WO2022091948A1 - Aluminum alloy for sliding component, and sliding component - Google Patents
Aluminum alloy for sliding component, and sliding component Download PDFInfo
- Publication number
- WO2022091948A1 WO2022091948A1 PCT/JP2021/038978 JP2021038978W WO2022091948A1 WO 2022091948 A1 WO2022091948 A1 WO 2022091948A1 JP 2021038978 W JP2021038978 W JP 2021038978W WO 2022091948 A1 WO2022091948 A1 WO 2022091948A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass
- less
- range
- aluminum alloy
- content
- Prior art date
Links
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 83
- 229910000765 intermetallic Inorganic materials 0.000 claims abstract description 37
- 239000012535 impurity Substances 0.000 claims abstract description 10
- 239000013078 crystal Substances 0.000 claims description 25
- 238000002425 crystallisation Methods 0.000 claims description 10
- 230000008025 crystallization Effects 0.000 claims description 10
- 229910052782 aluminium Inorganic materials 0.000 abstract description 2
- 239000000047 product Substances 0.000 description 71
- 238000005266 casting Methods 0.000 description 23
- 238000005242 forging Methods 0.000 description 21
- 238000000034 method Methods 0.000 description 19
- 238000010438 heat treatment Methods 0.000 description 16
- 229910052751 metal Inorganic materials 0.000 description 14
- 239000002184 metal Substances 0.000 description 12
- 229910052802 copper Inorganic materials 0.000 description 11
- 238000010791 quenching Methods 0.000 description 11
- 230000000171 quenching effect Effects 0.000 description 11
- 229910052712 strontium Inorganic materials 0.000 description 11
- 230000032683 aging Effects 0.000 description 10
- 229910052791 calcium Inorganic materials 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 238000000265 homogenisation Methods 0.000 description 9
- 229910052749 magnesium Inorganic materials 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 8
- 230000009471 action Effects 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 230000006872 improvement Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000006104 solid solution Substances 0.000 description 6
- 238000009864 tensile test Methods 0.000 description 6
- 239000000654 additive Substances 0.000 description 5
- 230000000996 additive effect Effects 0.000 description 5
- 238000007743 anodising Methods 0.000 description 5
- 229910052804 chromium Inorganic materials 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- 229910052748 manganese Inorganic materials 0.000 description 5
- 239000007769 metal material Substances 0.000 description 5
- 229910018125 Al-Si Inorganic materials 0.000 description 4
- 229910018520 Al—Si Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 238000005480 shot peening Methods 0.000 description 4
- 239000006061 abrasive grain Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 238000009749 continuous casting Methods 0.000 description 3
- 238000000921 elemental analysis Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910018191 Al—Fe—Si Inorganic materials 0.000 description 2
- 229910018473 Al—Mn—Si Inorganic materials 0.000 description 2
- 229910017827 Cu—Fe Inorganic materials 0.000 description 2
- 229910017060 Fe Cr Inorganic materials 0.000 description 2
- 229910002544 Fe-Cr Inorganic materials 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910019819 Cr—Si Inorganic materials 0.000 description 1
- 238000005473 Guinier-Preston zone Methods 0.000 description 1
- 229910019064 Mg-Si Inorganic materials 0.000 description 1
- 229910019406 Mg—Si Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000010273 cold forging Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- -1 for example Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000010129 solution processing Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/02—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
- F04C18/0207—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/043—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/02—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
- F04C18/0207—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
- F04C18/0215—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2230/00—Manufacture
- F04C2230/20—Manufacture essentially without removing material
- F04C2230/25—Manufacture essentially without removing material by forging
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2230/00—Manufacture
- F04C2230/90—Improving properties of machine parts
- F04C2230/92—Surface treatment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2201/00—Metals
- F05C2201/90—Alloys not otherwise provided for
- F05C2201/903—Aluminium alloy, e.g. AlCuMgPb F34,37
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2251/00—Material properties
- F05C2251/10—Hardness
Definitions
- the present invention relates to aluminum alloys for sliding parts and sliding parts. This application claims priority based on Japanese Patent Application No. 2020-182092 filed in Japan on October 30, 2020, the contents of which are incorporated herein by reference.
- compressors for automobile air conditioners are also required to be lighter and more sophisticated.
- compressors for air conditioners There are various types of compressors for air conditioners, but scroll type compressors are widely used as compressors for automobile air conditioners.
- the scroll type compressor has a pair of spiral type sliding parts (scrolls), one sliding part (fixed scroll) is fixed, and the other sliding part (swivel scroll) is swiveled to form a pair. Compressed air is generated by reducing the volume of the space formed between the sliding parts.
- the sliding parts used in the scroll type compressor having such a configuration are required to have excellent tensile strength as well as wear resistance during sliding. Further, the sliding parts of the scroll type compressor used for the air conditioner of an automobile are also required to have excellent heat resistance so that they can be used in a harsh environment under a high temperature atmosphere.
- an aluminum alloy is generally used as a material for sliding parts of a scroll type compressor.
- the aluminum alloy an Al—Si based aluminum alloy is used from the viewpoint of tensile strength, wear resistance, and heat resistance.
- the surface of the sliding parts is anodized (anodized) to form a hard alumite film on the surface of the sliding parts. ing.
- Patent Documents 1 and 2 In order to improve the tensile strength of aluminum alloys, it is being studied to add metal elements such as Cu and Mg to Al—Si aluminum alloys (Patent Documents 1 and 2). On the other hand, it is known that when an additive metal such as Cu or Mg, particularly Cu, is added to an aluminum alloy at a high concentration, the growth of the alumite film due to the anodizing treatment is inhibited and the formability of the alumite film is lowered (patented). Document 3).
- Japanese Unexamined Patent Publication No. 2005-281742 Japanese Unexamined Patent Publication No. 8-28493 Japanese Unexamined Patent Publication No. 2005-330560
- the present invention has been made in view of the above-mentioned technical background, and an object of the present invention is to provide an aluminum alloy for sliding parts and sliding parts having excellent tensile strength and formability of an alumite film. do.
- the present inventor added Cu, Mg, Mn, Cr, Fe, Ca, and Sr elements to the Al—Si aluminum alloy in a specific amount. As a result, it has been found that it is possible to obtain an aluminum alloy having a high tensile strength and a small amount of coarse crystallization and intermetallic compounds mixed in. Then, it was confirmed that the aluminum alloy can form a hard alumite film on the surface by the anodizing treatment, and the present invention was completed. That is, the present invention provides the following means.
- the first aspect of the present invention provides the aluminum alloy described in the following [1].
- Si is in the range of 8.5% by mass or more and 10.5% by mass or less
- Cu is in the range of 0.8% by mass or more and 1.1% by mass or less
- Mg is in the range of 0.4% by mass or more and 0.6.
- Mn is in the range of 0.30% by mass or more and 0.60% by mass or less
- Cr is in the range of 0.01% by mass or more and 0.03% by mass or less
- Fe is in the range of 0.10% by mass.
- Ca is contained in the range of 0.0005% by mass or more and 0.0050% by mass or less
- Sr is contained in the range of 0.00005% by mass or more and 0.03000% by mass or less.
- the balance is Al and unavoidable impurities, the ratio of Sr content to Ca content is in the range of 0.01 or more and 30 or less, and the tensile strength at 25 ° C is in the range of 330 MPa or more and 380 MPa or less.
- 2 or more Cr-containing intermetal compounds having a length of 8 ⁇ m or more, containing 1% by mass or more of Cu and not containing 2 or more crystals having a circle equivalent diameter of more than 5 ⁇ m per 1182 ⁇ m 2 .
- An aluminum alloy for sliding parts which is characterized by not containing more than one.
- the aluminum alloy preferably contains Si in an amount of 8.5% by mass or more and 12.0% by mass or less.
- the first aspect of the present invention preferably has the following characteristics [2].
- [2] The aluminum alloy for sliding parts according to the above [1], which does not contain two or more primary crystal Si grains having a diameter equivalent to a circle exceeding 10 ⁇ m per 4726 ⁇ m 2 .
- a second aspect of the present invention provides the sliding component described in [3] below.
- [3] A sliding component made of the aluminum alloy for the sliding component according to the above [1] or [2].
- the second aspect of the present invention preferably has the following features [4] to [8]. It is also preferable to combine two or more of these features.
- the sliding component according to the above [3] which is a forged product.
- an aluminum alloy for sliding parts and sliding parts having excellent tensile strength and formability of an alumite film.
- the aluminum alloy for sliding parts of the present embodiment contains Si in the range of 8.0% by mass or more and 12.0% by mass or less, Cu in the range of 0.8% by mass or more and 1.1% by mass or less, and Mg. In the range of 0.4% by mass or more and 0.6% by mass or less, Mn in the range of 0.30% by mass or more and 0.60% by mass or less, Fe in the range of 0.10% by mass or more and 0.30% by mass or less.
- Cr is in the range of 0.01% by mass or more and 0.03% by mass or less
- Ca is in the range of 0.0005% by mass or more and 0.0050% by mass or less
- Sr is 0.00005% by mass or more and 0.03000% by mass. It is contained in the range of% or less, and the balance is Al and unavoidable impurities.
- the ratio of the Sr content to the Ca content, Sr / Ca is in the range of 0.01 or more and 30 or less.
- the aluminum alloy for sliding parts of the present embodiment has a tensile strength in the range of 330 MPa or more and 380 MPa or less at 25 ° C.
- the aluminum alloy for sliding parts of the present embodiment contains 1% by mass or more of Cu, does not contain two or more crystallized substances having a circle equivalent diameter of more than 5 ⁇ m per 1182 ⁇ m 2 , and has a length of 8 ⁇ m or more. It is said that two or more Cr-containing intermetallic compounds are not contained in 1182 ⁇ m 2 . Further, the aluminum alloy for sliding parts of the present embodiment does not have to contain two or more primary crystal Si grains having a diameter equivalent to a circle of more than 10 ⁇ m per 4726 ⁇ m 2 .
- Si 8.0% by mass or more and 12.0% by mass or less
- Si component
- Si has an action of improving the tensile strength of the aluminum alloy.
- the tensile strength of the aluminum alloy may decrease due to the crystallization of coarse primary crystal Si grains.
- the primary crystal Si grains may reduce the formability of the alumite film.
- the Si content is less than 8.0% by mass, it may be difficult to obtain the effect of improving the tensile strength by Si.
- the Si content exceeds 12.0% by mass, coarse primary Si grains may easily crystallize.
- the Si content is in the range of 8.0% by mass or more and 10.5% by mass or less.
- the Si content is more preferably in the range of 9.0% by mass or more and 10.5% by mass or less.
- the Si content can be arbitrarily selected as long as it is within the above range, and for example, 8.20% by mass to 12.00% by mass, 8.50% by mass to 12.00% by mass, or 9.00% by mass or more. It may be 11.50% by mass, 9.50% by mass to 11.00% by mass, 10.00% by mass to 11.5% by mass, or the like.
- Cu 0.8% by mass or more and 1.1% by mass or less
- Cu (component) has an action of improving the tensile strength of the aluminum alloy.
- Cu is a G.I. P. Form a zone.
- G. P. Zones are aggregates of solute atoms that appear in the matrix during aging of age-hardened alloys. This G. P. The zone (Guinier-Preston zone) becomes the intermediate phase, which contributes to the improvement of the tensile strength of the aluminum alloy.
- the Cu content is less than 0.8% by mass, it may be difficult to obtain the effect of improving the tensile strength of Cu.
- the Cu content exceeds 1.1% by mass, the formability of the alumite film may decrease.
- the Cu content is in the range of 0.8% by mass or more and 1.1% by mass or less.
- the Cu content is preferably in the range of 0.9% by mass or more and 1.0% by mass or less.
- the Cu content can be arbitrarily selected as long as it is within the above range, and for example, 0.80% by mass to 1.10% by mass, 0.85% by mass to 1.05% by mass, or 0.90% by mass to 0.90% by mass. 1.00. It may be mass% or 0.93 mass% to 0.98 mass%.
- Mg 0.4% by mass or more and 0.6% by mass or less
- Mg (component) has an action of improving the tensile strength of the aluminum alloy in the same manner as Cu.
- Mg forms a compound containing Si and Cu in an aluminum alloy. Precipitation of this compound as the Q phase contributes to the improvement of the tensile strength of the aluminum alloy. If the Mg content is less than 0.4% by mass, it may be difficult to obtain the effect of improving the tensile strength by Mg. On the other hand, if the Mg content exceeds 0.6% by mass, the effect of improving the tensile strength by Mg may decrease. Therefore, in the present embodiment, the Mg content is in the range of 0.4% by mass or more and 0.6% by mass or less.
- the Mg content is preferably in the range of 0.45% by mass or more and 0.55% by mass or less.
- the Mg content can be arbitrarily selected as long as it is within the above range, for example, 0.40% by mass or more and 0.60% by mass or less, 0.43% by mass or more and 0.58% by mass or less, or 0.50% by mass. It may be% or more and 0.53% by mass or less.
- Mn 0.30% by mass or more and 0.60% by mass or less
- Mn (component) has an action of improving the tensile strength of the aluminum alloy.
- Mn contributes to the improvement of the tensile strength of the aluminum alloy by forming fine granular crystallized substances containing an Al—Mn—Si intermetallic compound or the like in the aluminum alloy. If the Mn content is less than 0.30% by mass, it may be difficult to obtain the effect of improving the tensile strength by Mn. On the other hand, if the Mn content exceeds 0.60% by mass, the above-mentioned intermetallic compound may form coarse crystallization and reduce the tensile strength of the aluminum alloy.
- the Mn content is in the range of 0.30% by mass or more and 0.60% by mass or less.
- the Mn content is preferably in the range of 0.35% by mass or more and 0.55% by mass or less.
- the Mn content can be arbitrarily selected as long as it is within the above range, and for example, 0.38% by mass to 0.53% by mass, 0.40% by mass to 0.50% by mass, or 0.43% by mass to 0.43% by mass. It may be 0.47% by mass.
- Cr 0.01% by mass or more and 0.03% by mass or less
- Cr has an action of improving the mechanical properties of the aluminum alloy. Cr crystallizes as a fine Cr-containing metal-to-metal compound containing an Al—Fe-Cr metal-to-metal compound in the aluminum alloy, thereby contributing to the improvement of the mechanical properties of the aluminum alloy. If the Cr content is less than 0.01% by mass, it may be difficult to obtain the effect of improving the tensile strength by Cr. On the other hand, if the Cr content exceeds 0.03% by mass, the Cr-containing intermetallic compound may form coarse crystallization and reduce the tensile strength of the aluminum alloy.
- the Cr content is in the range of 0.01% by mass or more and 0.03% by mass or less.
- the Cr content is preferably in the range of 0.015% by mass or more and 0.02% by mass or less.
- the Cr content can be arbitrarily selected as long as it is within the above range, and for example, 0.013% by mass to 0.028% by mass, 0.018% by mass to 0.026% by mass, or 0.020% by mass to 0.020% by mass. It may be 0.024% by mass. )
- Fe has an action of improving the tensile strength of the aluminum alloy.
- Fe is crystallized as a fine crystallized product containing an Al—Fe—Si intermetallic compound, an Al—Cu—Fe intermetallic compound, an Al—Mn—Fe intermetallic compound, etc. in an aluminum alloy to form an aluminum alloy. Contributes to the improvement of mechanical properties of aluminum. If the Fe content is less than 0.10% by mass, it may be difficult to obtain the effect of improving the tensile strength by Fe. On the other hand, if the Fe content exceeds 0.30% by mass, the intermetallic compound may form coarse crystallization and reduce the tensile strength of the aluminum alloy.
- the Fe content is in the range of 0.10% by mass or more and 0.30% by mass or less.
- the Fe content is preferably in the range of 0.15% by mass or more and 0.25% by mass or less.
- the Fe content can be arbitrarily selected as long as it is within the above range, and may be, for example, 0.13% by mass to 0.27% by mass or 0.17% by mass to 0.20% by mass.
- Ca and Sr each have an action of suppressing the crystallization of primary Si grains. Comparing Ca and Sr, Sr has a higher effect of suppressing eutectic Si grains, that is, an effect of improving corrosion resistance. Further, when Ca and Sr are added in combination, the improvement efficiency due to the addition of Ca may decrease. Therefore, it is necessary to adjust the ratio of the content of Ca and Sr together with the content of Ca and Sr.
- the Ca content is in the range of 0.0005% by mass or more and 0.0050% by mass or less, and the Sr content is in the range of 0.00005% by mass or more and 0.03000% by mass or less.
- the ratio of Sr content to Ca content Sr / Ca is in the range of 0.01 or more and 30 or less.
- the Ca content is preferably in the range of 0.0005% by mass or more and 0.0020% by mass or less.
- the Ca content may be 0.0008% by mass or more and 0.0015% by mass or less, or 0.0010% by mass or more and 0.0013% by mass or less, if necessary.
- the content of Sr is preferably 0.00005% by mass or more and 0.0200% by mass or less.
- the content of Sr may be 0.0005% by mass or more and 0.0150% by mass or less, or 0.0008% by mass or more and 0.0100% by mass or less, if necessary.
- the ratio of the Sr content to the Ca content Sr / Ca may be in the range of 0.01 or more and less than 2.2, or in the range of 2.2 or more and 25 or less, if necessary. It may be in the range of 0.10 or more and 23 or less, in the range of 0.50 or more and 8.0 or less, or in the range of 1.0 or more and 5.0 or less. It may be in the range of 5.0 or more and 20 or less, or in the range of 10.0 or more and 15 or less.
- the unavoidable impurities are impurities that are inevitably mixed with the aluminum alloy from the raw material or the manufacturing process of the aluminum alloy.
- the mixing amount of each element of Zn, Ni, Zr, and Ti preferably does not exceed 0.5% by mass in the total content of each of these elements.
- each element crystallizes before the Al matrix to form coarse crystallization, and the ductility of the aluminum alloy becomes small. , The tensile strength may decrease.
- the amount of unavoidable impurities can be arbitrarily selected as long as it is within the above range, for example, less than 0.50% by mass, 0.40% by mass or less, 0.30% by mass or less, 0.20% by mass or less, and the like. , 0.10% by mass or less, 0.05% by mass or less, 0.01% by mass or less, or 0.001% by mass or less.
- the aluminum alloy of the present embodiment has a tensile strength at 25 ° C. in the range of 330 MPa or more and 380 MPa or less.
- the tensile strength is a value measured using a JIS No. 4 tensile test piece in accordance with the provisions of JIS Z2241: 2011 (Metallic Material Tensile Test Method).
- the tensile strength can be arbitrarily selected as long as it is within the above range, and may be, for example, 340 MPa or more and 370 MPa or less, or 350 MPa or more and 360 MPa or less.
- Cr-containing intermetallic compound having a length of 8 ⁇ m or more 2 or more are not contained per 1182 ⁇ m 2
- a Cr-containing intermetallic compound having a length of 8 ⁇ m or more may reduce the tensile strength of the aluminum alloy. Therefore, in the present embodiment, it is said that two or more coarse Cr-containing intermetallic compounds having a length of 8 ⁇ m or more are not contained per 1182 ⁇ m 2 .
- the number of coarse Cr-containing intermetallic compounds per 1182 ⁇ m 2 is preferably 1 or less, and more preferably not containing coarse Cr-containing intermetallic compounds.
- the maximum length of the Cr-containing intermetallic compound contained in the aluminum alloy is preferably 6 ⁇ m or less, and more preferably 4 ⁇ m or less.
- the length and number of Cr-containing intermetallic compounds are the same as in the case of the Cu-based crystallized product described above, in the range of 1182 ⁇ m 2 of the cross section of the aluminum alloy, using FE-SEM / EDS, the Cr-containing intermetallic compound. Is detected, and the length and number of the detected Cr-containing intermetallic compounds can be measured by measuring with an SEM image.
- the intermetallic compound include, but are not limited to, Al—Cr—Si.
- the difference between the Cr-containing intermetallic compound and the Cu-based crystallized product includes the shape of the Cr-containing intermetallic compound and the like.
- Coarse primary Si grains with a circle-equivalent diameter of more than 10 ⁇ m may hinder the formation of an anodized film. be. Therefore, in the present embodiment, it is said that two or more coarse primary crystal Si grains having a diameter equivalent to a circle exceeding 10 ⁇ m are not contained per 4726 ⁇ m 2 .
- the number of coarse primary Si grains is preferably 1 or less, and more preferably no coarse primary Si grains are contained.
- the diameter corresponding to the maximum circle of the primary Si grains contained in the aluminum alloy is preferably 8 ⁇ m or less, and more preferably 4 ⁇ m or less.
- the primary Si grains consist only of Si.
- the sliding parts of the present embodiment are made of the above-mentioned aluminum alloy for sliding parts of the present embodiment.
- the sliding component of this embodiment may be a forged product.
- the sliding component of the present embodiment may be provided with an alumite film having a Vickers hardness of 400 HV or more on the surface thereof.
- the alumite film can be formed by anodizing.
- the film thickness of the alumite film is preferably in the range of 4 ⁇ m or more and 100 ⁇ m or less.
- the Vickers hardness of the alumite film is preferably in the range of 400 HV or more and 450 HV or less.
- the Vickers hardness can be measured according to the Vickers hardness test-test method described in JIS Z 2244.
- FIG. 1 is a flow chart showing an example of a method for manufacturing a sliding component according to an embodiment of the present invention.
