EP0035069B1 - Memory alloy based on cu-al or on cu-al-ni and process for the stabilisation of the two-way effect - Google Patents

Memory alloy based on cu-al or on cu-al-ni and process for the stabilisation of the two-way effect Download PDF

Info

Publication number
EP0035069B1
EP0035069B1 EP19800200183 EP80200183A EP0035069B1 EP 0035069 B1 EP0035069 B1 EP 0035069B1 EP 19800200183 EP19800200183 EP 19800200183 EP 80200183 A EP80200183 A EP 80200183A EP 0035069 B1 EP0035069 B1 EP 0035069B1
Authority
EP
European Patent Office
Prior art keywords
temperature
memory alloy
way effect
weight
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19800200183
Other languages
German (de)
French (fr)
Other versions
EP0035069A1 (en
Inventor
Keith Dr. Melton
Olivier Dr. Mercier
Helmut Dr. Riegger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBC Brown Boveri AG Switzerland
Original Assignee
BBC Brown Boveri AG Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBC Brown Boveri AG Switzerland filed Critical BBC Brown Boveri AG Switzerland
Priority to DE8080200183T priority Critical patent/DE3065930D1/en
Priority to EP19800200183 priority patent/EP0035069B1/en
Priority to PT7259081A priority patent/PT72590B/en
Priority to JP2850381A priority patent/JPS56136945A/en
Publication of EP0035069A1 publication Critical patent/EP0035069A1/en
Application granted granted Critical
Publication of EP0035069B1 publication Critical patent/EP0035069B1/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/01Alloys based on copper with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/006Resulting in heat recoverable alloys with a memory effect

