EP1340564B1 - Use of a hardenable copper alloy - Google Patents

Use of a hardenable copper alloy Download PDF

Info

Publication number
EP1340564B1
EP1340564B1 EP03001084A EP03001084A EP1340564B1 EP 1340564 B1 EP1340564 B1 EP 1340564B1 EP 03001084 A EP03001084 A EP 03001084A EP 03001084 A EP03001084 A EP 03001084A EP 1340564 B1 EP1340564 B1 EP 1340564B1
Authority
EP
European Patent Office
Prior art keywords
mpa
copper alloy
tensile strength
hot
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03001084A
Other languages
German (de)
French (fr)
Other versions
EP1340564A3 (en
EP1340564A2 (en
Inventor
Thomas Dipl.-Ing. Helmenkamp
Dirk Dr.-Ing. Rode
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KME Special Products GmbH and Co KG
Original Assignee
KME Germany GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KME Germany GmbH filed Critical KME Germany GmbH
Publication of EP1340564A2 publication Critical patent/EP1340564A2/en
Publication of EP1340564A3 publication Critical patent/EP1340564A3/en
Application granted granted Critical
Publication of EP1340564B1 publication Critical patent/EP1340564B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0637Accessories therefor
    • B22D11/0648Casting surfaces
    • B22D11/066Side dams

Definitions

  • the invention relates to the use of a curable copper alloy as a material for the production of blocks for the side dams of strip casting plants.
  • the side dams consist in the example of the U.S. Patent 3,865,176 known strip casting from metallic form or Soendammblöcken with T-groove, which on a flexible endless belt, z. As steel, are lined up and move in synchronism with the casting belts in the longitudinal direction. The side dam blocks (dam blocks) thereby limit the mold cavity formed by the casting belts.
  • EP 0 346 645 B1 describes a curable copper-based alloy consisting of 1.6 to 2.4% nickel, 0.5 to 0.8% silicon, 0.01 to 0.2% zirconium, optionally up to 0.4% chromium and / or bis to 0.2% iron, balance copper including manufacturing impurities.
  • This known copper alloy basically meets the requirements for a long service life, if it is used as a material for the production of standard shaped blocks for the side dams of strip casting plants.
  • CuNiSiZr alloy described disadvantageously tends at very high mechanical and thermal stresses in the casting operation of a strip casting plant for premature wear of the side edges and casting surfaces. This wear is - as research results have shown - due to a material softening of the casting edges and surfaces to a value below 160 HV.
  • the thermal shock resistance of the known CuNiSiZr alloy when used as a side dam block with tongue and groove is not always sufficient to effectively prevent cracking in the T-slot in the casting insert.
  • EP 0 548 636 A and US 4 179 314 A disclose other Cu alloys and their use for molds
  • composition of alloy D is a known CuNiSi base alloy, while E and F are standardized CuCo2Be and CuCoNiBe materials, respectively.
  • All copper alloys were melted in an induction crucible furnace and cast in a continuous casting process into round blocks with a diameter of 280 mm.
  • the round blocks of the example alloys A, B and C were extruded on an extruder at a temperature above 900 ° C to flat bars of dimension 79 x 59 mm and then drawn with a cross-sectional decrease of 12% to the dimension 75 x 55 mm.
  • the blocks of the comparative alloys D, E and F were extruded directly at the same temperature to the dimension 75 x 55 mm and subjected to no additional cold working.
  • the CuCoBe or CuCoNiBe materials were then solution-annealed at 900 to 950 ° C and cured in the temperature range between 450 and 550 ° C for 0.5 to 16 hours.
  • the CuNiSi-based alloy was solution-annealed at 800 to 850 ° C and cured under the same conditions. When cured, tensile strength Rm, Vickers hardness HV10, electrical conductivity (as a substitute for thermal conductivity), ASTM E112 grain size, Rm heat resistance at 500 ° C and softening resistance via Vickers hardness measurement (HV10) after aging at 500 ° C determined after a period of 500 hours.
  • thermoforming blocks (1) measuring 70 x 50 x 40mm and shaped blocks (2) with tongue and groove measuring 70 x 50 x 47mm the thermal shock behavior was finally tested.
  • the mold blocks were first annealed for two hours at 500 ° C and then quenched in water at 20 to 25 ° C.
  • the T-slot of the blocks was then examined for cracks with the naked eye and a microscope at 10x magnification.
  • Table 2 alloy Rm MPa HV 10 Guide% IACS Grain size ⁇ m Rm (500 ° C) MPa Hardness HV 10 after aging at 500 ° C over 500h Behavior after thermal shock test Block (1)
  • Block (2) A 801 254 50 30-90 523 173 crack-free crack-free B 804 245 51.5 45-90 464 175 crack-free crack-free C 812 255 49.5 45 -90 485 167 crack-free crack-free D 652 205 43 45 -90 387 118 crack-free cracked e 786 260 50.5 up to 5000 423 150 cracked cracked cracked F 807 248 48.5 up to 3000 434 152 cracked cracked cracked
  • the copper alloy disclosed in claim 1 is therefore eminently suitable as a material for the production of all mold blocks for the side dams of strip casting plants subject to the casting process of a typical alternating temperature stress. These are both the previously used mold blocks and the mold blocks in the design with tongue and groove according to EP 0 974 413 A1 ,

Abstract

Hardenable copper alloy comprises (in wt.%) 1.2-2.7 cobalt, 0.3-0.7 beryllium, 0.01-0.5 zirconium, 0.005-0.2 magnesium and/or iron, optionally up to maximum 0.15 niobium, tantalum, vanadium, hafnium, chromium, manganese, titanium and/or cerium, and a balance of copper. Preferred Features: The copper alloy contains (in wt.%) 1.8-2.4 cobalt, 0.45-0.65 beryllium, 0.15-0.3 zirconium, up to 0.05 magnesium, up to 0.1 iron and a balance of copper. Up to 80% of the cobalt content is replaced by nickel.