- the method for manufacturing a sliding component of the present embodiment includes a molten metal forming step S01 for obtaining a molten metal of an aluminum alloy, a casting step S02 for obtaining a cast product by casting the molten metal, and a cast product. It has a forging step S05 for forging to obtain a forged product.
- a homogenization heat treatment step S03 and a cutting step S04 may be performed between the casting step S02 and the forging step S05.
- the solution treatment step S06, the quenching step S07, the aging treatment step S08, and the shot peening step S09 may be performed.
- molten metal forming step S01 In the molten metal forming step S01, raw materials such as Al source, Si source, Cu source, Mg source, Mn source, Fe source, Cr source, Ca source and Sr source are mixed so as to form the above alloy. , The resulting mixture is heated and melted at an arbitrarily selected temperature to obtain a molten aluminum alloy.
- the Al source, Si source, Cu source, Mg source, Mn source, Fe source, Cr source, Ca source and Sr source may each be a single metal material, or an alloy material containing two or more kinds of metals. May be.
- the metal material used as a raw material may contain a large amount of Ca.
- the metal material as a raw material may be de-Ca-treated in advance so that the ratio Sr / Ca of the Sr content to the Ca content is within the above range.
- the temperature used for forming the molten metal can be arbitrarily selected.
- FIG. 2 is a perspective view showing an example of an aluminum alloy (cast product) for sliding parts according to an embodiment of the present invention.
- the casting step S02 as shown in FIG. 2, it is preferable to obtain a columnar cast product 1.
- a casting method for example, a known method conventionally used as a casting method for an aluminum alloy such as a continuous casting and rolling method, a hot top casting method, a float casting method, and a semi-continuous casting method (DC casting method) can be used. Can be used.
- Mn forms fine granular crystallization containing an Al—Mn—Si intermetallic compound.
- Fe forms fine crystals such as an Al—Fe—Si intermetallic compound, an Al—Cu—Fe intermetallic compound, and an Al—Mn—Fe intermetallic compound.
- Cr forms a crystallized product as a fine Cr-containing intermetallic compound such as an Al—Fe—Cr intermetallic compound.
- homogenization heat treatment step S03 In the homogenization heat treatment step S03, the homogenization heat treatment is performed on the columnar cast product 1 obtained in the casting step S02.
- This homogenization heat treatment segregation of additive elements generated during casting is eliminated to homogenize the composition, and a hypersaturated solid solution generated by solidification during casting is precipitated, and further, semi-stable formed by solidification during casting. Phase change phase to equilibrium phase.
- the heating temperature in the homogenization heat treatment can be arbitrarily selected, and is, for example, in the range of 420 ° C. or higher and 500 ° C. or lower. If necessary, the temperature may be 430 ° C or higher and 480 ° C or lower, or 440 ° C or higher and 460 ° C or lower.
- FIG. 3 is a perspective view showing an example of a sliding component (forged product) according to an embodiment of the present invention.
- the forged product 2 shown in FIG. 3 is a sliding component (scroll) for a scroll type compressor.
- the forged product 2 has a disk-shaped base portion 3 and a spiral-shaped protrusion portion 4.
- hot forging may be used or cold forging may be used.
- the heating temperature in hot forging can be arbitrarily selected, but is, for example, in the range of 350 ° C. or higher and 450 ° C. or lower. If necessary, the temperature may be 370 ° C or higher and 430 ° C or lower, or 390 ° C or higher and 420 ° C or lower.
- solution treatment step S06 the forged product 2 obtained in the forging step S05 is subjected to the solution treatment.
- elements such as Si, Cu, and Mg in the forged product 2 are re-dissolved in the aluminum alloy to generate a solid solution state.
- the heating temperature in the solution treatment can be arbitrarily selected, but is, for example, in the range of 450 ° C. or higher and 540 ° C. or lower. If necessary, the temperature may be 470 ° C or higher and 530 ° C or lower, or 490 ° C or higher and 510 ° C or lower.
- the quenching step S07 In the quenching step S07, the forged product 2 which has been in a solid solution state in the solution treatment step S06 is subjected to a quenching treatment. By this quenching treatment, the forged product 2 is rapidly cooled to produce a supersaturated solid solution in which the solid solution state is maintained.
- the forging quenching is performed by hot forging in the forging step S05, the forging quenching is performed by using the heating during the hot forging without performing the solution heat treatment step S06. You may. Examples of the quenching process include water quenching.
- the forged product 2 which was the supersaturated solid solution in the quenching treatment step S07 is subjected to the aging treatment.
- the forged product 2 is tempered at a low temperature.
- clusters are formed in the aluminum alloy constituting the forged product 2, and Cu is precipitated with the clusters as nuclei to form G.I. P. Zones are created.
- Mg forms a compound with Si and Cu and precipitates as a Q phase.
- the heating temperature in the aging treatment can be arbitrarily selected, but is, for example, in the range of 150 ° C. or higher and 220 ° C. or lower.
- the temperature may be 170 ° C. or higher and 200 ° C. or lower, 180 ° C. or higher and 190 ° C. or lower.
- the heating time can be arbitrarily selected, and examples thereof include 0.5 hours to 20 hours and 1 hour to 16 hours.
- the forged product 2 that has been aged in the aging treatment step S08 is machined to prepare the surface or remove unprocessed parts, and then shot peened to the vicinity of the surface. Fatigue strength is improved by adding plastic working to.
- the size of the abrasive grains used in shot peening in which the abrasive grains collide with the alloy surface at high speed is preferably 1 mm or less.
- the material of the abrasive grains for example, stainless steel (eg, SUS304), alumina and the like can be used.
- the peening pressure is preferably 1 MPa or less.
- sliding parts forged products
- the obtained sliding parts had a tensile strength at 25 ° C. in the range of 330 MPa or more and 380 MPa or less, contained 1% by mass or more of Cu, and contained two crystallized compounds having a circle-equivalent diameter of more than 5 ⁇ m per 1182 ⁇ m 2 . It does not contain the above, 2 or more Cr-containing intermetallic compounds having a length of 8 ⁇ m or more per 1182 ⁇ m 2 , and does not contain 2 or more primary crystal Si grains having a circle-equivalent diameter of more than 10 ⁇ m per 4726 ⁇ m 2 .
- This sliding component is excellent in tensile strength and formability of an alumite film.
- this sliding component can form an alumite film having a Vickers hardness of 400 HV or more by anodizing.
- a sliding component provided with an alumite film having a Vickers hardness of 400 HV or more on this surface has higher tensile strength and wear resistance.
- the aluminum alloy for sliding parts of the present embodiment having the above configuration contains each additive element of Si, Cu, Mg, Mn, Cr, Fe, Ca, and Sr within the above range, and the balance is Al. And unavoidable impurities, the tensile strength at 25 ° C. is in the range of 330 MPa or more and 380 MPa or less, the amount of Cu is 1% by mass or more, and the crystallized product having a circle-equivalent diameter of more than 5 ⁇ m is 2 per 1182 ⁇ m 2. Since it is said that no more than two Cr-containing intermetal compounds having a length of 8 ⁇ m or more are contained per 1182 ⁇ m 2 , the tensile strength and the formability of the alumite film are excellent.
- the sliding component of the present embodiment is composed of the above-mentioned aluminum alloy for sliding component, it is excellent in tensile strength and formability of an alumite film.
- the strength is further improved.
- the surface is provided with an alumite film having a Vickers hardness of 400 HV or more, the strength is further improved and the wear resistance is improved.
- the sliding parts of this embodiment can be suitably used as sliding parts of a compressor (compressor).
- the forged product of the present embodiment can be advantageously used as a sliding component of a scroll type compressor, particularly as a sliding component of an electric scroll type compressor in which a swivel scroll is movable by a motor.
- Si is 10.1% by mass
- Cu is 1.0% by mass
- Mg is 0.4% by mass
- Mn is 0.4% by mass
- Cr is 0.03% by mass
- Fe is 0.19% by mass
- Ca is.
- a forged product (second cast product) was obtained by hot forging the obtained cast product.
- the obtained forged product was subjected to a solution treatment and then a water quenching treatment.
- the cast product after the water quenching treatment was subjected to an aging treatment to obtain a forged product for sliding parts.
- Examples 2 to 5 and Comparative Examples 1 to 15> The same as in Example 1 except that the contents of Si, Cu, Mg, Mn, Cr, Fe, Ca, and Sr of the aluminum alloy (containing unavoidable impurities) were changed to the ratios shown in Table 1. A forged product for sliding parts was obtained.
- the structure of the forged product for sliding parts was observed as follows.
- a forged product for sliding parts is cut out to a predetermined size to prepare an observation sample.
- a surface parallel to the forging direction of the observation sample is processed into an observation surface to obtain an observation surface.
- the observation surface of the observation sample is observed using FE-SEM / EDS.
- the Cu-based crystallized product containing the above and the Cr-containing metal-to-metal compound are specified.
- the diameter equivalent to a circle is calculated, and the "number of Cu-based crystallized materials having a diameter equivalent to a circle exceeding 5 ⁇ m" and the “diameter equivalent to a maximum circle” are obtained.
- the length of the specified Cr-containing intermetallic compound is calculated, and the "number of Cr-containing intermetallic compounds having a length of 8 ⁇ m or more" and the "maximum length” are obtained.
- the diameter equivalent to a circle is calculated for the specified primary crystal Si grains, and the "number of primary crystal Si grains having a diameter equivalent to a circle exceeding 10 ⁇ m" and the "diameter equivalent to a maximum circle” are obtained.
- Observation of Cu-based crystallized products, Cr-containing intermetallic compounds, and primary crystal Si grains was performed on four observation surfaces. "Number of Cu-based crystals having a circle-equivalent diameter of more than 5 ⁇ m”, “Number of Cr-containing intermetallic compounds having a length of 8 ⁇ m or more” and “Number of primary crystal Si grains having a circle-equivalent diameter of more than 10 ⁇ m" are It is the average value of the number measured in those observation planes.
- the "maximum circle-equivalent diameter" of the Cu-based crystallized product and the primary crystal Si grain and the "maximum length” of the Cr-containing intermetallic compound are the maximum values measured in their observation planes. The results are shown in Table 2.
- the tensile strength of the forged product for sliding parts was measured as follows. A forged product for sliding parts is cut out to a predetermined size to prepare a JIS No. 4 tensile test piece. The obtained JIS No. 4 tensile test piece is subjected to a tensile test in accordance with the provisions of JIS Z2241: 2011 (metal material tensile test method), and the tensile strength (MPa) at 25 ° C. is measured. The results are shown in Table 2.
- the forged product for sliding parts was anodized to form an alumite film having a thickness of 20 ⁇ m on the surface of the forged product. Then, the hardness of the obtained alumite film was measured.
- the alumite film was formed as follows. The forged product is immersed in an electrolytic solution having a free sulfuric acid concentration of 150 g / L and a liquid temperature of 5 ° C. Next, using the forged product as an anode, a current having a current density of 3 A / dm 2 is passed to form an alumite film on the surface of the forged product.
- the forged product on which the alumite film is formed is taken out from the electrolytic solution, and the alumite film is mirror-finished by buffing.
- the hardness of the alumite film was measured as follows. The hardness of the alumite film is measured using a Vickers hardness tester. The hardness is measured in the thickness direction of the alumite film, and the load is 0.01 g. The measurement results are shown in Table 2. In Table 2, those having a Vickers hardness of less than 400 HV are described as "x (impossible)", and those having a Vickers hardness of 400 HV or more are described as " ⁇ (possible)”.
- the present invention provides an aluminum alloy for sliding parts and sliding parts having excellent strength and formability of an alumite film.
- the sliding component made of an aluminum alloy for sliding components according to the present invention can be suitably used as a sliding component of a compressor (compressor) for an automobile air conditioner, particularly a sliding component of a scroll type compressor or an electric scroll type compressor. ..
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Sliding-Contact Bearings (AREA)
- Forging (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
This aluminum alloy for a sliding component contains 8.0-12.0 mass% of Si, 0.8-1.1 mass% of Cu, 0.4-0.6 mass% of Mg, 0.30-0.60 mass% of Mn, 0.01-0.03 mass% of Cr, 0.10-0.30 mass% of Fe, 0.0005-0.0050 mass% of Ca and 0.00005-0.03000 mass% of Sr, with the remainder comprising Al and unavoidable impurities. The ratio of the content of Sr relative to the content of Ca (Sr/Ca) falls within the range 0.01-30. The aluminum alloy has a tensile strength at 25ºC of 330-380 MPa, contains 1 mass% or more of Cu, does not contain two or more crystallized products having a circle-equivalent diameter of more than 5 µm per 1182 µm2, and does not contain two or more Cr-containing intermetallic compounds having a length of 8 µm or more per 1182 µm2.
Description
本発明は、摺動部品用アルミニウム合金及び摺動部品に関する。
本願は、2020年10月30日に、日本に出願された特願2020-182092号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to aluminum alloys for sliding parts and sliding parts.
This application claims priority based on Japanese Patent Application No. 2020-182092 filed in Japan on October 30, 2020, the contents of which are incorporated herein by reference.
本願は、2020年10月30日に、日本に出願された特願2020-182092号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to aluminum alloys for sliding parts and sliding parts.
This application claims priority based on Japanese Patent Application No. 2020-182092 filed in Japan on October 30, 2020, the contents of which are incorporated herein by reference.
近年の自動車業界における燃費向上の要求から、自動車に使用される各種部材、例えば自動車のエアコン用のコンプレッサーに対しても軽量化、高機能化が求められている。エアコン用コンプレッサーには種々の形式が存在するが、自動車のエアコン用コンプレッサーとしては、スクロール型コンプレッサーが広く利用されている。
Due to the demand for improved fuel efficiency in the automobile industry in recent years, various components used in automobiles, such as compressors for automobile air conditioners, are also required to be lighter and more sophisticated. There are various types of compressors for air conditioners, but scroll type compressors are widely used as compressors for automobile air conditioners.
スクロール型コンプレッサーは、一対の渦巻き型の摺動部品(スクロール)を有し、一方の摺動部品(固定スクロール)を固定し、他方の摺動部品(旋回スクロール)を旋回運動させて、一対の摺動部品の間に形成される空間の体積を小さくすることよって圧縮空気を生成する。このような構成のスクロール型コンプレッサーに用いられる摺動部品は、引張強さと共に、摺動時の耐摩耗性に優れることが要求される。また、自動車のエアコン用として利用されるスクロール型コンプレッサーの摺動部品では、高温雰囲気下の過酷な環境でも使用できるように耐熱性に優れることも要求される。
The scroll type compressor has a pair of spiral type sliding parts (scrolls), one sliding part (fixed scroll) is fixed, and the other sliding part (swivel scroll) is swiveled to form a pair. Compressed air is generated by reducing the volume of the space formed between the sliding parts. The sliding parts used in the scroll type compressor having such a configuration are required to have excellent tensile strength as well as wear resistance during sliding. Further, the sliding parts of the scroll type compressor used for the air conditioner of an automobile are also required to have excellent heat resistance so that they can be used in a harsh environment under a high temperature atmosphere.
スクロール型コンプレッサーの摺動部品の軽量化のため、摺動部品の材料は重量に対する強度の比である比強度が大きいことが好ましい。このため、スクロール型コンプレッサーの摺動部品の材料としては、アルミニウム合金が一般に利用されている。アルミニウム合金としては、引張強さ、耐摩耗性、耐熱性の観点から、Al-Si系アルミニウム合金が用いられている。また、摺動部品の耐摩耗性を向上させるために、摺動部品の表面に陽極酸化処理(アルマイト処理)を施して、摺動部品の表面に硬度の高いアルマイト皮膜を形成することも行なわれている。
In order to reduce the weight of the sliding parts of the scroll type compressor, it is preferable that the material of the sliding parts has a large specific strength, which is the ratio of the strength to the weight. Therefore, an aluminum alloy is generally used as a material for sliding parts of a scroll type compressor. As the aluminum alloy, an Al—Si based aluminum alloy is used from the viewpoint of tensile strength, wear resistance, and heat resistance. Further, in order to improve the wear resistance of the sliding parts, the surface of the sliding parts is anodized (anodized) to form a hard alumite film on the surface of the sliding parts. ing.
アルミニウム合金の引張強さを向上させるために、Al-Si系アルミニウム合金に対してCu、Mg等の金属元素を添加することが検討されている(特許文献1、2)。一方、アルミニウム合金にCu、Mg等の添加金属、特にCuを高濃度で添加すると、陽極酸化処理によるアルマイト皮膜の成長が阻害され、アルマイト皮膜の形成性が低下することが知られている(特許文献3)。
In order to improve the tensile strength of aluminum alloys, it is being studied to add metal elements such as Cu and Mg to Al—Si aluminum alloys (Patent Documents 1 and 2). On the other hand, it is known that when an additive metal such as Cu or Mg, particularly Cu, is added to an aluminum alloy at a high concentration, the growth of the alumite film due to the anodizing treatment is inhibited and the formability of the alumite film is lowered (patented). Document 3).
アルミニウム合金の引張強さを向上させるために、Al-Si系アルミニウム合金に対して、Cu、Mg等の金属元素を添加することは有効である。しかしながら、金属元素の添加量が多くなると、アルミニウム合金中に、粗大な晶出物や、2種以上の金属からなる金属間化合物が生成して、アルミニウム合金の引張強さが低下することやアルマイト皮膜の形成性が低下することがある。このため、引張強さとアルマイト皮膜の形成性の両者に優れたアルミニウム合金を得るのは難しい。
In order to improve the tensile strength of the aluminum alloy, it is effective to add metal elements such as Cu and Mg to the Al—Si based aluminum alloy. However, when the amount of the metal element added is large, coarse crystallization or an intermetal compound composed of two or more kinds of metals is generated in the aluminum alloy, and the tensile strength of the aluminum alloy is lowered or alumite. The formability of the film may decrease. Therefore, it is difficult to obtain an aluminum alloy having excellent both tensile strength and alumite film forming property.
本発明は、上述の技術的背景に鑑みてなされたものであって、引張強さとアルマイト皮膜の形成性とに優れた摺動部品用アルミニウム合金及び摺動部品を提供することを、その目的とする。
The present invention has been made in view of the above-mentioned technical background, and an object of the present invention is to provide an aluminum alloy for sliding parts and sliding parts having excellent tensile strength and formability of an alumite film. do.
前記の目的を達成するために、本発明者は鋭意研究の結果、Al-Si系アルミニウム合金に、Cu、Mg、Mn、Cr、Fe、Ca、Srの各元素を特定の量で添加することによって、引張強さが大きく、かつ粗大な晶出物や金属間化合物の混入量が少ないアルミニウム合金を得ることが可能となることを見出した。そして、そのアルミニウム合金は、陽極酸化処理によって表面に硬度の高いアルマイト皮膜を形成することが可能となることを確認して、本発明を完成した。即ち、本発明は以下の手段を提供する。
本発明の第一の態様は、以下の[1]に記載されるアルミニウム合金を提供する。 In order to achieve the above object, as a result of diligent research, the present inventor added Cu, Mg, Mn, Cr, Fe, Ca, and Sr elements to the Al—Si aluminum alloy in a specific amount. As a result, it has been found that it is possible to obtain an aluminum alloy having a high tensile strength and a small amount of coarse crystallization and intermetallic compounds mixed in. Then, it was confirmed that the aluminum alloy can form a hard alumite film on the surface by the anodizing treatment, and the present invention was completed. That is, the present invention provides the following means.
The first aspect of the present invention provides the aluminum alloy described in the following [1].
本発明の第一の態様は、以下の[1]に記載されるアルミニウム合金を提供する。 In order to achieve the above object, as a result of diligent research, the present inventor added Cu, Mg, Mn, Cr, Fe, Ca, and Sr elements to the Al—Si aluminum alloy in a specific amount. As a result, it has been found that it is possible to obtain an aluminum alloy having a high tensile strength and a small amount of coarse crystallization and intermetallic compounds mixed in. Then, it was confirmed that the aluminum alloy can form a hard alumite film on the surface by the anodizing treatment, and the present invention was completed. That is, the present invention provides the following means.
The first aspect of the present invention provides the aluminum alloy described in the following [1].
[1]Siを8.5質量%以上10.5質量%以下の範囲内、Cuを0.8質量%以上1.1質量%以下の範囲内、Mgを0.4質量%以上0.6質量%以下の範囲内、Mnを0.30質量%以上0.60質量%以下の範囲内、Crを0.01質量%以上0.03質量%以下の範囲内、Feを0.10質量%以上0.30質量%以下の範囲内、Caを0.0005質量%以上0.0050質量%以下の範囲内、Srを0.00005質量%以上0.03000質量%以下の範囲内で含有し、残部がAl及び不可避不純物であって、Caの含有量に対するSrの含有量の比Sr/Caが0.01以上30以下の範囲内にあり、25℃における引張強さが330MPa以上380MPa以下の範囲内にあって、Cuを1質量%以上含有し、円相当直径が5μmを超える晶出物を1182μm2あたり2個以上含まず、長さが8μm以上のCr含有金属間化合物を1182μm2あたり2個以上含まないことを特徴とする摺動部品用アルミニウム合金。
前記アルミニウム合金は、Siを8.5質量%以上12.0質量%以下で含むことも好ましい。 [1] Si is in the range of 8.5% by mass or more and 10.5% by mass or less, Cu is in the range of 0.8% by mass or more and 1.1% by mass or less, and Mg is in the range of 0.4% by mass or more and 0.6. Mn is in the range of 0.30% by mass or more and 0.60% by mass or less, Cr is in the range of 0.01% by mass or more and 0.03% by mass or less, and Fe is in the range of 0.10% by mass. Ca is contained in the range of 0.0005% by mass or more and 0.0050% by mass or less, and Sr is contained in the range of 0.00005% by mass or more and 0.03000% by mass or less. The balance is Al and unavoidable impurities, the ratio of Sr content to Ca content is in the range of 0.01 or more and 30 or less, and the tensile strength at 25 ° C is in the range of 330 MPa or more and 380 MPa or less. In 1182 μm 2, 2 or more Cr-containing intermetal compounds having a length of 8 μm or more, containing 1% by mass or more of Cu and not containing 2 or more crystals having a circle equivalent diameter of more than 5 μm per 1182 μm 2 . An aluminum alloy for sliding parts, which is characterized by not containing more than one.