Definitions

  • the invention is based on a shape memory alloy according to the preamble of claim 1 and on a method for stabilizing the two-way effect according to the preamble of claims 6 and 7.
  • Copper-rich shape memory alloys which have a ⁇ -phase ( ⁇ -brass type) capable of martensitic transformation have been known for a long time, e.g. B. from: R. Haynes, Some Observations on Isothermal Transformations of Eutectoid Aluminum Bronzes Below Their M s Temperatures, Journal of the Institute of Metals 1954-55, Vol. 83, pages 357-358; WA Rachinger, A "super-elastic" single crystal calibration bar, British Journal of Applied Physics, Vol. 9, June 1958, pages 250-252; RP Jewett, DJ Mack, Further Investigation of Copper-Aluminum Alloys in the Temperature Range below the Eutectoid, Journal of the Institute of Metals 1963-64, Vol.
  • these alloys show a clear memory effect compared to the also known Ni / Ti alloys in a temperature range of more than 100 ° C (which is particularly interesting for temperature monitoring devices and overcurrent switches), they are metastable. This means that they are subjected to diffusion-related phase changes in the desired temperature range. At the response temperature or just above it, the high-temperature ß phase changes and the memory effect is lost.
  • the invention is based on the object of specifying aging-resistant memory alloys of the Cu / Al or Cu / Al / Ni type at temperatures above 100 ° C. and a method for their production or stabilization of the two-way effect.
  • the method of stabilization consists essentially in a heat treatment of the alloy in the cast or hot-kneaded state after the last annealing in the ⁇ mixed crystal region in the temperature range from 600 to 950 ° C. (5 to 60 min) and before the induction of the two-way effect.
  • the heat treatment is an annealing in the temperature range of 200 to 350 ° C, which can in principle be carried out in two ways. In a first process, the alloy is quenched to room temperature after the last annealing in the ⁇ mixed crystal region and then tempered in the temperature range from 200 to 350 ° C. for 0.1 to 10 h.
  • the alloy is quenched from the ⁇ mixed crystal region directly into an oil, salt, metal or sand bath at 250 to 350 ° C. after the last annealing, held here for 0.5 to 10 min and finally at the Air cooled to room temperature.
  • this heat treatment is followed by a deformation of 1 to 6% in the range from 30 ° C. above to 50 ° C. below the point of the martensitic transformation M s in order to induce the two-way memory effect.
  • the process extends to the entire alloy group of the ⁇ -type Cu / Al and Cu / Al / Ni, in particular to alloys with 10 to 15% by weight aluminum, 0 to 6% by weight nickel, the rest copper.
  • the nickel in the alloys of the Cu / Al / Ni type can be partially or completely replaced by manganese, iron, cobalt or a mixture of at least two of these elements. Alloys produced by this process are resistant to aging up to 300 ° C, i. H. they mainly consist of the ⁇ high-temperature phase and show a stable two-way effect.
  • the alloy was produced by melt metallurgy, cast into an ingot and then hot-worked at 700 ° C. in such a way that a rod of 10 mm in diameter was produced. The rod was then subjected to annealing in the ⁇ mixed-crystal region for 10 min at 750 ° C. and quenched in water. Torsion samples with a total measuring length of 40 mm and a measuring length of 22 mm and a diameter of 3 mm were worked out from the rod. The two-way effect was induced by subjecting the samples to torsional stress near the martensitic transformation point M S (150 ° C) such that the torsional strain was gradually increased to 4 to 5% while going through a heating / cooling cycle. The samples were then heated at a temperature of Annealed at 300 ° C. The check showed that the memory effect had completely disappeared.
  • Example 1 An alloy according to Example 1 was melted, cast, thermoformed, annealed and quenched in water in a manner similar to Example 1. The rod obtained was then additionally tempered at 300 ° C. for 3 hours. After working out the samples according to Example I, the two-way effect was induced in the same way. After an additional annealing of the samples for 8 hours at 300 ° C, the two-way effect had not subsided in any way. Even after an annealing period of 500 h at 300 ° C, a two-way effect was still detectable - albeit weaker.
  • Example II An alloy according to Example I was melted, cast and thermoformed into a 10 mm diameter rod. A strip 1.5 mm thick and 10 mm wide was produced from this rod by hot rolling. Bending samples of 60 mm in length were cut from this and subjected to the usual annealing at 750 ° C. for 10 minutes. The samples were then quenched directly into a salt bath at 300 ° C., held at this temperature for 2 minutes and then cooled in air. During the cooling process, the samples were bent through an angle of 90 ° C, which induced the two-way effect. After heating to 300 ° C for several hours, the effect could be demonstrated in undiminished size.
  • the invention is not limited to the examples above.
  • the method can in principle be applied to all ß-copper alloys of the Cu / Al or Cu / Al / Ni type.
  • Another cheap legation has the following composition:
  • the level of the transition temperature Ms can apparently be greatly influenced by small variations in the aluminum content.
  • the above-mentioned substitutes manganese, iron, cobalt can also be used.
  • the method according to the invention creates memory alloys which are resistant to aging beyond the range of temperature monitoring customary in electrical engineering and in many industrial and household applications and have a stable two-way effect. In doing so, they are closing a previously existing gap in surveillance technology.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
  • Heat Treatment Of Articles (AREA)
  • Adornments (AREA)

Description

Die Erfindung geht aus von einer Formgedächtnislegierung nach der Gattung des Anspruchs 1 und von einem Verfahren zur Stabilisierung des Zweiwegeffektes nach der Gattung der Ansprüche 6 und 7.The invention is based on a shape memory alloy according to the preamble of claim 1 and on a method for stabilizing the two-way effect according to the preamble of claims 6 and 7.