Description

Die Erfindung betrifft die Verwendung einer aushärtbaren Kupferlegierung als Werkstoff zur Herstellung von Blöcken für die Seitendämme von Bandgießanlagen.The invention relates to the use of a curable copper alloy as a material for the production of blocks for the side dams of strip casting plants.

Das weltweite Ziel, insbesondere der Stahl- und Kupferindustrie, Halbzeug möglichst endabmessungsnah zu gießen, um Warm- und/oder Kaltverformungsschritte einzusparen, hat schon vor 1970 zu der Entwicklung der sogenannten Hazelett-Bandgießanlagen geführt, bei denen die Metallschmelze im Spalt von zwei parallel geführten Bändern erstarrt. Die Seitendämme bestehen bei der beispielsweise aus der US-Patentschrift 3 865 176 bekannten Bandgießanlage aus metallischen Form- oder Seitendammblöcken mit T-Nut, die auf einem flexiblen endlosen Band, z. B. aus Stahl, aufgereiht sind und die sich synchron mit den Gießbändern in Längsrichtung bewegen. Die Seitendammblöcke (Damblocks) grenzen dabei den durch die Gießbänder gebildeten Gießformhohlraum ein.The worldwide goal, especially of the steel and copper industry, to cast semifinished products as close to the final dimensions as possible in order to save hot and / or cold forming steps, led to the development of the so-called Hazelett strip casters in 1970, in which the molten metal in the gap of two parallel Ligaments solidified. The side dams consist in the example of the U.S. Patent 3,865,176 known strip casting from metallic form or Seitenendammblöcken with T-groove, which on a flexible endless belt, z. As steel, are lined up and move in synchronism with the casting belts in the longitudinal direction. The side dam blocks (dam blocks) thereby limit the mold cavity formed by the casting belts.

Weiterhin sind aus der EP 0 974 413 A1 aus Blöcken mit Nut und Feder gebildete Seitendammketten für Bandgießanlagen bekannt. Der Vorteil dieser weiterentwikkelten Formblöcke mit Nut und Feder liegt in einer genaueren Ausrichtung und Führung der Blöcke im Gießprozeß und führt zu einer Verbesserung der Oberflächenqualität des gegossenen Strangs. Um einen frühzeitigen Verschleiß der Seitenkanten der Blöcke durch plastische Verformung und Rißbildung zu verhindern, muß ein geeigneter Werkstoff eine hohe Härte und Festigkeit, ein feinkörniges Gefüge und eine gute Langzeiterweichungbeständigkeit aufweisen. Um die Erstarrungswärme aus der flüssigen Metallschmelze abzuführen, ist ferner eine hohe thermische Leitfähigkeit des Formblockwerkstoffs erforderlich.Furthermore, from the EP 0 974 413 A1 formed from blocks with tongue and groove side dam chains for strip casting. The advantage of this weiterentwikkelten mold blocks with tongue and groove is a more accurate alignment and guidance of the blocks in the casting process and leads to an improvement in the surface quality of the cast strand. In order to prevent premature wear of the side edges of the blocks by plastic deformation and cracking, a suitable material must have a high hardness and strength, a fine-grained texture and a good long-term softening resistance. In order to dissipate the solidification heat from the liquid molten metal, a high thermal conductivity of the molding block material is also required.

Von ganz entscheidender Bedeutung ist schließlich ein optimales Ermüdungsverhalten des Werkstoffs, welches sicherstellt, daß nach dem Verlassen der Gießstrecke die beim Rückkühlen der Blöcke auftretenden thermischen Spannungen nicht zum Reißen der Blöcke in den Ecken der für die Aufnahme des Stahlbandes eingearbeiteten T-Nut führt. Besonders hohe thermische Spannungen sind dabei - bedingt durch die ungünstigere Geometrie und Massenverteilung - bei Seitendammblöcken in der Ausführung mit Nut und Feder zu erwarten.Of crucial importance is, finally, an optimal fatigue behavior of the material, which ensures that after leaving the casting line, the thermal stresses occurring during the cooling of the blocks does not lead to tearing of the blocks in the corners of the incorporated for receiving the steel strip T-groove. Particularly high thermal stresses are expected - due to the less favorable geometry and mass distribution - in side dam blocks in the design with tongue and groove.

