EP1718778A1 - Material based on an aluminum alloy, method for the production thereof and its use - Google Patents

Material based on an aluminum alloy, method for the production thereof and its use

Info

Publication number
EP1718778A1
EP1718778A1 EP05714972A EP05714972A EP1718778A1 EP 1718778 A1 EP1718778 A1 EP 1718778A1 EP 05714972 A EP05714972 A EP 05714972A EP 05714972 A EP05714972 A EP 05714972A EP 1718778 A1 EP1718778 A1 EP 1718778A1
Authority
EP
European Patent Office
Prior art keywords
mass
magnesium
base alloy
content
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP05714972A
Other languages
German (de)
French (fr)
Other versions
EP1718778B1 (en
Inventor
Ulrich Bischofberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle GmbH
Peak Werkstoff GmbH
Original Assignee
Mahle GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahle GmbH filed Critical Mahle GmbH
Publication of EP1718778A1 publication Critical patent/EP1718778A1/en
Application granted granted Critical
Publication of EP1718778B1 publication Critical patent/EP1718778B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/0084Pistons  the pistons being constructed from specific materials

Definitions

  • the present invention relates to a method for producing a material based on an aluminum alloy according to the preamble of claim 1, a material obtainable with this method and the use of this material.
  • pistons have typically been made from cast aluminum-silicon alloys. Because of the good casting properties, pistons based on aluminum-silicon alloys can be manufactured relatively cheaply and easily using the permanent mold casting process.
  • These materials are typically with silicon contents between 12 and 18 wt .-%, in individual cases also up to 24 wt .-%, and with admixtures of magnesium between 1 to 1.5 wt .-%, copper between 1 and 3 wt .-% % and often nickel alloyed between 1 to 3 wt .-%.
  • z. B. according to US Pat. No. 6,419,769 A1 recommends setting the copper content between 5.6 and 8.0% by weight.
  • FR 2 690 957 A1 the strength of such an alloy is further increased by adding the elements titanium, zirconium and vanadium. However, the alloying of these strength-increasing elements increases the density of the material.
  • a heat-resistant alloy with a reduced specific weight is described in patent specification DE 747 355 as being particularly advantageous for pistons.
  • This material is characterized by a magnesium content between 4 and 12 wt .-% and a silicon content between 0.5 and 5 wt .-%, the silicon content should always be less than half the magnesium content. Furthermore, between 0.2 and 5% by weight of copper and / or nickel are added. Even without the addition of strength-enhancing components, this material should be characterized by improved heat resistance.
  • the magnesium is therefore added depending on the silicon content desired in each case according to the above formula. Some of the magnesium (1.73xSi content) reacts directly with silicon to form magnesium silicide, the remaining 1.5 to 6.0% by mass of magnesium dissolve in the aluminum mixed crystal and, after suitable heat treatment together with copper, increase the strength of the material.
  • the material can contain the usual impurities in aluminum alloys. In addition, the alloying of further alloying elements could appear sensible for the purpose of further strengthening. It is known e.g.
  • the material obtainable by the process according to the invention is distinguished by excellent strength properties which, even at elevated temperatures, prove to be superior to the piston alloys customary today.
  • Advantageous further developments result from the subclaims.
  • the base alloy can be treated with all known hot forming processes, for example extrusion, hot rolling or forging. Hot forming should be carried out with a degree of deformation greater than 5 times.
  • the aluminum or base alloy used should only contain a small proportion of foreign elements, and not more than 1% by mass per foreign element.
  • a heat treatment is advantageously carried out after the hot shaping. This can be done in a manner known per se by solution annealing, quenching and hot aging.
  • the material according to the invention is suitable for the production of all types of components, in particular pistons for internal combustion engines.
  • the resulting raw material is pre-heated to 400 to 500 ° C warms and 10 times formed by extrusion and then hardened. For this purpose, a heat treatment comprising solution annealing at 500 ° C. for 2 hours, quenching in water and 10 hours tempering at 210 ° C. is carried out
  • a heat treatment comprising solution annealing at 500 ° C. for 2 hours, quenching in water and 10 hours tempering at 210 ° C. is carried out.
  • Beryllium is added to reduce the tendency of the melt to oxidize.
  • Magnesium phosphate is used to refine the grain of the primarily solidifying magnesium silicide. Iron was analyzed as an impurity.
  • the finished material shows the following properties:
  • the material according to the invention is distinguished from the British aluminum standard 2618 by a lower density and an increased modulus of elasticity.
  • the static strength properties achieved match the high-strength wrought alloy 2618.
  • the fatigue strength determined clearly exceeds the values achieved with the wrought alloy 2618.
  • the material according to the invention is superior in both static and dynamic testing. This combination of properties makes it particularly suitable for the manufacture of pistons for internal combustion engines.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Extrusion Of Metal (AREA)
  • Forging (AREA)

Abstract

The invention relates concerns a method for producing a substance during which an aluminum base alloy is produced that has a content of 5.5 to 13.0 % by mass of silicon and a content of magnesium according to formula Mg [ % by mass] = 1.73 x Si [ % by mass] + m with m = 1.5 to 6.0 % by mass of magnesium, and has a copper content ranging from 1.0 to 4.0 % by mass. The base alloy is then subjected to at least one hot working and, afterwards, to a heat treatment consisting of solution annealing, quenching and artificial aging. The magnesium is added based on the respectively desired silicon content according to the aforementioned formula. The material obtained by using the inventive method is characterized by having a low density and a high strength.