The aluminum alloy preferably contains Si in an amount of 8.5% by mass or more and 12.0% by mass or less.
前記アルミニウム合金は、Siを8.5質量%以上12.0質量%以下で含むことも好ましい。 [1] Si is in the range of 8.5% by mass or more and 10.5% by mass or less, Cu is in the range of 0.8% by mass or more and 1.1% by mass or less, and Mg is in the range of 0.4% by mass or more and 0.6. Mn is in the range of 0.30% by mass or more and 0.60% by mass or less, Cr is in the range of 0.01% by mass or more and 0.03% by mass or less, and Fe is in the range of 0.10% by mass. Ca is contained in the range of 0.0005% by mass or more and 0.0050% by mass or less, and Sr is contained in the range of 0.00005% by mass or more and 0.03000% by mass or less. The balance is Al and unavoidable impurities, the ratio of Sr content to Ca content is in the range of 0.01 or more and 30 or less, and the tensile strength at 25 ° C is in the range of 330 MPa or more and 380 MPa or less. In 1182
The aluminum alloy preferably contains Si in an amount of 8.5% by mass or more and 12.0% by mass or less.
本発明の第一の態様は、以下の[2]の特徴を有することが好ましい。
[2]円相当直径が10μmを超える初晶Si粒を4726μm2あたり2個以上含まない上記[1]に記載の摺動部品用アルミニウム合金。
本発明の第二の態様は、以下の[3]に記載される摺動部品を提供する。
[3]上記[1]または[2]に記載の摺動部品用アルミニウム合金で構成された摺動部品。
本発明の第二の態様は、以下の[4]~[8]の特徴を有することが好ましい。これらの特徴は2つ以上を好ましく組み合わせることも好ましい。
[4]鍛造品である上記[3]に記載の摺動部品。
[5]表面に、ビッカース硬さが400HV以上であるアルマイト皮膜が備えられている上記[3]または[4]に記載の摺動部品。
[6]コンプレッサーの摺動部品である上記[3]から[5]のいずれか一つに記載の摺動部品。
[7]スクロール型コンプレッサーの摺動部品である上記[3]から[5]のいずれか一つに記載の摺動部品。
[8]電動スクロール型コンプレッサーの摺動部品である上記[3]から[5]のいずれか一つに記載の摺動部品。 The first aspect of the present invention preferably has the following characteristics [2].
[2] The aluminum alloy for sliding parts according to the above [1], which does not contain two or more primary crystal Si grains having a diameter equivalent to a circle exceeding 10 μm per 4726 μm 2 .
A second aspect of the present invention provides the sliding component described in [3] below.
[3] A sliding component made of the aluminum alloy for the sliding component according to the above [1] or [2].
The second aspect of the present invention preferably has the following features [4] to [8]. It is also preferable to combine two or more of these features.
[4] The sliding component according to the above [3], which is a forged product.
[5] The sliding component according to the above [3] or [4], wherein the surface is provided with an alumite film having a Vickers hardness of 400 HV or more.
[6] The sliding component according to any one of the above [3] to [5], which is a sliding component of a compressor.
[7] The sliding component according to any one of the above [3] to [5], which is a sliding component of a scroll type compressor.
[8] The sliding component according to any one of the above [3] to [5], which is a sliding component of an electric scroll type compressor.
[2]円相当直径が10μmを超える初晶Si粒を4726μm2あたり2個以上含まない上記[1]に記載の摺動部品用アルミニウム合金。
本発明の第二の態様は、以下の[3]に記載される摺動部品を提供する。
[3]上記[1]または[2]に記載の摺動部品用アルミニウム合金で構成された摺動部品。
本発明の第二の態様は、以下の[4]~[8]の特徴を有することが好ましい。これらの特徴は2つ以上を好ましく組み合わせることも好ましい。
[4]鍛造品である上記[3]に記載の摺動部品。
[5]表面に、ビッカース硬さが400HV以上であるアルマイト皮膜が備えられている上記[3]または[4]に記載の摺動部品。
[6]コンプレッサーの摺動部品である上記[3]から[5]のいずれか一つに記載の摺動部品。
[7]スクロール型コンプレッサーの摺動部品である上記[3]から[5]のいずれか一つに記載の摺動部品。
[8]電動スクロール型コンプレッサーの摺動部品である上記[3]から[5]のいずれか一つに記載の摺動部品。 The first aspect of the present invention preferably has the following characteristics [2].
[2] The aluminum alloy for sliding parts according to the above [1], which does not contain two or more primary crystal Si grains having a diameter equivalent to a circle exceeding 10 μm per 4726 μm 2 .
A second aspect of the present invention provides the sliding component described in [3] below.
[3] A sliding component made of the aluminum alloy for the sliding component according to the above [1] or [2].
The second aspect of the present invention preferably has the following features [4] to [8]. It is also preferable to combine two or more of these features.
[4] The sliding component according to the above [3], which is a forged product.
[5] The sliding component according to the above [3] or [4], wherein the surface is provided with an alumite film having a Vickers hardness of 400 HV or more.
[6] The sliding component according to any one of the above [3] to [5], which is a sliding component of a compressor.
[7] The sliding component according to any one of the above [3] to [5], which is a sliding component of a scroll type compressor.
[8] The sliding component according to any one of the above [3] to [5], which is a sliding component of an electric scroll type compressor.
本発明によれば、引張強さとアルマイト皮膜の形成性とに優れた摺動部品用アルミニウム合金及び摺動部品を提供することが可能となる。
According to the present invention, it is possible to provide an aluminum alloy for sliding parts and sliding parts having excellent tensile strength and formability of an alumite film.
以下、本発明の一実施形態に係る摺動部品用アルミニウム合金及び摺動部品の好ましい例について、詳細に説明する。
なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を模式的に示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。
本実施形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。本発明の趣旨を逸脱しない範囲で、数、材料、量、形状、数値、比率、位置、構成等について、変更、付加、省略、置換等が可能である。 Hereinafter, preferred examples of the aluminum alloy for sliding parts and the sliding parts according to the embodiment of the present invention will be described in detail.
In addition, the drawings used in the following description may schematically show the characteristic parts for convenience in order to make the features easy to understand, and the dimensional ratios of each component are not always the same as the actual ones. not.
The present embodiment will be specifically described in order to better understand the gist of the invention, and is not limited to the present invention unless otherwise specified. It is possible to change, add, omit, replace, etc. the number, material, quantity, shape, numerical value, ratio, position, configuration, etc. within the range not deviating from the gist of the present invention.
なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を模式的に示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。
本実施形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。本発明の趣旨を逸脱しない範囲で、数、材料、量、形状、数値、比率、位置、構成等について、変更、付加、省略、置換等が可能である。 Hereinafter, preferred examples of the aluminum alloy for sliding parts and the sliding parts according to the embodiment of the present invention will be described in detail.
In addition, the drawings used in the following description may schematically show the characteristic parts for convenience in order to make the features easy to understand, and the dimensional ratios of each component are not always the same as the actual ones. not.
The present embodiment will be specifically described in order to better understand the gist of the invention, and is not limited to the present invention unless otherwise specified. It is possible to change, add, omit, replace, etc. the number, material, quantity, shape, numerical value, ratio, position, configuration, etc. within the range not deviating from the gist of the present invention.
<摺動部品用アルミニウム合金>
本実施形態の摺動部品用アルミニウム合金は、Siを8.0質量%以上12.0質量%以下の範囲内、Cuを0.8質量%以上1.1質量%以下の範囲内、Mgを0.4質量%以上0.6質量%以下の範囲内、Mnを0.30質量%以上0.60質量%以下の範囲内、Feを0.10質量%以上0.30質量%以下の範囲内、Crを0.01質量%以上0.03質量%以下の範囲内、Caを0.0005質量%以上0.0050質量%以下の範囲内、Srを0.00005質量%以上0.03000質量%以下の範囲内で含有し、残部がAl及び不可避不純物とされている。また、本実施形態の摺動部品用アルミニウム合金は、Caの含有量に対するSrの含有量の比Sr/Caが0.01以上30以下の範囲内とされている。さらに、本実施形態の摺動部品用アルミニウム合金は、25℃における引張強さが330MPa以上380MPa以下の範囲内とされている。またさらに、本実施形態の摺動部品用アルミニウム合金は、Cuを1質量%以上含有し、円相当直径が5μmを超える晶出物を1182μm2あたり2個以上含まず、長さが8μm以上のCr含有金属間化合物を1182μm2あたり2個以上含まないとされている。また、本実施形態の摺動部品用アルミニウム合金は、円相当直径が10μmを超える初晶Si粒を4726μm2あたり2個以上含まなくてもよい。 <Aluminum alloy for sliding parts>
The aluminum alloy for sliding parts of the present embodiment contains Si in the range of 8.0% by mass or more and 12.0% by mass or less, Cu in the range of 0.8% by mass or more and 1.1% by mass or less, and Mg. In the range of 0.4% by mass or more and 0.6% by mass or less, Mn in the range of 0.30% by mass or more and 0.60% by mass or less, Fe in the range of 0.10% by mass or more and 0.30% by mass or less. Among them, Cr is in the range of 0.01% by mass or more and 0.03% by mass or less, Ca is in the range of 0.0005% by mass or more and 0.0050% by mass or less, and Sr is 0.00005% by mass or more and 0.03000% by mass. It is contained in the range of% or less, and the balance is Al and unavoidable impurities. Further, in the aluminum alloy for sliding parts of the present embodiment, the ratio of the Sr content to the Ca content, Sr / Ca, is in the range of 0.01 or more and 30 or less. Further, the aluminum alloy for sliding parts of the present embodiment has a tensile strength in the range of 330 MPa or more and 380 MPa or less at 25 ° C. Furthermore, the aluminum alloy for sliding parts of the present embodiment contains 1% by mass or more of Cu, does not contain two or more crystallized substances having a circle equivalent diameter of more than 5 μm per 1182 μm 2 , and has a length of 8 μm or more. It is said that two or more Cr-containing intermetallic compounds are not contained in 1182 μm 2 . Further, the aluminum alloy for sliding parts of the present embodiment does not have to contain two or more primary crystal Si grains having a diameter equivalent to a circle of more than 10 μm per 4726 μm 2 .
本実施形態の摺動部品用アルミニウム合金は、Siを8.0質量%以上12.0質量%以下の範囲内、Cuを0.8質量%以上1.1質量%以下の範囲内、Mgを0.4質量%以上0.6質量%以下の範囲内、Mnを0.30質量%以上0.60質量%以下の範囲内、Feを0.10質量%以上0.30質量%以下の範囲内、Crを0.01質量%以上0.03質量%以下の範囲内、Caを0.0005質量%以上0.0050質量%以下の範囲内、Srを0.00005質量%以上0.03000質量%以下の範囲内で含有し、残部がAl及び不可避不純物とされている。また、本実施形態の摺動部品用アルミニウム合金は、Caの含有量に対するSrの含有量の比Sr/Caが0.01以上30以下の範囲内とされている。さらに、本実施形態の摺動部品用アルミニウム合金は、25℃における引張強さが330MPa以上380MPa以下の範囲内とされている。またさらに、本実施形態の摺動部品用アルミニウム合金は、Cuを1質量%以上含有し、円相当直径が5μmを超える晶出物を1182μm2あたり2個以上含まず、長さが8μm以上のCr含有金属間化合物を1182μm2あたり2個以上含まないとされている。また、本実施形態の摺動部品用アルミニウム合金は、円相当直径が10μmを超える初晶Si粒を4726μm2あたり2個以上含まなくてもよい。 <Aluminum alloy for sliding parts>
The aluminum alloy for sliding parts of the present embodiment contains Si in the range of 8.0% by mass or more and 12.0% by mass or less, Cu in the range of 0.8% by mass or more and 1.1% by mass or less, and Mg. In the range of 0.4% by mass or more and 0.6% by mass or less, Mn in the range of 0.30% by mass or more and 0.60% by mass or less, Fe in the range of 0.10% by mass or more and 0.30% by mass or less. Among them, Cr is in the range of 0.01% by mass or more and 0.03% by mass or less, Ca is in the range of 0.0005% by mass or more and 0.0050% by mass or less, and Sr is 0.00005% by mass or more and 0.03000% by mass. It is contained in the range of% or less, and the balance is Al and unavoidable impurities. Further, in the aluminum alloy for sliding parts of the present embodiment, the ratio of the Sr content to the Ca content, Sr / Ca, is in the range of 0.01 or more and 30 or less. Further, the aluminum alloy for sliding parts of the present embodiment has a tensile strength in the range of 330 MPa or more and 380 MPa or less at 25 ° C. Furthermore, the aluminum alloy for sliding parts of the present embodiment contains 1% by mass or more of Cu, does not contain two or more crystallized substances having a circle equivalent diameter of more than 5 μm per 1182 μm 2 , and has a length of 8 μm or more. It is said that two or more Cr-containing intermetallic compounds are not contained in 1182 μm 2 . Further, the aluminum alloy for sliding parts of the present embodiment does not have to contain two or more primary crystal Si grains having a diameter equivalent to a circle of more than 10 μm per 4726 μm 2 .
(Si:8.0質量%以上12.0質量%以下)
Si(成分)は、アルミニウム合金の引張強さを向上させる作用を有する。ただし、アルミニウム合金にSiを過剰に添加すると、粗大な初晶Si粒が晶出することにより、アルミニウム合金の引張強さが低下するおそれがある。また、初晶Si粒は、アルマイト皮膜の形成性を低下させるおそれがある。
Si含有率が8.0質量%未満になると、Siによる引張強さの向上効果が得られにくくなるおそれがある。一方、Si含有率が12.0質量%を超えると、粗大な初晶Si粒が晶出しやすくなるおそれがある。以上の理由から、本実施形態では、Si含有率は8.0質量%以上10.5質量%以下の範囲内とされている。Si含有率は、9.0質量%以上10.5質量%以下の範囲内にあることがより好ましい。Si含有率は、上記範囲内であれば任意に選択でき、例えば、8.20質量%~12.00質量%や、8.50質量%~12.00質量%や、9.00質量%~11.50質量%や、9.50質量%~11.00質量%や、10.00質量%~11.5質量%などであってもよい。 (Si: 8.0% by mass or more and 12.0% by mass or less)
Si (component) has an action of improving the tensile strength of the aluminum alloy. However, if Si is excessively added to the aluminum alloy, the tensile strength of the aluminum alloy may decrease due to the crystallization of coarse primary crystal Si grains. Further, the primary crystal Si grains may reduce the formability of the alumite film.
If the Si content is less than 8.0% by mass, it may be difficult to obtain the effect of improving the tensile strength by Si. On the other hand, if the Si content exceeds 12.0% by mass, coarse primary Si grains may easily crystallize. For the above reasons, in the present embodiment, the Si content is in the range of 8.0% by mass or more and 10.5% by mass or less. The Si content is more preferably in the range of 9.0% by mass or more and 10.5% by mass or less. The Si content can be arbitrarily selected as long as it is within the above range, and for example, 8.20% by mass to 12.00% by mass, 8.50% by mass to 12.00% by mass, or 9.00% by mass or more. It may be 11.50% by mass, 9.50% by mass to 11.00% by mass, 10.00% by mass to 11.5% by mass, or the like.
Si(成分)は、アルミニウム合金の引張強さを向上させる作用を有する。ただし、アルミニウム合金にSiを過剰に添加すると、粗大な初晶Si粒が晶出することにより、アルミニウム合金の引張強さが低下するおそれがある。また、初晶Si粒は、アルマイト皮膜の形成性を低下させるおそれがある。
Si含有率が8.0質量%未満になると、Siによる引張強さの向上効果が得られにくくなるおそれがある。一方、Si含有率が12.0質量%を超えると、粗大な初晶Si粒が晶出しやすくなるおそれがある。以上の理由から、本実施形態では、Si含有率は8.0質量%以上10.5質量%以下の範囲内とされている。Si含有率は、9.0質量%以上10.5質量%以下の範囲内にあることがより好ましい。Si含有率は、上記範囲内であれば任意に選択でき、例えば、8.20質量%~12.00質量%や、8.50質量%~12.00質量%や、9.00質量%~11.50質量%や、9.50質量%~11.00質量%や、10.00質量%~11.5質量%などであってもよい。 (Si: 8.0% by mass or more and 12.0% by mass or less)
Si (component) has an action of improving the tensile strength of the aluminum alloy. However, if Si is excessively added to the aluminum alloy, the tensile strength of the aluminum alloy may decrease due to the crystallization of coarse primary crystal Si grains. Further, the primary crystal Si grains may reduce the formability of the alumite film.
If the Si content is less than 8.0% by mass, it may be difficult to obtain the effect of improving the tensile strength by Si. On the other hand, if the Si content exceeds 12.0% by mass, coarse primary Si grains may easily crystallize. For the above reasons, in the present embodiment, the Si content is in the range of 8.0% by mass or more and 10.5% by mass or less. The Si content is more preferably in the range of 9.0% by mass or more and 10.5% by mass or less. The Si content can be arbitrarily selected as long as it is within the above range, and for example, 8.20% by mass to 12.00% by mass, 8.50% by mass to 12.00% by mass, or 9.00% by mass or more. It may be 11.50% by mass, 9.50% by mass to 11.00% by mass, 10.00% by mass to 11.5% by mass, or the like.
(Cu:0.8質量%以上1.1質量%以下)
Cu(成分)は、アルミニウム合金の引張強さを向上させる作用を有する。Cuは、アルミニウム合金中でG.P.ゾーンを形成する。G.P.ゾーンは、時効硬化型合金の時効の際に母相中にあらわれる、溶質原子の集合体である。このG.P.ゾーン(Guinier-Preston zone)が中間相となることによって、アルミニウム合金の引張強さの向上に寄与する。
Cu含有率が0.8質量%未満になると、Cuによる引張強さの向上効果が得られにくくなるおそれがある。一方、Cu含有率が1.1質量%を超えると、アルマイト皮膜の形成性が低下するおそれがある。以上の理由から、本実施形態では、Cu含有率は0.8質量%以上1.1質量%以下の範囲内とされている。Cu含有率は、0.9質量%以上1.0質量%以下の範囲内にあることが好ましい。Cu含有率は、上記範囲内であれば任意に選択でき、例えば、0.80質量%~1.10質量%や、0.85質量%~1.05質量%や、0.90質量%~1.00.質量%や、0.93質量%~0.98質量%であってもよい。 (Cu: 0.8% by mass or more and 1.1% by mass or less)
Cu (component) has an action of improving the tensile strength of the aluminum alloy. Cu is a G.I. P. Form a zone. G. P. Zones are aggregates of solute atoms that appear in the matrix during aging of age-hardened alloys. This G. P. The zone (Guinier-Preston zone) becomes the intermediate phase, which contributes to the improvement of the tensile strength of the aluminum alloy.
If the Cu content is less than 0.8% by mass, it may be difficult to obtain the effect of improving the tensile strength of Cu. On the other hand, if the Cu content exceeds 1.1% by mass, the formability of the alumite film may decrease. For the above reasons, in the present embodiment, the Cu content is in the range of 0.8% by mass or more and 1.1% by mass or less. The Cu content is preferably in the range of 0.9% by mass or more and 1.0% by mass or less. The Cu content can be arbitrarily selected as long as it is within the above range, and for example, 0.80% by mass to 1.10% by mass, 0.85% by mass to 1.05% by mass, or 0.90% by mass to 0.90% by mass. 1.00. It may be mass% or 0.93 mass% to 0.98 mass%.
Cu(成分)は、アルミニウム合金の引張強さを向上させる作用を有する。Cuは、アルミニウム合金中でG.P.ゾーンを形成する。G.P.ゾーンは、時効硬化型合金の時効の際に母相中にあらわれる、溶質原子の集合体である。このG.P.ゾーン(Guinier-Preston zone)が中間相となることによって、アルミニウム合金の引張強さの向上に寄与する。
Cu含有率が0.8質量%未満になると、Cuによる引張強さの向上効果が得られにくくなるおそれがある。一方、Cu含有率が1.1質量%を超えると、アルマイト皮膜の形成性が低下するおそれがある。以上の理由から、本実施形態では、Cu含有率は0.8質量%以上1.1質量%以下の範囲内とされている。Cu含有率は、0.9質量%以上1.0質量%以下の範囲内にあることが好ましい。Cu含有率は、上記範囲内であれば任意に選択でき、例えば、0.80質量%~1.10質量%や、0.85質量%~1.05質量%や、0.90質量%~1.00.質量%や、0.93質量%~0.98質量%であってもよい。 (Cu: 0.8% by mass or more and 1.1% by mass or less)
Cu (component) has an action of improving the tensile strength of the aluminum alloy. Cu is a G.I. P. Form a zone. G. P. Zones are aggregates of solute atoms that appear in the matrix during aging of age-hardened alloys. This G. P. The zone (Guinier-Preston zone) becomes the intermediate phase, which contributes to the improvement of the tensile strength of the aluminum alloy.