Treten derartige durch Thermoschock hervorgerufene Risse auf, fällt schon nach kurzer Zeit der betreffende Formblock aus der Seitendammkette der Bandgießmaschine heraus, wobei schmelzflüssiges Metall aus dem Gießformhohlraum unkontrolliert auslaufen und Anlagenteile beschädigen kann. Für das Auswechseln der schadhaften Formblöcke muß die gesamte Bandgießanlage angehalten und der Gießvorgang unterbrochen werden.Occur such caused by thermal shock cracks, falls after a short time of the block in question from the Seitendammkette the strip casting machine out molten metal from the mold cavity leak out uncontrolled and can damage equipment parts. For the replacement of the defective mold blocks, the entire strip caster must be stopped and the casting process must be interrupted.

Zur Überprüfung der Rißneigung hat sich eine Testmethode bewährt, bei der die Formblöcke einer zweistündigen Wärmebehandlung bei 500°C unterzogen und anschließend in Wasser von 20 bis 25°C abgeschreckt werden. Auch bei mehrfacher Wiederholung dieser Thermoschockprüfung dürfen bei einem geeigneten Material keine Risse in der T-Nutfläche auftreten.To test the tendency of cracking, a test method has proven in which the mold blocks are subjected to a heat treatment at 500 ° C for two hours and then quenched in water at 20 to 25 ° C. Even if this thermal shock test is repeated several times, no cracks in the T-slot surface may occur with a suitable material.

In der EP 0 346 645 B1 wird eine aushärtbare Kupferbasislegierung beschrieben, die aus 1,6 bis 2,4 % Nickel, 0,5 bis 0,8 % Silizium, 0,01 bis 0,2 % Zirkonium, wahlweise bis zu 0,4 % Chrom und/oder bis zu 0,2 % Eisen, Rest Kupfer einschließlich herstellungsbedingter Verunreinigungen besteht. Diese bekannte Kupferlegierung erfüllt grundsätzlich die Voraussetzungen für eine hohe Standzeit, falls sie als Werkstoff für die Herstellung von Standardformblöcken für die Seitendämme von Bandgießanlagen verwendet wird. Für diese Kupferlegierung wird folgende Eigenschaftskombination angegeben: Rm bei 20°C: 635 bis 660 MPa Rm bei 500°C: 286 bis 372 MPa Brinellhärte: 185 bis 191 HB (entspricht etwa 195 bis 210 HV) Leitfähigkeit: 41,4 bis 43,4 % IACS In the EP 0 346 645 B1 describes a curable copper-based alloy consisting of 1.6 to 2.4% nickel, 0.5 to 0.8% silicon, 0.01 to 0.2% zirconium, optionally up to 0.4% chromium and / or bis to 0.2% iron, balance copper including manufacturing impurities. This known copper alloy basically meets the requirements for a long service life, if it is used as a material for the production of standard shaped blocks for the side dams of strip casting plants. For this copper alloy, the following property combination is specified: Rm at 20 ° C: 635 to 660 MPa Rm at 500 ° C: 286 to 372 MPa Brinell hardness: 185 to 191 HB (corresponds to approximately 195 to 210 HV) Conductivity: 41.4 to 43.4% IACS

Beim Thermoschocktest treten keine Risse auf. Ein Vorteil gegenüber Beryllium-haltigen Kupferbasislegierungen besteht in der Möglichkeit, die Formblöcke manuell trocken nachschleifen zu können, da kein Beryllium im Schleifstaub enthalten ist. Die Nachbearbeitung eingesetzter Seitendammblöcke mit Nut und Feder ist erheblich aufwendiger und erfordert in der Regel eine maschinelle (Naß)-Reinigung der T-Nut und der Gießflächen (z. B. in geschlossenen Kammern), wodurch die Freisetzung von Schleifstäuben unterbunden wird. Ein Einsatz Beryllium-haltiger Legierungen wäre unter diesen Bedingungen somit grundsätzlich möglich.There are no cracks during the thermal shock test. An advantage over beryllium-containing copper-base alloys is the possibility of manually regrinding the mold blocks manually, since no beryllium is contained in the grinding dust. The post-processing of inserted side dam blocks with tongue and groove is considerably more complicated and usually requires a mechanical (wet) cleaning of the T-slot and the casting surfaces (eg in closed chambers), whereby the release of abrasive dust is prevented. A use of beryllium-containing alloys would thus be possible under these conditions.

Ein Seitendammblock aus der in der EP 0 346 645 B1 beschriebenen CuNiSiZr-Legierung neigt jedoch nachteiligerweise bei sehr hohen mechanischen und thermischen Beanspruchungen im Gießbetrieb einer Bandgießanlage zum frühzeitigen Verschleiß der Seitenkanten und Gießflächen. Dieser Verschleiß ist - wie Untersuchungsergebnisse gezeigt haben - auf eine Werkstofferweichung der Gießkanten und -flächen auf einen Wert unterhalb 160 HV zurückzuführen. Ferner reicht die Thermoschockresistenz der bekannten CuNiSiZr-Legierung bei Verwendung als Seitendammblock mit Nut und Feder nicht immer aus, um eine Rißbildung in der T-Nut im Gießeinsatz wirksam zu unterbinden.A side dam block from in the EP 0 346 645 B1 However, CuNiSiZr alloy described disadvantageously tends at very high mechanical and thermal stresses in the casting operation of a strip casting plant for premature wear of the side edges and casting surfaces. This wear is - as research results have shown - due to a material softening of the casting edges and surfaces to a value below 160 HV. Furthermore, the thermal shock resistance of the known CuNiSiZr alloy when used as a side dam block with tongue and groove is not always sufficient to effectively prevent cracking in the T-slot in the casting insert.