Description

Werkstoff auf der Basis einer Aluminium-Legierung, Verfahren zu seiner Herstellung sowie Verwendung hierfür Material based on an aluminum alloy, process for its production and use therefor
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines Werkstoffs auf der Basis einer Aluminium-Legierung nach dem Oberbegriff des Anspruchs 1 , einen mit diesem Verfahren erhältlichen Werkstoff sowie eine Verwendung dieses Werkstoffs.The present invention relates to a method for producing a material based on an aluminum alloy according to the preamble of claim 1, a material obtainable with this method and the use of this material.
In den letzten Jahren ist bei Verbrennungsmotoren für Kraftfahrzeuge verstärkt ein Trend hin zu noch leichteren und kompakteren Aggregaten mit gesteigerten spezifischen Leistungen zu beobachten. Dies führt unter anderem auch zu einer immer stärkeren Belastung der hierfür eingesetzten Kolben. Diesem Trend kann sowohl durch geänderte Konstruktionen, aber auch vor allem durch die Entwicklung neuer geeigneter Werkstoffe Rechnung getragen werden. Im Vordergrund steht dabei der Wunsch nach hoch warmfesten und spezifisch leichten Materialien.In recent years, there has been an increasing trend in internal combustion engines for motor vehicles towards even lighter and more compact units with increased specific outputs. Among other things, this leads to an ever increasing load on the pistons used for this purpose. This trend can be taken into account not only through modified constructions, but above all through the development of new, suitable materials. The focus here is on the desire for highly heat-resistant and specifically lightweight materials.
Bis jetzt werden Kolben üblicherweise aus Aluminium-Silizium-Gusslegierungen hergestellt. Wegen der guten Gießeigenschaften lassen sich Kolben auf der Basis von Aluminium-Silizium-Legierungen relativ preisgünstig und einfach im Kokillengussverfahren herstellen.So far, pistons have typically been made from cast aluminum-silicon alloys. Because of the good casting properties, pistons based on aluminum-silicon alloys can be manufactured relatively cheaply and easily using the permanent mold casting process.
Diese Werkstoffe werden typischerweise mit Siliziumgehalten zwischen 12 und 18 Gew.-%, in Einzelfällen auch bis zu 24 Gew.-%, sowie mit Beimengungen von Magnesium zwischen 1 bis 1 ,5 Gew.-%, Kupfer zwischen 1 und 3 Gew.-% und häufig auch Nickel zwischen 1 bis 3 Gew.-% legiert. Um die Warmfestigkeit einer solchen Legierung zu verbessern, wird z. B. gemäß der US 6 419 769 A1 empfohlen, den Kupfergehalt zwischen 5,6 und 8,0 Gew.-% einzustellen. Nach der FR 2 690 957 A1 wird die Festigkeit einer derartigen Legierung durch Zugabe der Elemente Titan, Zirkonium und Vanadium zusätzlich gesteigert. Allerdings wird durch das Zulegieren dieser festigkeitssteigernden Elemente die Dichte des Werkstoffs erhöht.These materials are typically with silicon contents between 12 and 18 wt .-%, in individual cases also up to 24 wt .-%, and with admixtures of magnesium between 1 to 1.5 wt .-%, copper between 1 and 3 wt .-% % and often nickel alloyed between 1 to 3 wt .-%. In order to improve the heat resistance of such an alloy, z. B. according to US Pat. No. 6,419,769 A1 recommends setting the copper content between 5.6 and 8.0% by weight. According to FR 2 690 957 A1 the strength of such an alloy is further increased by adding the elements titanium, zirconium and vanadium. However, the alloying of these strength-increasing elements increases the density of the material.
Eine warmfeste Legierung mit reduziertem spezifischem Gewicht wird in der Patentschrift DE 747 355 als für Kolben besonders vorteilhaft beschrieben. Dieser Werkstoff zeichnet sich durch einen Magnesiumgehalt zwischen 4 und 12 Gew.-% und einen Siliziumgehalt zwischen 0,5 und 5 Gew.-% aus, wobei der Siliziumgehalt stets geringer als die Hälfte des Magnesiumgehalts sein soll. Ferner sind zwischen 0,2 und 5 Gew.-% Kupfer und/oder Nickel zulegiert. Dieser Werkstoff soll sich auch bei Verzicht auf die Zulegierung festigkeitssteigernder Komponenten durch eine verbesserte Warmfestigkeit auszeichnen.A heat-resistant alloy with a reduced specific weight is described in patent specification DE 747 355 as being particularly advantageous for pistons. This material is characterized by a magnesium content between 4 and 12 wt .-% and a silicon content between 0.5 and 5 wt .-%, the silicon content should always be less than half the magnesium content. Furthermore, between 0.2 and 5% by weight of copper and / or nickel are added. Even without the addition of strength-enhancing components, this material should be characterized by improved heat resistance.