Kupferreiche Formgedächtnislegierungen, welche eine zur martensitischen Umwandlung befähigte β-Phase (ß-Messing-Typ) aufweisen, sind seit längerer Zeit bekannt z. B. aus: R. Haynes, Some Observations on Isothermal Transformations of Eutectoid Aluminium Bronzes Below Their Ms Temperatures, Journal of the Institute of Metals 1954-55, Vol.83, Seiten 357-358; W. A. Rachinger, A »super-elastic« single crystal calibration bar, British Journal of Applied Physics, Vol. 9, Juni 1958, Seiten 250-252; R. P. Jewett, D. J. Mack, Further Investigation of Copper-Aluminium Alloys in the Temperature Range below the

Figure imgb0001
Eutectoid, Journal of the Institute of Metals 1963-64, Vol. 92, Seiten 59-61; K. Otsuka and K. Shimizu, Memory Effect and Thermoelastic Martensite Transformation in Cu-AI-Ni-Alloy, Scripta Metallurgia, Vol. 4, 1970 Pergamon Press Inc., Seiten 469-472; Kazuhiro Otsuka, Origin of Memory Effect in Cu-AI-Ni-Alloy, Japanese Journal of Applied Physics, Vol. 10, No. 5, May 1971, Seiten 571 - 579.Copper-rich shape memory alloys which have a β-phase (β-brass type) capable of martensitic transformation have been known for a long time, e.g. B. from: R. Haynes, Some Observations on Isothermal Transformations of Eutectoid Aluminum Bronzes Below Their M s Temperatures, Journal of the Institute of Metals 1954-55, Vol. 83, pages 357-358; WA Rachinger, A "super-elastic" single crystal calibration bar, British Journal of Applied Physics, Vol. 9, June 1958, pages 250-252; RP Jewett, DJ Mack, Further Investigation of Copper-Aluminum Alloys in the Temperature Range below the
Figure imgb0001
Eutectoid, Journal of the Institute of Metals 1963-64, Vol. 92, pages 59-61; K. Otsuka and K. Shimizu, Memory Effect and Thermoelastic Martensite Transformation in Cu-AI-Ni-Alloy, Scripta Metallurgia, Vol. 4, 1970 Pergamon Press Inc., pages 469-472; Kazuhiro Otsuka, Origin of Memory Effect in Cu-AI-Ni-Alloy, Japanese Journal of Applied Physics, Vol. 10, No. 5, May 1971, pages 571-579.

Diese Legierungen zeigen zwar in einem über der Raumtemperatur liegenden Temperaturbereich von mehr als 100°C (was für Temperatur- überwachungsgeräte und Überstromschalter besonders interessant ist) gegenüber den ebenfalls bekannten Ni/Ti-Legierungen einen deutlichen Gedächtniseffekt, sind aber metastabil. Das heißt, daß sie im gewünschten Temperaturbereich diffusionsbedingten Phasenumwandlungen unterworfen sind. Bei der Ansprechtemperatur oder knapp oberhalb derselben wandelt sich die Hochtemperatur-ß-Phase um und der Gedächtniseffekt geht verloren.Although these alloys show a clear memory effect compared to the also known Ni / Ti alloys in a temperature range of more than 100 ° C (which is particularly interesting for temperature monitoring devices and overcurrent switches), they are metastable. This means that they are subjected to diffusion-related phase changes in the desired temperature range. At the response temperature or just above it, the high-temperature ß phase changes and the memory effect is lost.

Der Erfindung liegt die Aufgabe zugrunde, bei Temperaturen von über 100° C alterungsbeständige Gedächtnislegierungen des Cu/AI- oder Cu/AI/Ni-Typs sowie ein Verfahren zu deren Herstellung bzw. Stabiliserung des Zweiwegeffekts anzugeben.The invention is based on the object of specifying aging-resistant memory alloys of the Cu / Al or Cu / Al / Ni type at temperatures above 100 ° C. and a method for their production or stabilization of the two-way effect.

Diese Aufgabe wird erfindungsgemäß durch die Merkmale der Ansprüche 1,6 und 7 gelöst.This object is achieved by the features of claims 1, 6 and 7.