EP 0 548 636 A und US 4 179 314 A offenbaren weitere Cu-Legierungen und deren Verwendung für Gießformen EP 0 548 636 A and US 4 179 314 A disclose other Cu alloys and their use for molds

Durch die Verwendung gemäß der Ansprüche kann einerseits eine ausreichende Aushärtbarkeit des Werkstoffs zur Erzielung einer hohen Festigkeit, Härte und Leitfähigkeit sichergestellt werden. Andererseits ist nur eine relativ geringe Kaltverformung von 5% bis zu maximal 30% erforderlich, um ein feinkörniges Gefüge mit ausreichender Plastizität einzustellen. Durch den gezielt abgestuften Zirkoniumgehalt werden sowohl die Ermüdungsfestigkeit als auch die Warmfestigkeitseigenschaften verbessert.By the use according to the claims on the one hand sufficient hardenability of the material to achieve high strength, hardness and conductivity can be ensured. On the other hand, only a relatively small cold deformation of 5% to a maximum of 30% is required to set a fine-grained structure with sufficient plasticity. The targeted graded zirconium content improves both the fatigue strength and the heat resistance properties.

Mit der Abfolge der in Anspruch 1 angegebenen Verfahrensstufen gelingt es in darüber hinaus in überraschend einfacher Weise, das von den bekannten CuCoBe-Legierungen beobachtete schlechte Rekristallisationsverhalten bei der Warmformgebung und Lösungsglühbehandlung zu beseitigen. Das schlechte Rekristallisationsverhalten führt bei der Herstellung von Formblöcken aus CuCoBe-Legierungen im warmumgeformten, lösungsgeglühten und ausgehärteten Zustand zu einer für den Verwendungszweck nicht akzeptablen grobkörnigen Gefügestruktur mit Korngrößen bis über 1 mm. Wird der Werkstoff jedoch zwischen der Warmumformung und der Lösungsglühbehandlung einer Kaltverformung von 5% bis zu maximal 30 %, vorzugsweise bis zu maximal 15 %, unterworfen, so führt dieser zusätzliche Verarbeitungsschritt zu einer erheblich feinkörnigeren Gefügestruktur. Entsprechende Untersuchungsreihen haben bestätigt, daß Werkstoffe für Formblöcke für die Seitendämme von Bandgießmaschinen, die unterhalb der Rekristallisationstemperatur kaltverformt und anschließend lösungsgeglüht werden eine deutlich feinere Gefügestruktur mit Korngrößen unterhalb 0,5 mm aufweisen, während höhere Kaltumformgrade oberhalb von etwa 40 % beim nachfolgenden Lösungsglühen zu einer Kornvergröberung durch sekundäre Rekristallisation mit Korngrößen über 1 mm führen.With the sequence of the process steps specified in claim 1, it is also possible in a surprisingly simple manner to eliminate the poor recrystallization behavior observed in the hot forming and solution annealing treatment observed by the known CuCoBe alloys. The poor recrystallization behavior results in the production of blocks of CuCoBe alloys in the hot-formed, solution-annealed and cured state to a non-acceptable for the intended use coarse-grained microstructure with grain sizes up to 1 mm. However, if the material is subjected to cold working of 5% to a maximum of 30%, preferably up to a maximum of 15%, between the hot working and the solution annealing treatment, this additional processing step leads to a considerably finer grain structure. Corresponding series of tests have confirmed that materials for mold blocks for the side ram of strip casters, cold worked below the recrystallization and then solution annealed have a much finer microstructure with grain sizes below 0.5 mm, while higher degrees of cold work above about 40% in the subsequent solution annealing to a Grain coarsening by secondary recrystallization with grain sizes above 1 mm lead.

Anhand von Ausführungsbeispielen wird die Erfindung im folgenden noch näher erläutert. An drei erfindungsgemäßen Beispiel-(Legierungen A, B und C) und drei Vergleichsbeispiel-(Legierungen Vergleichsbeispiel- (D, E und F) werden die Vorteile der Erfindung aufgezeigt. Die Zusammensetzung der Kupferlegierungen in Gewichtsprozenten ist in der nachfolgenden Tabelle 1 angegeben: Tabelle 1 Legierung Co (%) Ni (%) Be (%) Zr (%) Si (%) Cr (%) Cu (%) A 2,1 - 0,54 0,18 - - Rest B 2,2 - 0,56 0,24 - - Rest C 1,3 1,0 0,48 0,15 - - Rest D - 2,0 - 0,16 0,62 0.34 Rest E 2,1 - 0,55 - - - Rest F 1,0 1,1 0,62 - - - Rest Reference to exemplary embodiments, the invention will be explained in more detail below. The advantages of the invention are shown in three examples of the invention (alloys A, B and C) and three comparative examples (alloys Comparative Example - D, E and F.) The composition of the copper alloys in percent by weight is given in Table 1 below: Table 1 alloy Co (%) Ni (%) Be (%) Zr (%) Si (%) Cr (%) Cu (%) A 2.1 - 0.54 0.18 - - rest B 2.2 - 0.56 0.24 - - rest C 1.3 1.0 0.48 0.15 - - rest D - 2.0 - 0.16 0.62 12:34 rest e 2.1 - 0.55 - - - rest F 1.0 1.1 0.62 - - - rest

Bei der Zusammensetzung der Legierung D handelt es sich um eine bekannte CuNiSi-Basislegierung, während E und F genormte CuCo2Be- bzw. CuCoNiBe-Werkstoffe sind.The composition of alloy D is a known CuNiSi base alloy, while E and F are standardized CuCo2Be and CuCoNiBe materials, respectively.