In der DE 38 42 812 A1 wird ein Gussleichtwerkstoff auf Basis einer Aluminiumlegierung mit 5 bis 25 Masse-% Magnesiumsilizid beschrieben. Neben Magnesiumsilizid wird außerdem als vorteilhaft sowohl ein Überschuß von Silizium (bis 12 Masse%) als auch von Magnesium (bis 15 Masse%) betrachtet. Ferner können bis zu 5 Masse-% Kupfer, Nickel, Mangan und Kobalt zulegiert sein. In Unteranspruch 5 wird zusätzlich die Liquidustemperatur von <700°C im Dreistoffsystem Al-Si-Mg als begrenzendes Limit genannt. Vorteile bzw. Nachteile bei den mechanischen Eigenschaften, welche sich aus einem Überschuß von Magnesium bzw. Siliziums ergeben könnten werden nicht explizit erwähnt.DE 38 42 812 A1 describes a lightweight casting material based on an aluminum alloy with 5 to 25% by mass of magnesium silicide. In addition to magnesium silicide, both an excess of silicon (up to 12% by mass) and magnesium (up to 15% by mass) are also considered advantageous. Up to 5% by mass of copper, nickel, manganese and cobalt can also be alloyed. In sub-claim 5, the liquidus temperature of <700 ° C in the three-substance system Al-Si-Mg is also mentioned as a limiting limit. Advantages or disadvantages of the mechanical properties, which could result from an excess of magnesium or silicon, are not explicitly mentioned.
Diese bekannten Werkstoffe sind ausnahmslos Gusswerkstoffe. Es besteht allerdings auch ein Bedarf an Werkstoffen mit noch geringerer Dichte und noch höherer Festigkeit, die durch die ausschließliche Verwendung eines Gießverfahrens bisher nicht herstellbar sind.These known materials are all cast materials. However, there is also a need for materials with an even lower density and even higher strength, which until now could not be produced by the exclusive use of a casting process.
Demgemäß ist Gegenstand der vorliegenden Erfindung ein Verfahren zur Herstellung eines Werkstoffs, wobei eine Aluminium-Basislegierung mit einem Gehalt zwischen 5,5 und 13,0 Masse-% Silizium, zusätzlich einem Gehalt an Magnesium gemäß der Formel Mg [Masse-%] = 1 ,73 x Si [Masse-%] + m mit m = 1 ,5 bis 6,0 Masse-% Magnesium sowie Kupfer mit einem Gehalt zwischen 1 ,0 und 4,0 Gew.% (Rest Aluminium) - erschmolzen, gegossen oder durch Sprühkompaktieren vorverdichtet und die Basislegierung anschließend zumindest einmal warmumgeformt wird, sowie nachfolgend einer Wärmebehandlung bestehend aus Lösungsglühen, Abschrecken und Warmauslagern unterzogen wird.Accordingly, the present invention relates to a method for producing a material, an aluminum-based alloy with a content between 5.5 and 13.0 mass% silicon, additionally a content of magnesium according to the formula Mg [mass%] = 1.73 x Si [mass%] + m with m = 1.5 to 6.0 mass -% magnesium and copper with a content between 1, 0 and 4.0% by weight (rest of aluminum) - melted, cast or pre-compressed by spray compacting and the base alloy is subsequently hot-worked at least once, followed by heat treatment consisting of solution annealing, quenching and Is subjected to hot aging.
Das Magnesium wird also in Abhängigkeit vom jeweils gewünschten Siliziumgehalt gemäß der oben genannten Formel zugesetzt. Dabei reagiert ein Teil des Magnesiums (1 ,73xSi-Gehalt) direkt mit Silizium zu Magnesiumsilizid, die restlichen 1 ,5 bis 6,0 Masse-% Magnesium lösen sich im Aluminiummischkristall und bewirken nach geeigneter Wärmebehandlung zusammen mit Kupfer eine Festigkeitssteigerung des Werkstoffs. Der Werkstoff kann die in Aluminiumlegierungen üblichen Verunreinigungen enthalten. Zusätzlich könnte zum Zwecke einer weiteren Festigkeitssteigerung das Zulegieren weiterer Legierungselemente sinnvoll erscheinen. Bekannt ist z.B. die festigkeitssteigernde Wirkung kleiner Zugabemengen (0,05 bis 0,2% von Titan, Zirkon oder Vanadin (FR 2 690 957 A1), ebenso bekannt ist die Wirkung von 0,1 bis 0,5% Silber welches bei AICu-Legierungen sich positiv auf die Warmfestigkeitseigenschaften auswirkt. Ohne Nachteile für die mechanischen Eigenschaften wirkt sich die Zugabe von kleinen Gehalten (0,2 bis 2%) weiterer, der für viele Aluminium-Kupfer-Magnesiumlegierungen zusätzlich Verwendung findender Legierungselemente z.B. Nickel, Kobalt oder Mangan oder Eisen aus. Durch die Zugabe vorgenannter Elemente, wird jedoch zumeist die Dichte des beanspruchten Leichtbauwerkstoffes erhöht.The magnesium is therefore added depending on the silicon content desired in each case according to the above formula. Some of the magnesium (1.73xSi content) reacts directly with silicon to