Das Verfahren der Stabilisierung besteht im wesentlichen in einer Wärmebehandlung der im gegossenen oder warmgekneteten Zustand voliegenden Legierung nach der letzten im ß-Mischkristallgebiet liegenden Glühung im Temperaturbereich von 600 bis 950° C (5 bis 60 min) und vor der Induzierung des Zweiwegeffektes. Die Wärmebehandlung stellt eine Glühung im Temperaturbereich von 200 bis 350°C dar, welche prinzipiell auf zwei Arten durchgeführt werden kann. In einem ersten Verfahren wird die Legierung nach der letzten Glühung im β-Mischkristallgebiet auf Raumtemperatur abgeschreckt und anschließend während 0,1 bis 10 h im Temperaturbereich von 200 bis 350°C angelassen. In einem zweiten Verfahren wird die Legierung nach der letzten Glühung aus dem β-Mischkristallgebiet direkt in ein Öl-, Salz-, Metall- oder Sandbad von 250 bis 350° C abgeschreckt, hier während 0,5 bis 10 min gehalten und schließlich an der Luft auf Raumtemperatur abgekühlt. In beiden Fällen folgt auf diese Wärmebehandlung eine Verformung von 1 bis 6% im Bereich von 30° C oberhalb bis 50°C unterhalb des Punktes der martensitischen Umwandlung Ms zwecks Induzierung des Zweiweg-Gedächtniseffektes.The method of stabilization consists essentially in a heat treatment of the alloy in the cast or hot-kneaded state after the last annealing in the β mixed crystal region in the temperature range from 600 to 950 ° C. (5 to 60 min) and before the induction of the two-way effect. The heat treatment is an annealing in the temperature range of 200 to 350 ° C, which can in principle be carried out in two ways. In a first process, the alloy is quenched to room temperature after the last annealing in the β mixed crystal region and then tempered in the temperature range from 200 to 350 ° C. for 0.1 to 10 h. In a second process, the alloy is quenched from the β mixed crystal region directly into an oil, salt, metal or sand bath at 250 to 350 ° C. after the last annealing, held here for 0.5 to 10 min and finally at the Air cooled to room temperature. In both cases, this heat treatment is followed by a deformation of 1 to 6% in the range from 30 ° C. above to 50 ° C. below the point of the martensitic transformation M s in order to induce the two-way memory effect.

Das Verfahren erstreckt sich auf die gesamte Legierungsgruppe des ß-Typs Cu/AI und Cu/ AI/Ni, insbesondere auf Legierungen mit 10 bis 15 Gew.-% Aluminium, 0 bis 6 Gew.-% Nickel, Rest Kupfer. Dabei kann das Nickel in den Legierungen vom Typ Cu/AI/Ni teilweise oder vollständig durch Mangan, Eisen, Kobalt oder eine Mischung von mindestens zweier dieser Elemente ersetzt sein. Nach diesem Verfahren hergestellte Legierungen sind bis zu 300°C alterungsbeständig, d. h. sie bestehen vorwiegend aus der β-Hochtemperaturphase und zeigen einen stabilen Zweiwegeffekt.The process extends to the entire alloy group of the β-type Cu / Al and Cu / Al / Ni, in particular to alloys with 10 to 15% by weight aluminum, 0 to 6% by weight nickel, the rest copper. The nickel in the alloys of the Cu / Al / Ni type can be partially or completely replaced by manganese, iron, cobalt or a mixture of at least two of these elements. Alloys produced by this process are resistant to aging up to 300 ° C, i. H. they mainly consist of the β high-temperature phase and show a stable two-way effect.

Die Erfindung wird anhand der nachfolgenden Ausführungsbeispiele beschrieben.The invention is described using the following exemplary embodiments.

