the range of 0.1% by mass to 0.5% by mass. Above all, the Fe content is preferably in the range of 0.15% by mass to 0.30% by mass.

前記Cu(成分)は、CuAl2粒子を析出してアルミニウム合金の強度向上と硬さ向上に寄与する。Cu含有率が0.6質量%未満では、強度向上、硬さ向上の効果に乏しい。一方、Cu含有率が1.1質量%を超えると、アルマイト皮膜の硬さが低下する。従って、Cu含有率は、0.6質量%〜1.1質量%の範囲とする。中でも、Cu含有率は、0.7質量%〜1.0質量%の範囲とするのが好ましい。なお、Cuは、アルマイト処理の際に溶解するが、溶解したCuイオンは、貴な金属イオンであるため、再びアルミニウム合金母材の表面にCuが析出し、アルマイト皮膜が形成し難くなり、皮膜の緻密性も低下するが、Cu含有率を上記範囲内に制御することで、アルマイト皮膜の成形性と緻密性を向上させることができて、アルマイト皮膜の硬さを向上させることができる。 The Cu (component) precipitates CuAl 2 particles and contributes to improving the strength and hardness of the aluminum alloy. If the Cu content is less than 0.6% by mass, the effects of improving strength and hardness are poor. On the other hand, when the Cu content exceeds 1.1% by mass, the hardness of the alumite film decreases. Therefore, the Cu content is in the range of 0.6% by mass to 1.1% by mass. Above all, the Cu content is preferably in the range of 0.7% by mass to 1.0% by mass. Note that Cu dissolves during the alumite treatment, but since the dissolved Cu ions are precious metal ions, Cu precipitates again on the surface of the aluminum alloy base material, making it difficult to form an alumite film, which makes it difficult to form a film. However, by controlling the Cu content within the above range, the moldability and denseness of the alumite film can be improved, and the hardness of the alumite film can be improved.

前記Mg(成分)は、Siと共存してMg2Si粒子を析出してアルミニウム合金の強度を向上させることができる。Mg含有率が0.2質量%未満では、強度向上効果に乏しい。一方、Mg含有率が0.8質量%を超えると、加工性が低下する。従って、Mg含有率は、0.2質量%〜0.8質量%の範囲とする。中でも、Mg含有率は、0.3質量%〜0.7質量%の範囲とするのが好ましい。 The Mg (component) can coexist with Si and precipitate Mg 2 Si particles to improve the strength of the aluminum alloy. If the Mg content is less than 0.2% by mass, the effect of improving the strength is poor. On the other hand, if the Mg content exceeds 0.8% by mass, the workability is lowered. Therefore, the Mg content is in the range of 0.2% by mass to 0.8% by mass. Above all, the Mg content is preferably in the range of 0.3% by mass to 0.7% by mass.

また、前記アルミニウム合金は、Ti:0.01質量%〜0.3質量%、B:0.0001質量%〜0.05質量%、Sr:0.001質量%〜0.1質量%、からなる群より選ばれる1種又は2種以上の金属を前記含有率で含有することは、以下の理由から好ましい。即ち、Tiの含有やBの含有は、いずれも鋳塊の組織を微細化して鋳造時の鋳塊割れを防止し、さらには鋳塊の加工性を向上させるので、鍛造加工時に複雑な形状に成形することが可能である。Ti含有率が0.01質量%未満では、上記の効果に乏しい。一方、Ti含有率が0.3質量%を超えると、巨大な金属間化合物が晶出して加工性やアルマイト処理性に悪影響を及ぼす。また、Srの含有は、共晶Siを微細化し、加工性やアルマイト性を向上させる。Sr含有率が0.001質量%未満では、上記の効果に乏しい。一方、Sr含有率が0.1質量%を超えた場合も、上記効果に乏しいものとなる。 Further, the aluminum alloy has Ti: 0.01% by mass to 0.3% by mass, B: 0.0001% by mass to 0.05% by mass, Sr: 0.001% by mass to 0.1% by mass. It is preferable to contain one kind or two or more kinds of metals selected from the above group at the above-mentioned content rate for the following reasons. That is, both Ti and B contain micronizing the structure of the ingot to prevent ingot cracking during casting and further improving the workability of the ingot, resulting in a complicated shape during forging. It can be molded. If the Ti content is less than 0.01% by mass, the above effect is poor. On the other hand, when the Ti content exceeds 0.3% by mass, huge intermetallic compounds crystallize, which adversely affects workability and alumite treatment. Further, the content of Sr makes eutectic Si finer and improves processability and alumite property. If the Sr content is less than 0.001% by mass, the above effect is poor. On the other hand, when the Sr content exceeds 0.1% by mass, the above effect is poor.