form magnesium silicide, the remaining 1.5 to 6.0% by mass of magnesium dissolve in the aluminum mixed crystal and, after suitable heat treatment together with copper, increase the strength of the material. The material can contain the usual impurities in aluminum alloys. In addition, the alloying of further alloying elements could appear sensible for the purpose of further strengthening. It is known e.g. the strength-increasing effect of small additions (0.05 to 0.2% of titanium, zircon or vanadium (FR 2 690 957 A1), also known is the effect of 0.1 to 0.5% silver which is positive with AICu alloys The addition of small contents (0.2 to 2%) of other alloying elements which are also used for many aluminum-copper-magnesium alloys, for example nickel, cobalt or manganese or iron, has no disadvantages for the mechanical properties. However, the addition of the aforementioned elements usually increases the density of the lightweight material used.
Der nach dem erfindungsgemäßen Verfahren erhältliche Werkstoff zeichnet sich neben seiner geringen Dichte durch ausgezeichnete Festigkeitseigenschaften aus, die sich auch bei erhöhten Temperaturen gegenüber den heutigen gebräuchlichen Kolbenlegierungen als überlegen zeigen. Vorteilhafte Weiterbildungen ergeben sich aus den Unteransprüchen.In addition to its low density, the material obtainable by the process according to the invention is distinguished by excellent strength properties which, even at elevated temperatures, prove to be superior to the piston alloys customary today. Advantageous further developments result from the subclaims.
Die Basislegierung kann mit allen bekannten Warmumformverfahren, bspw. Strangpressen, Warmwalzen oder Schmieden behandelt werden. Das Warmumformen sollte mit einem Umformgrad größer als 5-fach durchgeführt werden.The base alloy can be treated with all known hot forming processes, for example extrusion, hot rolling or forging. Hot forming should be carried out with a degree of deformation greater than 5 times.
Um die Qualität des Werkstoffs nicht zu beeinträchtigen, sollte das verwendete Aluminium bzw. die Basislegierung Fremdelemente nur in einem geringen Anteil, und zwar nicht mehr als jeweils 1 Masse-% pro Fremdelement, enthalten.In order not to impair the quality of the material, the aluminum or base alloy used should only contain a small proportion of foreign elements, and not more than 1% by mass per foreign element.
Zur Erzielung maximaler Festigkeitseigenschaften wird vorteilhaft nach der Warmformgebung eine Wärmebehandlung durchgeführt. Diese kann auf an sich bekannte Weise durch Lösungsglühen, Abschrecken und Warmauslagern erfolgen.To achieve maximum strength properties, a heat treatment is advantageously carried out after the hot shaping. This can be done in a manner known per se by solution annealing, quenching and hot aging.
Der erfindungsgemäße Werkstoff eignet sich zur Herstellung von Bauteilen aller Art, insbesondere von Kolben für Verbrennungsmotoren.The material according to the invention is suitable for the production of all types of components, in particular pistons for internal combustion engines.
Ausführungsbeispiel 1:Example 1:
Eine Legierung A der folgenden Zusammensetzung:An alloy A with the following composition:
8,1 Masse-% Silizium 17,2 Masse-% Magnesium 1 ,7 Masse-% Kupfer 0,3 Masse-% Eisen 50 ppm Beryllium Rest Aluminium8.1 mass% silicon 17.2 mass% magnesium 1, 7 mass% copper 0.3 mass% iron 50 ppm beryllium balance aluminum
wird hergestellt, indem die einzelnen Elemente nach den üblichen Verfahren legiert und mittels dem Verfahren des Sprühkompaktierens zu einem zylindrischen Block vergossen werden, Das resultierende Vormaterial wird auf 400 bis 500°C vorge- wärmt und durch Strangpressen 10-fach umgeformt und anschließend gehartet Dazu wird eine Wärmebehandlung, umfassend Losungsgluhen bei 500°C für 2 Stunden, Abschrecken in Wasser und 10 Stunden Anlassen bei 210°C durchgeführtis produced by alloying the individual elements according to the usual methods and casting them into a cylindrical block using the spray compacting method. The resulting raw material is pre-heated to 400 to 500 ° C warms and 10 times formed by extrusion and then hardened. For this purpose, a heat treatment comprising solution annealing at 500 ° C. for 2 hours, quenching in water and 10 hours tempering at 210 ° C. is carried out
Beryllium wird zugegeben, um die Oxidationsneigung der Schmelze zu mindern Eisen wurde als Verunreinigung analysiertBeryllium is added to reduce the tendency of the melt to oxidize. Iron was analyzed as an impurity
Ausführungsbeispiel 2:Example 2:
