EP0224016B1 - Wrought aluminium alloy of the type al-cu-mg having a high strength in the temperature range between 0 and 250o c - Google Patents

Wrought aluminium alloy of the type al-cu-mg having a high strength in the temperature range between 0 and 250o c Download PDF

Info

Publication number
EP0224016B1
EP0224016B1 EP86114458A EP86114458A EP0224016B1 EP 0224016 B1 EP0224016 B1 EP 0224016B1 EP 86114458 A EP86114458 A EP 86114458A EP 86114458 A EP86114458 A EP 86114458A EP 0224016 B1 EP0224016 B1 EP 0224016B1
Authority
EP
European Patent Office
Prior art keywords
weight
gew
alloy
aluminium alloy
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP86114458A
Other languages
German (de)
French (fr)
Other versions
EP0224016A1 (en
Inventor
Ian James Prof. Dr. Polmear
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBC Brown Boveri AG Switzerland
Original Assignee
BBC Brown Boveri AG Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBC Brown Boveri AG Switzerland filed Critical BBC Brown Boveri AG Switzerland
Publication of EP0224016A1 publication Critical patent/EP0224016A1/en
Application granted granted Critical
Publication of EP0224016B1 publication Critical patent/EP0224016B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent

Definitions

  • the invention is based on a wrought aluminum alloy according to the preamble of claim 1.
  • Aluminum alloys of the AUCu / Mg type have been known for decades. Attempts have been made again and again to improve this classic hardenable alloy with further additives and to adapt its properties optimally to the respective intended use. Alloying silver to cast alloys of this type has been proposed, inter alia, to improve strength properties (see, e.g., US-A-3,288,601; US-A-3,475,166; US-A-3,925,067). Similar proposals have also been made in the field of wrought alloys (see GB-A-1 320 271). The alloys have other additives to improve the structure, e.g. Manganese, titanium etc.
  • Al / Cu / Mg wrought alloys with additions of iron and nickel have been developed for operating temperatures up to about 100 ... 150 ° C (see alloy 2618 according to the US standard). These alloys are usually the result of appropriate casting alloys with nickel additives. However, since they suffer a comparatively well-defined drop in strength above 150 ° C, it is not actually possible to speak of "heat-resistant" aluminum alloys in today's sense. The known alloys do not fully exploit the possibilities of improving the strength properties. In particular, they do not meet the requirements at higher temperatures (up to, for example, 250 ° C.), as are required for numerous technical uses.
  • the invention is based on the object of specifying an aluminum wrought alloy which can be produced by melt metallurgy using simple, conventional methods and which in the temperature range from 0 to 250 ° C. in the hardened state has significantly higher strength properties than conventional alloys.
  • the Brinell hardness as a function of the Ag content of an Al / Cu / Ag or Al / Cu / Mg / Ag alloy is shown diagrammatically in FIG. 1.
  • the Mg content is plotted as a parameter.
  • Curve 1 relates to a Mg-free alloy, curve 2 to a Mg content of 0.3% by weight, curve 3 to 0.4% by weight and curve 4 to 0.5% by weight.
  • the alloy had a constant proportion of 6.3% by weight of Cu; Rest aluminum.
  • the values refer to the state obtained after solution heat treatment, water quenching and heat curing. With increasing content of alloying elements, the Brinell hardness rose to a flat maximum.
  • Curve 9 relates to the course of the yield point (0.2% limit) of alloy No. 2618, curve 10 to that of alloy No. 2219.
  • the values of the yield point of the new alloy are significantly higher than those of the known, commercial alloys.
  • FIG. 4 shows a representation of the creep rupture strength at 180 ° C. for a new alloy in comparison to a known, commercial alloy.
  • the new alloy had the composition shown in Fig. 2, while the comparative alloy was No. 2618 described above.
  • Curve 11 relates to the new alloy, while curve 12 applies to the known alloy No. 2618.
  • the achieved values of the new alloy are consistently approx. 20% higher than those of the comparison alloy.
  • the pure elements were melted down as raw materials for the components aluminum, copper, magnesium and silver.
  • the purity of the aluminum was 99.9%.
  • the components manganese, zirconium and vanadium were added as aluminum master alloys, each with 50% by weight of the element in question.