If the Cu content is less than 0.8% by mass, it may be difficult to obtain the effect of improving the tensile strength of Cu. On the other hand, if the Cu content exceeds 1.1% by mass, the formability of the alumite film may decrease. For the above reasons, in the present embodiment, the Cu content is in the range of 0.8% by mass or more and 1.1% by mass or less. The Cu content is preferably in the range of 0.9% by mass or more and 1.0% by mass or less. The Cu content can be arbitrarily selected as long as it is within the above range, and for example, 0.80% by mass to 1.10% by mass, 0.85% by mass to 1.05% by mass, or 0.90% by mass to 0.90% by mass. 1.00. It may be mass% or 0.93 mass% to 0.98 mass%.
(Mg:0.4質量%以上0.6質量%以下)
Mg(成分)は、Cuと同様にアルミニウム合金の引張強さを向上させる作用を有する。Mgは、アルミニウム合金中でSiやCuを含む化合物を形成する。この化合物がQ相として析出することで、アルミニウム合金の引張強さの向上に寄与する。
Mg含有率が0.4質量%未満になると、Mgによる引張強さの向上効果が得られにくくなるおそれがある。一方、Mg含有率が0.6質量%を超えると、Mgによる引張強さの向上効果が低下するおそれがある。このため、本実施形態では、Mg含有率は、0.4質量%以上0.6質量%以下の範囲内とされている。Mg含有率は0.45質量%以上0.55質量%以下の範囲内にあることが好ましい。Mg含有率は、上記範囲内であれば任意に選択でき、例えば、0.40質量%以上0.60質量%以下や、0.43質量%以上0.58質量%以下や、0.50質量%以上0.53質量%以下などであってもよい。 (Mg: 0.4% by mass or more and 0.6% by mass or less)
Mg (component) has an action of improving the tensile strength of the aluminum alloy in the same manner as Cu. Mg forms a compound containing Si and Cu in an aluminum alloy. Precipitation of this compound as the Q phase contributes to the improvement of the tensile strength of the aluminum alloy.
If the Mg content is less than 0.4% by mass, it may be difficult to obtain the effect of improving the tensile strength by Mg. On the other hand, if the Mg content exceeds 0.6% by mass, the effect of improving the tensile strength by Mg may decrease. Therefore, in the present embodiment, the Mg content is in the range of 0.4% by mass or more and 0.6% by mass or less. The Mg content is preferably in the range of 0.45% by mass or more and 0.55% by mass or less. The Mg content can be arbitrarily selected as long as it is within the above range, for example, 0.40% by mass or more and 0.60% by mass or less, 0.43% by mass or more and 0.58% by mass or less, or 0.50% by mass. It may be% or more and 0.53% by mass or less.
Mg(成分)は、Cuと同様にアルミニウム合金の引張強さを向上させる作用を有する。Mgは、アルミニウム合金中でSiやCuを含む化合物を形成する。この化合物がQ相として析出することで、アルミニウム合金の引張強さの向上に寄与する。
Mg含有率が0.4質量%未満になると、Mgによる引張強さの向上効果が得られにくくなるおそれがある。一方、Mg含有率が0.6質量%を超えると、Mgによる引張強さの向上効果が低下するおそれがある。このため、本実施形態では、Mg含有率は、0.4質量%以上0.6質量%以下の範囲内とされている。Mg含有率は0.45質量%以上0.55質量%以下の範囲内にあることが好ましい。Mg含有率は、上記範囲内であれば任意に選択でき、例えば、0.40質量%以上0.60質量%以下や、0.43質量%以上0.58質量%以下や、0.50質量%以上0.53質量%以下などであってもよい。 (Mg: 0.4% by mass or more and 0.6% by mass or less)
Mg (component) has an action of improving the tensile strength of the aluminum alloy in the same manner as Cu. Mg forms a compound containing Si and Cu in an aluminum alloy. Precipitation of this compound as the Q phase contributes to the improvement of the tensile strength of the aluminum alloy.
If the Mg content is less than 0.4% by mass, it may be difficult to obtain the effect of improving the tensile strength by Mg. On the other hand, if the Mg content exceeds 0.6% by mass, the effect of improving the tensile strength by Mg may decrease. Therefore, in the present embodiment, the Mg content is in the range of 0.4% by mass or more and 0.6% by mass or less. The Mg content is preferably in the range of 0.45% by mass or more and 0.55% by mass or less. The Mg content can be arbitrarily selected as long as it is within the above range, for example, 0.40% by mass or more and 0.60% by mass or less, 0.43% by mass or more and 0.58% by mass or less, or 0.50% by mass. It may be% or more and 0.53% by mass or less.
(Mn:0.30質量%以上0.60質量%以下)
Mn(成分)は、アルミニウム合金の引張強さを向上させる作用を有する。Mnは、アルミニウム合金中でAl-Mn-Si金属間化合物等を含む微細な粒状の晶出物を形成することで、アルミニウム合金の引張強さの向上に寄与する。
Mn含有率が0.30質量%未満になると、Mnによる引張強さの向上効果が得られにくくなるおそれがある。一方、Mn含有率が0.60質量%を超えると、上記の金属間化合物が粗大な晶出物を形成してアルミニウム合金の引張強さを低下させるおそれがある。以上の理由から、本実施形態では、Mn含有率は、0.30質量%以上0.60質量%以下の範囲内とされている。Mn含有率は、0.35質量%以上0.55質量%以下の範囲内にあることが好ましい。Mn含有率は、上記範囲内であれば任意に選択でき、例えば、0.38質量%~0.53質量%や、0.40質量%~0.50質量%や、0.43質量%~0.47質量%であってもよい。 (Mn: 0.30% by mass or more and 0.60% by mass or less)
Mn (component) has an action of improving the tensile strength of the aluminum alloy. Mn contributes to the improvement of the tensile strength of the aluminum alloy by forming fine granular crystallized substances containing an Al—Mn—Si intermetallic compound or the like in the aluminum alloy.
If the Mn content is less than 0.30% by mass, it may be difficult to obtain the effect of improving the tensile strength by Mn. On the other hand, if the Mn content exceeds 0.60% by mass, the above-mentioned intermetallic compound may form coarse crystallization and reduce the tensile strength of the aluminum alloy. For the above reasons, in the present embodiment, the Mn content is in the range of 0.30% by mass or more and 0.60% by mass or less. The Mn content is preferably in the range of 0.35% by mass or more and 0.55% by mass or less. The Mn content can be arbitrarily selected as long as it is within the above range, and for example, 0.38% by mass to 0.53% by mass, 0.40% by mass to 0.50% by mass, or 0.43% by mass to 0.43% by mass. It may be 0.47% by mass.
Mn(成分)は、アルミニウム合金の引張強さを向上させる作用を有する。Mnは、アルミニウム合金中でAl-Mn-Si金属間化合物等を含む微細な粒状の晶出物を形成することで、アルミニウム合金の引張強さの向上に寄与する。
Mn含有率が0.30質量%未満になると、Mnによる引張強さの向上効果が得られにくくなるおそれがある。一方、Mn含有率が0.60質量%を超えると、上記の金属間化合物が粗大な晶出物を形成してアルミニウム合金の引張強さを低下させるおそれがある。以上の理由から、本実施形態では、Mn含有率は、0.30質量%以上0.60質量%以下の範囲内とされている。Mn含有率は、0.35質量%以上0.55質量%以下の範囲内にあることが好ましい。Mn含有率は、上記範囲内であれば任意に選択でき、例えば、0.38質量%~0.53質量%や、0.40質量%~0.50質量%や、0.43質量%~0.47質量%であってもよい。 (Mn: 0.30% by mass or more and 0.60% by mass or less)
Mn (component) has an action of improving the tensile strength of the aluminum alloy. Mn contributes to the improvement of the tensile strength of the aluminum alloy by forming fine granular crystallized substances containing an Al—Mn—Si intermetallic compound or the like in the aluminum alloy.
If the Mn content is less than 0.30% by mass, it may be difficult to obtain the effect of improving the tensile strength by Mn. On the other hand, if the Mn content exceeds 0.60% by mass, the above-mentioned intermetallic compound may form coarse crystallization and reduce the tensile strength of the aluminum alloy. For the above reasons, in the present embodiment, the Mn content is in the range of 0.30% by mass or more and 0.60% by mass or less. The Mn content is preferably in the range of 0.35% by mass or more and 0.55% by mass or less. The Mn content can be arbitrarily selected as long as it is within the above range, and for example, 0.38% by mass to 0.53% by mass, 0.40% by mass to 0.50% by mass, or 0.43% by mass to 0.43% by mass. It may be 0.47% by mass.
(Cr:0.01質量%以上0.03質量%以下)
Cr(成分)は、アルミニウム合金の機械的特性を向上させる作用を有する。Crは、アルミニウム合金中でAl-Fe-Cr金属間化合物等を含む微細なCr含有金属間化合物として晶出することで、アルミニウム合金の機械的特性の向上に寄与する。
Cr含有量が0.01質量%未満になると、Crによる引張強さの向上効果が得られにくくなるおそれがある。一方、Cr含有量が0.03質量%を超えると、Cr含有金属間化合物が粗大な晶出物を形成してアルミニウム合金の引張強さを低下させるおそれがある。以上の理由から、本実施形態では、Cr含有率は0.01質量%以上0.03質量%以下の範囲内とされている。Cr含有量は、0.015質量%以上0.02質量%以下の範囲内にあることが好ましい。Cr含有率は、上記範囲内であれば任意に選択でき、例えば、0.013質量%~0.028質量%や、0.018質量%~0.026質量%や、0.020質量%~0.024質量%であってもよい。) (Cr: 0.01% by mass or more and 0.03% by mass or less)
Cr (component) has an action of improving the mechanical properties of the aluminum alloy. Cr crystallizes as a fine Cr-containing metal-to-metal compound containing an Al—Fe-Cr metal-to-metal compound in the aluminum alloy, thereby contributing to the improvement of the mechanical properties of the aluminum alloy.
If the Cr content is less than 0.01% by mass, it may be difficult to obtain the effect of improving the tensile strength by Cr. On the other hand, if the Cr content exceeds 0.03% by mass, the Cr-containing intermetallic compound may form coarse crystallization and reduce the tensile strength of the aluminum alloy. For the above reasons, in the present embodiment, the Cr content is in the range of 0.01% by mass or more and 0.03% by mass or less. The Cr content is preferably in the range of 0.015% by mass or more and 0.02% by mass or less. The Cr content can be arbitrarily selected as long as it is within the above range, and for example, 0.013% by mass to 0.028% by mass, 0.018% by mass to 0.026% by mass, or 0.020% by mass to 0.020% by mass. It may be 0.024% by mass. )
Cr(成分)は、アルミニウム合金の機械的特性を向上させる作用を有する。Crは、アルミニウム合金中でAl-Fe-Cr金属間化合物等を含む微細なCr含有金属間化合物として晶出することで、アルミニウム合金の機械的特性の向上に寄与する。
Cr含有量が0.01質量%未満になると、Crによる引張強さの向上効果が得られにくくなるおそれがある。一方、Cr含有量が0.03質量%を超えると、Cr含有金属間化合物が粗大な晶出物を形成してアルミニウム合金の引張強さを低下させるおそれがある。以上の理由から、本実施形態では、Cr含有率は0.01質量%以上0.03質量%以下の範囲内とされている。Cr含有量は、0.015質量%以上0.02質量%以下の範囲内にあることが好ましい。Cr含有率は、上記範囲内であれば任意に選択でき、例えば、0.013質量%~0.028質量%や、0.018質量%~0.026質量%や、0.020質量%~0.024質量%であってもよい。) (Cr: 0.01% by mass or more and 0.03% by mass or less)
Cr (component) has an action of improving the mechanical properties of the aluminum alloy. Cr crystallizes as a fine Cr-containing metal-to-metal compound containing an Al—Fe-Cr metal-to-metal compound in the aluminum alloy, thereby contributing to the improvement of the mechanical properties of the aluminum alloy.
If the Cr content is less than 0.01% by mass, it may be difficult to obtain the effect of improving the tensile strength by Cr. On the other hand, if the Cr content exceeds 0.03% by mass, the Cr-containing intermetallic compound may form coarse crystallization and reduce the tensile strength of the aluminum alloy. For the above reasons, in the present embodiment, the Cr content is in the range of 0.01% by mass or more and 0.03% by mass or less. The Cr content is preferably in the range of 0.015% by mass or more and 0.02% by mass or less. The Cr content can be arbitrarily selected as long as it is within the above range, and for example, 0.013% by mass to 0.028% by mass, 0.018% by mass to 0.026% by mass, or 0.020% by mass to 0.020% by mass. It may be 0.024% by mass. )
(Fe:0.10質量%以上0.30質量%以下)
Fe(成分)は、アルミニウム合金の引張強さを向上させる作用を有する。Feは、アルミニウム合金中でAl-Fe-Si金属間化合物、Al-Cu-Fe金属間化合物、Al-Mn-Fe金属間化合物等を含む微細な晶出物として晶出することで、アルミニウム合金の機械的特性の向上に寄与する。
Fe含有率が0.10質量%未満になると、Feによる引張強さの向上効果が得られにくくなるおそれがある。一方、Fe含有率が0.30質量%を超えると、上記金属間化合物が粗大な晶出物を形成してアルミニウム合金の引張強さを低下させるおそれがある。以上の理由から、本実施形態では、Fe含有率は0.10質量%以上0.30質量%以下の範囲内とされている。Fe含有量は、0.15質量%以上0.25質量%以下の範囲内にあることが好ましい。Fe含有率は、上記範囲内であれば任意に選択でき、例えば、0.13質量%~0.27質量%や、0.17質量%~0.20質量%であってもよい。 (Fe: 0.10% by mass or more and 0.30% by mass or less)
Fe (component) has an action of improving the tensile strength of the aluminum alloy. Fe is crystallized as a fine crystallized product containing an Al—Fe—Si intermetallic compound, an Al—Cu—Fe intermetallic compound, an Al—Mn—Fe intermetallic compound, etc. in an aluminum alloy to form an aluminum alloy. Contributes to the improvement of mechanical properties of aluminum.
If the Fe content is less than 0.10% by mass, it may be difficult to obtain the effect of improving the tensile strength by Fe. On the other hand, if the Fe content exceeds 0.30% by mass, the intermetallic compound may form coarse crystallization and reduce the tensile strength of the aluminum alloy. For the above reasons, in the present embodiment, the Fe content is in the range of 0.10% by mass or more and 0.30% by mass or less. The Fe content is preferably in the range of 0.15% by mass or more and 0.25% by mass or less. The Fe content can be arbitrarily selected as long as it is within the above range, and may be, for example, 0.13% by mass to 0.27% by mass or 0.17% by mass to 0.20% by mass.
Fe(成分)は、アルミニウム合金の引張強さを向上させる作用を有する。Feは、アルミニウム合金中でAl-Fe-Si金属間化合物、Al-Cu-Fe金属間化合物、Al-Mn-Fe金属間化合物等を含む微細な晶出物として晶出することで、アルミニウム合金の機械的特性の向上に寄与する。
Fe含有率が0.10質量%未満になると、Feによる引張強さの向上効果が得られにくくなるおそれがある。一方、Fe含有率が0.30質量%を超えると、上記金属間化合物が粗大な晶出物を形成してアルミニウム合金の引張強さを低下させるおそれがある。以上の理由から、本実施形態では、Fe含有率は0.10質量%以上0.30質量%以下の範囲内とされている。Fe含有量は、0.15質量%以上0.25質量%以下の範囲内にあることが好ましい。Fe含有率は、上記範囲内であれば任意に選択でき、例えば、0.13質量%~0.27質量%や、0.17質量%~0.20質量%であってもよい。 (Fe: 0.10% by mass or more and 0.30% by mass or less)
Fe (component) has an action of improving the tensile strength of the aluminum alloy. Fe is crystallized as a fine crystallized product containing an Al—Fe—Si intermetallic compound, an Al—Cu—Fe intermetallic compound, an Al—Mn—Fe intermetallic compound, etc. in an aluminum alloy to form an aluminum alloy. Contributes to the improvement of mechanical properties of aluminum.
If the Fe content is less than 0.10% by mass, it may be difficult to obtain the effect of improving the tensile strength by Fe. On the other hand, if the Fe content exceeds 0.30% by mass, the intermetallic compound may form coarse crystallization and reduce the tensile strength of the aluminum alloy. For the above reasons, in the present embodiment, the Fe content is in the range of 0.10% by mass or more and 0.30% by mass or less. The Fe content is preferably in the range of 0.15% by mass or more and 0.25% by mass or less. The Fe content can be arbitrarily selected as long as it is within the above range, and may be, for example, 0.13% by mass to 0.27% by mass or 0.17% by mass to 0.20% by mass.
(Ca:0.0005質量%以上0.0050質量%以下、Sr:0.00005質量%以上0.03000質量%以下、Sr/Ca:0.01以上30以下)
Ca及びSrはそれぞれ、初晶Si粒の晶出を抑制する作用を有する。
CaとSrとを比較すると、共晶Si粒の晶出の抑制効果、すなわち耐腐食性の改良効果は、Srの方が高い。また、CaとSrを組み合わせて添加すると、Ca添加による改良効率が低下することがある。このため、Ca及びSrの含有量と共に、CaとSrの含有量の比を調整することが必要となる。以上の理由から、本実施形態では、Ca含有量は0.0005質量%以上0.0050質量%以下の範囲内、Srの含有量は0.00005質量%以上0.03000質量%以下の範囲内、Caの含有量に対するSrの含有量の比Sr/Caは0.01以上30以下の範囲内とされている。Ca含有量は0.0005質量%以上0.0020質量%以下の範囲内にあることが好ましい。Ca含有量は、必要に応じて、0.0008質量%以上0.0015質量%以下や、0.0010質量%以上0.0013質量%以下であってもよい。Srの含有量は0.00005質量%以上0.0200質量%以下にあることが好ましい。Srの含有量は、必要に応じて、0.0005質量%以上0.0150質量%以下や、0.0008質量%以上0.0100質量%以下であってもよい。Caの含有量に対するSrの含有量の比Sr/Caは、必要に応じて、0.01以上2.2未満の範囲内にあってもよいし、2.2以上25以下の範囲内にあってもよいし、0.10以上23以下の範囲内にあってもよいし、0.50以上8.0以下の範囲内にあってもよいし、1.0以上5.0以下の範囲内にあってもよいし、5.0以上20以下の範囲内や、10.0以上15以下の範囲内にあってもよい。 (Ca: 0.0005% by mass or more and 0.0050% by mass or less, Sr: 0.00005% by mass or more and 0.03000% by mass or less, Sr / Ca: 0.01 or more and 30 or less)
Ca and Sr each have an action of suppressing the crystallization of primary Si grains.
Comparing Ca and Sr, Sr has a higher effect of suppressing eutectic Si grains, that is, an effect of improving corrosion resistance. Further, when Ca and Sr are added in combination, the improvement efficiency due to the addition of Ca may decrease. Therefore, it is necessary to adjust the ratio of the content of Ca and Sr together with the content of Ca and Sr. For the above reasons, in the present embodiment, the Ca content is in the range of 0.0005% by mass or more and 0.0050% by mass or less, and the Sr content is in the range of 0.00005% by mass or more and 0.03000% by mass or less. , The ratio of Sr content to Ca content Sr / Ca is in the range of 0.01 or more and 30 or less. The Ca content is preferably in the range of 0.0005% by mass or more and 0.0020% by mass or less. The Ca content may be 0.0008% by mass or more and 0.0015% by mass or less, or 0.0010% by mass or more and 0.0013% by mass or less, if necessary. The content of Sr is preferably 0.00005% by mass or more and 0.0200% by mass or less. The content of Sr may be 0.0005% by mass or more and 0.0150% by mass or less, or 0.0008% by mass or more and 0.0100% by mass or less, if necessary. The ratio of the Sr content to the Ca content Sr / Ca may be in the range of 0.01 or more and less than 2.2, or in the range of 2.2 or more and 25 or less, if necessary. It may be in the range of 0.10 or more and 23 or less, in the range of 0.50 or more and 8.0 or less, or in the range of 1.0 or more and 5.0 or less. It may be in the range of 5.0 or more and 20 or less, or in the range of 10.0 or more and 15 or less.