Ausführungsbeispiel 1Embodiment 1 (Erläuterung des Standes der Technik)(Explanation of the state of the art)

Als Ausgangsmaterial diente eine Legierung der nachfolgenden Zusammensetzung:

Figure imgb0002
An alloy of the following composition was used as the starting material:
Figure imgb0002

Die Legierung wurde schmelzmetallurgisch hergestellt, zu einem Barren vergossen und anschließend bei 700°C derart warmverformt, daß ein Stab von 10 mm Durchmesser entstand. Anschließend wurde der Stab einer Glühung im β-Mischkristallgebiet von 10 min bei 750°C unterworfen und in Wasser abgeschreckt. Aus dem Stab wurden Torsionsproben von 40 mm totaler und 22 mm Meßlänge bei 3 mm Durchmesser herausgearbeitet. Der Zweiwegeffekt wurde dadurch induziert, daß die Proben einer Torsionsbeanspruchung in der Nähe des martensitischen Umwandlungspunktes MS (150°C) derart unterworfen wurden, daß die Torsionsdehnung stufenweise bis auf 4 bis 5% erhöht wurde bei gleichzeitigem Durchlaufen eines Erwärmungs/Abkühlungs-Zyklus. Hierauf wurden die Proben während 1 h bei einer Temperatur von 300° C geglüht. Die Nachprüfung ergab, daß der Gedächtniseffekt völlig verschwunden war.The alloy was produced by melt metallurgy, cast into an ingot and then hot-worked at 700 ° C. in such a way that a rod of 10 mm in diameter was produced. The rod was then subjected to annealing in the β mixed-crystal region for 10 min at 750 ° C. and quenched in water. Torsion samples with a total measuring length of 40 mm and a measuring length of 22 mm and a diameter of 3 mm were worked out from the rod. The two-way effect was induced by subjecting the samples to torsional stress near the martensitic transformation point M S (150 ° C) such that the torsional strain was gradually increased to 4 to 5% while going through a heating / cooling cycle. The samples were then heated at a temperature of Annealed at 300 ° C. The check showed that the memory effect had completely disappeared.

Ausführungsbeispiel IIEmbodiment II

Eine Legierung gemäß Beispiel 1 wurde ähnlich wie im Beispiel 1 geschmolzen, gegossen, warmverformt, geglüht und in Wasser abgeschreckt. Der erhaltene Stab wurde dann zusätzlich während 3 h bei 300°C angelassen. Nach dem Herausarbeiten der Proben gemäß Beispiel I wurde der Zweiwegeffekt in der gleichen Weise induziert. Nach einem zusätzlichen Glühen der Proben während 8 h bei 300° C hatte der Zweiwegeffekt noch in keiner Weise nachgelassen. Selbst nach einer Glühdauer von 500 h bei 300°C war immer noch ein Zweiwegeffekt - wenn auch schwächer - nachweisbar.An alloy according to Example 1 was melted, cast, thermoformed, annealed and quenched in water in a manner similar to Example 1. The rod obtained was then additionally tempered at 300 ° C. for 3 hours. After working out the samples according to Example I, the two-way effect was induced in the same way. After an additional annealing of the samples for 8 hours at 300 ° C, the two-way effect had not subsided in any way. Even after an annealing period of 500 h at 300 ° C, a two-way effect was still detectable - albeit weaker.

Ausführungsbeispiel IIIEmbodiment III

Eine Legierung gemäß Beispiel I wurde geschmolzen, gegossen und zu einem Stab von 10 mm Durchmesser warmverformt. Aus diesem Stab wurde durch Warmwalzen ein Band von 1,5 mm Dicke und 10 mm Breite hergestellt. Daraus wurden Biegeproben von 60 mm Länge geschnitten und der üblichen Glühung während 10 min bei 750°C unterworfen. Hierauf wurden die Proben direkt in ein Salzbad von 300°C abgeschreckt, während 2 min auf dieser Temperatur gehalten und dann in Luft abgekühlt. Während des Abkühlvorganges wurden die Proben um einen Winkel von 90°C gebogen, wodurch der Zweiwegeffekt induziert wurde. Nach mehrstündiger Erhitzung auf 300° C konnte der Effekt in unverminderter Größe nachgewiesen werden.An alloy according to Example I was melted, cast and thermoformed into a 10 mm diameter rod. A strip 1.5 mm thick and 10 mm wide was produced from this rod by hot rolling. Bending samples of 60 mm in length were cut from this and subjected to the usual annealing at 750 ° C. for 10 minutes. The samples were then quenched directly into a salt bath at 300 ° C., held at this temperature for 2 minutes and then cooled in air. During the cooling process, the samples were bent through an angle of 90 ° C, which induced the two-way effect. After heating to 300 ° C for several hours, the effect could be demonstrated in undiminished size.