また、前記アルミニウム合金は、さらに、Mn:0.01質量%〜0.3質量%、Cr:0.01質量%〜0.3質量%、Ni:0.01質量%〜0.3質量%、Zr:0.01質量%〜0.3質量%、V:0.01質量%〜0.1質量%、からなる群より選ばれる1種又は2種以上の金属を前記含有率で含有することは、以下の理由から好ましい。これらを含有させることで、Al−Mn系粒子、Al−Mn−Fe−Si系粒子、Al−Cr系粒子、Al−Cr−Fe−Si系粒子、Al−Ni粒子、Al−Zr系粒子、Al−V系粒子を析出して、鍛造後の熱処理で再結晶を抑制できて、延性や靱性を向上させることができる。Mnが0.01質量%未満、Crが0.01質量%未満、Niが0.01質量%未満、Zrが0.01質量%未満、Vが0.01質量%未満では、延性向上、靱性向上の効果が小さい。Mnが0.3質量%を超え、Crが0.3質量%を超え、Niが0.3質量%を超え、Zrが0.3質量%を超え、Vが0.1質量%を超えると、粗大な晶出物が増加してアルマイト性に悪影響を及ぼしたり、アルミニウム合金の延性や靱性を低下させる。 Further, the aluminum alloy further contains Mn: 0.01% by mass to 0.3% by mass, Cr: 0.01% by mass to 0.3% by mass, and Ni: 0.01% by mass to 0.3% by mass. , Zr: 0.01% by mass to 0.3% by mass, V: 0.01% by mass to 0.1% by mass, containing one or more metals selected from the group at the above content. This is preferable for the following reasons. By containing these, Al-Mn-based particles, Al-Mn-Fe-Si-based particles, Al-Cr-based particles, Al-Cr-Fe-Si-based particles, Al-Ni particles, Al-Zr-based particles, Al—V particles can be precipitated and recrystallization can be suppressed by heat treatment after forging, and ductility and toughness can be improved. When Mn is less than 0.01% by mass, Cr is less than 0.01% by mass, Ni is less than 0.01% by mass, Zr is less than 0.01% by mass, and V is less than 0.01% by mass, ductility is improved and toughness is improved. The effect of improvement is small. When Mn exceeds 0.3% by mass, Cr exceeds 0.3% by mass, Ni exceeds 0.3% by mass, Zr exceeds 0.3% by mass, and V exceeds 0.1% by mass. , Coarse crystals increase and adversely affect alumite properties, and reduce the ductility and toughness of aluminum alloys.

次に、本発明の具体的実施例について説明するが、本発明はこれら実施例のものに特に限定されるものではない。 Next, specific examples of the present invention will be described, but the present invention is not particularly limited to those of these examples.