Ca及びSrはそれぞれ、初晶Si粒の晶出を抑制する作用を有する。
CaとSrとを比較すると、共晶Si粒の晶出の抑制効果、すなわち耐腐食性の改良効果は、Srの方が高い。また、CaとSrを組み合わせて添加すると、Ca添加による改良効率が低下することがある。このため、Ca及びSrの含有量と共に、CaとSrの含有量の比を調整することが必要となる。以上の理由から、本実施形態では、Ca含有量は0.0005質量%以上0.0050質量%以下の範囲内、Srの含有量は0.00005質量%以上0.03000質量%以下の範囲内、Caの含有量に対するSrの含有量の比Sr/Caは0.01以上30以下の範囲内とされている。Ca含有量は0.0005質量%以上0.0020質量%以下の範囲内にあることが好ましい。Ca含有量は、必要に応じて、0.0008質量%以上0.0015質量%以下や、0.0010質量%以上0.0013質量%以下であってもよい。Srの含有量は0.00005質量%以上0.0200質量%以下にあることが好ましい。Srの含有量は、必要に応じて、0.0005質量%以上0.0150質量%以下や、0.0008質量%以上0.0100質量%以下であってもよい。Caの含有量に対するSrの含有量の比Sr/Caは、必要に応じて、0.01以上2.2未満の範囲内にあってもよいし、2.2以上25以下の範囲内にあってもよいし、0.10以上23以下の範囲内にあってもよいし、0.50以上8.0以下の範囲内にあってもよいし、1.0以上5.0以下の範囲内にあってもよいし、5.0以上20以下の範囲内や、10.0以上15以下の範囲内にあってもよい。 (Ca: 0.0005% by mass or more and 0.0050% by mass or less, Sr: 0.00005% by mass or more and 0.03000% by mass or less, Sr / Ca: 0.01 or more and 30 or less)
Ca and Sr each have an action of suppressing the crystallization of primary Si grains.
Comparing Ca and Sr, Sr has a higher effect of suppressing eutectic Si grains, that is, an effect of improving corrosion resistance. Further, when Ca and Sr are added in combination, the improvement efficiency due to the addition of Ca may decrease. Therefore, it is necessary to adjust the ratio of the content of Ca and Sr together with the content of Ca and Sr. For the above reasons, in the present embodiment, the Ca content is in the range of 0.0005% by mass or more and 0.0050% by mass or less, and the Sr content is in the range of 0.00005% by mass or more and 0.03000% by mass or less. , The ratio of Sr content to Ca content Sr / Ca is in the range of 0.01 or more and 30 or less. The Ca content is preferably in the range of 0.0005% by mass or more and 0.0020% by mass or less. The Ca content may be 0.0008% by mass or more and 0.0015% by mass or less, or 0.0010% by mass or more and 0.0013% by mass or less, if necessary. The content of Sr is preferably 0.00005% by mass or more and 0.0200% by mass or less. The content of Sr may be 0.0005% by mass or more and 0.0150% by mass or less, or 0.0008% by mass or more and 0.0100% by mass or less, if necessary. The ratio of the Sr content to the Ca content Sr / Ca may be in the range of 0.01 or more and less than 2.2, or in the range of 2.2 or more and 25 or less, if necessary. It may be in the range of 0.10 or more and 23 or less, in the range of 0.50 or more and 8.0 or less, or in the range of 1.0 or more and 5.0 or less. It may be in the range of 5.0 or more and 20 or less, or in the range of 10.0 or more and 15 or less.
(不可避不純物)
不可避不純物は、アルミニウム合金の原料又は製造工程から不可避的にアルミニウム合金に混入する不純物である。本実施形態のアルミニウム合金において、Zn、Ni、Zr、Tiの各元素の混入量は、これらの各元素の合計の含有率で0.5質量%を超えないことが好ましい。上記の各元素の合計含有率が0.5質量%を超えると、その各元素がAl母相より先に晶出して、粗大な晶出物を形成することで、アルミニウム合金の延性が小さくなり、引張強さが低下するおそれがある。不可避不純物の量は、上記範囲内であれば任意に選択でき、例えば、0.50質量%未満や、0.40質量%以下や、0.30質量%以下や、0.20質量%以下や、0.10質量%以下や、0.05質量%以下や、0.01質量%以下や、0.001質量%以下であってもよい。 (Inevitable impurities)
The unavoidable impurities are impurities that are inevitably mixed with the aluminum alloy from the raw material or the manufacturing process of the aluminum alloy. In the aluminum alloy of the present embodiment, the mixing amount of each element of Zn, Ni, Zr, and Ti preferably does not exceed 0.5% by mass in the total content of each of these elements. When the total content of each of the above elements exceeds 0.5% by mass, each element crystallizes before the Al matrix to form coarse crystallization, and the ductility of the aluminum alloy becomes small. , The tensile strength may decrease. The amount of unavoidable impurities can be arbitrarily selected as long as it is within the above range, for example, less than 0.50% by mass, 0.40% by mass or less, 0.30% by mass or less, 0.20% by mass or less, and the like. , 0.10% by mass or less, 0.05% by mass or less, 0.01% by mass or less, or 0.001% by mass or less.
不可避不純物は、アルミニウム合金の原料又は製造工程から不可避的にアルミニウム合金に混入する不純物である。本実施形態のアルミニウム合金において、Zn、Ni、Zr、Tiの各元素の混入量は、これらの各元素の合計の含有率で0.5質量%を超えないことが好ましい。上記の各元素の合計含有率が0.5質量%を超えると、その各元素がAl母相より先に晶出して、粗大な晶出物を形成することで、アルミニウム合金の延性が小さくなり、引張強さが低下するおそれがある。不可避不純物の量は、上記範囲内であれば任意に選択でき、例えば、0.50質量%未満や、0.40質量%以下や、0.30質量%以下や、0.20質量%以下や、0.10質量%以下や、0.05質量%以下や、0.01質量%以下や、0.001質量%以下であってもよい。 (Inevitable impurities)
The unavoidable impurities are impurities that are inevitably mixed with the aluminum alloy from the raw material or the manufacturing process of the aluminum alloy. In the aluminum alloy of the present embodiment, the mixing amount of each element of Zn, Ni, Zr, and Ti preferably does not exceed 0.5% by mass in the total content of each of these elements. When the total content of each of the above elements exceeds 0.5% by mass, each element crystallizes before the Al matrix to form coarse crystallization, and the ductility of the aluminum alloy becomes small. , The tensile strength may decrease. The amount of unavoidable impurities can be arbitrarily selected as long as it is within the above range, for example, less than 0.50% by mass, 0.40% by mass or less, 0.30% by mass or less, 0.20% by mass or less, and the like. , 0.10% by mass or less, 0.05% by mass or less, 0.01% by mass or less, or 0.001% by mass or less.
(25℃における引張強さ:330MPa以上380MPa以下の範囲内)
本実施形態のアルミニウム合金は、25℃における引張強さが330MPa以上380MPa以下の範囲内にある。引張強さは、JIS4号引張試験片を用いて、JIS Z2241:2011(金属材料引張試験方法)の規定に準拠して測定した値である。引張強さは、上記範囲内であれば任意に選択でき、例えば、340MPa以上370MPa以下や、350MPa以上360MPa以下であってもよい。 (Tensile strength at 25 ° C: within the range of 330 MPa or more and 380 MPa or less)
The aluminum alloy of the present embodiment has a tensile strength at 25 ° C. in the range of 330 MPa or more and 380 MPa or less. The tensile strength is a value measured using a JIS No. 4 tensile test piece in accordance with the provisions of JIS Z2241: 2011 (Metallic Material Tensile Test Method). The tensile strength can be arbitrarily selected as long as it is within the above range, and may be, for example, 340 MPa or more and 370 MPa or less, or 350 MPa or more and 360 MPa or less.
本実施形態のアルミニウム合金は、25℃における引張強さが330MPa以上380MPa以下の範囲内にある。引張強さは、JIS4号引張試験片を用いて、JIS Z2241:2011(金属材料引張試験方法)の規定に準拠して測定した値である。引張強さは、上記範囲内であれば任意に選択でき、例えば、340MPa以上370MPa以下や、350MPa以上360MPa以下であってもよい。 (Tensile strength at 25 ° C: within the range of 330 MPa or more and 380 MPa or less)
The aluminum alloy of the present embodiment has a tensile strength at 25 ° C. in the range of 330 MPa or more and 380 MPa or less. The tensile strength is a value measured using a JIS No. 4 tensile test piece in accordance with the provisions of JIS Z2241: 2011 (Metallic Material Tensile Test Method). The tensile strength can be arbitrarily selected as long as it is within the above range, and may be, for example, 340 MPa or more and 370 MPa or less, or 350 MPa or more and 360 MPa or less.
(Cuを1質量%以上含有し、円相当直径が5μmを超える晶出物:1182μm2あたり2個以上含まない)
Cuを1質量%以上含有するCu系晶出物の円相当直径が5μmを超えると、陽極酸化処理によるアルマイト皮膜の形成を阻害するおそれがある。このため、本実施形態では、円相当直径が5μmを超える粗大なCu系晶出物を、1182μm2あたり2個以上含まないとされている。1182μm2あたりの粗大なCu系晶出物の数は1個以下であることが好ましく、粗大なCu系晶出物を含まないことがより好ましい。粗大なCu系晶出物を含まない場合、アルミニウム合金に含まれるCu系晶出物の最大円相当直径は、3μm以下であることが好ましく、1μm以下であることがより好ましい。 (Crystal containing 1% by mass or more of Cu and having a diameter equivalent to a circle exceeding 5 μm: 1182 μm does not contain 2 or more per 2)
If the circle-equivalent diameter of the Cu-based crystallized product containing 1% by mass or more of Cu exceeds 5 μm, the formation of an alumite film by the anodizing treatment may be hindered. Therefore, in the present embodiment, it is said that two or more coarse Cu-based crystals having a circle-equivalent diameter of more than 5 μm are not contained per 1182 μm 2 . The number of coarse Cu-based crystals per 1182 μm 2 is preferably 1 or less, and more preferably does not contain coarse Cu-based crystals. When the coarse Cu-based crystallized material is not contained, the maximum circle-equivalent diameter of the Cu-based crystallized material contained in the aluminum alloy is preferably 3 μm or less, and more preferably 1 μm or less.
Cuを1質量%以上含有するCu系晶出物の円相当直径が5μmを超えると、陽極酸化処理によるアルマイト皮膜の形成を阻害するおそれがある。このため、本実施形態では、円相当直径が5μmを超える粗大なCu系晶出物を、1182μm2あたり2個以上含まないとされている。1182μm2あたりの粗大なCu系晶出物の数は1個以下であることが好ましく、粗大なCu系晶出物を含まないことがより好ましい。粗大なCu系晶出物を含まない場合、アルミニウム合金に含まれるCu系晶出物の最大円相当直径は、3μm以下であることが好ましく、1μm以下であることがより好ましい。 (Crystal containing 1% by mass or more of Cu and having a diameter equivalent to a circle exceeding 5 μm: 1182 μm does not contain 2 or more per 2)
If the circle-equivalent diameter of the Cu-based crystallized product containing 1% by mass or more of Cu exceeds 5 μm, the formation of an alumite film by the anodizing treatment may be hindered. Therefore, in the present embodiment, it is said that two or more coarse Cu-based crystals having a circle-equivalent diameter of more than 5 μm are not contained per 1182 μm 2 . The number of coarse Cu-based crystals per 1182 μm 2 is preferably 1 or less, and more preferably does not contain coarse Cu-based crystals. When the coarse Cu-based crystallized material is not contained, the maximum circle-equivalent diameter of the Cu-based crystallized material contained in the aluminum alloy is preferably 3 μm or less, and more preferably 1 μm or less.
Cu系晶出物の円相当直径及び個数は、例えば、アルミニウム合金を切断し、その断面の30.47μm×38.97μm(=1182μm2)の範囲について、FE-SEM(電界放出形走査電子顕微鏡)/EDS(エネルギー分散型X線分析装置)を用いて観察することによって測定することができる。すなわち、EDSを用いて元素分析を実施することにより、Cuを1質量%以上含有するCu系晶出物を検出し、検出されたCu系晶出物の円相当直径及び個数をSEM画像により計測することによって測定することができる。前記晶出物の例としては、Al-Cu-Mg-Siなどがあるが、これのみに限定されない。
The circle-equivalent diameter and number of Cu-based crystals are, for example, FE-SEM (field emission scanning electron microscope) in the range of 30.47 μm × 38.97 μm (= 1182 μm 2 ) of the cross section of an aluminum alloy. ) / EDS (Energy Dispersive X-ray Analyzer) can be used for observation. That is, by performing elemental analysis using EDS, Cu-based crystals containing 1% by mass or more of Cu are detected, and the circle-equivalent diameter and number of the detected Cu-based crystals are measured by SEM images. It can be measured by doing. Examples of the crystallized product include, but are not limited to, Al-Cu-Mg-Si.
(長さが8μm以上のCr含有金属間化合物:1182μm2あたり2個以上含まない) 長さが8μm以上のCr含有金属間化合物は、アルミニウム合金の引張強さを低下させるおそれがある。このため、本実施形態では、長さが8μm以上の粗大なCr含有金属間化合物を、1182μm2あたり2個以上含まないとされている。1182μm2あたりの粗大なCr含有金属間化合物の数は1個以下であることが好ましく、粗大なCr含有金属間化合物を含まないことがより好ましい。粗大なCr含有金属間化合物を含まない場合、アルミニウム合金に含まれるCr含有金属間化合物の最大長さは、6μm以下であることが好ましく、4μm以下であることがより好ましい。
Cr含有金属間化合物の長さ及び個数は、上記のCu系晶出物の場合と同様に、アルミニウム合金の断面の1182μm2の範囲について、FE-SEM/EDSを用いて、Cr含有金属間化合物を検出し、検出されたCr含有金属間化合物の長さ及び個数をSEM画像により計測することによって測定することができる。前記金属間化合物の例としては、Al-Cr-Siなどがあるが、これのみに限定されない。なおCr含有金属間化合物とCu系晶出物の違いとしては、金属間化合物としての形状などが挙げられる。 (Cr-containing intermetallic compound having a length of 8 μm or more: 2 or more are not contained per 1182 μm 2 ) A Cr-containing intermetallic compound having a length of 8 μm or more may reduce the tensile strength of the aluminum alloy. Therefore, in the present embodiment, it is said that two or more coarse Cr-containing intermetallic compounds having a length of 8 μm or more are not contained per 1182 μm 2 . The number of coarse Cr-containing intermetallic compounds per 1182 μm 2 is preferably 1 or less, and more preferably not containing coarse Cr-containing intermetallic compounds. When the coarse Cr-containing intermetallic compound is not contained, the maximum length of the Cr-containing intermetallic compound contained in the aluminum alloy is preferably 6 μm or less, and more preferably 4 μm or less.
The length and number of Cr-containing intermetallic compounds are the same as in the case of the Cu-based crystallized product described above, in the range of 1182 μm 2 of the cross section of the aluminum alloy, using FE-SEM / EDS, the Cr-containing intermetallic compound. Is detected, and the length and number of the detected Cr-containing intermetallic compounds can be measured by measuring with an SEM image. Examples of the intermetallic compound include, but are not limited to, Al—Cr—Si. The difference between the Cr-containing intermetallic compound and the Cu-based crystallized product includes the shape of the Cr-containing intermetallic compound and the like.
Cr含有金属間化合物の長さ及び個数は、上記のCu系晶出物の場合と同様に、アルミニウム合金の断面の1182μm2の範囲について、FE-SEM/EDSを用いて、Cr含有金属間化合物を検出し、検出されたCr含有金属間化合物の長さ及び個数をSEM画像により計測することによって測定することができる。前記金属間化合物の例としては、Al-Cr-Siなどがあるが、これのみに限定されない。なおCr含有金属間化合物とCu系晶出物の違いとしては、金属間化合物としての形状などが挙げられる。 (Cr-containing intermetallic compound having a length of 8 μm or more: 2 or more are not contained per 1182 μm 2 ) A Cr-containing intermetallic compound having a length of 8 μm or more may reduce the tensile strength of the aluminum alloy. Therefore, in the present embodiment, it is said that two or more coarse Cr-containing intermetallic compounds having a length of 8 μm or more are not contained per 1182 μm 2 . The number of coarse Cr-containing intermetallic compounds per 1182 μm 2 is preferably 1 or less, and more preferably not containing coarse Cr-containing intermetallic compounds. When the coarse Cr-containing intermetallic compound is not contained, the maximum length of the Cr-containing intermetallic compound contained in the aluminum alloy is preferably 6 μm or less, and more preferably 4 μm or less.
The length and number of Cr-containing intermetallic compounds are the same as in the case of the Cu-based crystallized product described above, in the range of 1182 μm 2 of the cross section of the aluminum alloy, using FE-SEM / EDS, the Cr-containing intermetallic compound. Is detected, and the length and number of the detected Cr-containing intermetallic compounds can be measured by measuring with an SEM image. Examples of the intermetallic compound include, but are not limited to, Al—Cr—Si. The difference between the Cr-containing intermetallic compound and the Cu-based crystallized product includes the shape of the Cr-containing intermetallic compound and the like.
(円相当直径が10μmを超える初晶Si粒:4726μm2あたり2個以上含まない) 円相当直径が10μmを超える粗大な初晶Si粒は、陽極酸化処理によるアルマイト皮膜の形成を阻害するおそれがある。このため、本実施形態では、円相当直径が10μmを超える粗大な初晶Si粒を、4726μm2あたり2個以上含まないとされている。粗大な初晶Si粒の数は1以下であることが好ましく、粗大な初晶Si粒を含まないことがより好ましい。粗大な初晶Si粒を含まない場合、アルミニウム合金に含まれる初晶Si粒の最大円相当直径は、8μm以下であることが好ましく、4μm以下であることがより好ましい。
初晶Si粒の円相当直径及び個数は、アルミニウム合金の断面の60.9μm×77.6μm(=4726μm2)の範囲について、FE-SEM/EDSを用いて観察することによって測定することができる。なお初晶Si粒は、Siのみからなる。 (Primary Si grains with a circle-equivalent diameter of more than 10 μm: 2 or more per 4726 μm 2 ) Coarse primary Si grains with a circle-equivalent diameter of more than 10 μm may hinder the formation of an anodized film. be. Therefore, in the present embodiment, it is said that two or more coarse primary crystal Si grains having a diameter equivalent to a circle exceeding 10 μm are not contained per 4726 μm 2 . The number of coarse primary Si grains is preferably 1 or less, and more preferably no coarse primary Si grains are contained. When the coarse primary Si grains are not contained, the diameter corresponding to the maximum circle of the primary Si grains contained in the aluminum alloy is preferably 8 μm or less, and more preferably 4 μm or less.
The equivalent circle diameter and number of primary crystal Si grains can be measured by observing the cross section of the aluminum alloy in the range of 60.9 μm × 77.6 μm (= 4726 μm 2 ) using FE-SEM / EDS. .. The primary Si grains consist only of Si.
初晶Si粒の円相当直径及び個数は、アルミニウム合金の断面の60.9μm×77.6μm(=4726μm2)の範囲について、FE-SEM/EDSを用いて観察することによって測定することができる。なお初晶Si粒は、Siのみからなる。 (Primary Si grains with a circle-equivalent diameter of more than 10 μm: 2 or more per 4726 μm 2 ) Coarse primary Si grains with a circle-equivalent diameter of more than 10 μm may hinder the formation of an anodized film. be. Therefore, in the present embodiment, it is said that two or more coarse primary crystal Si grains having a diameter equivalent to a circle exceeding 10 μm are not contained per 4726 μm 2 . The number of coarse primary Si grains is preferably 1 or less, and more preferably no coarse primary Si grains are contained. When the coarse primary Si grains are not contained, the diameter corresponding to the maximum circle of the primary Si grains contained in the aluminum alloy is preferably 8 μm or less, and more preferably 4 μm or less.
The equivalent circle diameter and number of primary crystal Si grains can be measured by observing the cross section of the aluminum alloy in the range of 60.9 μm × 77.6 μm (= 4726 μm 2 ) using FE-SEM / EDS. .. The primary Si grains consist only of Si.
<摺動部品>
本実施形態の摺動部品は、前述の本実施形態の摺動部品用アルミニウム合金で構成されている。本実施形態の摺動部品は、鍛造品であってもよい。
本実施形態の摺動部品は、表面に、ビッカース硬さが400HV以上であるアルマイト皮膜が備えられていてもよい。アルマイト皮膜は、陽極酸化処理によって形成することができる。アルマイト皮膜の膜厚は、4μm以上100μm以下の範囲内にあることが好ましい。アルマイト皮膜のビッカース硬さは、400HV以上450HV以下の範囲内にあることが好ましい。なおビッカース硬さはJIS Z 2244に記載のビッカース硬さ試験-試験方法に従って測定することができる。 <Sliding parts>
The sliding parts of the present embodiment are made of the above-mentioned aluminum alloy for sliding parts of the present embodiment. The sliding component of this embodiment may be a forged product.
The sliding component of the present embodiment may be provided with an alumite film having a Vickers hardness of 400 HV or more on the surface thereof. The alumite film can be formed by anodizing. The film thickness of the alumite film is preferably in the range of 4 μm or more and 100 μm or less. The Vickers hardness of the alumite film is preferably in the range of 400 HV or more and 450 HV or less. The Vickers hardness can be measured according to the Vickers hardness test-test method described in JIS Z 2244.
本実施形態の摺動部品は、前述の本実施形態の摺動部品用アルミニウム合金で構成されている。本実施形態の摺動部品は、鍛造品であってもよい。
本実施形態の摺動部品は、表面に、ビッカース硬さが400HV以上であるアルマイト皮膜が備えられていてもよい。アルマイト皮膜は、陽極酸化処理によって形成することができる。アルマイト皮膜の膜厚は、4μm以上100μm以下の範囲内にあることが好ましい。アルマイト皮膜のビッカース硬さは、400HV以上450HV以下の範囲内にあることが好ましい。なおビッカース硬さはJIS Z 2244に記載のビッカース硬さ試験-試験方法に従って測定することができる。 <Sliding parts>
The sliding parts of the present embodiment are made of the above-mentioned aluminum alloy for sliding parts of the present embodiment. The sliding component of this embodiment may be a forged product.
