EP0517087B1 - Method for manufacturing copper alloys - Google Patents

Method for manufacturing copper alloys Download PDF

Info

Publication number
EP0517087B1
EP0517087B1 EP92108922A EP92108922A EP0517087B1 EP 0517087 B1 EP0517087 B1 EP 0517087B1 EP 92108922 A EP92108922 A EP 92108922A EP 92108922 A EP92108922 A EP 92108922A EP 0517087 B1 EP0517087 B1 EP 0517087B1
Authority
EP
European Patent Office
Prior art keywords
cooling
hours
alloy
content
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92108922A
Other languages
German (de)
French (fr)
Other versions
EP0517087A1 (en
Inventor
Wolfgang Dr.-Ing. Hornig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diehl Verwaltungs Stiftung
Original Assignee
Diehl GmbH and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diehl GmbH and Co filed Critical Diehl GmbH and Co
Publication of EP0517087A1 publication Critical patent/EP0517087A1/en
Application granted granted Critical
Publication of EP0517087B1 publication Critical patent/EP0517087B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Definitions

  • the invention relates to a process for the production of hardenable, in particular spinodal, copper alloys of very high strength and very good formability, with a content of 2-10% Ni and 2-12% Sn, preferably 0.05-0.6% Mn, the rest Cu and common impurities.
  • the invention relates generally to the field of precipitation hardening alloys, in particular so-called spinodal alloys.
  • the field of spinodal alloys is still little explored, and it is known that there are not many spinodal alloy systems, but that there is still little clarity about the properties that can be used to predict whether or not a spinodal alloy will be formed.
  • Spinodal alloys are characterized by a significantly increased strength compared to normal precipitation hardening alloys due to an order of magnitude better, namely finer structure. This occurs because there are no precipitation particles in the metal matrix, but only diffusion zones in the range of nanometers. With the copper-nickel-tin alloy system, strength increases of two to three times the normal alloy are possible.
  • the object of the invention was therefore to provide, starting from an alloy composition, as stated above, a method by means of which hardenable, in particular spinodal, alloys can be produced with significantly higher strength and better formability.
  • the alloy produced according to the process explained above is not only characterized by an unusual strength, but also by excellent forming properties, i.e. very good deep drawability. Due to these properties, the new alloy is not only useful in the electronics industry, particularly in modules or in construction technology, there are also applications in automotive technology where, in addition to high strength, good corrosion resistance is required, there is also Possibility of use in aircraft technology for high-strength castings or in transmission technology. Due to the good material properties, an application is also conceivable where friction and wear are important.
  • nickel and tin levels are quite large, the higher levels for nickel and tin have proven to be particularly advantageous.
  • a ratio of the constituents nickel to tin between 0.3: 1 and 1: 1 has proven to be particularly favorable in the sense of the invention.
  • the cooling process between solution annealing and aging is not critical with regard to the cooling rate.
  • the cooling can take place both by quenching and at an average cooling rate, for example when blowing with air.
  • the alloy can be cast not only in blocks, but also in strip, in the latter case a cold rolling process must follow before solution annealing. This method is defined in claim 6.
  • the low manganese content mentioned is not mandatory in the sense of the invention, but is advantageous in order to achieve a pore-free casting.
  • the amount of manganese added must remain so small that the manganese does not become an alloy component. Due to the high affinity of the manganese for oxygen, the air present in the melt is bound so that the casting is free of pores.
  • this usually means applying cold deformation, increase the strength of the alloy even more, but the ductility tends to decrease, as does the conductivity, at which average values of up to about 35% IACS can be achieved due to the method according to the invention are.
  • the alloy is first cast in blocks. This is followed by solution annealing at a temperature of 750 ° C for four hours. After quenching the blocks in cold water, they are stored at a temperature of 320 ° C for 19.5 hours and finally cooled in an air stream.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