<実施例1>
Si:8.0質量%、Fe:0.25質量%、Cu:0.9質量%、Mg:0.5質量%を含有し、残部がAl及び不可避不純物からなるアルミニウム合金溶湯をホットトップ連続鋳造加工することによって外径が117mm、長さ1000mmの鋳造材を得た。得られた鋳造材を490℃×7時間加熱する均質化熱処理を行った後、外径104mmまで面削加工を行った。次に、前記鋳造材を厚さ25mmに切断したものを加熱炉で200℃まで加熱後、黒鉛系の水溶性潤滑油に数秒間浸漬した後、取り出し、潤滑皮膜を形成した。次に、厚さ25mmの鋳造材を400℃に加熱した状態で鍛造加工を行うことによって、図1、2に示すスクロール鍛造品を得た。スクロール鍛造品の羽根部22の高さ(H)は40mm、羽根部22の厚さ(W)は5mm、底板21の厚さ(T)は10mmであった。
<Example 1>
Hot-top continuous hot-top molten aluminum alloy containing Si: 8.0% by mass, Fe: 0.25% by mass, Cu: 0.9% by mass, Mg: 0.5% by mass, and the balance is Al and unavoidable impurities. By casting, a cast material having an outer diameter of 117 mm and a length of 1000 mm was obtained. The obtained cast material was subjected to a symptotic heat treatment by heating at 490 ° C. for 7 hours, and then surface-cut to an outer diameter of 104 mm. Next, the cast material cut to a thickness of 25 mm was heated to 200 ° C. in a heating furnace, immersed in a graphite-based water-soluble lubricating oil for several seconds, and then taken out to form a lubricating film. Next, the scroll forged products shown in FIGS. 1 and 2 were obtained by forging the cast material having a thickness of 25 mm in a state of being heated to 400 ° C. The height (H) of the blade portion 22 of the scroll forged product was 40 mm, the thickness (W) of the blade portion 22 was 5 mm, and the thickness (T) of the bottom plate 21 was 10 mm.

次に、得られたスクロール鍛造品にアルマイト処理を行った。このアルマイト処理は、電解浴として15質量%硫酸を使用し、電流密度3A/dm2、浴温5℃で実施し、スクロール鍛造品2の表面に約40μmの厚さのアルマイト皮膜3を形成して、スクロール部材1を得た。 Next, the obtained scroll forged product was anodized. This alumite treatment was carried out using 15% by mass sulfuric acid as an electrolytic bath at a current density of 3 A / dm 2 and a bath temperature of 5 ° C. to form an alumite film 3 having a thickness of about 40 μm on the surface of the scroll forged product 2. The scroll member 1 was obtained.

<実施例2〜16>
表1に示す合金組成(不可避不純物を含有する)のアルミニウム合金溶湯を用いた以外は、実施例1と同様にして、スクロール部材1を得た。
<Examples 2 to 16>
A scroll member 1 was obtained in the same manner as in Example 1 except that a molten aluminum alloy having an alloy composition (containing unavoidable impurities) shown in Table 1 was used.

Figure 2020158844
Figure 2020158844

Figure 2020158844
Figure 2020158844

<比較例1〜13>
表1に示す合金組成(不可避不純物を含有する)のアルミニウム合金溶湯を用いた以外は、実施例1と同様にして、スクロール部材を得た。
<Comparative Examples 1 to 13>
A scroll member was obtained in the same manner as in Example 1 except that a molten aluminum alloy having an alloy composition (containing unavoidable impurities) shown in Table 1 was used.

<比較例14>
実施例2と同一組成のアルミニウム合金溶湯をホットトップ連続鋳造加工することによって外径が203mm、長さ1000mmの鋳造材を得た。得られた鋳造材を490℃×7時間加熱する均質化熱処理を行った後、外径104mmで押出加工を実施した。次に、前記押出材を厚さ25mmに切断したものを加熱炉で200℃まで加熱後、黒鉛系の水溶性潤滑油に数秒間浸漬した後、取り出し、潤滑皮膜を形成した。次に、厚さ25mmの押出材を400℃に加熱した状態で鍛造加工を行うことによって、スクロール鍛造品を得た以外は、実施例1と同様にして、スクロール部材を得た。
<Comparative Example 14>
A molten aluminum alloy having the same composition as that of Example 2 was continuously cast by hot top to obtain a cast material having an outer diameter of 203 mm and a length of 1000 mm. The obtained cast material was subjected to a symptotic heat treatment by heating at 490 ° C. for 7 hours, and then extruded with an outer diameter of 104 mm. Next, the extruded material cut to a thickness of 25 mm was heated to 200 ° C. in a heating furnace, immersed in a graphite-based water-soluble lubricating oil for several seconds, and then taken out to form a lubricating film. Next, a scroll member was obtained in the same manner as in Example 1 except that a scroll forged product was obtained by forging a 25 mm thick extruded material in a state of being heated to 400 ° C.