The sliding component of the present embodiment may be provided with an alumite film having a Vickers hardness of 400 HV or more on the surface thereof. The alumite film can be formed by anodizing. The film thickness of the alumite film is preferably in the range of 4 μm or more and 100 μm or less. The Vickers hardness of the alumite film is preferably in the range of 400 HV or more and 450 HV or less. The Vickers hardness can be measured according to the Vickers hardness test-test method described in JIS Z 2244.
次に、本実施形態の摺動部品の製造方法の好ましい例について説明する。
図1は、本発明の一実施形態に係る摺動部品の製造方法の例を示すフロー図である。本実施形態の摺動部品の製造方法は、図1に示すように、アルミニウム合金の溶湯を得る溶湯形成工程S01と、溶湯を鋳造加工することによって鋳造品を得る鋳造工程S02と、鋳造品に鍛造を行なって鍛造品を得る鍛造工程S05とを有する。鋳造工程S02と鍛造工程S05との間に、均質化熱処理工程S03、切断工程S04を行なってもよい。また、鍛造工程S05の後に、溶体化処理工程S06、焼き入れ工程S07、時効処理工程S08、ショットピーニング工程S09を行なってもよい。 Next, a preferable example of the method for manufacturing the sliding parts of the present embodiment will be described.
FIG. 1 is a flow chart showing an example of a method for manufacturing a sliding component according to an embodiment of the present invention. As shown in FIG. 1, the method for manufacturing a sliding component of the present embodiment includes a molten metal forming step S01 for obtaining a molten metal of an aluminum alloy, a casting step S02 for obtaining a cast product by casting the molten metal, and a cast product. It has a forging step S05 for forging to obtain a forged product. A homogenization heat treatment step S03 and a cutting step S04 may be performed between the casting step S02 and the forging step S05. Further, after the forging step S05, the solution treatment step S06, the quenching step S07, the aging treatment step S08, and the shot peening step S09 may be performed.
図1は、本発明の一実施形態に係る摺動部品の製造方法の例を示すフロー図である。本実施形態の摺動部品の製造方法は、図1に示すように、アルミニウム合金の溶湯を得る溶湯形成工程S01と、溶湯を鋳造加工することによって鋳造品を得る鋳造工程S02と、鋳造品に鍛造を行なって鍛造品を得る鍛造工程S05とを有する。鋳造工程S02と鍛造工程S05との間に、均質化熱処理工程S03、切断工程S04を行なってもよい。また、鍛造工程S05の後に、溶体化処理工程S06、焼き入れ工程S07、時効処理工程S08、ショットピーニング工程S09を行なってもよい。 Next, a preferable example of the method for manufacturing the sliding parts of the present embodiment will be described.
FIG. 1 is a flow chart showing an example of a method for manufacturing a sliding component according to an embodiment of the present invention. As shown in FIG. 1, the method for manufacturing a sliding component of the present embodiment includes a molten metal forming step S01 for obtaining a molten metal of an aluminum alloy, a casting step S02 for obtaining a cast product by casting the molten metal, and a cast product. It has a forging step S05 for forging to obtain a forged product. A homogenization heat treatment step S03 and a cutting step S04 may be performed between the casting step S02 and the forging step S05. Further, after the forging step S05, the solution treatment step S06, the quenching step S07, the aging treatment step S08, and the shot peening step S09 may be performed.
(溶湯形成工程S01)
溶湯形成工程S01では、Al源、Si源、Cu源、Mg源、Mn源、Fe源、Cr源、Ca源、Sr源である原料を、上記の合金を形成する組成となるように混合し、得られた混合物を任意に選択される温度で加熱して溶解させることによってアルミニウム合金溶湯を得る。Al源、Si源、Cu源、Mg源、Mn源、Fe源、Cr源、Ca源及びSr源は、それぞれ単一の金属材料であってもよいし、2種以上の金属を含む合金材料であってもよい。なお、原料となる金属材料は、Caを多量に含む場合がある。この場合、Caの含有量に対するSrの含有量の比Sr/Caが上記の範囲内となるように、予め原料の金属材料に対して脱Ca処理を行なってもよい。溶湯形成に使用される温度は任意に選択できる。 (Melted metal forming step S01)
In the molten metal forming step S01, raw materials such as Al source, Si source, Cu source, Mg source, Mn source, Fe source, Cr source, Ca source and Sr source are mixed so as to form the above alloy. , The resulting mixture is heated and melted at an arbitrarily selected temperature to obtain a molten aluminum alloy. The Al source, Si source, Cu source, Mg source, Mn source, Fe source, Cr source, Ca source and Sr source may each be a single metal material, or an alloy material containing two or more kinds of metals. May be. The metal material used as a raw material may contain a large amount of Ca. In this case, the metal material as a raw material may be de-Ca-treated in advance so that the ratio Sr / Ca of the Sr content to the Ca content is within the above range. The temperature used for forming the molten metal can be arbitrarily selected.
溶湯形成工程S01では、Al源、Si源、Cu源、Mg源、Mn源、Fe源、Cr源、Ca源、Sr源である原料を、上記の合金を形成する組成となるように混合し、得られた混合物を任意に選択される温度で加熱して溶解させることによってアルミニウム合金溶湯を得る。Al源、Si源、Cu源、Mg源、Mn源、Fe源、Cr源、Ca源及びSr源は、それぞれ単一の金属材料であってもよいし、2種以上の金属を含む合金材料であってもよい。なお、原料となる金属材料は、Caを多量に含む場合がある。この場合、Caの含有量に対するSrの含有量の比Sr/Caが上記の範囲内となるように、予め原料の金属材料に対して脱Ca処理を行なってもよい。溶湯形成に使用される温度は任意に選択できる。 (Melted metal forming step S01)
In the molten metal forming step S01, raw materials such as Al source, Si source, Cu source, Mg source, Mn source, Fe source, Cr source, Ca source and Sr source are mixed so as to form the above alloy. , The resulting mixture is heated and melted at an arbitrarily selected temperature to obtain a molten aluminum alloy. The Al source, Si source, Cu source, Mg source, Mn source, Fe source, Cr source, Ca source and Sr source may each be a single metal material, or an alloy material containing two or more kinds of metals. May be. The metal material used as a raw material may contain a large amount of Ca. In this case, the metal material as a raw material may be de-Ca-treated in advance so that the ratio Sr / Ca of the Sr content to the Ca content is within the above range. The temperature used for forming the molten metal can be arbitrarily selected.
(鋳造工程S02)
鋳造工程S02では、溶湯形成工程S01で得られたアルミニウム合金溶湯を鋳造加工することによって、鋳造品1(第1鋳造品)を得る。図2は、本発明の一実施形態に係る摺動部品用アルミニウム合金(鋳造品)の一例を示す斜視図である。鋳造工程S02では、図2に示すように、円柱状の鋳造品1を得ることが好ましい。鋳造加工の方法には、特に制限はない。鋳造加工の方法としては、例えば、連続鋳造圧延法、ホットトップ鋳造法、フロート鋳造法、半連続鋳造法(DC鋳造法)等のアルミニウム合金の鋳造方法として従来より利用されている公知の方法を用いることができる。この鋳造工程により、Mnは、Al-Mn-Si金属間化合物を含む微細な粒状の晶出物を形成する。また、Feは、Al-Fe-Si金属間化合物、Al-Cu-Fe金属間化合物、Al-Mn-Fe金属間化合物等の微細な晶出物を形成する。また、Crは、Al-Fe-Cr金属間化合物等の微細なCr含有金属間化合物として晶出物を形成する。 (Casting process S02)
In the casting step S02, the cast product 1 (first cast product) is obtained by casting the aluminum alloy molten metal obtained in the molten metal forming step S01. FIG. 2 is a perspective view showing an example of an aluminum alloy (cast product) for sliding parts according to an embodiment of the present invention. In the casting step S02, as shown in FIG. 2, it is preferable to obtain acolumnar cast product 1. There are no particular restrictions on the casting method. As a casting method, for example, a known method conventionally used as a casting method for an aluminum alloy such as a continuous casting and rolling method, a hot top casting method, a float casting method, and a semi-continuous casting method (DC casting method) can be used. Can be used. By this casting step, Mn forms fine granular crystallization containing an Al—Mn—Si intermetallic compound. Further, Fe forms fine crystals such as an Al—Fe—Si intermetallic compound, an Al—Cu—Fe intermetallic compound, and an Al—Mn—Fe intermetallic compound. Further, Cr forms a crystallized product as a fine Cr-containing intermetallic compound such as an Al—Fe—Cr intermetallic compound.
鋳造工程S02では、溶湯形成工程S01で得られたアルミニウム合金溶湯を鋳造加工することによって、鋳造品1(第1鋳造品)を得る。図2は、本発明の一実施形態に係る摺動部品用アルミニウム合金(鋳造品)の一例を示す斜視図である。鋳造工程S02では、図2に示すように、円柱状の鋳造品1を得ることが好ましい。鋳造加工の方法には、特に制限はない。鋳造加工の方法としては、例えば、連続鋳造圧延法、ホットトップ鋳造法、フロート鋳造法、半連続鋳造法(DC鋳造法)等のアルミニウム合金の鋳造方法として従来より利用されている公知の方法を用いることができる。この鋳造工程により、Mnは、Al-Mn-Si金属間化合物を含む微細な粒状の晶出物を形成する。また、Feは、Al-Fe-Si金属間化合物、Al-Cu-Fe金属間化合物、Al-Mn-Fe金属間化合物等の微細な晶出物を形成する。また、Crは、Al-Fe-Cr金属間化合物等の微細なCr含有金属間化合物として晶出物を形成する。 (Casting process S02)
In the casting step S02, the cast product 1 (first cast product) is obtained by casting the aluminum alloy molten metal obtained in the molten metal forming step S01. FIG. 2 is a perspective view showing an example of an aluminum alloy (cast product) for sliding parts according to an embodiment of the present invention. In the casting step S02, as shown in FIG. 2, it is preferable to obtain a
(均質化熱処理工程S03)
均質化熱処理工程S03では、鋳造工程S02で得られた円柱状の鋳造品1に対して均質化熱処理を行なう。この均質化熱処理により、鋳造時に発生する添加元素の偏析を解消して組成を均質化させ、また、鋳造時の凝固により発生した過飽和固溶体を析出させ、さらに鋳造時の凝固により形成された準安定相を平衡相へ相変化させる。均質化熱処理における加熱温度は任意に選択できるが、例えば、420℃以上500℃以下の範囲内である。必要に応じて、430℃以上480℃以下や、440℃以上460℃以下などであってもよい。 (Homogenization heat treatment step S03)
In the homogenization heat treatment step S03, the homogenization heat treatment is performed on thecolumnar cast product 1 obtained in the casting step S02. By this homogenization heat treatment, segregation of additive elements generated during casting is eliminated to homogenize the composition, and a hypersaturated solid solution generated by solidification during casting is precipitated, and further, semi-stable formed by solidification during casting. Phase change phase to equilibrium phase. The heating temperature in the homogenization heat treatment can be arbitrarily selected, and is, for example, in the range of 420 ° C. or higher and 500 ° C. or lower. If necessary, the temperature may be 430 ° C or higher and 480 ° C or lower, or 440 ° C or higher and 460 ° C or lower.
均質化熱処理工程S03では、鋳造工程S02で得られた円柱状の鋳造品1に対して均質化熱処理を行なう。この均質化熱処理により、鋳造時に発生する添加元素の偏析を解消して組成を均質化させ、また、鋳造時の凝固により発生した過飽和固溶体を析出させ、さらに鋳造時の凝固により形成された準安定相を平衡相へ相変化させる。均質化熱処理における加熱温度は任意に選択できるが、例えば、420℃以上500℃以下の範囲内である。必要に応じて、430℃以上480℃以下や、440℃以上460℃以下などであってもよい。 (Homogenization heat treatment step S03)
In the homogenization heat treatment step S03, the homogenization heat treatment is performed on the
(切断工程S04)
切断工程S04では、均質化熱処理工程S03で均質化熱処理を施した円柱状の鋳造品1を所定のサイズに切断し、鍛造用の鋳造品を得る。すなわち、切断工程S04では、鋳造品1を平面に沿って切断することによって、鍛造用の鋳造品を得る。 (Cut step S04)
In the cutting step S04, thecolumnar cast product 1 subjected to the homogenization heat treatment in the homogenization heat treatment step S03 is cut to a predetermined size to obtain a cast product for forging. That is, in the cutting step S04, the casting product 1 is cut along a flat surface to obtain a casting product for forging.
切断工程S04では、均質化熱処理工程S03で均質化熱処理を施した円柱状の鋳造品1を所定のサイズに切断し、鍛造用の鋳造品を得る。すなわち、切断工程S04では、鋳造品1を平面に沿って切断することによって、鍛造用の鋳造品を得る。 (Cut step S04)
In the cutting step S04, the
(鍛造工程S05)
鍛造工程S05では、切断工程S04で得られた鍛造用の鋳造品に鍛造加工を行なって、所望の形状の鍛造品2(第2鋳造品)を得る。図3は、本発明の一実施形態に係る摺動部品(鍛造品)の一例を示す斜視図である。図3に示す鍛造品2は、スクロール型コンプレッサー用の摺動部品(スクロール)である。鍛造品2は、円板状の基部3と、渦巻き状の突起部4とを有する。鍛造加工の方法は、熱間鍛造を用いてもよいし、冷間鍛造を用いてもよい。熱間鍛造における加熱温度は任意に選択できるが、例えば、350℃以上450℃以下の範囲内である。必要に応じて、370℃以上430℃以下や、390℃以上420℃以下などであってもよい。 (Forging process S05)
In the forging step S05, the forging cast product obtained in the cutting step S04 is forged to obtain a forged product 2 (second cast product) having a desired shape. FIG. 3 is a perspective view showing an example of a sliding component (forged product) according to an embodiment of the present invention. The forgedproduct 2 shown in FIG. 3 is a sliding component (scroll) for a scroll type compressor. The forged product 2 has a disk-shaped base portion 3 and a spiral-shaped protrusion portion 4. As the forging method, hot forging may be used or cold forging may be used. The heating temperature in hot forging can be arbitrarily selected, but is, for example, in the range of 350 ° C. or higher and 450 ° C. or lower. If necessary, the temperature may be 370 ° C or higher and 430 ° C or lower, or 390 ° C or higher and 420 ° C or lower.
鍛造工程S05では、切断工程S04で得られた鍛造用の鋳造品に鍛造加工を行なって、所望の形状の鍛造品2(第2鋳造品)を得る。図3は、本発明の一実施形態に係る摺動部品(鍛造品)の一例を示す斜視図である。図3に示す鍛造品2は、スクロール型コンプレッサー用の摺動部品(スクロール)である。鍛造品2は、円板状の基部3と、渦巻き状の突起部4とを有する。鍛造加工の方法は、熱間鍛造を用いてもよいし、冷間鍛造を用いてもよい。熱間鍛造における加熱温度は任意に選択できるが、例えば、350℃以上450℃以下の範囲内である。必要に応じて、370℃以上430℃以下や、390℃以上420℃以下などであってもよい。 (Forging process S05)
In the forging step S05, the forging cast product obtained in the cutting step S04 is forged to obtain a forged product 2 (second cast product) having a desired shape. FIG. 3 is a perspective view showing an example of a sliding component (forged product) according to an embodiment of the present invention. The forged
(溶体化処理工程S06)
溶体化処理工程S06では、鍛造工程S05で得られた鍛造品2に溶体化処理を行なう。この溶体化処理によって、鍛造品2中のSi、Cu、Mgなどの元素がアルミニウム合金に再固溶した固溶状態を生成させる。溶体化処理における加熱温度は任意に選択できるが、例えば、450℃以上540℃以下の範囲内である。必要に応じて、470℃以上530℃以下や、490℃以上510℃以下などであってもよい。 (Solution processing step S06)
In the solution treatment step S06, the forgedproduct 2 obtained in the forging step S05 is subjected to the solution treatment. By this solution treatment, elements such as Si, Cu, and Mg in the forged product 2 are re-dissolved in the aluminum alloy to generate a solid solution state. The heating temperature in the solution treatment can be arbitrarily selected, but is, for example, in the range of 450 ° C. or higher and 540 ° C. or lower. If necessary, the temperature may be 470 ° C or higher and 530 ° C or lower, or 490 ° C or higher and 510 ° C or lower.
溶体化処理工程S06では、鍛造工程S05で得られた鍛造品2に溶体化処理を行なう。この溶体化処理によって、鍛造品2中のSi、Cu、Mgなどの元素がアルミニウム合金に再固溶した固溶状態を生成させる。溶体化処理における加熱温度は任意に選択できるが、例えば、450℃以上540℃以下の範囲内である。必要に応じて、470℃以上530℃以下や、490℃以上510℃以下などであってもよい。 (Solution processing step S06)
In the solution treatment step S06, the forged
(焼き入れ工程S07)
焼き入れ工程S07では、溶体化処理工程S06で固溶状態とされた鍛造品2に焼き入れ処理を行なう。この焼き入れ処理によって、鍛造品2を急冷することにより、固溶状態が維持された過飽和固溶体を生成させる。
なお、鍛造工程S05において、鍛造加工を熱間鍛造で行なった場合、溶体化処理工程S06を行なわずに、熱間鍛造時の加熱を利用し、鍛造後そのまま焼き入れを行なう鍛造焼き入れを行なってもよい。焼き入れ処理の例としては、水焼き入れなどが挙げられる。 (Quenching process S07)
In the quenching step S07, the forgedproduct 2 which has been in a solid solution state in the solution treatment step S06 is subjected to a quenching treatment. By this quenching treatment, the forged product 2 is rapidly cooled to produce a supersaturated solid solution in which the solid solution state is maintained.
When the forging process is performed by hot forging in the forging step S05, the forging quenching is performed by using the heating during the hot forging without performing the solution heat treatment step S06. You may. Examples of the quenching process include water quenching.
焼き入れ工程S07では、溶体化処理工程S06で固溶状態とされた鍛造品2に焼き入れ処理を行なう。この焼き入れ処理によって、鍛造品2を急冷することにより、固溶状態が維持された過飽和固溶体を生成させる。
なお、鍛造工程S05において、鍛造加工を熱間鍛造で行なった場合、溶体化処理工程S06を行なわずに、熱間鍛造時の加熱を利用し、鍛造後そのまま焼き入れを行なう鍛造焼き入れを行なってもよい。焼き入れ処理の例としては、水焼き入れなどが挙げられる。 (Quenching process S07)
In the quenching step S07, the forged
When the forging process is performed by hot forging in the forging step S05, the forging quenching is performed by using the heating during the hot forging without performing the solution heat treatment step S06. You may. Examples of the quenching process include water quenching.
(時効処理工程S08)
時効処理工程S08では、焼き入れ処理工程S07で過飽和固溶体とされた鍛造品2に時効処理を行なう。この時効処理によって、鍛造品2に対して低温で焼き戻しを行なう。この時効処理により、鍛造品2を構成するアルミニウム合金中にクラスタが生成し、このクラスタを核としてCuが析出してG.P.ゾーンが生成する。また、Mgは、SiやCuと化合物を形成して、Q相として析出する。時効処理における加熱温度は任意に選択できるが、例えば、150℃以上220℃以下の範囲内である。必要に応じて、170℃以上200℃以下や、180℃以上190℃以下などであってもよい。加熱時間は任意に選択できるが、例えば、0.5時間~20時間や、1時間~16時間等が例として挙げられる。 (Aging treatment step S08)
In the aging treatment step S08, the forgedproduct 2 which was the supersaturated solid solution in the quenching treatment step S07 is subjected to the aging treatment. By this aging treatment, the forged product 2 is tempered at a low temperature. By this aging treatment, clusters are formed in the aluminum alloy constituting the forged product 2, and Cu is precipitated with the clusters as nuclei to form G.I. P. Zones are created. Further, Mg forms a compound with Si and Cu and precipitates as a Q phase. The heating temperature in the aging treatment can be arbitrarily selected, but is, for example, in the range of 150 ° C. or higher and 220 ° C. or lower. If necessary, the temperature may be 170 ° C. or higher and 200 ° C. or lower, 180 ° C. or higher and 190 ° C. or lower. The heating time can be arbitrarily selected, and examples thereof include 0.5 hours to 20 hours and 1 hour to 16 hours.