  • the total melted mass was approx. 2 kg.
  • the melt was brought to a casting temperature of 740 ° C. and poured into a slightly conical, water-cooled copper mold.
  • the raw cast ingot had a smallest diameter of approx. 70 mm and a height of approx. 160 mm. After cooling, it was homogenized at a temperature of 485 ° C. for 24 hours.
  • cylindrical pressing bolts 36 mm in diameter and 36 mm high were screwed out of the ingot. These were pressed individually on an extrusion press at a temperature of 420 ° C. to form a round rod with a diameter of 9 mm. The effective reduction ratio was 13: 1. Sections of 50 mm in length were cut off from this bar and further processed individually. First, the test specimens thus obtained were subjected to solution heat treatment at a temperature of 530 ° C. for a period of 3 hours and then quenched in cold water. The test specimens were then cured for 7 hours at a temperature of 195 ° C. (hot aging).
  • the strength properties were tested both at room and at elevated temperatures after a previous holding time of 0.5 h or 1000 h at the relevant test temperature.
  • the results for the 0.5 hour hold time are shown in the diagrams corresponding to FIGS. 2, 3 and 4. This results in the following values: Brinell hardness HB: flat maximum of 165 units in the range from approx. 4 to 7h curing time. Curing temperature 195 ° C. Curve 4.
  • the alloy specimens were solution annealed at a temperature of 533 ° C and quenched in boiling water.
  • the thermosetting was carried out at 175 ° C for a period of 50 hours.
  • the specimens of the alloy were solution annealed at a temperature of 525 ° C and quenched in cold water. The heat curing took place at a temperature of 205 ° C for a period of 2 hours.
  • an aluminum alloy corresponding to this example was melted.
  • the melt was brought to a temperature of 700 ° C. and atomized to fine powder in a device using a gas jet.
  • the gas was nitrogen, which was under a pressure of 60 bar.
  • the fine-grained powder produced only the fractions with a particle diameter below 50 ⁇ m were used further.
  • the powder was poured into aluminum cans and degassed at 450 ° C. for 5 hours. Then the filled cans were hot-pressed and the press bolts produced in this way were further processed in an extrusion press at 420 ° C. into bars with a diameter of 9 mm. The material was 100% density. Sections of the bars were then solution annealed at a temperature of 530 ° C for 3 hours and then quenched in cold water. The test specimens were aged at 195 ° C for 7 hours. The maximum strength was reached after about 5 hours. The mechanical properties of the test specimens produced by powder metallurgy were on average still slightly higher than those produced by melt metallurgy.
  • the additional impurities to be accepted in the industrial manufacture of the alloys should remain as low as possible and should not exceed a total of 0.25% by weight for all elements taken together.
  • the silicon content should be kept as low as possible to avoid the formation of low-melting eutectics in the grain boundaries.
  • intermetallic compounds with the magnesium which would mean a loss of the latter metal for its beneficial effect together with silver, should be switched off (see FIG. 1).
  • the silicon content should therefore remain below 0.10% by weight.
  • the transition metals manganese, zircon and vanadium serve to refine the grain and form intermetallic phases, which, in finely divided form, cause dispersion hardening and, above all, contribute to increasing the heat resistance.
  • Solution annealing is preferably carried out in the temperature range from 528 to 533 ° C., the upper temperature limit being given by the requirement to avoid local melting by the occurrence of low-melting phases.
  • the heat curing can be carried out in various ways by using the temperature / time relationship. This is preferably done according to the following scheme:
  • the wrought alloys according to the invention have created light materials which have good strength properties, in particular in the temperature range from room temperature to 250 ° C., and which can be easily produced by conventional melt metallurgical methods.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Adornments (AREA)
  • Forging (AREA)
  • Continuous Casting (AREA)

Description

Die Erfindung geht aus von einer Aluminium-Knetlegierung nach der Gattung des Oberbegriffs des Anspruchs 1.The invention is based on a wrought aluminum alloy according to the preamble of claim 1.