Die Erfindung ist nicht auf die vorstehenden Beispiele beschränkt. Das Verfahren kann prinzipiell auf alle ß-Kupferlegierungen des Cu/AI-oder Cu/AI/Ni-Typs angewendet werden. Eine weitere günstige Leögierung hat folgende Zusammensetzung:

Figure imgb0003
The invention is not limited to the examples above. The method can in principle be applied to all ß-copper alloys of the Cu / Al or Cu / Al / Ni type. Another cheap legation has the following composition:
Figure imgb0003

Es zeigt sich, daß die Höhe der Umwandlungstemperatur Ms offenbar durch geringe Variationen im Aluminiumgehalt stark beeinflußt werden kann. Weitere Beeinflussungen sind durch die oben erwähnten Substitute Mangan, Eisen, Kobalt möglich.It turns out that the level of the transition temperature Ms can apparently be greatly influenced by small variations in the aluminum content. The above-mentioned substitutes manganese, iron, cobalt can also be used.

Durch das erfindungsgemäße Verfahren wurden Gedächtnislegierungen geschaffen, welche bis über den in der Elektrotechnik und in vielen industriellen und Haushaltsanwendungen üblichen Bereich der Temperaturüberwachung hinaus alterungsbeständig sind und einen stabilen Zweiwegeffekt zeigen. Damit schließen sie eine bisher vorhandene Lücke in der Überwachungstechnik.The method according to the invention creates memory alloys which are resistant to aging beyond the range of temperature monitoring customary in electrical engineering and in many industrial and household applications and have a stable two-way effect. In doing so, they are closing a previously existing gap in surveillance technology.

Claims (7)

1. Memory alloy of the Cu/Al or Cu/AI/Ni type, characterised in that it is non-aging up to a temperature of 300° C, consists predominantly of the β-high temperature phase and shows a stable two-way effect in the temperature range form 100 to 250° C.
2. Memory alloy according to Claim 1, characterised in that it consists of 10 to 15% by weight of aluminium and 0 to 6% by weight of nickel, the remainder being copper.
3. Memory alloy according to Claim 2, characterised in that it consists of 13.25% by weight of aluminium and 3% by weight of nickel, the remainder being copper.
4. Memory alloy according to Claim 2, characterised in that it consists of 13% by weight of aluminium and 3% by weight of nickel, the remainder being copper.
5. Memory alloy according to Claim 1, characterised in that the nickel in the alloys of the Cu/AI/Ni-type is partially c: wholly replaced by at least one of the elements manganese, iron and cobalt.
6. Process for stabilising the two-way effect up to a temperature of 300° C in a memory alloy of the Cu/Al- or Cu/Al/Ni-type, which alloy can be present in a cast or warm-wrought initial state, characterised in that the alloy is first annealed for 5 to 60 minutes in the temperature range between 600 and 950° C, is quenched in water and artificially aged for 0.1 to 10 hours at a temperature of 200 to 350°C and, finally, for inducing the two-way effect, is deformed by an amount of 1 to 6% in the temperature range from 30°C above to 50°C below the transformation point Ms.
7. Process for stabilising the two-way effect up to a temperature of 300° C in a memory alloy of the Cu/Al- or Cu/AI/Ni-type, which alloy can be present in a cast or warm-wrought initial state, characterised in that the alloy is first annealed for 5 to 60 minutes in the temperature range between 600 and 950°C, is quenched to a temperature between 250 and 350°C in a metal bath, salt bath, oil bath or sand bath, is held at this temperature for 0.5 to 10 minutes and is then cooled in air to room temperature and, finally, for inducing the two-way effect, is deformed by an amount of 1 to 6% in the temperature range from 30°C above to 50°C below the transformation point Ms.
EP19800200183 1980-03-03 1980-03-03 Memory alloy based on cu-al or on cu-al-ni and process for the stabilisation of the two-way effect Expired EP0035069B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE8080200183T DE3065930D1 (en) 1980-03-03 1980-03-03 Memory alloy based on cu-al or on cu-al-ni and process for the stabilisation of the two-way effect
EP19800200183 EP0035069B1 (en) 1980-03-03 1980-03-03 Memory alloy based on cu-al or on cu-al-ni and process for the stabilisation of the two-way effect
PT7259081A PT72590B (en) 1980-03-03 1981-02-27 RESIN BLEND
JP2850381A JPS56136945A (en) 1980-03-03 1981-03-02 Shaped memory alloy based on cu al or cu al ni and stabilization of said alloy in two-direction effect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19800200183 EP0035069B1 (en) 1980-03-03 1980-03-03 Memory alloy based on cu-al or on cu-al-ni and process for the stabilisation of the two-way effect