時効処理工程S08では、焼き入れ処理工程S07で過飽和固溶体とされた鍛造品2に時効処理を行なう。この時効処理によって、鍛造品2に対して低温で焼き戻しを行なう。この時効処理により、鍛造品2を構成するアルミニウム合金中にクラスタが生成し、このクラスタを核としてCuが析出してG.P.ゾーンが生成する。また、Mgは、SiやCuと化合物を形成して、Q相として析出する。時効処理における加熱温度は任意に選択できるが、例えば、150℃以上220℃以下の範囲内である。必要に応じて、170℃以上200℃以下や、180℃以上190℃以下などであってもよい。加熱時間は任意に選択できるが、例えば、0.5時間~20時間や、1時間~16時間等が例として挙げられる。 (Aging treatment step S08)
In the aging treatment step S08, the forged
(ショットピーニング工程S09)
ショットピーニング工程S09では、時効処理工程S08で時効処理を行なった鍛造品2を、表面を整えるためや、加工しない部位を除くために、機械加工にて切削した後、ショットピーニングして、表面近傍に塑性加工を加えることで疲労強度を向上させる。高速で合金表面に砥粒を衝突させるショットピーニングで用いる砥粒のサイズは1mm以下とするのが好ましい。砥粒の材料としては、例えば、ステンレス鋼(例:SUS304)、アルミナ等を用いることができる。また、ピーニング圧力は1MPa以下とするのが好ましい。 (Shot peening step S09)
In the shot peening step S09, the forgedproduct 2 that has been aged in the aging treatment step S08 is machined to prepare the surface or remove unprocessed parts, and then shot peened to the vicinity of the surface. Fatigue strength is improved by adding plastic working to. The size of the abrasive grains used in shot peening in which the abrasive grains collide with the alloy surface at high speed is preferably 1 mm or less. As the material of the abrasive grains, for example, stainless steel (eg, SUS304), alumina and the like can be used. The peening pressure is preferably 1 MPa or less.
ショットピーニング工程S09では、時効処理工程S08で時効処理を行なった鍛造品2を、表面を整えるためや、加工しない部位を除くために、機械加工にて切削した後、ショットピーニングして、表面近傍に塑性加工を加えることで疲労強度を向上させる。高速で合金表面に砥粒を衝突させるショットピーニングで用いる砥粒のサイズは1mm以下とするのが好ましい。砥粒の材料としては、例えば、ステンレス鋼(例:SUS304)、アルミナ等を用いることができる。また、ピーニング圧力は1MPa以下とするのが好ましい。 (Shot peening step S09)
In the shot peening step S09, the forged
以上の製造方法によって、摺動部品(鍛造品)を製造することができる。得られた摺動部品は、25℃における引張強さが330MPa以上380MPa以下の範囲内にあり、Cuを1質量%以上含有し、円相当直径が5μmを超える晶出物を1182μm2あたり2個以上含まず、長さが8μm以上のCr含有金属間化合物を1182μm2あたり2個以上含まず、円相当直径が10μmを超える初晶Si粒を4726μm2あたり2個以上含まない。この摺動部品は、引張強さとアルマイト皮膜の形成性とに優れている。このため、この摺動部品は、陽極酸化処理によりビッカース硬さが400HV以上のアルマイト皮膜を形成することが可能となる。この表面に、ビッカース硬さが400HV以上であるアルマイト皮膜が備えられている摺動部品は、引張強さがより向上すると共に、耐摩耗性が向上する。
By the above manufacturing method, sliding parts (forged products) can be manufactured. The obtained sliding parts had a tensile strength at 25 ° C. in the range of 330 MPa or more and 380 MPa or less, contained 1% by mass or more of Cu, and contained two crystallized compounds having a circle-equivalent diameter of more than 5 μm per 1182 μm 2 . It does not contain the above, 2 or more Cr-containing intermetallic compounds having a length of 8 μm or more per 1182 μm 2 , and does not contain 2 or more primary crystal Si grains having a circle-equivalent diameter of more than 10 μm per 4726 μm 2 . This sliding component is excellent in tensile strength and formability of an alumite film. Therefore, this sliding component can form an alumite film having a Vickers hardness of 400 HV or more by anodizing. A sliding component provided with an alumite film having a Vickers hardness of 400 HV or more on this surface has higher tensile strength and wear resistance.
以上のような構成を有する本実施形態の摺動部品用アルミニウム合金は、Si、Cu、Mg、Mn、Cr、Fe、Ca、Srの各添加元素を上記の範囲内で含有し、残部がAl及び不可避不純物とされていて、25℃における引張強さが330MPa以上380MPa以下の範囲内にあり、Cuを1質量%以上含有し、円相当直径が5μmを超える晶出物を、1182μm2あたり2個以上含まず、長さが8μm以上のCr含有金属間化合物を1182μm2あたり2個以上含まないとされているので、引張強さとアルマイト皮膜の形成性とに優れる。
The aluminum alloy for sliding parts of the present embodiment having the above configuration contains each additive element of Si, Cu, Mg, Mn, Cr, Fe, Ca, and Sr within the above range, and the balance is Al. And unavoidable impurities, the tensile strength at 25 ° C. is in the range of 330 MPa or more and 380 MPa or less, the amount of Cu is 1% by mass or more, and the crystallized product having a circle-equivalent diameter of more than 5 μm is 2 per 1182 μm 2. Since it is said that no more than two Cr-containing intermetal compounds having a length of 8 μm or more are contained per 1182 μm 2 , the tensile strength and the formability of the alumite film are excellent.
また、本実施形態の摺動部品は、上述の摺動部品用アルミニウム合金で構成されているので、引張強さとアルマイト皮膜の形成性とに優れる。本実施形態の摺動部品において、鍛造品である場合は、より強度が向上する。さらに、本実施形態の摺動部品において、表面に、ビッカース硬さが400HV以上であるアルマイト皮膜が備えられている場合は、強度がさらに向上すると共に、耐摩耗性が向上する。
Further, since the sliding component of the present embodiment is composed of the above-mentioned aluminum alloy for sliding component, it is excellent in tensile strength and formability of an alumite film. In the case of the sliding parts of the present embodiment, when they are forged products, the strength is further improved. Further, in the sliding component of the present embodiment, when the surface is provided with an alumite film having a Vickers hardness of 400 HV or more, the strength is further improved and the wear resistance is improved.
本実施形態の摺動部品は、コンプレッサー(圧縮機)の摺動部品として好適に使用できる。本実施形態の鍛造品は、スクロール型コンプレッサーの摺動部品、特に、旋回スクロールがモータで可動する電動スクロール型コンプレッサーの摺動部品として有利に利用できる。
The sliding parts of this embodiment can be suitably used as sliding parts of a compressor (compressor). The forged product of the present embodiment can be advantageously used as a sliding component of a scroll type compressor, particularly as a sliding component of an electric scroll type compressor in which a swivel scroll is movable by a motor.
なお、本発明は、上記実施形態のものに必ずしも限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
The present invention is not necessarily limited to that of the above embodiment, and various modifications can be made without departing from the spirit of the present invention.
次に、本発明の具体的実施例について説明するが、本発明はこれら実施例のものに特に限定されるものではない。
Next, specific examples of the present invention will be described, but the present invention is not particularly limited to those of these examples.
<実施例1>
Siを10.1質量%、Cuを1.0質量%、Mgを0.4質量%、Mnを0.4質量%、Crを0.03質量%、Feを0.19質量%、Caを0.0010質量%、Srを0.0010質量%(Sr/Ca=1.00)の割合で含有し、残部がAlからなるアルミニウム合金の溶湯を連続鋳造加工することによって、直径が82mmの鋳造品(第1鋳造品)を得た。得られた鋳造品に均質化熱処理を施した後、鋳造品を空冷した。次いで、鋳造品を所定の長さに切断して、鍛造用の鋳造品を得た。得られた鋳造品に熱間鍛造を行なうことによって、鍛造品(第2鋳造品)を得た。得られた鍛造品に溶体化処理を施した後、水焼き入れ処理を行なった。次に、水焼き入れ処理後の鋳造品に時効処理を施して、摺動部品用の鍛造品を得た。 <Example 1>
Si is 10.1% by mass, Cu is 1.0% by mass, Mg is 0.4% by mass, Mn is 0.4% by mass, Cr is 0.03% by mass, Fe is 0.19% by mass, and Ca is. Casting with a diameter of 82 mm by continuous casting of a molten aluminum alloy containing 0.0010% by mass and Sr at a ratio of 0.0010% by mass (Sr / Ca = 1.00) and the balance being Al. A product (first cast product) was obtained. The obtained cast product was subjected to a homogenization heat treatment, and then the cast product was air-cooled. Then, the cast product was cut to a predetermined length to obtain a cast product for forging. A forged product (second cast product) was obtained by hot forging the obtained cast product. The obtained forged product was subjected to a solution treatment and then a water quenching treatment. Next, the cast product after the water quenching treatment was subjected to an aging treatment to obtain a forged product for sliding parts.
Siを10.1質量%、Cuを1.0質量%、Mgを0.4質量%、Mnを0.4質量%、Crを0.03質量%、Feを0.19質量%、Caを0.0010質量%、Srを0.0010質量%(Sr/Ca=1.00)の割合で含有し、残部がAlからなるアルミニウム合金の溶湯を連続鋳造加工することによって、直径が82mmの鋳造品(第1鋳造品)を得た。得られた鋳造品に均質化熱処理を施した後、鋳造品を空冷した。次いで、鋳造品を所定の長さに切断して、鍛造用の鋳造品を得た。得られた鋳造品に熱間鍛造を行なうことによって、鍛造品(第2鋳造品)を得た。得られた鍛造品に溶体化処理を施した後、水焼き入れ処理を行なった。次に、水焼き入れ処理後の鋳造品に時効処理を施して、摺動部品用の鍛造品を得た。 <Example 1>
Si is 10.1% by mass, Cu is 1.0% by mass, Mg is 0.4% by mass, Mn is 0.4% by mass, Cr is 0.03% by mass, Fe is 0.19% by mass, and Ca is. Casting with a diameter of 82 mm by continuous casting of a molten aluminum alloy containing 0.0010% by mass and Sr at a ratio of 0.0010% by mass (Sr / Ca = 1.00) and the balance being Al. A product (first cast product) was obtained. The obtained cast product was subjected to a homogenization heat treatment, and then the cast product was air-cooled. Then, the cast product was cut to a predetermined length to obtain a cast product for forging. A forged product (second cast product) was obtained by hot forging the obtained cast product. The obtained forged product was subjected to a solution treatment and then a water quenching treatment. Next, the cast product after the water quenching treatment was subjected to an aging treatment to obtain a forged product for sliding parts.
<実施例2~5および比較例1~15>
アルミニウム合金(不可避不純物を含有する)のSi、Cu、Mg、Mn、Cr、Fe、Ca、Srの含有量を、表1に示す割合に変えたこと以外は、実施例1と同様にして、摺動部品用の鍛造品を得た。 <Examples 2 to 5 and Comparative Examples 1 to 15>
The same as in Example 1 except that the contents of Si, Cu, Mg, Mn, Cr, Fe, Ca, and Sr of the aluminum alloy (containing unavoidable impurities) were changed to the ratios shown in Table 1. A forged product for sliding parts was obtained.
アルミニウム合金(不可避不純物を含有する)のSi、Cu、Mg、Mn、Cr、Fe、Ca、Srの含有量を、表1に示す割合に変えたこと以外は、実施例1と同様にして、摺動部品用の鍛造品を得た。 <Examples 2 to 5 and Comparative Examples 1 to 15>
The same as in Example 1 except that the contents of Si, Cu, Mg, Mn, Cr, Fe, Ca, and Sr of the aluminum alloy (containing unavoidable impurities) were changed to the ratios shown in Table 1. A forged product for sliding parts was obtained.
[評価]
実施例1~3及び比較例1~15で得られた摺動部品用の鍛造品について、以下の評価を行なった。 [evaluation]
The forged products for sliding parts obtained in Examples 1 to 3 and Comparative Examples 1 to 15 were evaluated as follows.
実施例1~3及び比較例1~15で得られた摺動部品用の鍛造品について、以下の評価を行なった。 [evaluation]
The forged products for sliding parts obtained in Examples 1 to 3 and Comparative Examples 1 to 15 were evaluated as follows.
<組成>
摺動部品用の鍛造品のSi、Cu、Mg、Mn、Cr、Fe、Ca、Srの各元素の含有率を、次のようにして測定した。摺動部品用の鍛造品を、酸塩酸と過酸化水素とを用いて溶解させる。得られた溶液中の各元素の含有量を、ICP発光分光装置を用いて測定し、その測定値を、鍛造品中の各元素の含有率に換算する。
この測定の結果、各実施例及び比較例で得られた鍛造品の各元素の含有率は、それぞれ表1に示す含有率と同じであった。 <Composition>
The content of each element of Si, Cu, Mg, Mn, Cr, Fe, Ca and Sr of the forged product for sliding parts was measured as follows. The forged product for sliding parts is dissolved with hydrochloric acid and hydrogen peroxide. The content of each element in the obtained solution is measured using an ICP emission spectroscope, and the measured value is converted into the content of each element in the forged product.
As a result of this measurement, the content of each element of the forged products obtained in each Example and Comparative Example was the same as the content shown in Table 1.
摺動部品用の鍛造品のSi、Cu、Mg、Mn、Cr、Fe、Ca、Srの各元素の含有率を、次のようにして測定した。摺動部品用の鍛造品を、酸塩酸と過酸化水素とを用いて溶解させる。得られた溶液中の各元素の含有量を、ICP発光分光装置を用いて測定し、その測定値を、鍛造品中の各元素の含有率に換算する。
この測定の結果、各実施例及び比較例で得られた鍛造品の各元素の含有率は、それぞれ表1に示す含有率と同じであった。 <Composition>
The content of each element of Si, Cu, Mg, Mn, Cr, Fe, Ca and Sr of the forged product for sliding parts was measured as follows. The forged product for sliding parts is dissolved with hydrochloric acid and hydrogen peroxide. The content of each element in the obtained solution is measured using an ICP emission spectroscope, and the measured value is converted into the content of each element in the forged product.
As a result of this measurement, the content of each element of the forged products obtained in each Example and Comparative Example was the same as the content shown in Table 1.
<組織観察>
摺動部品用の鍛造品の組織を、次のようにして観察した。
摺動部品用の鍛造品を所定のサイズに切り出して観察用試料を作製する。観察用試料の鍛造方向に対して平行な面を、観察面加工して観察面とする。観察用試料の観察面を、FE-SEM/EDSを用いて観察する。FE-SEMの拡大倍率を3000倍に設定し、FE-SEMの観察視野(30.47μm×38.79μm=1182μm2)に対して、EDSを用いて元素分析を行なって、Cuを1質量%以上含むCu系晶出物とCr含有金属間化合物を特定する。特定されたCu系晶出物は円相当直径を算出し、「円相当直径が5μmを超えるCu系晶出物の個数」と「最大円相当直径」を求める。特定されたCr含有金属間化合物は長さを算出し、「長さが8μm以上のCr含有金属間化合物の個数」と「最大長さ」を求める。また、FE-SEMの拡大倍率を1500倍に設定し、FE-SEMの観察視野(60.9μm×77.6μm=4726μm2)に対して、EDSを用いて元素分析を行なって、初晶Si粒を特定する。特定された初晶Si粒は円相当直径を算出し、「円相当直径が10μmを超える初晶Si粒の個数」と「最大円相当直径」を求める。なお、Cu系晶出物、Cr含有金属間化合物及び初晶Si粒の観察は、4個の観察面に対して行なった。「円相当直径が5μmを超えるCu系晶出物の個数」、「長さが8μm以上のCr含有金属間化合物の個数」及び「円相当直径が10μmを超える初晶Si粒の個数」は、それらの観察面内で計測された個数の平均値である。また、Cu系晶出物と初晶Si粒の「最大円相当直径」及びCr含有金属間化合物の「最大長さ」は、それらの観察面内で計測された値の最大値である。その結果を、表2に示す。 <Tissue observation>
The structure of the forged product for sliding parts was observed as follows.
A forged product for sliding parts is cut out to a predetermined size to prepare an observation sample. A surface parallel to the forging direction of the observation sample is processed into an observation surface to obtain an observation surface. The observation surface of the observation sample is observed using FE-SEM / EDS. The magnification of FE-SEM is set to 3000 times, and elemental analysis is performed using EDS with respect to the observation field of FE-SEM (30.47 μm × 38.79 μm = 1182 μm 2 ) to obtain 1% by mass of Cu. The Cu-based crystallized product containing the above and the Cr-containing metal-to-metal compound are specified. For the specified Cu-based crystallized material, the diameter equivalent to a circle is calculated, and the "number of Cu-based crystallized materials having a diameter equivalent to a circle exceeding 5 μm" and the "diameter equivalent to a maximum circle" are obtained. The length of the specified Cr-containing intermetallic compound is calculated, and the "number of Cr-containing intermetallic compounds having a length of 8 μm or more" and the "maximum length" are obtained. In addition, the magnification of FE-SEM is set to 1500 times, and elemental analysis is performed using EDS for the observation field of view of FE-SEM (60.9 μm × 77.6 μm = 4726 μm 2 ), and primary crystal Si. Identify the grain. The diameter equivalent to a circle is calculated for the specified primary crystal Si grains, and the "number of primary crystal Si grains having a diameter equivalent to a circle exceeding 10 μm" and the "diameter equivalent to a maximum circle" are obtained. Observation of Cu-based crystallized products, Cr-containing intermetallic compounds, and primary crystal Si grains was performed on four observation surfaces. "Number of Cu-based crystals having a circle-equivalent diameter of more than 5 μm", "Number of Cr-containing intermetallic compounds having a length of 8 μm or more" and "Number of primary crystal Si grains having a circle-equivalent diameter of more than 10 μm" are It is the average value of the number measured in those observation planes. Further, the "maximum circle-equivalent diameter" of the Cu-based crystallized product and the primary crystal Si grain and the "maximum length" of the Cr-containing intermetallic compound are the maximum values measured in their observation planes. The results are shown in Table 2.
摺動部品用の鍛造品の組織を、次のようにして観察した。
摺動部品用の鍛造品を所定のサイズに切り出して観察用試料を作製する。観察用試料の鍛造方向に対して平行な面を、観察面加工して観察面とする。観察用試料の観察面を、FE-SEM/EDSを用いて観察する。FE-SEMの拡大倍率を3000倍に設定し、FE-SEMの観察視野(30.47μm×38.79μm=1182μm2)に対して、EDSを用いて元素分析を行なって、Cuを1質量%以上含むCu系晶出物とCr含有金属間化合物を特定する。特定されたCu系晶出物は円相当直径を算出し、「円相当直径が5μmを超えるCu系晶出物の個数」と「最大円相当直径」を求める。特定されたCr含有金属間化合物は長さを算出し、「長さが8μm以上のCr含有金属間化合物の個数」と「最大長さ」を求める。また、FE-SEMの拡大倍率を1500倍に設定し、FE-SEMの観察視野(60.9μm×77.6μm=4726μm2)に対して、EDSを用いて元素分析を行なって、初晶Si粒を特定する。特定された初晶Si粒は円相当直径を算出し、「円相当直径が10μmを超える初晶Si粒の個数」と「最大円相当直径」を求める。なお、Cu系晶出物、Cr含有金属間化合物及び初晶Si粒の観察は、4個の観察面に対して行なった。「円相当直径が5μmを超えるCu系晶出物の個数」、「長さが8μm以上のCr含有金属間化合物の個数」及び「円相当直径が10μmを超える初晶Si粒の個数」は、それらの観察面内で計測された個数の平均値である。また、Cu系晶出物と初晶Si粒の「最大円相当直径」及びCr含有金属間化合物の「最大長さ」は、それらの観察面内で計測された値の最大値である。その結果を、表2に示す。 <Tissue observation>
The structure of the forged product for sliding parts was observed as follows.
A forged product for sliding parts is cut out to a predetermined size to prepare an observation sample. A surface parallel to the forging direction of the observation sample is processed into an observation surface to obtain an observation surface. The observation surface of the observation sample is observed using FE-SEM / EDS. The magnification of FE-SEM is set to 3000 times, and elemental analysis is performed using EDS with respect to the observation field of FE-SEM (30.47 μm × 38.79 μm = 1182 μm 2 ) to obtain 1% by mass of Cu. The Cu-based crystallized product containing the above and the Cr-containing metal-to-metal compound are specified. For the specified Cu-based crystallized material, the diameter equivalent to a circle is calculated, and the "number of Cu-based crystallized materials having a diameter equivalent to a circle exceeding 5 μm" and the "diameter equivalent to a maximum circle" are obtained. The length of the specified Cr-containing intermetallic compound is calculated, and the "number of Cr-containing intermetallic compounds having a length of 8 μm or more" and the "maximum length" are obtained. In addition, the magnification of FE-SEM is set to 1500 times, and elemental analysis is performed using EDS for the observation field of view of FE-SEM (60.9 μm × 77.6 μm = 4726 μm 2 ), and primary crystal Si. Identify the grain. The diameter equivalent to a circle is calculated for the specified primary crystal Si grains, and the "number of primary crystal Si grains having a diameter equivalent to a circle exceeding 10 μm" and the "diameter equivalent to a maximum circle" are obtained. Observation of Cu-based crystallized products, Cr-containing intermetallic compounds, and primary crystal Si grains was performed on four observation surfaces. "Number of Cu-based crystals having a circle-equivalent diameter of more than 5 μm", "Number of Cr-containing intermetallic compounds having a length of 8 μm or more" and "Number of primary crystal Si grains having a circle-equivalent diameter of more than 10 μm" are It is the average value of the number measured in those observation planes. Further, the "maximum circle-equivalent diameter" of the Cu-based crystallized product and the primary crystal Si grain and the "maximum length" of the Cr-containing intermetallic compound are the maximum values measured in their observation planes. The results are shown in Table 2.