Sämtliche Kupferlegierungen wurden in einem Induktionstiegelofen erschmolzen und im Stranggießverfahren zu Rundblöcken mit einem Durchmesser von 280 mm vergossen. Die Rundblöcke der Beispiellegierungen A, B und C wurden auf einer Strangpresse bei einer Temperatur oberhalb 900 °C zu Flachstangen der Abmessung 79 x 59 mm stranggepreßt und anschließend mit einer Querschnittsabnahme von 12 % auf die Abmessung 75 x 55 mm gezogen. Die Blöcke der Vergleichslegierungen D, E und F wurden bei gleicher Temperatur direkt auf die Abmessung 75 x 55 mm stranggepreßt und keiner zusätzlichen Kaltumformung unterworfen. Die CuCoBe- bzw. CuCoNiBe-Werkstoffe wurden anschließend bei 900 bis 950 °C lösungsgeglüht und im Temperaturbereich zwischen 450 und 550 °C für 0,5 bis 16 Stunden lang ausgehärtet.All copper alloys were melted in an induction crucible furnace and cast in a continuous casting process into round blocks with a diameter of 280 mm. The round blocks of the example alloys A, B and C were extruded on an extruder at a temperature above 900 ° C to flat bars of dimension 79 x 59 mm and then drawn with a cross-sectional decrease of 12% to the dimension 75 x 55 mm. The blocks of the comparative alloys D, E and F were extruded directly at the same temperature to the dimension 75 x 55 mm and subjected to no additional cold working. The CuCoBe or CuCoNiBe materials were then solution-annealed at 900 to 950 ° C and cured in the temperature range between 450 and 550 ° C for 0.5 to 16 hours.

Die CuNiSi-Basislegierung wurde bei 800 bis 850 °C lösungsgeglüht und unter gleichen Bedingungen ausgehärtet. Im ausgehärteten Zustand wurden die Zugfestigkeit Rm, die Vickershärte HV10, die elektrische Leitfähigkeit (als Ersatzgröße für die Wärmeleitfähigkeit), die Korngröße nach ASTM E112, die Warmfestigkeit Rm bei 500 °C und die Erweichungsbeständigkeit über Vickershärtemessung (HV10) nach Auslagerung bei 500 °C nach einer Dauer von 500 Stunden ermittelt.The CuNiSi-based alloy was solution-annealed at 800 to 850 ° C and cured under the same conditions. When cured, tensile strength Rm, Vickers hardness HV10, electrical conductivity (as a substitute for thermal conductivity), ASTM E112 grain size, Rm heat resistance at 500 ° C and softening resistance via Vickers hardness measurement (HV10) after aging at 500 ° C determined after a period of 500 hours.

An Formblöcken (1) der Abmessung 70 x 50 x 40mm und Formblöcken (2) mit Nut und Feder der Abmessung 70 x 50 x 47mm wurde schließlich das Thermoschockverhalten geprüft. Hierzu wurden die Formblöcke zunächst zwei Stunden bei 500 °C geglüht und dann in Wasser von 20 bis 25 °C abgeschreckt. Die T-Nut der Blöcke wurde dann mit bloßem Auge und mit einem Mikroskop bei 10-facher Vergrößerung auf Risse untersucht.On thermoforming blocks (1) measuring 70 x 50 x 40mm and shaped blocks (2) with tongue and groove measuring 70 x 50 x 47mm, the thermal shock behavior was finally tested. For this purpose, the mold blocks were first annealed for two hours at 500 ° C and then quenched in water at 20 to 25 ° C. The T-slot of the blocks was then examined for cracks with the naked eye and a microscope at 10x magnification.

Sämtliche Untersuchungsergebnisse sind in nachstehenden Tabelle 2 zusammengefaßt. Tabelle 2: Legierung Rm MPa HV 10 Leitf. % IACS Korngröße µm Rm (500 °C) MPa Härte HV 10 nach Auslagerung bei 500°C über 500h Verhalten nach Thermoschocktest Block (1) Block (2) A 801 254 50 30-90 523 173 rißfrei rißfrei B 804 245 51,5 45- 90 464 175 rißfrei rißfrei C 812 255 49,5 45 -90 485 167 rißfrei rißfrei D 652 205 43 45 -90 387 118 rißfrei rissig E 786 260 50,5 bis 5000 423 150 rissig rissig F 807 248 48,5 bis 3000 434 152 rissig rissig All test results are summarized in Table 2 below. Table 2: alloy Rm MPa HV 10 Guide% IACS Grain size μm Rm (500 ° C) MPa Hardness HV 10 after aging at 500 ° C over 500h Behavior after thermal shock test Block (1) Block (2) A 801 254 50 30-90 523 173 crack-free crack-free B 804 245 51.5 45-90 464 175 crack-free crack-free C 812 255 49.5 45 -90 485 167 crack-free crack-free D 652 205 43 45 -90 387 118 crack-free cracked e 786 260 50.5 up to 5000 423 150 cracked cracked F 807 248 48.5 up to 3000 434 152 cracked cracked