Publications (2)

Publication Number Publication Date
EP0035069A1 EP0035069A1 (en) 1981-09-09
EP0035069B1 true EP0035069B1 (en) 1983-12-21

Family

ID=8186965

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19800200183 Expired EP0035069B1 (en) 1980-03-03 1980-03-03 Memory alloy based on cu-al or on cu-al-ni and process for the stabilisation of the two-way effect

Country Status (4)

Country Link
EP (1) EP0035069B1 (en)
JP (1) JPS56136945A (en)
DE (1) DE3065930D1 (en)
PT (1) PT72590B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4416706A (en) * 1982-02-05 1983-11-22 Bbc Brown, Boveri & Company Limited Process to produce and stabilize a reversible two-way shape memory effect in a Cu-Al-Ni or a Cu-Al alloy
US4654092A (en) * 1983-11-15 1987-03-31 Raychem Corporation Nickel-titanium-base shape-memory alloy composite structure
US4533411A (en) * 1983-11-15 1985-08-06 Raychem Corporation Method of processing nickel-titanium-base shape-memory alloys and structure
JPS6130643A (en) * 1984-07-20 1986-02-12 Kobe Steel Ltd Hard shape memory alloy having high workability
FR2590048B1 (en) * 1985-07-19 1992-05-15 Souriau & Cie SEQUENTIAL MECHANICAL TRIGGER DEVICE
FR2617187B1 (en) * 1987-06-24 1989-10-20 Cezus Co Europ Zirconium METHOD FOR IMPROVING THE DUCTILITY OF A MARTENSITICALLY TRANSFORMED ALLOY PRODUCT AND THE USE THEREOF
FR2618163B1 (en) * 1987-07-15 1992-04-30 Trefimetaux METHOD FOR EDUCATION OF A SHAPE MEMORY ALLOY OBJECT, ENSURING THE PRECISION AND STABILITY OF THE REVERSIBLE MEMORY EFFECT.
CH677677A5 (en) * 1989-02-08 1991-06-14 Nivarox Sa
DE69004986D1 (en) * 1989-02-08 1994-01-20 Nivarox Sa Method for treating a workpiece made of a metallic shape memory alloy with two reversible shape memory states.
FR2643086B1 (en) * 1989-02-10 1991-05-24 Nivarox Sa METHOD FOR CONDITIONING A SHAPE MEMORY METAL ALLOY PART HAVING TWO REVERSIBLE SHAPE MEMORY STATES
CN108384984B (en) * 2018-04-09 2020-01-03 天津理工大学 Preparation method of low-cost high-temperature shape memory alloy