The invention relates to a method for manufacturing copper alloys of very high strength and very good formability, having a content of 2 to 10% of Ni, 2 to 12% of Sn, the remainder being Cu and usual impurities. Strengths of up to 1,500 N/mm<2> are achieved by solution-annealing after casting at 650 DEG C to 800 DEG C for a period of from 24 hours to 3 hours and - after preceding quenching, cold-forming being omitted - ageing for a period of from 14 days to 15 minutes at a temperature in the range from 260 DEG C to 380 DEG C.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung von aushärtbaren, insbesondere spinodalen, Kupferlegierungen sehr hoher Festigkeit und sehr guter Umformbarkeit, mit einem Gehalt von 2 - 10 % Ni und 2 - 12 % Sn, vorzugsweise 0,05 - 0,6 % Mn, Rest Cu und übliche Verunreinigungen.The invention relates to a process for the production of hardenable, in particular spinodal, copper alloys of very high strength and very good formability, with a content of 2-10% Ni and 2-12% Sn, preferably 0.05-0.6% Mn, the rest Cu and common impurities.

Die Erfindung bezieht sich allgemein auf das Gebiet ausscheidungshärtender Legierungen, insbesondere sogenannter spinodaler Legierungen. Das Gebiet spinodaler Legierungen ist noch wenig erforscht und man weiß bisher, daß es nicht viele spinodale Legierungssysteme gibt, daß jedoch über die Eigenschaften noch wenig Klarheit besteht, aufgrund derer man vorherbestimmen kann, ob eine spinodale Legierung entsteht oder nicht. Spinodale Legierungen zeichnen sich gegenüber den normalen ausscheidungshärtenden Legierungen durch eine wesentlich gesteigerte Festigkeit aus aufgrund eines um Größenordnungen besseren, nämlich feineren Gefüges. Dieses entsteht, weil in der Metallmatrix keine Ausscheidungsteilchen, sondern nur noch Diffusionszonen im Bereich von Nanometern angeordnet sind. Bei dem Legierungssystem Kupfer-Nickel-Zinn sind Festigkeitssteigerungen auf das zwei- bis dreifache der normalen Legierung möglich. Während beispielsweise eine handelsübliche Legierung CuNi9Sn2, hergestellt nach dem üblichen Verfahren, Festigkeiten von etwa 600 N/mm erwarten läßt, sind bei der erfindungsgemäß hergestellten spinodalen Legierungen Festigkeiten bis zu 1.500 N/mm möglich.The invention relates generally to the field of precipitation hardening alloys, in particular so-called spinodal alloys. The field of spinodal alloys is still little explored, and it is known that there are not many spinodal alloy systems, but that there is still little clarity about the properties that can be used to predict whether or not a spinodal alloy will be formed. Spinodal alloys are characterized by a significantly increased strength compared to normal precipitation hardening alloys due to an order of magnitude better, namely finer structure. This occurs because there are no precipitation particles in the metal matrix, but only diffusion zones in the range of nanometers. With the copper-nickel-tin alloy system, strength increases of two to three times the normal alloy are possible. For example, while a commercially available alloy CuNi9Sn2, produced by the usual method, can be expected to have strengths of around 600 N / mm, strengths of up to 1,500 N / mm are possible in the spinodal alloys produced according to the invention.

In der US-PS 5 019 185 ist eine Legierung erläutert, welche einen Gehalt von 3 - 25 % Nickel, 3 - 9 % Zinn, 0,05 - 1,5 % Mangan, Rest Kupfer aufweist. Diese hochfeste Legierung wird in zwei Stufen lösungsgeglüht, jeweils gefolgt von einem Abschrecken. Der 1.Glühvorgang erfolgt bei mindestens 800°C, vorzugsweise 820 °C mit 45 Minuten Dauer, der 2. bei 600 - 770°C, vorzugsweise mit 700 °C und ebenfalls 45 Minuten Dauer. Anschließend erfolgt ein Kaltwalzvorgang mit einem Umformungsverhältnis von 0 - 60 %, vorzugsweise 12 %, in Sonderfällen 40 bis 60 %. Nach der Kaltverformung wird eine Auslagerung bei 350 °C bis 500 °C während einer Zeit von 3 - 300 Minuten vorgenommen. In dieser Druckschrift ist zwar eine hohe Festigkeit nach der Auslagerung angesprochen, aber nicht erwähnt, daß eine Druckeinglasung möglich ist. Bisher galten Kupferlegierungen nicht als druckeinglasungsfähig.An alloy is described in US Pat. No. 5,019,185 which has a content of 3-25% nickel, 3-9% tin, 0.05-1.5% manganese, the rest copper. This high strength alloy is solution annealed in two stages, each followed by quenching. The first annealing takes place at at least 800 ° C, preferably 820 ° C with a duration of 45 minutes, the second at 600 - 770 ° C, preferably with 700 ° C and also 45 minutes. This is followed by a cold rolling process with a forming ratio of 0 - 60%, preferably 12%, in special cases 40 to 60%. After cold forming, aging is carried out at 350 ° C to 500 ° C for a period of 3 - 300 minutes. In this document, a high strength after the aging is addressed, but does not mention that pressure glazing is possible. So far, copper alloys have not been considered pressure-glazing.