Figure 2020158844
Figure 2020158844

Figure 2020158844
Figure 2020158844

上記のようにして得られた各スクロール部材について下記評価法に基づいて評価を行った。 Each scroll member obtained as described above was evaluated based on the following evaluation method.

<引張強さ試験法>
引張試験を行うため、スクロール部材の厚さ10mmの底板から、図2の点線で示すような位置からASTM−R3号試験片を採取した。得られた試験片に対して島津製作所製のAG100kNXplusを用いて底板の面方向に引張試験を行い、25℃における引張強さ(MPa)を測定した。測定結果を表2、4に示す。n数を3個とし、3個の平均値を引張強さとした。表2では、引張強さが350MPa以上400MPa未満であるものを評価「○」と表記する一方、引張強さが前記範囲を逸脱しているものを評価「×」と表記した。
<Tensile strength test method>
In order to carry out the tensile test, an ASTM-R3 test piece was taken from the bottom plate having a thickness of 10 mm of the scroll member from the position shown by the dotted line in FIG. A tensile test was performed on the obtained test piece in the surface direction of the bottom plate using AG100kNXplus manufactured by Shimadzu Corporation, and the tensile strength (MPa) at 25 ° C. was measured. The measurement results are shown in Tables 2 and 4. The n number was set to 3, and the average value of the 3 was taken as the tensile strength. In Table 2, those having a tensile strength of 350 MPa or more and less than 400 MPa are indicated by an evaluation "◯", while those having a tensile strength outside the above range are indicated by an evaluation "x".

<耐力測定法>
上記引張試験結果から25℃における0.2%耐力を求めた。測定結果を表2、4に示す。n数を3個とし、3個の平均値を0.2%耐力とした。表2、4では、0.2%耐力が250MPa以上300MPa以下であるものを評価「○」と表記する一方、0.2%耐力が前記範囲を逸脱しているものを評価「×」と表記した。
<Proof stress measurement method>
From the above tensile test results, 0.2% proof stress at 25 ° C. was determined. The measurement results are shown in Tables 2 and 4. The number of n was set to 3, and the average value of the 3 was set to 0.2% proof stress. In Tables 2 and 4, those having a 0.2% proof stress of 250 MPa or more and 300 MPa or less are indicated by an evaluation "○", while those having a 0.2% proof stress outside the above range are indicated by an evaluation "x". did.

<アルマイト皮膜のビッカース硬さ評価法>
アルマイト皮膜が形成されているスクロール部材を所定の大きさに切断し、これを樹脂枠に埋め込み、アルマイト皮膜硬さが測定可能な範囲まで表面のミクロ研磨を実施した後、アルマイト皮膜のビッカース硬さを測定した。n数を3個とし、3個の平均値をビッカース硬さとした。表2、4では、ビッカース硬さ(HV)が400以上であるものを評価「○」と表記する一方、ビッカース硬さ(HV)が400未満であるものを評価「×」と表記した。
<Vickers hardness evaluation method for alumite film>
The scroll member on which the alumite film is formed is cut to a predetermined size, embedded in a resin frame, and the surface is micropolished to a measurable range of the alumite film hardness, and then the Vickers hardness of the alumite film is measured. Was measured. The n number was set to 3, and the average value of the 3 was defined as the Vickers hardness. In Tables 2 and 4, those having a Vickers hardness (HV) of 400 or more are indicated by an evaluation "○", while those having a Vickers hardness (HV) of less than 400 are indicated by an evaluation "x".