Eine Legierung B der folgenden ZusammensetzungAn alloy B of the following composition
6.0 Masse-% Silizium 12,5 Masse-% Magnesium6.0 mass% silicon 12.5 mass% magnesium
2.1 Masse-% Kupfer 0,2 Masse-% Eisen 50 ppm Beryllium2.1% by mass copper 0.2% by mass iron 50 ppm beryllium
1 ,0 Gew -% Magnesiumphosphat Rest Aluminium1.0% by weight magnesium phosphate remainder aluminum
wird hergestellt, indem die einzelnen Elemente nach den üblichen Verfahren legiert und mittels Stranggießen zu einem zylindrischen Block vergossen werden Das resultierende Vormateπal wird auf 400 bis 500°C vorgewärmt und durch Strangpressen 10-fach umgeformt und anschließend gehartet Dazu wird eine Wärmebehandlung, umfassend Losungsgluhen bei 500°C für 2 Stunden, Abschrecken in Wasser und 10 Stunden Anlassen bei 210°C durchgeführtis produced by alloying the individual elements according to the usual methods and casting them into a cylindrical block by means of continuous casting. The resulting raw material is preheated to 400 to 500 ° C and then 10 times formed by extrusion and then hardened. This involves a heat treatment, including solution annealing 500 ° C for 2 hours, quenching in water and 10 hours tempering at 210 ° C
Beryllium wird zugegeben, um die Oxidationsneigung der Schmelze zu mindern, Magnesiumphosphat dient der Kornfeinung des primär erstarrenden Magnesiumsili- zids Eisen wurde als Verunreinigung analysiert Ausführungsbeispiel 3:Beryllium is added to reduce the tendency of the melt to oxidize. Magnesium phosphate is used to refine the grain of the primarily solidifying magnesium silicide. Iron was analyzed as an impurity Example 3:
Eine Legierung C der folgenden Zusammensetzung:An alloy C of the following composition:
12,9 Masse-% Silizium12.9 mass% silicon
25,1 Masse-% Magnesium25.1% by mass of magnesium
1 ,9 Masse-% Kupfer1.9 mass% copper
0,15 Masse-% Eisen0.15 mass% iron
50 ppm Beryllium50 ppm beryllium
0,9 Gew.-% Magnesiumphosphat0.9% by weight magnesium phosphate
Rest AluminiumRest aluminum
wird hergestellt, indem die einzelnen Elemente nach den üblichen Verfahren legiert und mittels Stranggießen zu einem zylindrischen Block vergossen werden. Das resultierende Vormaterial wird auf 400 bis 500°C vorgewärmt und durch Strangpressen 10-fach umgeformt und anschließend gehärtet. Dazu wird eine Wärmebehandlung, umfassend Lösungsglühen bei 500°C für 2 Stunden, Abschrecken in Wasser und 10 Stunden Anlassen bei 210°C durchgeführt.is produced by alloying the individual elements using the usual methods and casting them into a cylindrical block using continuous casting. The resulting primary material is preheated to 400 to 500 ° C and extruded 10 times and then hardened. For this purpose, a heat treatment comprising solution annealing at 500 ° C. for 2 hours, quenching in water and 10 hours tempering at 210 ° C. is carried out.
Beryllium wird zugegeben, um die Oxidationsneigung der Schmelze zu mindern, Magnesiumphosphat dient der Kornfeinung des primär erstarrenden Magnesiumsili- zids. Eisen wurde als Verunreinigung analysiert.Beryllium is added to reduce the tendency of the melt to oxidize. Magnesium phosphate is used to refine the grain of the primarily solidifying magnesium silicide. Iron was analyzed as an impurity.
Der fertige Werkstoff zeigt die folgenden Eigenschaften:The finished material shows the following properties:
Der erfindungsgemäße Werkstoff zeichnet sich gegenüber dem britischen Aluminium-Standard 2618 durch eine niedrigere Dichte und einem erhöhten E-Modul aus. Die erzielten statischen Festigkeitseigenschaften reichen an die hochfeste Knetlegierung 2618 heran. Die ermittelte Ermüdungsfestigkeit übertrifft die mit der Knetlegierung 2618 erzielten Werte deutlich. Gegenüber der Gusslegierung aus der US 6 419 769 A ist der erfindungsgemäße Werkstoff sowohl bei statischer als auch bei dynamischer Prüfung überlegen. Er eignet sich aufgrund dieser Eigenschaftskombination in besonderer Weise zur Herstellung von Kolben für Verbrennungsmotoren. The material according to the invention is distinguished from the British aluminum standard 2618 by a lower density and an increased modulus of elasticity. The static strength properties achieved match the high-strength wrought alloy 2618. The fatigue strength determined clearly exceeds the values achieved with the wrought alloy 2618. Compared to the cast alloy from US Pat. No. 6,419,769 A, the material according to the invention is superior in both static and dynamic testing. This combination of properties makes it particularly suitable for the manufacture of pistons for internal combustion engines.