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB433534A (en) * 1934-02-12 1935-08-12 Thomas Bolton And Sons Ltd Improved trolley wheels and the like devices for collecting electric current
GB1346047A (en) * 1969-11-12 1974-02-06 Fulmer Res Inst Ltd Treatment of alloys
BE758862A (en) * 1969-11-12 1971-04-16 Fulmer Res Inst Ltd Improvements relating to the treatment of alloys
JPS5818427B2 (en) * 1974-07-05 1983-04-13 大阪大学長 Method for producing metal articles with repeated shape memory
JPS5337129A (en) * 1976-09-17 1978-04-06 Matsushita Electric Works Ltd Conductible spring material

Also Published As

Publication number Publication date
JPS56136945A (en) 1981-10-26
JPH0138867B2 (en) 1989-08-16
DE3065930D1 (en) 1984-01-26
PT72590A (en) 1981-03-01
PT72590B (en) 1982-02-12
EP0035069A1 (en) 1981-09-09

Similar Documents

Publication Publication Date Title
DE2720461C2 (en) Manufacturing processes for copper-nickel-tin alloys
DE69912850T2 (en) METHOD OF PRODUCING AN ALUMINUM-MAGNESIUM-LITHIUM ALLOY PRODUCT
DE60316212T2 (en) Nickel-based alloy, hot-resistant spring made of this alloy and method of making this spring
DE3621671C2 (en)
DE68928676T2 (en) Aluminum alloy product with improved combinations of strength, toughness and corrosion resistance
DE2942345C2 (en)
DE2264997A1 (en) PRECIPITABLE NICKEL, IRON ALLOY
DE3331654A1 (en) COPPER BERYLLIUM ALLOY AND THEIR PRODUCTION
EP0035069B1 (en) Memory alloy based on cu-al or on cu-al-ni and process for the stabilisation of the two-way effect
DE2743470A1 (en) COPPER ALLOY
DE2704765A1 (en) COPPER ALLOY, METHOD OF MANUFACTURING IT AND ITS USE FOR ELECTRIC CONTACT SPRINGS
DE69709610T2 (en) Copper-nickel-beryllium alloy
EP0264463B1 (en) Copper-chromium-titanium-silicon alloy, process for its production and its use
EP1017867A1 (en) Aluminium based alloy and method for subjecting it to heat treatment
DE69412808T2 (en) INCREASING THE MECHANICAL PROPERTIES OF ALUMINUM-LITHIUM ALLOYS
DE1483228B2 (en) ALUMINUM ALLOY WITH HIGH PERFORMANCE
DE2635947A1 (en) TURNABLE CU-ZN-NI-MN ALLOY SIMILAR TO NEW SILVER
DE2500083C3 (en) Semi-finished products made from wrought aluminum alloys and their manufacturing process
DE2913071C2 (en) Magnetic alloy based on iron-chromium-cobalt with spinodal decomposition
WO2007051637A1 (en) Cold-workable ti alloy
DE1290727B (en) Process for the production of high strength niobium alloys
EP1442150B1 (en) Aluminum-silicon alloys having improved mechanical properties
DE2055756B2 (en) Process for the manufacture of objects which can change their shape when the temperature changes, and the application of the process to certain alloys
EP0410979B1 (en) Hardenable nickel alloy
EP0517087B1 (en) Method for manufacturing copper alloys

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT SE

RBV Designated contracting states (corrected)

Designated state(s): BE CH DE FR GB IT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BBC AKTIENGESELLSCHAFT BROWN, BOVERI & CIE.

17P Request for examination filed

Effective date: 19820213

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT SE

REF Corresponds to:

Ref document number: 3065930

Country of ref document: DE

Date of ref document: 19840126

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19890222

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19890224

Year of fee payment: 10

Ref country code: BE

Payment date: 19890224

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19890228

Year of fee payment: 10

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19890526

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19890626

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19900303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19900304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19900331

Ref country code: BE

Effective date: 19900331

BERE Be: lapsed

Owner name: BBC A.G. BROWN BOVERI & CIE

Effective date: 19900331

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19901130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19901201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 80200183.4

Effective date: 19910109