表から明らかなように、実施例1〜16のスクロール部材は、底板の面方向の引張強さが350MPa以上400MPa未満であり、最も負荷のかかる羽根の付け根部分の機械的強度に優れていると共に、アルマイト皮膜のビッカース硬さ(HV)が400以上でありアルマイト皮膜の硬度が大きいものであった。 As is clear from the table, the scroll members of Examples 1 to 16 have a tensile strength of the bottom plate in the surface direction of 350 MPa or more and less than 400 MPa, and are excellent in mechanical strength of the base portion of the blade to which the load is most applied. The Vickers hardness (HV) of the alumite film was 400 or more, and the hardness of the alumite film was large.

これに対し、本発明の規定範囲を逸脱する比較例1〜14では、底板の面方向の引張強さ及びアルマイト皮膜硬さ(アルマイト性)のうち少なくともいずれか一方の特性に劣っていた。 On the other hand, in Comparative Examples 1 to 14 deviating from the specified range of the present invention, at least one of the tensile strength in the surface direction of the bottom plate and the alumite film hardness (anodizing property) was inferior.

本発明に係るスクロール部材は、電気自動車やハイブリッド自動車等の自動車の車載用電動スクロールとして好適に用いられる。 The scroll member according to the present invention is suitably used as an in-vehicle electric scroll of an automobile such as an electric vehicle or a hybrid vehicle.

1…スクロール部材
2…スクロール鍛造品
3…アルマイト皮膜
21…底板
22…羽根部
1 ... Scroll member 2 ... Scroll forged product 3 ... Alumite film 21 ... Bottom plate 22 ... Blade

Claims (4)

Si:8.0質量%〜12.0質量%、Fe:0.1質量%〜0.5質量%、Cu:0.6質量%〜1.1質量%、Mg:0.2質量%〜0.8質量%を含有し、残部がAl及び不可避不純物からなるアルミニウム合金製のスクロール鍛造品の表面に、ビッカース硬さが400以上のアルマイト皮膜が形成されてなるスクロール部材であって、
前記スクロール鍛造品の底板の面方向の引張強さが350MPa以上400MPa未満であることを特徴とするスクロール部材。
Si: 8.0% by mass to 12.0% by mass, Fe: 0.1% by mass to 0.5% by mass, Cu: 0.6% by mass to 1.1% by mass, Mg: 0.2% by mass to A scroll member in which an alumite film having a Vickers hardness of 400 or more is formed on the surface of a scroll forged product made of an aluminum alloy containing 0.8% by mass and the balance being Al and unavoidable impurities.
A scroll member characterized in that the tensile strength of the bottom plate of the scroll forged product in the surface direction is 350 MPa or more and less than 400 MPa.
前記アルミニウム合金は、さらに、Ti:0.01質量%〜0.3質量%、B:0.0001質量%〜0.05質量%、Sr:0.001質量%〜0.1質量%、からなる群より選ばれる1種又は2種以上の金属を前記含有率で含有する請求項1に記載のスクロール部材。 The aluminum alloy further comprises Ti: 0.01% by mass to 0.3% by mass, B: 0.0001% by mass to 0.05% by mass, Sr: 0.001% by mass to 0.1% by mass. The scroll member according to claim 1, which contains one or more metals selected from the above group at the above-mentioned content rate. 前記アルミニウム合金は、さらに、Mn:0.01質量%〜0.3質量%、Cr:0.01質量%〜0.3質量%、Ni:0.01質量%〜0.3質量%、Zr:0.01質量%〜0.3質量%、V:0.01質量%〜0.1質量%、からなる群より選ばれる1種又は2種以上の金属を前記含有率で含有する請求項1または2に記載のスクロール部材。 The aluminum alloy further contains Mn: 0.01% by mass to 0.3% by mass, Cr: 0.01% by mass to 0.3% by mass, Ni: 0.01% by mass to 0.3% by mass, Zr. : 0.01% by mass to 0.3% by mass, V: 0.01% by mass to 0.1% by mass, according to the above claim, containing one or more metals selected from the group consisting of the above content. The scroll member according to 1 or 2. Si:8.0質量%〜12.0質量%、Fe:0.1質量%〜0.5質量%、Cu:0.6質量%〜1.1質量%、Mg:0.2質量%〜0.8質量%を含有し、残部がAl及び不可避不純物からなるアルミニウム合金連続鋳造材を押出加工を行うことなく鍛造加工することにより、底板の面方向の引張強さが350MPa以上400MPa未満であるスクロール鍛造品を得ることを特徴とするスクロール鍛造品の製造方法。 Si: 8.0% by mass to 12.0% by mass, Fe: 0.1% by mass to 0.5% by mass, Cu: 0.6% by mass to 1.1% by mass, Mg: 0.2% by mass to By forging an aluminum alloy continuous cast material containing 0.8% by mass and the balance being Al and unavoidable impurities without extrusion processing, the tensile strength of the bottom plate in the surface direction is 350 MPa or more and less than 400 MPa. A method for manufacturing a scroll forged product, which comprises obtaining a scroll forged product.
JP2019060327A 2019-03-27 2019-03-27 Scroll member and scroll forging product manufacturing method Active JP7358759B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019060327A JP7358759B2 (en) 2019-03-27 2019-03-27 Scroll member and scroll forging product manufacturing method
KR1020217016375A KR102589669B1 (en) 2019-03-27 2019-12-12 Method of manufacturing scroll members and scroll forgings
CN201980086152.9A CN113227422A (en) 2019-03-27 2019-12-12 Scroll member and method for manufacturing scroll forged product
PCT/JP2019/048674 WO2020194906A1 (en) 2019-03-27 2019-12-12 Scroll member and method for producing scroll forged article
EP19921526.0A EP3950985A4 (en) 2019-03-27 2019-12-12 Scroll member and method for producing scroll forged article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019060327A JP7358759B2 (en) 2019-03-27 2019-03-27 Scroll member and scroll forging product manufacturing method