Aluminiumlegierungen des Typs AUCu/Mg sind seit Jahrzehnten bekannt. Man hat stets wieder versucht, diese klassische aushärtbare Legierung durch weitere Zusätze zu verbessern und in ihren Eigenschaften dem jeweiligen Verwendungszweck optimal anzupassen. Zur Verbesserung der Festigkeitseigenschaften ist unter anderem das Zulegieren von Silber zu Gusslegierungen dieses Typs vorgeschlagen worden (siehe z.B. US-A-3 288 601; US-A-3 475 166; US-A-3 925 067). Aehnliche Vorschläge wurden auch auf dem Gebiet der Knetlegierungen gemacht (vergl. GB-A-1 320 271). Die Legierungen weisen zur Verbesserung des Gefüges noch weitere Zusätze, z.B. Mangan, Titan etc. auf.Aluminum alloys of the AUCu / Mg type have been known for decades. Attempts have been made again and again to improve this classic hardenable alloy with further additives and to adapt its properties optimally to the respective intended use. Alloying silver to cast alloys of this type has been proposed, inter alia, to improve strength properties (see, e.g., US-A-3,288,601; US-A-3,475,166; US-A-3,925,067). Similar proposals have also been made in the field of wrought alloys (see GB-A-1 320 271). The alloys have other additives to improve the structure, e.g. Manganese, titanium etc.

Für Betriebstemperaturen bis etwa 100 ... 150°C wurden AI/Cu/Mg-Knetlegierungen mit Zusätzen an Eisen und Nickel entwickelt (vergl. Legierung 2618 nach US-Norm). Diese Legierungen sind meist aus entsprechenden Gussiegierungen mit Nickelzusätzen hervorgegangen. Da sie jedoch oberhalb 150°C einen vergleichsweise gut ausgeprägten Festigkeitsabfall erleiden, kann im heutigen Sinn nicht eigentlich von "warmfesten" Aluminiumlegierungen gesprochen werden. Die bekannten Legierungen schöpfen die Möglichkeiten der Verbesserung der Festigkeitseigenschaften nicht restlos aus. Insbesondere genügen sie den Anforderungen bei höheren Temperaturen (bis beispielsweise 250°C), wie sie für zahlreiche technische Verwendungen benötigt werden, nicht.Al / Cu / Mg wrought alloys with additions of iron and nickel have been developed for operating temperatures up to about 100 ... 150 ° C (see alloy 2618 according to the US standard). These alloys are usually the result of appropriate casting alloys with nickel additives. However, since they suffer a comparatively well-defined drop in strength above 150 ° C, it is not actually possible to speak of "heat-resistant" aluminum alloys in today's sense. The known alloys do not fully exploit the possibilities of improving the strength properties. In particular, they do not meet the requirements at higher temperatures (up to, for example, 250 ° C.), as are required for numerous technical uses.

Es besteht daher ein grosses Bedürfnis nach einer weiteren Verbesserung der Aluminium-Knetlegierungen, insbesondere deren Festigkeitseigenschaften bei erhöhter Temperatur.There is therefore a great need for a further improvement in wrought aluminum alloys, in particular their strength properties at elevated temperatures.

Der Erfindung liegt die Aufgabe zugrunde, eine Aluminium-Knetlegierung anzugeben, welche sich nach einfachen, konventionellen Verfahren schmelzmetallurgisch herstellen lässt und im Temperaturbereich von 0 bis 250°C im ausgehärteten Zustand gegenüber herkömmlichen Legierungen deutlich höhere Festigkeitseigenschaften besitzt.The invention is based on the object of specifying an aluminum wrought alloy which can be produced by melt metallurgy using simple, conventional methods and which in the temperature range from 0 to 250 ° C. in the hardened state has significantly higher strength properties than conventional alloys.

Diese Aufgabe wird durch die im kennzeichnenden Teil des Anspruchs 1 angegebenen Merkmale gelöst.This object is achieved by the features specified in the characterizing part of claim 1.

Die Erfindung wird anhand der nachfolgenden, durch Figuren näher erläuterten Ausführungsbeispiele beschrieben.The invention is described on the basis of the following exemplary embodiments which are explained in more detail by means of figures.

Dabei zeigt:

  • Fig. 1 ein Diagramm der Brinellhärte in Funktion des Ag-Gehalts für eine AI/Cu/Mg- bzw. AVCu/Mg/Ag-Legierung,
  • Fig. 2 ein Diagramm des Verlaufes der Brinellhärte in Funktion der Aushärtezeit für eine neue Legierung im Vergleich zu einer bekannten, kommerziellen Legierung,
  • Fig. 3 ein Diagramm des Verlaufes der Streckgrenze und der Zugfestigkeit in Funktion der Prüftemperatur für eine neue Legierung im Vergleich mit zwei bekannten, kommerziellen Legierungen,
  • Fig. 4 ein Diagramm der Zeitstandfestigkeit für eine neue Legierung im Vergleich mit einer bekannten, kommerziellen Legierung.
It shows:
  • 1 shows a diagram of the Brinell hardness as a function of the Ag content for an Al / Cu / Mg or AVCu / Mg / Ag alloy,
  • 2 shows a diagram of the course of the Brinell hardness as a function of the hardening time for a new alloy in comparison with a known, commercial alloy,
  • 3 shows a diagram of the course of the yield strength and the tensile strength as a function of the test temperature for a new alloy in comparison with two known, commercial alloys,
  • 4 shows a diagram of the creep rupture strength for a new alloy in comparison with a known, commercial alloy.