Die Ausdehnung festgestellter Risse in der T-Nut lag bei den mit als "rissig" klassifizierten Formblöcken bei 2 bis 5 mm, in Einzelfällen betrug die Rißlänge bis zu 10 mm. Der Gegenüberstellung ist zu entnehmen, daß im Vergleich zu den Werkstoffen E und F nur die erfindungsgemäßen Beispiele bei optimalen Eigenschaften ein überraschenderweise gleichmäßiges und feinkörniges Gefüge und die notwendige Resistenz gegen Rißbildung bei Einsatz als Formblock mit Nut und Feder aufweisen. Auch bei Verwendung als üblicher Formblock weisen die erfindungsgemäßen Beispiele eine deutlich bessere Erweichungsbeständigkeit gegenüber der bekannten CuNiSi-Legierung D und eine etwas bessere Erweichungsbeständigkeit gegenüber den Legierungen E und F auf.The extent of observed cracks in the T-slot was 2 to 5 mm in the blocks classified as "cracked", in some cases the crack length was up to 10 mm. The comparison can be seen that compared to the materials E and F, only the examples of the invention with optimum properties have a surprisingly uniform and fine-grained structure and the necessary resistance to cracking when used as a mold block with tongue and groove. Even when used as a conventional molding block, the inventive examples have a significantly better resistance to softening compared to the known CuNiSi alloy D and a slightly better resistance to softening compared to the alloys E and F.

Die in Anspruch 1 offenbarte Kupferlegierung eignet sich daher hervorragend als Werkstoff zur Herstellung von sämtlichen beim Gießvorgang einer typischen wechselnden Temperaturbeanspruchung unterliegenden Formblöcken für die Seitendämme von Bandgießanlagen. Dies sind sowohl die bisher verwendeten Formblöcke als auch die Formblöcke in der Ausführung mit Nut und Feder gemäß EP 0 974 413 A1 .The copper alloy disclosed in claim 1 is therefore eminently suitable as a material for the production of all mold blocks for the side dams of strip casting plants subject to the casting process of a typical alternating temperature stress. These are both the previously used mold blocks and the mold blocks in the design with tongue and groove according to EP 0 974 413 A1 ,

Claims (2)

  1. Use of a hardenable copper alloy for casting moulds - in particular for side dams for strip-casting installations, in that a hardenable copper alloy in accordance with the following composition:
    • 1.2 to 2.7% cobalt, wherein up to 80% of the cobalt content can be replaced by nickel
    • 0.01% to 0.5% zirconium
    • 0.3 to 0.7% beryllium
    • optionally 0.005 to 0.2% magnesium and/or iron
    • optionally up to a maximum of 0.15% of at least one element from the group comprising niobium, tantalum, vanadium, hafnium, chromium, manganese, titanium and cerium
    • remainder copper including impurities caused by production
    is subjected to the method steps
    • cold forming of the hot-formed cast blank by between 5 and a maximum of 30%
    • solution annealing of the blank which has been cold formed by 5 to 30% in the temperature range of 850 to 970°C
    • 0.5 to 16 hours of hardening of the solution annealed blank at 400 to 550°C and in the hardened state has
    • a tensile strength of at least 650 MPa
    • Vickers hardness of at least 210 HV
    • electrical conductivity of at least 40% IACS
    • hot tensile strength at 500°C of at least 400 MPa
    • minimum hardness of 160 HV after 500 hours of ageing at 500°C
    • and a maximum grain size determined according to ASTM E112 of 0.5 mm.
  2. Use of a copper alloy according to claim 1, which contains 1.8 to 2.4% cobalt, 0.45 to 0.65% beryllium, 0.15 to 0.3% zirconium, up to 0.5% Mg, up to 0.1% iron, remainder copper including impurities caused by production, is subjected to the method steps according to claim 1 with a cold forming of 10 to 15% after the hot forming and has, in the hardened state, a
    • tensile strength of 700 to 900 MPa
    • Vickers hardness of 230 to 280 HV
    • electrical conductivity of 45 to 60% IACS
    • hot tensile strength at 500°C of at least 450 MPa
    • minimum hardness of 160 HV after 500 hours of ageing at 500°C
    • a grain size determined according to ASTM E112 of between 30 and 90 µm.
EP03001084A 2002-02-15 2003-01-18 Use of a hardenable copper alloy Expired - Lifetime EP1340564B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10206597 2002-02-15
DE10206597A DE10206597A1 (en) 2002-02-15 2002-02-15 Hardenable copper alloy used as a material for blocks for the sides of strip casting mills contains alloying additions of cobalt, beryllium, zirconium, and magnesium and/or iron

Publications (3)

Publication Number Publication Date
EP1340564A2 EP1340564A2 (en) 2003-09-03
EP1340564A3 EP1340564A3 (en) 2005-04-27
EP1340564B1 true EP1340564B1 (en) 2007-07-18