Publications (2)

Publication Number Publication Date
JP2020158844A true JP2020158844A (en) 2020-10-01
JP7358759B2 JP7358759B2 (en) 2023-10-12

Family

ID=72609417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019060327A Active JP7358759B2 (en) 2019-03-27 2019-03-27 Scroll member and scroll forging product manufacturing method

Country Status (5)

Country Link
EP (1) EP3950985A4 (en)
JP (1) JP7358759B2 (en)
KR (1) KR102589669B1 (en)
CN (1) CN113227422A (en)
WO (1) WO2020194906A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022091936A1 (en) * 2020-10-30 2022-05-05 昭和電工株式会社 Aluminum alloy for sliding components, and sliding component
WO2022091948A1 (en) * 2020-10-30 2022-05-05 昭和電工株式会社 Aluminum alloy for sliding component, and sliding component

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10130764A (en) * 1996-10-31 1998-05-19 Kobe Steel Ltd Forged scroll member made of aluminum alloy
WO2001077398A1 (en) * 2000-04-10 2001-10-18 Showa Denko K.K. Forged scroll part and production method therefor
JP2004232087A (en) * 2002-11-22 2004-08-19 Showa Denko Kk Aluminum alloy, rod-shape material, forging shaped article, machining shaped article, wear-resistant aluminum alloy having excellent hardness of anodically oxidized film using the same, sliding part, and their production method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09209069A (en) * 1995-11-29 1997-08-12 Furukawa Electric Co Ltd:The Wear resistant al alloy for elongation, scroll made of this wear resistant al alloy for elongation, and their production
JP3261056B2 (en) 1997-01-14 2002-02-25 住友軽金属工業株式会社 High-strength wear-resistant aluminum alloy extruded material excellent in ease of forming anodized film and uniformity of film thickness and method for producing the same
WO2005049896A1 (en) * 2003-11-21 2005-06-02 Showa Denko K.K. Aluminum alloy, bar-shaped material, forged molding and machined molding, and, produced therefrom, wear-resistant aluminum alloy and sliding part excelling in anodic oxide coating hardness, and process for producing them
US20050109429A1 (en) * 2003-11-21 2005-05-26 Showa Denko K.K. Aluminum alloy, bar-like material, forge-formed article, machine-formed article, wear-resistant aluminum alloy with excellent anodized coat using the same and production methods thereof
CN102666894B (en) * 2009-12-22 2015-05-27 昭和电工株式会社 Aluminum alloy for anodization and aluminum alloy component
JP6627836B2 (en) 2017-09-28 2020-01-08 コベルコ建機株式会社 Internal combustion engine unit and crane