In Fig. 1 ist die Brinellhärte in Funktion des Ag-Gehalts einer Al/Cu/Ag- bzw. Al/Cu/Mg/Ag-Legierung diagrammatisch dargestellt. Dabei ist der Mg-Gehalt als Parameter aufgetragen. Kurve 1 bezieht sich auf eine Mg-freie Legierung, Kurve 2 auf einen Mg-Gehalt von 0,3 Gew-%, Kurve 3 auf einen solchen von 0,4 Gew-% und Kurve 4 einen von 0,5 Gew-%. Die Legierung wies einen konstanten Anteil von 6,3 Gew-% Cu auf; Rest Aluminium. Die Werte bezogen sich auf den nach Lösungsglühen, Wasserabschrecken und Warmaushärten erhaltenen Zustand. Mit zunehmendem Gehalt an Legierungselementen stieg die Brinellhärte bis zu einem flachen Maximum an.The Brinell hardness as a function of the Ag content of an Al / Cu / Ag or Al / Cu / Mg / Ag alloy is shown diagrammatically in FIG. 1. The Mg content is plotted as a parameter. Curve 1 relates to a Mg-free alloy, curve 2 to a Mg content of 0.3% by weight, curve 3 to 0.4% by weight and curve 4 to 0.5% by weight. The alloy had a constant proportion of 6.3% by weight of Cu; Rest aluminum. The values refer to the state obtained after solution heat treatment, water quenching and heat curing. With increasing content of alloying elements, the Brinell hardness rose to a flat maximum.

Fig. 2 zeigt ein Diagramm des Verlaufes der Brinellhärte in Funktion der Aushärtezeit für eine neue Legierung (entsprechend Kurve 5) im Vergleich zu einer bekannten, kommerziellen Legierung (entsprechend Kurve 6). Die neue Legierung hatte die nachfolgende Zusammensetzung:

  • Cu = 6,0 Gew-%
  • Mg = 0,5 Gew-%
  • Ag = 0,4 Gew-%
  • Mn = 0,5 Gew-%
  • Zr = 0,15 Gew-%
  • V = 0,10 Gew-%
  • Si = 0,04 Gew-%
  • Fe = 0,15 Gew-%
  • AI = Rest
2 shows a diagram of the course of the Brinell hardness as a function of the hardening time for a new alloy (corresponding to curve 5) compared to a known, commercial alloy (corresponding to curve 6). The new alloy had the following composition:
  • Cu = 6.0% by weight
  • Mg = 0.5% by weight
  • Ag = 0.4% by weight
  • Mn = 0.5% by weight
  • Zr = 0.15% by weight
  • V = 0.1 0 % by weight
  • Si = 0, 0 4% by weight
  • Fe = 0.15% by weight
  • AI = rest

Die bekannte, kommerzielle Vergleichslegierung nach US-Norm Nr. 2618 hatte die folgende Zusammensetzung:

  • Cu = 2,3 Gew-%
  • Mg = 1,5 Gew-%
  • Fe = 1,0 Gew-%
  • Ni = 1,0 Gew-%
  • Si = 0,2 Gew-%
The known commercial comparative alloy according to US standard No. 2618 had the following composition:
  • Cu = 2.3% by weight
  • Mg = 1.5% by weight
  • Fe = 1.0% by weight
  • Ni = 1.0% by weight
  • Si = 0.2% by weight

Beide Legierungen wurden in analoger Weise behandelt und lagen in ähnlichem Zustand vor: Lösungsglühung, Abschreckung in kaltem Wasser, Aushärtung (Warmauslagerung) bei 195°C. Die neue Legierung erreichte nach 5h Aushärtung eine maximale Härte von 165 Brinelleinheiten, während die Vergleichslegierung Nr. 2618 nach ca. 30h Aushärtung lediglich ca. 145 Brinelleinheiten erzielte.Both alloys were treated in an analogous manner and were in a similar state: solution annealing, quenching in cold water, hardening (hot aging) at 195 ° C. After 5 hours of hardening, the new alloy reached a maximum hardness of 165 Brinelle units, while the comparative alloy No. 2618 after approx. 30 hours curing only achieved approx. 145 Brinelle units.