Der Erfindung war daher die Aufgabe gestellt ausgehend von einer Legierungszusammensetzung, wie vorstehend angegeben, ein Verfahren anzugeben durch welches aushärtbare, insbesondere spinodale Legierungen mit entscheidend höherer Festigkeit und besserer Umformbarkeit hergestellt werden können.The object of the invention was therefore to provide, starting from an alloy composition, as stated above, a method by means of which hardenable, in particular spinodal, alloys can be produced with significantly higher strength and better formability.

Zur Lösung dieser Aufgabe schlägt die Erfindung die nachfolgenden Verfahrensschritte vor:

  • a) Guß der Legierung in Blöcken
  • b) einstufiges Lösungsglühen bei 650°C bis 750°C während 24 bis 3 Stunden
  • c) Abkühlen und - ohne einen Kaltverformungsschritt -
  • d) Auslagern bei 260°C bis 380°C, ausgenommen 350°C und mehr, während 14 Tagen bis 15 min.
  • e) in Luft abkühlen.
To achieve this object, the invention proposes the following method steps:
  • a) Cast the alloy in blocks
  • b) single-stage solution annealing at 650 ° C to 750 ° C for 24 to 3 hours
  • c) cooling and - without a cold forming step -
  • d) aging at 260 ° C to 380 ° C, except 350 ° C and more, for 14 days to 15 min.
  • e) cool in air.

Die nach dem vorstehend erläuterten Verfahren hergestellte Legierung zeichnet sich nicht nur durch eine ungewöhnliche Festigkeit aus, sondern auch durch exzellente Umformeigenschaften, d.h. sehr gute Tiefziehbarkeit. Aufgrund dieser Eigenschaften ist die neue Legierung nicht nur in der Elektronikindustrie, dort insbesondere bei Modulen oder in der Aufbautechnik gut brauchbar, es bieten sich Anwendungen in der Automobiltechnik dort an, wo neben der hohen Festigkeit eine gute Korrosionsbeständigkeit verlangt wird, es besteht aber auch die Möglichkeit der Anwendung in der Flugzeugtechnik bei hochfesten Gußteilen oder in der Getriebetechnik. Aufgrund der guten Werkstoffeigenschaften ist auch eine Anwendung dort denkbar, wo es auf Reibung und Verschleiß ankommt.The alloy produced according to the process explained above is not only characterized by an unusual strength, but also by excellent forming properties, i.e. very good deep drawability. Due to these properties, the new alloy is not only useful in the electronics industry, particularly in modules or in construction technology, there are also applications in automotive technology where, in addition to high strength, good corrosion resistance is required, there is also Possibility of use in aircraft technology for high-strength castings or in transmission technology. Due to the good material properties, an application is also conceivable where friction and wear are important.

Wenngleich der Bereich der Gehalte an Nickel und Zinn recht groß ist, haben sich doch die höheren Gehalte für Nickel und Zinn als besonders vorteilhaft erwiesen. Im Sinne der Erfindung sind daher Gehalte von 6 bis 9 % Nickel und 6 bis 10 % Zinn sowie vorzugsweise 0,05 bis 0,6 % Mangan, Rest Kupfer, besonders bevorzugt.Although the range of nickel and tin levels is quite large, the higher levels for nickel and tin have proven to be particularly advantageous. For the purposes of the invention, contents of 6 to 9% nickel and 6 to 10% tin and preferably 0.05 to 0.6% manganese, the rest copper, are particularly preferred.