Claims

Patentansprüche claims
1. Verfahren zur Herstellung eines Werkstoffs, wobei eine Aluminium-Basislegierung mit einem Gehalt an 5,5 bis 13,0 Masse-% Silizium und einem Gehalt an Magnesium gemäß der Formel Mg [Masse-%] = 1 ,73 x Si [Masse-%] + m mit m = 1 ,5 bis 6,0 Masse-% Magnesium sowie mit einem Kupfergehalt zwischen 1 ,0 und 4,0 Masse-% hergestellt wird, die Basislegierung danach zumindest einmal warmumgeformt, sowie nachfolgend einer Wärmebehandlung bestehend aus Lösungsglühen, Abschrecken und Warmauslagern unterzogen wird.1. A method for producing a material, wherein an aluminum-based alloy with a content of 5.5 to 13.0 mass% silicon and a content of magnesium according to the formula Mg [mass%] = 1.73 x Si [mass -%] + m with m = 1, 5 to 6.0 mass% magnesium and with a copper content between 1, 0 and 4.0 mass% is produced, the base alloy thereafter at least once hot-formed, and subsequently consisting of a heat treatment Solution annealing, quenching and hot aging is subjected.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Basislegierung mittels Sprühkompaktieren hergestellt wird.2. The method according to claim 1, characterized in that the base alloy is produced by spray compacting.
3. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Basislegierung mittels dem Verfahren des Stranggießens hergestellt wird.3. The method according to claim 1, characterized in that the base alloy is produced by means of the process of continuous casting.
4. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Basislegierung mittels dem Verfahren des Kokillengießens hergestellt wird.4. The method according to claim 1, characterized in that the base alloy is produced by means of the mold casting process.
5. Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass die Basislegierung zum Zwecke der Kornfeinung des sich bildenden Primär-Magnesium- silizids 0,5 — 1 ,5 Gew.% Magnesiumphosphat enthält.5. The method according to claim 3 or 4, characterized in that the base alloy contains 0.5-1.5% by weight of magnesium phosphate for the purpose of grain refinement of the primary magnesium silicide which forms.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Basislegierung mittels Strangpressen, Warmwalzen oder Schmieden warmumgeformt wird. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass das Warmumformen mit einem Umformgrad großer als 5-fach durchgeführt wird6. The method according to any one of the preceding claims, characterized in that the base alloy is hot-formed by means of extrusion, hot rolling or forging. A method according to claim 3, characterized in that the hot forming is carried out with a degree of deformation greater than 5 times
Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass 1 ,5 bis 3,0 Masse-% Kupfer zulegiert werdenMethod according to one of the preceding claims, characterized in that 1, 5 to 3.0 mass% copper are alloyed
Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das verwendete Aluminium nicht mehr als jeweils 1 Masse-% Fremdelemente enthaltMethod according to one of the preceding claims, characterized in that the aluminum used contains no more than 1% by mass of foreign elements
Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass der Werkstoff 2h bei 500°C durchgewärmt, in Wasser abgeschreckt und anschließend 10 h bei 210°C angelassen wirdA method according to claim 1, characterized in that the material is heated for 2 hours at 500 ° C, quenched in water and then tempered at 210 ° C for 10 hours
Werkstoff auf Basis einer Aluminium-Legierung, erhältlich durch ein Verfahren gemäß einem der Ansprüche 1 bis 10Material based on an aluminum alloy, obtainable by a method according to one of claims 1 to 10
Verwendung des Werkstoffs nach Anspruch 11 zur Herstellung von BauteilenUse of the material according to claim 11 for the production of components
Bauteil nach Anspruch 12, namhch Kolben für Verbrennungsmotoren Component according to claim 12, namely pistons for internal combustion engines
EP05714972.6A 2004-02-16 2005-02-15 Material based on an aluminum alloy, method for the production thereof and its use Expired - Fee Related EP1718778B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004007704A DE102004007704A1 (en) 2004-02-16 2004-02-16 Production of a material based on an aluminum alloy used for producing motor vehicle engine components comprises forming an aluminum base alloy containing silicon and magnesium, hot deforming and heat treating
PCT/DE2005/000254 WO2005078147A1 (en) 2004-02-16 2005-02-15 Material based on an aluminum alloy, method for the production thereof and its use

Publications (2)

Publication Number Publication Date
EP1718778A1 true EP1718778A1 (en) 2006-11-08
EP1718778B1 EP1718778B1 (en) 2017-04-19

Family

ID=34801930

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05714972.6A Expired - Fee Related EP1718778B1 (en) 2004-02-16 2005-02-15 Material based on an aluminum alloy, method for the production thereof and its use

Country Status (8)