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10130764A (en) * 1996-10-31 1998-05-19 Kobe Steel Ltd Forged scroll member made of aluminum alloy
WO2001077398A1 (en) * 2000-04-10 2001-10-18 Showa Denko K.K. Forged scroll part and production method therefor
JP2004232087A (en) * 2002-11-22 2004-08-19 Showa Denko Kk Aluminum alloy, rod-shape material, forging shaped article, machining shaped article, wear-resistant aluminum alloy having excellent hardness of anodically oxidized film using the same, sliding part, and their production method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022091936A1 (en) * 2020-10-30 2022-05-05 昭和電工株式会社 Aluminum alloy for sliding components, and sliding component
WO2022091948A1 (en) * 2020-10-30 2022-05-05 昭和電工株式会社 Aluminum alloy for sliding component, and sliding component

Also Published As

Publication number Publication date
KR20210084585A (en) 2021-07-07
CN113227422A (en) 2021-08-06
WO2020194906A1 (en) 2020-10-01
JP7358759B2 (en) 2023-10-12
EP3950985A4 (en) 2022-12-07
KR102589669B1 (en) 2023-10-17
EP3950985A1 (en) 2022-02-09

Similar Documents

Publication Publication Date Title
JP5355320B2 (en) Aluminum alloy casting member and manufacturing method thereof
CN105483465B (en) A kind of die casting Al-Si-Mg cast aluminium alloy golds and preparation method thereof
JP5813955B2 (en) Aluminum zinc magnesium silver alloy
CN105296818A (en) Aluminum alloy and preparation method and application thereof
JP5703881B2 (en) High strength magnesium alloy and method for producing the same
CN105112742B (en) A kind of Al-Si-Mg-Cu-Ti-Sc casting wrought alloy and preparation method thereof
JP2001220639A (en) Aluminum alloy for casting
CN114457263A (en) High-strength high-toughness high-heat-conductivity die-casting aluminum alloy and manufacturing method thereof
CN115261684A (en) Cast Al-Si alloy and preparation method thereof
JP2017503086A (en) Aluminum casting alloy with improved high temperature performance
KR20140091858A (en) A Aluminum alloy for die-casting and Method of manufacturing thereof
WO2020194906A1 (en) Scroll member and method for producing scroll forged article
EP2468908A2 (en) Aluminum base alloy with high thermal conductivity for die casting
JP4511156B2 (en) Aluminum alloy manufacturing method and aluminum alloy, rod-shaped material, sliding part, forged molded product and machined molded product manufactured thereby
JP2020100863A (en) Aluminum alloy for compressor slide component, forging product of compressor slide component and production method thereof
CN107365926B (en) Aluminium alloy castings and manufacturing method
JPH0440418B2 (en)
WO2007114737A2 (en) Aluminium-based alloy
JP2010106336A (en) Forging method of magnesium alloy
JP5476452B2 (en) High strength, high toughness aluminum alloy forging material with excellent corrosion resistance, its manufacturing method, and suspension parts
KR101468957B1 (en) Aluminum alloy for casting
JP5590413B2 (en) High thermal conductivity magnesium alloy
CA3135702C (en) Aluminium casting alloy
JP3731911B2 (en) Aluminum alloy extruded material with excellent surface properties, manufacturing method thereof, and aluminum alloy motorcycle frame
JP6967437B2 (en) A method for manufacturing an aluminum die-cast alloy, an automobile member using an aluminum die-cast alloy, and an aluminum die-cast alloy.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221117

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20230131

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20230201

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20230307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230911

R151 Written notification of patent or utility model registration

Ref document number: 7358759

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151