Es wurde nämlich gefunden, daß bereits bei der Bearbeitung der handelsüblichen Legierung CuNi9Sn2 nach dem erfindungsgemäßen Verfahren sehr gute Festigkeitswerte erzielt werden können. Erhöht man jedoch den Zinngehalt bei gleichbleibendem Nickelgehalt auf Werte von 8 bis 10 % Zinn, so steigt die Festigkeit ganz ungewöhnlich an. Gleichzeitig bietet sich durch die Erhöhung des Zinngehaltes die hervorragende Möglichkeit, die Auslagerungszeit entscheidend zu verkürzen.It has been found that very good strength values can be achieved even when the commercially available alloy CuNi9Sn2 is processed by the process according to the invention. However, if the tin content is increased to values of 8 to 10% tin while the nickel content remains the same, the strength increases quite unusually. At the same time, increasing the tin content offers an excellent opportunity to significantly shorten the aging time.

Als wesentlicher Grundgedanke der Erfindung ist aufgrund des Vorgesagten festzuhalten, daß nach dem Lösungsglühen der Legierung keine Kaltverformung vorgenommen werden darf, sondern nach entsprechender Abkühlung eine Auslagern erfolgen muß. Die Auslagerzeit wird kürzer, je höher die Temperatur innerhalb des angegebenen Temperaturbereiches liegt und sie wird, wie bereits gesagt, kürzer, je höher der Zinngehalt ist. Andererseits steigen Festigkeit und Leitfähigkeit mit zunehmender Auslagerungszeit.As an essential basic idea of the invention, it should be stated on the basis of the foregoing that after the alloy has been solution-annealed, no cold working may be carried out, but that it has to be outsourced after cooling. The aging time is shorter, the higher the temperature is within the specified temperature range and, as already mentioned, it is shorter, the higher the tin content. On the other hand, strength and conductivity increase with increasing aging time.

Als im Sinne der Erfindung besonders günstig hat sich ein Verhältnis der Bestandteile Nickel zu Zinn zwischen 0,3 : 1 und 1 : 1 erwiesen.A ratio of the constituents nickel to tin between 0.3: 1 and 1: 1 has proven to be particularly favorable in the sense of the invention.

Der Abkühlvorgang zwischen dem Lösungsglühen und dem Auslagern ist hinsichtlich der Abkühlgeschwindigkeit nicht kritisch. Das Abkühlen kann sowohl durch Abschrecken als auch bei mittlerer Abkühlgeschwindigkeit, beispielsweise bei Anblasen mit Luft, erfolgen.The cooling process between solution annealing and aging is not critical with regard to the cooling rate. The cooling can take place both by quenching and at an average cooling rate, for example when blowing with air.

Der Guß der Legierung kann nicht nur in Blöcken, sondern auch im Band erfolgen, wobei im letzteren Fall sich ein Kaltwalzvorgang vor dem Lösungsglühen anschließen muß. Dieses Verfahren ist definiert in Anspruch 6.The alloy can be cast not only in blocks, but also in strip, in the latter case a cold rolling process must follow before solution annealing. This method is defined in claim 6.

Der erwähnte geringe Gehalt an Mangan ist im Sinne der Erfindung nicht zwingend, jedoch vorteilhaft, um einen porenfreien Guß zu erzielen. Die Menge des zugesetzten Mangans muß dabei so gering bleiben, daß das Mangan nicht Legierungsbestandteil wird. Aufgrund der hohen Affinität des Mangans zu Sauerstoff wird die in der Schmelze vorhandene Luft gebunden, so daß sich die Porenfreiheit des Gußteils ergibt.The low manganese content mentioned is not mandatory in the sense of the invention, but is advantageous in order to achieve a pore-free casting. The amount of manganese added must remain so small that the manganese does not become an alloy component. Due to the high affinity of the manganese for oxygen, the air present in the melt is bound so that the casting is free of pores.