Country Link
US (1) US7892482B2 (en)
EP (1) EP1718778B1 (en)
JP (1) JP4914225B2 (en)
KR (1) KR101220577B1 (en)
CN (1) CN100503857C (en)
BR (1) BRPI0507719B1 (en)
DE (1) DE102004007704A1 (en)
WO (1) WO2005078147A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007035124A1 (en) 2007-07-27 2009-01-29 FNE Forschungsinstitut für Nichteisen-Metalle GmbH Lightweight construction material with dense, pore-free structure, comprises magnesium silicide reinforcing material in aluminum matrix and is obtained by squeeze-casting
DE102007035115A1 (en) 2007-07-27 2009-01-29 FNE Forschungsinstitut für Nichteisen-Metalle GmbH Aluminum-matrix material for building contains concentration gradient of magnesium silicide

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008056511B4 (en) * 2008-11-08 2011-01-20 Audi Ag Process for producing thin-walled metal components from an Al-SiMg alloy, in particular components of a motor vehicle
CN101985706A (en) * 2010-11-18 2011-03-16 江苏万里活塞轴瓦有限公司 Aluminum alloy material for hot precision forging connection rod and preparation method thereof
KR101423447B1 (en) * 2010-12-22 2014-07-24 쇼와 덴코 가부시키가이샤 Method for producing formed material for brake piston
CN102335704B (en) * 2011-09-22 2013-08-28 哈尔滨哈飞工业有限责任公司 Method for forging and forming structural parts of wheel chair rack
CN103394538A (en) * 2013-08-06 2013-11-20 浙江瑞金铜铝型材有限公司 Molding and aging technology of 7A04 superhard aluminum alloy section bar
US20160201177A1 (en) * 2013-08-21 2016-07-14 Drexel University Selective Grain Boundary Engineering
CN104451286A (en) * 2014-12-02 2015-03-25 绥阳县耐环铝业有限公司 Magnesium-aluminum alloy and processing technique thereof
CN104741873A (en) * 2015-01-30 2015-07-01 深圳市江为五金螺丝有限公司 Numerical control extrusion process
CN104668300B (en) * 2015-01-30 2018-04-27 深圳市江为五金螺丝有限公司 Aluminum alloy extrusion processing technology
EP3334850A4 (en) 2015-08-13 2019-03-13 Alcoa USA Corp. Improved 3xx aluminum casting alloys, and methods for making the same
CN105648290A (en) * 2016-03-15 2016-06-08 昆明理工大学 High-strength aluminum alloy and preparation method thereof
KR20170124963A (en) * 2016-05-03 2017-11-13 손희식 Corrosion resistant aluminium alloy for casting
US10851447B2 (en) 2016-12-02 2020-12-01 Honeywell International Inc. ECAE materials for high strength aluminum alloys
US11649535B2 (en) 2018-10-25 2023-05-16 Honeywell International Inc. ECAE processing for high strength and high hardness aluminum alloys
CN109431152A (en) * 2018-12-07 2019-03-08 福建祥鑫股份有限公司 A kind of folding type aluminum alloy nursing bed and its manufacturing method
CN109988952B (en) * 2019-05-10 2020-05-05 贵州正合可来金科技有限责任公司 Preparation method of aluminum alloy mobile phone shell

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE747355C (en) * 1937-10-30 1944-09-20 Mahle Kg Use of an aluminum alloy for pistons in internal combustion engines
DE1483229C2 (en) 1965-09-03 1980-04-17 Honsel-Werke Ag, 5778 Meschede Use of AlMgSi-GuB alloy for cylinder heads
JPS508693B1 (en) * 1969-10-09 1975-04-07
JPS508693A (en) 1973-05-22 1975-01-29
US4917739A (en) * 1984-08-10 1990-04-17 Allied-Signal Inc. Rapidly solidified aluminum-transition metal-silicon alloys
DE3842812A1 (en) 1988-12-20 1990-06-21 Metallgesellschaft Ag CAST LIGHT MATERIAL
US5178686A (en) * 1988-12-20 1993-01-12 Metallgesellschaft Aktiengesellschaft Lightweight cast material
FR2690957B1 (en) 1992-05-06 1994-06-17 Senaux Pierre DEVICE FOR FIXING COLLARS SUPPORTING POSTERS OR FLAGS, WITHOUT ELEVATION MEANS OR FIXING MATERIALS.
US5520754A (en) 1994-04-25 1996-05-28 Lockheed Missiles & Space Company, Inc. Spray cast Al-Li alloy composition and method of processing
ATE228580T1 (en) * 1997-08-30 2002-12-15 Honsel Gmbh & Co Kg ALLOY AND METHOD FOR PRODUCING OBJECTS FROM THIS ALLOY
US6419769B1 (en) 1998-09-08 2002-07-16 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Aluminum-silicon alloy having improved properties at elevated temperatures and process for producing cast articles therefrom

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005078147A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007035124A1 (en) 2007-07-27 2009-01-29 FNE Forschungsinstitut für Nichteisen-Metalle GmbH Lightweight construction material with dense, pore-free structure, comprises magnesium silicide reinforcing material in aluminum matrix and is obtained by squeeze-casting
DE102007035115A1 (en) 2007-07-27 2009-01-29 FNE Forschungsinstitut für Nichteisen-Metalle GmbH Aluminum-matrix material for building contains concentration gradient of magnesium silicide