Family

ID=27635063

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03001084A Expired - Lifetime EP1340564B1 (en) 2002-02-15 2003-01-18 Use of a hardenable copper alloy

Country Status (15)

Country Link
US (2) US20030159763A1 (en)
EP (1) EP1340564B1 (en)
JP (1) JP4472933B2 (en)
KR (1) KR100967864B1 (en)
CN (1) CN1271228C (en)
AT (1) ATE367229T1 (en)
BR (1) BR0300445B1 (en)
CA (1) CA2417546C (en)
DE (2) DE10206597A1 (en)
DK (1) DK1340564T3 (en)
ES (1) ES2288572T3 (en)
MX (1) MXPA03000218A (en)
PL (1) PL198565B1 (en)
PT (1) PT1340564E (en)
RU (1) RU2301844C2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016083023A1 (en) 2014-11-27 2016-06-02 Sms Group Gmbh Device for the strip casting of metal products

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060086437A1 (en) * 2004-10-22 2006-04-27 Russell Nippert Method for manufacturing copper alloys
JP2008151270A (en) * 2006-12-18 2008-07-03 Kitz Sct:Kk Metal diaphragm valve
CN101333609B (en) * 2007-06-28 2011-03-16 周水军 Low copper beryllium mold material for gravitation and low-pressure casting and production process thereof
DE102008015096A1 (en) * 2008-03-19 2009-09-24 Kme Germany Ag & Co. Kg Process for producing molded parts and molded parts produced by the process
CN101643867B (en) * 2009-08-28 2011-11-23 镇江汇通金属成型有限公司 High performance copper casting alloy and preparation method thereof
JP2011081764A (en) * 2009-09-14 2011-04-21 Panasonic Corp Content receiver, content reproducer, content reproducing system, content writing method, expiration date determining method, program, and recording medium
DE102016006824A1 (en) * 2016-06-03 2017-12-07 Wieland-Werke Ag Copper alloy and its uses
RU2625193C1 (en) * 2016-10-10 2017-07-12 Юлия Алексеевна Щепочкина Copper-based alloy
KR101810925B1 (en) 2017-10-18 2017-12-20 주식회사 풍산 Copper alloy strips having high heat resistance and thermal dissipation properties
CN112210692B (en) * 2020-09-10 2021-12-17 新余市长城铜产品开发有限公司 Beryllium bronze long guide rail and manufacturing method thereof
CN115233032B (en) * 2022-08-01 2023-06-27 河南云锦空天特导新材料有限公司 Copper alloy wire and preparation method and application thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3865176A (en) * 1973-09-28 1975-02-11 Hazelett Strip Casting Corp Casting method for twin-belt continuous metal casting machines
US4179314A (en) * 1978-12-11 1979-12-18 Kawecki Berylco Industries, Inc. Treatment of beryllium-copper alloy and articles made therefrom
US4377424A (en) * 1980-05-26 1983-03-22 Chuetsu Metal Works Co., Ltd. Mold of precipitation hardenable copper alloy for continuous casting mold
JPS6260879A (en) * 1985-09-10 1987-03-17 Ngk Insulators Ltd Wear resistant copper alloy member
US4749548A (en) * 1985-09-13 1988-06-07 Mitsubishi Kinzoku Kabushiki Kaisha Copper alloy lead material for use in semiconductor device
EP0271991B1 (en) * 1986-11-13 1991-10-02 Ngk Insulators, Ltd. Production of copper-beryllium alloys
JP2869076B2 (en) * 1988-12-19 1999-03-10 中越合金鋳工株式会社 Precipitation hardening mold material for continuous casting
DE4142941A1 (en) * 1991-12-24 1993-07-01 Kabelmetal Ag USE OF A CURABLE copper alloy
US6059905A (en) * 1993-08-26 2000-05-09 Ngk Metals Corporation Process for treating a copper-beryllium alloy
EP0854200A1 (en) * 1996-10-28 1998-07-22 BRUSH WELLMAN Inc. Copper-beryllium alloy
DE10156925A1 (en) * 2001-11-21 2003-05-28 Km Europa Metal Ag Hardenable copper alloy as a material for the production of casting molds

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016083023A1 (en) 2014-11-27 2016-06-02 Sms Group Gmbh Device for the strip casting of metal products
DE102014224236A1 (en) 2014-11-27 2016-06-02 Sms Group Gmbh Device for strip casting of metallic products

Also Published As

Publication number Publication date
US20030159763A1 (en) 2003-08-28
MXPA03000218A (en) 2004-10-29
BR0300445B1 (en) 2011-07-26
EP1340564A3 (en) 2005-04-27
RU2301844C2 (en) 2007-06-27
DK1340564T3 (en) 2007-11-19
PL198565B1 (en) 2008-06-30
PL358681A1 (en) 2003-08-25
DE50307676D1 (en) 2007-08-30
BR0300445A (en) 2004-08-17
CN1271228C (en) 2006-08-23
KR20030069066A (en) 2003-08-25
CA2417546C (en) 2015-03-31
EP1340564A2 (en) 2003-09-03
JP4472933B2 (en) 2010-06-02
US20080240974A1 (en) 2008-10-02
JP2004002967A (en) 2004-01-08
PT1340564E (en) 2007-09-03
ATE367229T1 (en) 2007-08-15
CN1442500A (en) 2003-09-17
KR100967864B1 (en) 2010-07-05
ES2288572T3 (en) 2008-01-16
CA2417546A1 (en) 2003-08-15
DE10206597A1 (en) 2003-08-28