Weitere Verarbeitungsvorgänge an der fertigen Legierung, dies bedeutet in aller Regel ein Aufbringen von Kaltverformung, erhöhen die Festigkeit der Legierung noch mehr, wobei jedoch die Duktilität tendenziell zurückgeht, ebenso die Leitfähigkeit, bei welcher aufgrund des erfindungsgemäßen Verfahrens mittlere Werte bis etwa 35 % IACS erzielbar sind.Further processing operations on the finished alloy, this usually means applying cold deformation, increase the strength of the alloy even more, but the ductility tends to decrease, as does the conductivity, at which average values of up to about 35% IACS can be achieved due to the method according to the invention are.

Nachfolgend soll noch ein Beispiel zur Herstellung der erfindungsgemäßen Legierung erläutert werden. Die Legierung wird zunächst in Blöcken gegossen. Anschließend erfolgt eine Lösungsglühung bei einer Temperatur von 750 °C während vier Stunden. Nach Abschrecken der Blöcke in kaltem Wasser werden diese bei einer Temperatur von 320 °C während einer Zeit von 19,5 Stunden ausgelagert und schließlich im Luftstrom abgekühlt.An example of the production of the alloy according to the invention will be explained below. The alloy is first cast in blocks. This is followed by solution annealing at a temperature of 750 ° C for four hours. After quenching the blocks in cold water, they are stored at a temperature of 320 ° C for 19.5 hours and finally cooled in an air stream.

Wenn besonders hohe Festigkeitswerte von mehr als 1.300 N/mm erreicht werden sollen, so ist es zweckmäßig, als Ausgangsprodukt gegossenes Band zu verwenden, das anschließend kaltgewalzt wurde. Anschließend erfolgt dann ein Lösungsglühen bei einer Temperatur von 750 °C während einer Zeit von einer Stunde. Nach dem Abschrecken in kaltem Wasser wird bei 320 °C ebenfalls wieder 19,5 Stunden ausgelagert. Die Zusammensetzung der Legierung bei den beiden Beispielen war 9 % Ni, 11 % Sn, 0,14 % Mn, Rest Cu und Verunreinigungen.If particularly high strength values of more than 1,300 N / mm are to be achieved, it is advisable to use cast strip as the starting product, which was then cold-rolled. Solution annealing is then carried out at a temperature of 750 ° C. for a period of one hour. After quenching in cold water, aging is again carried out at 320 ° C. for 19.5 hours. The composition of the alloy in the two examples was 9% Ni, 11% Sn, 0.14% Mn, balance Cu and impurities.

Zur Verkürzung der Auslagerungszeit durch Verwendung höherer Zinngehalte wurden in Versuchen folgende Ergebnisse erzielt. Um einen mittleren Festigkeitswert von 600 N/mm zu erzielen, wurde nach einem vorangegangenen Lösungsglühen von 30 min. bei 750 °C am Ausgangsprodukt kaltgewalztes Band bei einer Auslagerungstemperatur von 320 °C folgende Zeiten erforderlich: CuNi9Sn2 6 Tage CuNi9Sn5 4 Stunden CuNi9Sn7 30 Minuten. In experiments, the following results were achieved in order to shorten the aging time by using higher tin contents. In order to achieve an average strength value of 600 N / mm, after a previous solution annealing of 30 min. at 750 ° C on the raw product cold-rolled strip at an aging temperature of 320 ° C the following times are required: CuNi9Sn2 6 days CuNi9Sn5 4 hours CuNi9Sn7 30 minutes.

Daraus ist erkennbar, daß die Erhöhung der Zinngehalte eine wesentliche Verkürzung der Auslagerungszeit erbringt und damit eine wesentliche Reduzierung der Kosten der Produktion. Werden höhere Festigkeitswerte und/oder Leitfähigkeiten verlangt, so muß die Auslagerungszeit entsprechend verlängert werden. Siehe das vorstehend erläuterte Beispiel.From this it can be seen that the increase in the tin content brings about a significant reduction in the aging time and thus a substantial reduction in the cost of production. If higher strength values and / or conductivities are required, the aging time must be extended accordingly. See the example explained above.

Als Ergebnis des beschriebenen erfindungsgemäßen Verfahrens erhält man also eine Legierung von ungewöhnlicher Festigkeit, hoher Umformbarkeit und mittlerer Leitfähigkeit, die zu günstigen Kosten hergestellt werden kann.As a result of the described method according to the invention, an alloy of unusual strength, high formability and medium conductivity is obtained, which can be produced at low cost.