Also Published As

Publication number Publication date
US20070169861A1 (en) 2007-07-26
EP1718778B1 (en) 2017-04-19
JP2007522348A (en) 2007-08-09
KR101220577B1 (en) 2013-01-10
KR20060127147A (en) 2006-12-11
BRPI0507719A (en) 2007-07-03
BRPI0507719B1 (en) 2013-11-26
CN1918311A (en) 2007-02-21
JP4914225B2 (en) 2012-04-11
CN100503857C (en) 2009-06-24
US7892482B2 (en) 2011-02-22
DE102004007704A1 (en) 2005-08-25
WO2005078147A1 (en) 2005-08-25

Similar Documents

Publication Publication Date Title
EP1718778B1 (en) Material based on an aluminum alloy, method for the production thereof and its use
EP1683882B1 (en) Aluminium alloy with low quench sensitivity and process for the manufacture of a semi-finished product of this alloy
EP2954081B1 (en) Aluminium casting alloy
EP2653579B1 (en) Aluminium alloy
EP2735621B1 (en) Aluminium die casting alloy
AT502294B1 (en) AL-ZN KNET ALLOY AND USE OF SUCH ALLOY
US4975243A (en) Aluminum alloy suitable for pistons
EP1682688A1 (en) Al/mg/si cast aluminium alloy containing scandium
DE3541781A1 (en) HEAT-RESISTANT, HIGH-STRENGTH ALUMINUM ALLOY AND METHOD FOR PRODUCING A COMPONENT MADE FROM THIS ALLOY
EP1518000B1 (en) Al/cu/mg/ag alloy with si, semi-finished product made from such an alloy and method for production of such a semi-finished product
EP2806044A2 (en) Copper-zinc alloy, method for its manufacture and use
WO2008138614A1 (en) Use of an al-mn alloy for high temperature resistant products
EP3024958B1 (en) High temperature strength aluminium casting alloy and casting for combustion engines cast from said alloy
EP3176275A1 (en) Aluminium-silicon die casting alloy method for producing a die casting component made of the alloy, and a body component with a die casting component
DE102019205267B3 (en) Die-cast aluminum alloy
EP2061912B1 (en) ALUMINIUM ALLOY OF THE AlZnMg TYPE AND METHOD OF PRODUCING IT
DE112017007033T5 (en) ALUMINUM ALLOYS
DE60114281T2 (en) Cast and forged product using a copper-based alloy
DE102013002632B4 (en) Aluminum-silicon diecasting alloy and method of making a die cast component
DE2919478A1 (en) COPPER-ZINC ALLOY AND THEIR USE
DE102011112005A1 (en) Alloy, preferably aluminum casting alloy, useful e.g. as a sand or die casting alloy, comprises a specified range of silicon, zinc, iron, copper, magnesium, strontium, sodium, antimony and aluminum
EP1802781B1 (en) Aluminium-based alloy and moulded part consisting of said alloy
DE60208944T2 (en) Die cast heat resistant Al material
EP3423606B1 (en) Aluminium casting alloy
EP0918096B1 (en) Process of manufacturing a structural element made of a die-cast aluminium alloy

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060912

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BISCHOFBERGER, ULRICH

Inventor name: KRUG, PETER

Inventor name: SINHA, GERO

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAHLE GMBH

Owner name: PEAK WERKSTOFF GMBH

17Q First examination report despatched

Effective date: 20110809

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502005015564

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C22C0021000000

Ipc: C22C0021080000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C22F 1/047 20060101ALI20160523BHEP

Ipc: C22C 21/08 20060101AFI20160523BHEP

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

INTG Intention to grant announced

Effective date: 20160614

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160825

INTG Intention to grant announced

Effective date: 20160829

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20161110

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005015564

Country of ref document: DE

Owner name: MAHLE GMBH, DE

Free format text: FORMER OWNER: MAHLE GMBH, 70376 STUTTGART, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005015564

Country of ref document: DE

Owner name: ERBSLOEH ALUMINIUM GMBH, DE

Free format text: FORMER OWNER: MAHLE GMBH, 70376 STUTTGART, DE

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005015564

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005015564

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180122

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005015564

Country of ref document: DE

Representative=s name: BONNEKAMP & SPARING, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005015564

Country of ref document: DE

Owner name: ERBSLOEH ALUMINIUM GMBH, DE

Free format text: FORMER OWNERS: MAHLE GMBH, 70376 STUTTGART, DE; PEAK WERKSTOFF GMBH, 42553 VELBERT, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005015564

Country of ref document: DE

Owner name: MAHLE GMBH, DE

Free format text: FORMER OWNERS: MAHLE GMBH, 70376 STUTTGART, DE; PEAK WERKSTOFF GMBH, 42553 VELBERT, DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180215

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180228

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180215

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210217

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005015564

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220901