Similar Documents

Publication Publication Date Title
EP1340564B1 (en) Use of a hardenable copper alloy
DE202008018370U1 (en) Al-Cu-Li alloy product suitable for aircraft application
EP1314789B1 (en) Mould made of a precipitation hardenable copper alloy
DE102019205267B3 (en) Die-cast aluminum alloy
EP0548636B1 (en) Use of an hardenable copper alloy
EP2061912B1 (en) ALUMINIUM ALLOY OF THE AlZnMg TYPE AND METHOD OF PRODUCING IT
EP1251187B1 (en) Use of a tool steel for plastic material molds
EP3412790A1 (en) Precipitation hardening steel and use of such a steel for thermoforming tools
EP0346645B1 (en) Use of an age-hardenable copper-based alloy
DE2948916B1 (en) Copper-tin alloy, process for its production and its use
EP3850116B1 (en) Use of a copper alloy
EP1314495B1 (en) Sleeve for a casting roll of a twin roll continuous caster
EP0702094A1 (en) Use of a hardenable copper alloy
EP2677051A1 (en) High-strength copper alloy forging
EP0249740B1 (en) Using a copper alloy
DE10306819A1 (en) Copper alloy and use of such an alloy for casting molds
DE1014577B (en) Process for the production of hot work tools using a hardening steel alloy
WO2009115081A1 (en) Method for the production of castings and castings produced according to the method
DE102018113442A1 (en) Precipitation hardening steel and use of such a steel for hot forming tools
DE10224268A1 (en) Casting roll for a two-roll casting plant
DE3620655A1 (en) Copper alloy for producing concast moulds
EP0340248A1 (en) Copper alloy and high-precision compression moulding with low dimensional tolerances made therefrom

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

17P Request for examination filed

Effective date: 20050919

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

17Q First examination report despatched

Effective date: 20060718

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: USE OF A HARDENABLE COPPER ALLOY

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KME GERMANY AG

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50307676

Country of ref document: DE

Date of ref document: 20070830

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PA ALDO ROEMPLER

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20070822

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070809

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20070402770

Country of ref document: GR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2288572

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071018

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070718

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070718

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070718

26N No opposition filed

Effective date: 20080421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: ALDO ROEMPLER PATENTANWALT;BRENDENWEG 11 POSTFACH 154;9424 RHEINECK (CH)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080118

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070718

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50307676

Country of ref document: DE

Representative=s name: PIETRZYKOWSKI, ANJA, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50307676

Country of ref document: DE

Representative=s name: PIETRZYKOWSKI, ANJA, DE

Effective date: 20130122

Ref country code: DE

Ref legal event code: R081

Ref document number: 50307676

Country of ref document: DE

Owner name: KME GERMANY GMBH & CO. KG, DE

Free format text: FORMER OWNER: KME GERMANY AG & CO. KG, 49074 OSNABRUECK, DE

Effective date: 20130122

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: KME GERMANY GMBH AND CO. KG, DE

Free format text: FORMER OWNER: KME GERMANY AG, DE

REG Reference to a national code

Ref country code: PT

Ref legal event code: PC4A

Owner name: KME GERMANY AG & CO. KG, DE

Effective date: 20130821

BECN Be: change of holder's name

Owner name: KME GERMANY G.M.B.H. & CO. K.G.

Effective date: 20130829

REG Reference to a national code

Ref country code: NL

Ref legal event code: SD

Effective date: 20130828

Ref country code: NL

Ref legal event code: TD

Effective date: 20130828

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: KME GERMANY GMBH & CO.KG

Effective date: 20131004

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: KME GERMANY GMBH & CO. KG, DE

Effective date: 20131029

Ref country code: FR

Ref legal event code: CD

Owner name: KME GERMANY GMBH & CO. KG, DE

Effective date: 20131029

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 367229

Country of ref document: AT

Kind code of ref document: T

Owner name: KME GERMANY GMBH & CO. KG, DE

Effective date: 20140219

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20150126

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150121

Year of fee payment: 13

Ref country code: FI

Payment date: 20150122

Year of fee payment: 13

Ref country code: ES

Payment date: 20150225

Year of fee payment: 13

Ref country code: PT

Payment date: 20150115

Year of fee payment: 13

Ref country code: CH

Payment date: 20150124

Year of fee payment: 13

Ref country code: DK

Payment date: 20150123

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20150129

Year of fee payment: 13

Ref country code: SE

Payment date: 20150128

Year of fee payment: 13

Ref country code: GB

Payment date: 20150202

Year of fee payment: 13

Ref country code: GR

Payment date: 20150127

Year of fee payment: 13

Ref country code: FR

Payment date: 20150130

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20150121

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150331

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160131

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50307676

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20160131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 367229

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160118

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160118

REG Reference to a national code

Ref country code: GR

Ref legal event code: ML

Ref document number: 20070402770

Country of ref document: GR

Effective date: 20160803

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20160201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160802

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160131

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160118

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160201

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160118

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160119

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160201

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160718

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160131

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20170224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160119