<引張強さ>
摺動部品用の鍛造品の引張強さを、次のようにして測定した。
摺動部品用の鍛造品を所定のサイズに切り出してJIS4号引張試験片を作製する。得られたJIS4号引張試験片に対して、JIS Z2241:2011(金属材料引張試験方法)の規定に準拠して引張試験を行い、25℃における引張強さ(MPa)を測定する。
その果を、表2に示す。表2において、引張強さが330MPa以上380MPa以下の範囲内にあるものを「○(可)」と記載し、引張強さが前記範囲を逸脱しているものを「×(不可)」と記載した。 <Tensile strength>
The tensile strength of the forged product for sliding parts was measured as follows.
A forged product for sliding parts is cut out to a predetermined size to prepare a JIS No. 4 tensile test piece. The obtained JIS No. 4 tensile test piece is subjected to a tensile test in accordance with the provisions of JIS Z2241: 2011 (metal material tensile test method), and the tensile strength (MPa) at 25 ° C. is measured.
The results are shown in Table 2. In Table 2, those having a tensile strength within the range of 330 MPa or more and 380 MPa or less are described as "○ (possible)", and those having a tensile strength outside the above range are described as "x (impossible)". bottom.
摺動部品用の鍛造品の引張強さを、次のようにして測定した。
摺動部品用の鍛造品を所定のサイズに切り出してJIS4号引張試験片を作製する。得られたJIS4号引張試験片に対して、JIS Z2241:2011(金属材料引張試験方法)の規定に準拠して引張試験を行い、25℃における引張強さ(MPa)を測定する。
その果を、表2に示す。表2において、引張強さが330MPa以上380MPa以下の範囲内にあるものを「○(可)」と記載し、引張強さが前記範囲を逸脱しているものを「×(不可)」と記載した。 <Tensile strength>
The tensile strength of the forged product for sliding parts was measured as follows.
A forged product for sliding parts is cut out to a predetermined size to prepare a JIS No. 4 tensile test piece. The obtained JIS No. 4 tensile test piece is subjected to a tensile test in accordance with the provisions of JIS Z2241: 2011 (metal material tensile test method), and the tensile strength (MPa) at 25 ° C. is measured.
The results are shown in Table 2. In Table 2, those having a tensile strength within the range of 330 MPa or more and 380 MPa or less are described as "○ (possible)", and those having a tensile strength outside the above range are described as "x (impossible)". bottom.
<アルマイト皮膜の硬度>
摺動部品用の鍛造品を陽極酸化処理して、鍛造品の表面に厚さ20μmのアルマイト皮膜を形成した。そして、得られたアルマイト皮膜の硬度を測定した。
アルマイト皮膜は、次のようにして形成した。鍛造品を、遊離硫酸濃度が150g/Lで、液温5℃の電解液に浸漬する。次いで、鍛造品を陽極として、電流密度3A/dm2の電流を流して、鍛造品の表面にアルマイト皮膜を形成する。そして、アルマイト皮膜を形成した鍛造品を電解液から取り出して、アルマイト皮膜に対してバフ研磨にて鏡面仕上げを行なう。
アルマイト皮膜の硬度は、次のようにして測定した。アルマイト皮膜の硬度は、ビッカース硬度計を用いて測定する。硬度測定は、アルマイト皮膜の厚さ方向に対して実施し、荷重は0.01gとする。
測定結果を表2に示す。表2において、ビッカース硬さが400HV未満であったものを「×(不可)」と記載し、400HV以上であったものを「○(可)」と記載した。 <Hardness of alumite film>
The forged product for sliding parts was anodized to form an alumite film having a thickness of 20 μm on the surface of the forged product. Then, the hardness of the obtained alumite film was measured.
The alumite film was formed as follows. The forged product is immersed in an electrolytic solution having a free sulfuric acid concentration of 150 g / L and a liquid temperature of 5 ° C. Next, using the forged product as an anode, a current having a current density of 3 A / dm 2 is passed to form an alumite film on the surface of the forged product. Then, the forged product on which the alumite film is formed is taken out from the electrolytic solution, and the alumite film is mirror-finished by buffing.
The hardness of the alumite film was measured as follows. The hardness of the alumite film is measured using a Vickers hardness tester. The hardness is measured in the thickness direction of the alumite film, and the load is 0.01 g.
The measurement results are shown in Table 2. In Table 2, those having a Vickers hardness of less than 400 HV are described as "x (impossible)", and those having a Vickers hardness of 400 HV or more are described as "○ (possible)".
摺動部品用の鍛造品を陽極酸化処理して、鍛造品の表面に厚さ20μmのアルマイト皮膜を形成した。そして、得られたアルマイト皮膜の硬度を測定した。
アルマイト皮膜は、次のようにして形成した。鍛造品を、遊離硫酸濃度が150g/Lで、液温5℃の電解液に浸漬する。次いで、鍛造品を陽極として、電流密度3A/dm2の電流を流して、鍛造品の表面にアルマイト皮膜を形成する。そして、アルマイト皮膜を形成した鍛造品を電解液から取り出して、アルマイト皮膜に対してバフ研磨にて鏡面仕上げを行なう。
アルマイト皮膜の硬度は、次のようにして測定した。アルマイト皮膜の硬度は、ビッカース硬度計を用いて測定する。硬度測定は、アルマイト皮膜の厚さ方向に対して実施し、荷重は0.01gとする。
測定結果を表2に示す。表2において、ビッカース硬さが400HV未満であったものを「×(不可)」と記載し、400HV以上であったものを「○(可)」と記載した。 <Hardness of alumite film>
The forged product for sliding parts was anodized to form an alumite film having a thickness of 20 μm on the surface of the forged product. Then, the hardness of the obtained alumite film was measured.
The alumite film was formed as follows. The forged product is immersed in an electrolytic solution having a free sulfuric acid concentration of 150 g / L and a liquid temperature of 5 ° C. Next, using the forged product as an anode, a current having a current density of 3 A / dm 2 is passed to form an alumite film on the surface of the forged product. Then, the forged product on which the alumite film is formed is taken out from the electrolytic solution, and the alumite film is mirror-finished by buffing.
The hardness of the alumite film was measured as follows. The hardness of the alumite film is measured using a Vickers hardness tester. The hardness is measured in the thickness direction of the alumite film, and the load is 0.01 g.
The measurement results are shown in Table 2. In Table 2, those having a Vickers hardness of less than 400 HV are described as "x (impossible)", and those having a Vickers hardness of 400 HV or more are described as "○ (possible)".
<総合評価>
引張強さが「〇(可)」で、アルマイト皮膜の硬度が「〇(可)」のものについて、総合評価を合格(「〇」)とした。引張強さとアルマイト皮膜の硬度のどちらか一方でも「×(不可)」があったものについては、総合評価を不合格(「×」)とした。その結果を、表2に示す。 <Comprehensive evaluation>
If the tensile strength was "○ (possible)" and the hardness of the alumite film was "〇 (possible)", the comprehensive evaluation was passed ("○"). If there was an "x (impossible)" in either the tensile strength or the hardness of the alumite film, the overall evaluation was rejected ("x"). The results are shown in Table 2.
引張強さが「〇(可)」で、アルマイト皮膜の硬度が「〇(可)」のものについて、総合評価を合格(「〇」)とした。引張強さとアルマイト皮膜の硬度のどちらか一方でも「×(不可)」があったものについては、総合評価を不合格(「×」)とした。その結果を、表2に示す。 <Comprehensive evaluation>
If the tensile strength was "○ (possible)" and the hardness of the alumite film was "〇 (possible)", the comprehensive evaluation was passed ("○"). If there was an "x (impossible)" in either the tensile strength or the hardness of the alumite film, the overall evaluation was rejected ("x"). The results are shown in Table 2.
表2の結果から、Si、Cu、Mg、Mn、Cr、Fe、Ca、Srの各添加元素の含有量と、Cuを1質量%以上含む晶出物、Cr含有金属間化合物、初晶Si粒などの析出物の混入量が本発明の範囲内にある実施例1~5の鍛造品は、引張強さとアルマイト皮膜の硬度の両者に優れていることが確認された。これに対し、各添加元素の含有量や析出物の混入量が本発明の範囲から外れる比較例1~14では、引張強さ及びアルマイト皮膜の硬度のうち少なくとも一方の特性が不十分であった。
From the results in Table 2, the content of each additive element of Si, Cu, Mg, Mn, Cr, Fe, Ca, Sr, the crystallized product containing 1% by mass or more of Cu, the Cr-containing intermetallic compound, and the primary crystal Si It was confirmed that the forged products of Examples 1 to 5 in which the amount of the precipitates such as grains mixed in were within the range of the present invention were excellent in both the tensile strength and the hardness of the alumite film. On the other hand, in Comparative Examples 1 to 14 in which the content of each additive element and the amount of the precipitate mixed out of the range of the present invention, at least one of the tensile strength and the hardness of the alumite film was insufficient. ..
本発明は、強度とアルマイト皮膜の形成性とに優れた摺動部品用アルミニウム合金及び摺動部品を提供する。 本発明に係る摺動部品用アルミニウム合金で構成された摺動部品は、自動車エアコン用コンプレッサー(圧縮機)の摺動部品、とりわけスクロール型コンプレッサーや電動スクロール型コンプレッサーの摺動部品として好適に使用できる。
The present invention provides an aluminum alloy for sliding parts and sliding parts having excellent strength and formability of an alumite film. The sliding component made of an aluminum alloy for sliding components according to the present invention can be suitably used as a sliding component of a compressor (compressor) for an automobile air conditioner, particularly a sliding component of a scroll type compressor or an electric scroll type compressor. ..
1 鋳造品
2 鍛造品
3 基部
4 突起部 1Casting 2 Forged 3 Base 4 Protrusions
2 鍛造品
3 基部
4 突起部 1
Claims (9)
- Siを8.0質量%以上12.0質量%以下の範囲内、Cuを0.8質量%以上1.1質量%以下の範囲内、Mgを0.4質量%以上0.6質量%以下の範囲内、Mnを0.30質量%以上0.60質量%以下の範囲内、Crを0.01質量%以上0.03質量%以下の範囲内、Feを0.10質量%以上0.30質量%以下の範囲内、Caを0.0005質量%以上0.0050質量%以下の範囲内、Srを0.00005質量%以上0.03000質量%以下の範囲内で含有し、残部がAl及び不可避不純物であって、
Caの含有量に対するSrの含有量の比Sr/Caが0.01以上30以下の範囲内にあり、
25℃における引張強さが330MPa以上380MPa以下の範囲内にあって、
Cuを1質量%以上含有し、円相当直径が5μmを超える晶出物を1182μm2あたり2個以上含まず、
長さが8μm以上のCr含有金属間化合物を1182μm2あたり2個以上含まないことを特徴とする摺動部品用アルミニウム合金。 Si is in the range of 8.0% by mass or more and 12.0% by mass or less, Cu is in the range of 0.8% by mass or more and 1.1% by mass or less, and Mg is in the range of 0.4% by mass or more and 0.6% by mass or less. Mn is in the range of 0.30% by mass or more and 0.60% by mass or less, Cr is in the range of 0.01% by mass or more and 0.03% by mass or less, and Fe is in the range of 0.10% by mass or more and 0. Ca is contained in the range of 30% by mass or less, Ca is contained in the range of 0.0005% by mass or more and 0.0050% by mass or less, Sr is contained in the range of 0.00005% by mass or more and 0.03000% by mass or less, and the balance is Al. And unavoidable impurities
The ratio of Sr content to Ca content Sr / Ca is in the range of 0.01 or more and 30 or less.
The tensile strength at 25 ° C. is in the range of 330 MPa or more and 380 MPa or less.
It contains 1% by mass or more of Cu and does not contain 2 or more crystallizations having a diameter equivalent to a circle exceeding 5 μm per 1182 μm 2 .
An aluminum alloy for sliding parts, characterized in that it does not contain two or more Cr-containing intermetallic compounds having a length of 8 μm or more per 1182 μm 2 . - 円相当直径が10μmを超える初晶Si粒を4726μm2あたり2個以上含まない請求項1に記載の摺動部品用アルミニウム合金。 The aluminum alloy for sliding parts according to claim 1, which does not contain two or more primary crystal Si grains having a diameter equivalent to a circle exceeding 10 μm per 4726 μm 2 .
- 請求項1または2に記載の摺動部品用アルミニウム合金で構成された摺動部品。 Sliding parts made of the aluminum alloy for sliding parts according to claim 1 or 2.
- 鍛造品である請求項3に記載の摺動部品。 The sliding part according to claim 3, which is a forged product.
- 表面に、ビッカース硬さが400HV以上であるアルマイト皮膜が備えられている請求項3または4に記載の摺動部品。 The sliding component according to claim 3 or 4, wherein the surface is provided with an alumite film having a Vickers hardness of 400 HV or more.
- コンプレッサーの摺動部品である請求項3から5のいずれか一項に記載の摺動部品。 The sliding component according to any one of claims 3 to 5, which is a sliding component of a compressor.
- スクロール型コンプレッサーの摺動部品である請求項3から5のいずれか一項に記載の摺動部品。 The sliding component according to any one of claims 3 to 5, which is a sliding component of a scroll type compressor.
- 電動スクロール型コンプレッサーの摺動部品である請求項3から5のいずれか一項に記載の摺動部品。 The sliding component according to any one of claims 3 to 5, which is a sliding component of an electric scroll type compressor.
- Siを8.5質量%以上12.0質量%以下で含む、請求項1に記載の摺動部品用アルミニウム合金。 The aluminum alloy for sliding parts according to claim 1, which contains Si in an amount of 8.5% by mass or more and 12.0% by mass or less.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202180072916.6A CN116529404A (en) | 2020-10-30 | 2021-10-21 | Aluminum alloy for sliding member and sliding member |
US18/033,138 US20230399723A1 (en) | 2020-10-30 | 2021-10-21 | Aluminum alloy for sliding component, and sliding component |
EP21886066.6A EP4239091A4 (en) | 2020-10-30 | 2021-10-21 | Aluminum alloy for sliding component, and sliding component |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-182092 | 2020-10-30 | ||
JP2020182092A JP7517081B2 (en) | 2020-10-30 | 2020-10-30 | Aluminum alloys for sliding parts and sliding parts |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022091948A1 true WO2022091948A1 (en) | 2022-05-05 |
Family
ID=81382432
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/038978 WO2022091948A1 (en) | 2020-10-30 | 2021-10-21 | Aluminum alloy for sliding component, and sliding component |
Country Status (5)
Country | Link |
---|---|
US (1) | US20230399723A1 (en) |
EP (1) | EP4239091A4 (en) |
JP (1) | JP7517081B2 (en) |
CN (1) | CN116529404A (en) |
WO (1) | WO2022091948A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0828493A (en) | 1994-07-14 | 1996-01-30 | Furukawa Electric Co Ltd:The | Manufacture of aluminum alloy-made scroll |
JP2005281742A (en) | 2004-03-29 | 2005-10-13 | Sanden Corp | Aluminum alloy, scroll part for fluid apparatus made of the aluminum alloy and production method therefor |
JP2005330560A (en) | 2004-05-21 | 2005-12-02 | Showa Denko Kk | Aluminum alloy, bar-shaped material, forging-formed part, machining-formed part, wear resistant aluminum alloy having excellent anodized coating hardness using the same, sliding component and their production method |
JP2020100863A (en) * | 2018-12-21 | 2020-07-02 | 昭和電工株式会社 | Aluminum alloy for compressor slide component, forging product of compressor slide component and production method thereof |
JP2020125525A (en) * | 2019-02-06 | 2020-08-20 | Bbsジャパン株式会社 | Aluminum alloy forged wheel and its production method, casting billet for producing forged wheel |
JP2020158844A (en) * | 2019-03-27 | 2020-10-01 | 昭和電工株式会社 | Scroll member and method for manufacturing scroll forging |
JP2020182092A (en) | 2019-04-24 | 2020-11-05 | セコム株式会社 | Security system and monitoring display |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3261056B2 (en) * | 1997-01-14 | 2002-02-25 | 住友軽金属工業株式会社 | High-strength wear-resistant aluminum alloy extruded material excellent in ease of forming anodized film and uniformity of film thickness and method for producing the same |
JP2000054047A (en) * | 1998-07-30 | 2000-02-22 | Nippon Light Metal Co Ltd | HYPO-EUTECTIC ALUMINUM-SILICON ALLOY IN WHICH PRIMARY CRYSTAL Si IS CRYSTALLIZED OUT AND PRODUCTION THEREOF |
JP4511156B2 (en) * | 2002-11-22 | 2010-07-28 | 昭和電工株式会社 | Aluminum alloy manufacturing method and aluminum alloy, rod-shaped material, sliding part, forged molded product and machined molded product manufactured thereby |
CN108251715A (en) * | 2018-02-08 | 2018-07-06 | 山东弗泽瑞金属科技有限公司 | Suitable for the aluminum alloy materials of vacuum low speed pressure casting method |
JP7318284B2 (en) * | 2019-04-05 | 2023-08-01 | 株式会社レゾナック | Aluminum alloys for compressor sliding parts and forgings for compressor sliding parts |
-
2020
- 2020-10-30 JP JP2020182092A patent/JP7517081B2/en active Active
-
2021
- 2021-10-21 CN CN202180072916.6A patent/CN116529404A/en active Pending
- 2021-10-21 WO PCT/JP2021/038978 patent/WO2022091948A1/en active Application Filing
- 2021-10-21 EP EP21886066.6A patent/EP4239091A4/en active Pending
- 2021-10-21 US US18/033,138 patent/US20230399723A1/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0828493A (en) | 1994-07-14 | 1996-01-30 | Furukawa Electric Co Ltd:The | Manufacture of aluminum alloy-made scroll |
JP2005281742A (en) | 2004-03-29 | 2005-10-13 | Sanden Corp | Aluminum alloy, scroll part for fluid apparatus made of the aluminum alloy and production method therefor |
JP2005330560A (en) | 2004-05-21 | 2005-12-02 | Showa Denko Kk | Aluminum alloy, bar-shaped material, forging-formed part, machining-formed part, wear resistant aluminum alloy having excellent anodized coating hardness using the same, sliding component and their production method |
JP2020100863A (en) * | 2018-12-21 | 2020-07-02 | 昭和電工株式会社 | Aluminum alloy for compressor slide component, forging product of compressor slide component and production method thereof |
JP2020125525A (en) * | 2019-02-06 | 2020-08-20 | Bbsジャパン株式会社 | Aluminum alloy forged wheel and its production method, casting billet for producing forged wheel |
JP2020158844A (en) * | 2019-03-27 | 2020-10-01 | 昭和電工株式会社 | Scroll member and method for manufacturing scroll forging |
JP2020182092A (en) | 2019-04-24 | 2020-11-05 | セコム株式会社 | Security system and monitoring display |
Non-Patent Citations (1)
Title |
---|
See also references of EP4239091A4 |
Also Published As
Publication number | Publication date |
---|---|
EP4239091A4 (en) | 2024-09-11 |
US20230399723A1 (en) | 2023-12-14 |
JP7517081B2 (en) | 2024-07-17 |
JP2022072575A (en) | 2022-05-17 |
CN116529404A (en) | 2023-08-01 |
EP4239091A1 (en) | 2023-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4996468B2 (en) | High heat resistance, high strength Co-based alloy and method for producing the same | |
CN111349827B (en) | Aluminum alloy for compressor sliding member, forged product of compressor sliding member, and method for producing forged product of compressor sliding member | |
EP2878692A1 (en) | High-strength aluminum-base alloy products and process for production thereof | |
CN110719965B (en) | Aluminum brazing sheet for fluxless brazing | |
JP4800864B2 (en) | compressor | |
KR102589669B1 (en) | Method of manufacturing scroll members and scroll forgings | |
WO2022091948A1 (en) | Aluminum alloy for sliding component, and sliding component | |
WO2022091936A1 (en) | Aluminum alloy for sliding components, and sliding component | |
WO2022091944A1 (en) | Aluminum alloy for automobile wheels, and automobile wheel | |
CN115896558B (en) | 4Xxx series aluminum alloy forging and preparation method thereof | |
EP2157201B1 (en) | Mg-based alloy | |
JP2020169378A (en) | Aluminum alloy for compressor slide components and compressor slide component forging | |
JPH09209069A (en) | Wear resistant al alloy for elongation, scroll made of this wear resistant al alloy for elongation, and their production | |
JP3920656B2 (en) | High rigidity aluminum alloy containing boron | |
JP4148801B2 (en) | Wear-resistant Al-Si alloy having excellent machinability and casting method thereof | |
JP3684245B2 (en) | Aluminum alloy for cold forging | |
JP7318283B2 (en) | Aluminum alloys for compressor sliding parts and forgings for compressor sliding parts | |
JP7318281B2 (en) | Aluminum alloys for compressor sliding parts and forgings for compressor sliding parts | |
JP7468931B2 (en) | Magnesium alloy, magnesium alloy plate, magnesium alloy rod, and methods for producing the same, and magnesium alloy member | |
US20210285077A1 (en) | High temperature cast aluminum-copper-manganese-zirconium alloys with low temperature ductility | |
WO2022270483A1 (en) | Hydrogen embrittlement prevention agent for aluminum alloy material | |
Yang et al. | Effects of Ti Content on the Microstructure and Mechanical Properties of Al0. 2CoCrFeNi2Tix High-Entropy Alloys | |
Senkova et al. | Microstructure and tensile properties of developmental Al-Zn-Mg-Cu cast alloys modified with Sc and Zr | |
WO2024211138A1 (en) | Nickel-base alloys | |
CN115141954A (en) | Copper alloy and method for producing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21886066 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202180072916.6 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021886066 Country of ref document: EP Effective date: 20230530 |