Claims (8)

  1. Method of manufacturing temper-hardenable, in particular spinodal, copper alloys of very great strength and very good transformability, with a content of 2 to 10% Ni and 2 to 12% Sn, preferably 0.05 - 0.6% Mn, rest Cu and the usual impurities, with the following procedural steps:
    a) casting of the alloy in ingots
    b) single-stage solution heat treatment at 650°C to 750°C for 24 to 3 hours
    c) cooling - and without a cold-forming step -
    d) age-hardening at 260°C to 380°C, apart from 350°C and more, for 14 days to 15 min.
    e) cooling in air.
  2. Method according to Claim 1,
    characterized by an application of the procedural steps to alloys with a content of 2 - 9% Ni and 6 -10% Sn as well as 0.05 - 0.6% Mn, rest Cu and the usual impurities.
  3. Method according to Claim 1,
    characterized in that
    the ratio of the constituents nickel to tin lies between 0.3 : 1 and 1 : 1.
  4. Method according to Claim 1,
    characterized in that
    procedural step b) takes place at a temperature of 750°C for four hours.
  5. Method according to Claim 1,
    characterized in that
    the cooling during procedural step c) is effected by quenching.
  6. Method of manufacturing temper-hardenable, in particular spinodal, copper alloys of very great strength and very good transformability, with a content of 2 to 10% Ni and 2 to 12% Sn, preferably 0.05 - 0.6% Mn, rest Cu and the usual impurities, with the following procedural steps:
    a) casting of the alloy in a strip
    a1) cold-rolling
    b) solution heat treatment at 650°C to 750°C for 24 to 0.5 hours
    c) cooling and - without a cold-forming step -
    d) age-hardening at 260°C to 380°C, apart from 350°C and more, for 14 days to 15 min.
    e) cooling in air.
  7. Method according to one or more of the preceding claims in the case of an alloy with a content of 9% Ni, 11% Sn, 0.14% Mn, rest Cu and the usual impurities, characterized by the following procedural steps:
    a) casting in ingots
    b) solution heat treatment at 750°C for 4 hours
    c) cooling
    d) age-hardening at 320°C for 19.5 hours
    e) cooling in air
  8. Method according to Claims 6 and 7,
    with the special feature that in the case of procedural step b) the solution heat treatment takes place at 750°C for one hour.
EP92108922A 1991-06-01 1992-05-27 Method for manufacturing copper alloys Expired - Lifetime EP0517087B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE4118037 1991-06-01
DE4118037 1991-06-01
DE4215576 1992-05-12
DE4215576A DE4215576A1 (en) 1991-06-01 1992-05-12 METHOD FOR PRODUCING COPPER ALLOYS

Publications (2)

Publication Number Publication Date
EP0517087A1 EP0517087A1 (en) 1992-12-09
EP0517087B1 true EP0517087B1 (en) 1996-02-28

Family

ID=25904167

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92108922A Expired - Lifetime EP0517087B1 (en) 1991-06-01 1992-05-27 Method for manufacturing copper alloys

Country Status (3)

Country Link
EP (1) EP0517087B1 (en)
AT (1) ATE134715T1 (en)
DE (2) DE4215576A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3536819B1 (en) * 2013-03-14 2024-04-17 Materion Corporation Process for improving formability of wrought copper-nickel-tin alloys

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6716292B2 (en) * 1995-06-07 2004-04-06 Castech, Inc. Unwrought continuous cast copper-nickel-tin spinodal alloy
NZ309290A (en) * 1995-06-07 2000-02-28 Inc Castech Unwrought continuous cast copper-nickel-tin spinodal alloy
CN113201661B (en) * 2021-04-25 2022-04-08 江苏青益金属科技股份有限公司 Alloy wire for heating car seat and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1928747A (en) * 1928-10-11 1933-10-03 Int Nickel Co Nonferrous alloy
US4012240A (en) * 1975-10-08 1977-03-15 Bell Telephone Laboratories, Incorporated Cu-Ni-Sn alloy processing
US4142918A (en) * 1978-01-23 1979-03-06 Bell Telephone Laboratories, Incorporated Method for making fine-grained Cu-Ni-Sn alloys
US4260432A (en) * 1979-01-10 1981-04-07 Bell Telephone Laboratories, Incorporated Method for producing copper based spinodal alloys
US4406712A (en) * 1980-03-24 1983-09-27 Bell Telephone Laboratories, Incorporated Cu-Ni-Sn Alloy processing
JPH02225651A (en) * 1988-11-15 1990-09-07 Mitsubishi Electric Corp Manufacture of high strength cu-ni-sn alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3536819B1 (en) * 2013-03-14 2024-04-17 Materion Corporation Process for improving formability of wrought copper-nickel-tin alloys

Also Published As

Publication number Publication date
EP0517087A1 (en) 1992-12-09
DE4215576A1 (en) 1992-12-03
DE59205433D1 (en) 1996-04-04
ATE134715T1 (en) 1996-03-15

Similar Documents

Publication Publication Date Title
EP1683882B1 (en) Aluminium alloy with low quench sensitivity and process for the manufacture of a semi-finished product of this alloy
DE2350389C2 (en) Process for the production of a copper-nickel-tin alloy with improved strength and high ductility at the same time
EP1718778B1 (en) Material based on an aluminum alloy, method for the production thereof and its use
EP1247873B1 (en) Process for producing AlMn strip or sheet
DE3852092T2 (en) High-strength titanium material with improved ductility and process for producing this material.
EP0264463B1 (en) Copper-chromium-titanium-silicon alloy, process for its production and its use
DE2704765A1 (en) COPPER ALLOY, METHOD OF MANUFACTURING IT AND ITS USE FOR ELECTRIC CONTACT SPRINGS
DE2809561C2 (en) Use of a copper alloy for semi-finished products with good electrical and mechanical properties
DE3619706A1 (en) HIGH-STRENGTH STAINLESS STEEL
EP0035069B1 (en) Memory alloy based on cu-al or on cu-al-ni and process for the stabilisation of the two-way effect
DE3881002T2 (en) THROUGH HEAT TREATMENT, HARDENABLE HOT ROLLED STEEL FINE SHEET WITH EXCELLENT COLD FORMABILITY AND METHOD FOR THE PRODUCTION THEREOF.
EP0926251B1 (en) Process for making and using a copper-tin-titanium alloy
EP0517087B1 (en) Method for manufacturing copper alloys
DE2948916C2 (en) Copper-tin alloy, process for their manufacture and use
DE3486352T2 (en) Aluminum-lithium alloy.
EP1748088B1 (en) Process for producing a semi-finished product or component for chassis or structural automotive applications
EP0811700B1 (en) Deep drawable and weldable AlMgSi type aluminium alloy
DE2840419A1 (en) IMPROVING THE ELECTRICAL CONDUCTIVITY OF ALUMINUM ALLOYS BY ADDING YTTRIUM
DE102018115850B3 (en) Method for producing an aluminum strip with high strength and high electrical conductivity
EP1063310B1 (en) Use of a tin rich copper-tin-iron alloy
EP0714993A1 (en) Deep drawable and weldable AlMgSi type aluminium alloy
DE60310381T2 (en) AL-MG ALLOY BRACKET OR TAPE FOR THE PRODUCTION OF CURVED PARTS WITH SMALL BENDING ADLER
EP0302255A1 (en) Use of a copper alloy for continuous-casting moulds
DE19832489A1 (en) Wrought aluminium-magnesium-silicon alloy
EP0779372A1 (en) Overhead contact wire for high speed electrical railways and process for manufacturing the same

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19920930

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE FR GB IT NL

17Q First examination report despatched

Effective date: 19940628

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR GB IT NL

REF Corresponds to:

Ref document number: 134715

Country of ref document: AT

Date of ref document: 19960315

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59205433

Country of ref document: DE

Date of ref document: 19960404

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960426

Year of fee payment: 5

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960520

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19960521

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19960531

Year of fee payment: 5

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960509

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960720

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19970527

Ref country code: AT

Effective date: 19970527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19971201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980130

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19971201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980203

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050527