In Fig. 3 ist der Verlauf der Streckgrenze (0,2%-Grenze, entsprechend Kurve 7) und der Zugfestigkeit (entsprechend Kurve 8) in Funktion der Prüftemperatur unter der Voraussetzung einer Haltezeit von 0,5h auf dieser Temperatur für eine neue Legierung im Vergleich mit zwei bekannten, kommerziellen Legierungen, dargestellt. Die Zusammensetzung der neuen Legierung entsprach derjenigen, welche unter Fig. 2 beschrieben wurde. Die Zusammensetzung der Vergleichslegierung Nr. 2618 kann aus der Beschreibung der Fig. 2 entnommen werden. Die Zusammensetzung der Vergleichslegierung gemäss US-Norm Nr. 2219 ist wie folgt: Cu = 6,3 Gew-%

  • Mn = 0,3 Gew-%
  • Zr = 0,18 Gew-%
  • V = 0,10 Gew-%
  • Fe = 0,30 Gew-% (max)
  • Mg = 0,02 Gew-% (max)
  • Si = 0,20 Gew-% (max)
In Fig. 3 the course of the yield point (0.2% limit, corresponding to curve 7) and the tensile strength (corresponding to curve 8) as a function of the test temperature under the assumption of a holding time of 0.5 hours at this temperature for a new alloy in Comparison with two known, commercial alloys. The composition of the new alloy corresponded to that which was described under FIG. 2. The composition of the comparative alloy No. 2618 can be found in the description of FIG. 2. The composition of the comparison alloy according to US Standard No. 2219 is as follows: Cu = 6.3% by weight
  • Mn = 0.3% by weight
  • Zr = 0.18% by weight
  • V = 0.10% by weight
  • Fe = 0.30% by weight (max)
  • Mg = 0.02% by weight (max)
  • Si = 0.20% by weight (max)

Die Kurve 9 bezieht sich auf den Verlauf der Streckgrenze (0,2%-Grenze) der Legierung Nr. 2618, die Kurve 10 auf denjenigen der Legierung Nr. 2219. Die Werte der Streckgrenze der neuen Legierung liegen deutlich höher als diejenigen der bekannten, kommerziellen Legierungen.Curve 9 relates to the course of the yield point (0.2% limit) of alloy No. 2618, curve 10 to that of alloy No. 2219. The values of the yield point of the new alloy are significantly higher than those of the known, commercial alloys.

Fig. 4 zeigt eine Darstellung der Zeitstandfestigkeit bei 180°C für eine neue Legierung im Vergleich zu einer bekannten, kommerziellen Legierung. Die neue Legierung hatte die unter Fig. 2 angegebene Zusammensetzung, während die Vergleichslegierung die oben beschriebene Nr. 2618 war. Kurve 11 bezieht sich auf die neue Legierung, während Kurve 12 für die bekannte Legierung Nr. 2618 gilt. Die erreichten Werte der neuen Legierung liegen durchwegs ca. 20 % höher als diejenigen der Vergleichslegierung.4 shows a representation of the creep rupture strength at 180 ° C. for a new alloy in comparison to a known, commercial alloy. The new alloy had the composition shown in Fig. 2, while the comparative alloy was No. 2618 described above. Curve 11 relates to the new alloy, while curve 12 applies to the known alloy No. 2618. The achieved values of the new alloy are consistently approx. 20% higher than those of the comparison alloy.

Ausführungsbeispiel 1:Example 1:

In einem Tiegel im Induktionsofen wurde eine Aluminiumlegierung der nachfolgenden Zusammensetzung erschmolzen:

  • Cu = 6,0 Gew-%
  • Mg = 0,5 Gew-%
  • Ag = 0,4 Gew-%
  • Mn = 0,5 Gew-%
  • Zr= 0,15 Gew-%
  • V = 0,10 Gew-%
  • Si = 0,04 Gew-%
  • AI = Rest
An aluminum alloy of the following composition was melted in a crucible in the induction furnace:
  • Cu = 6.0% by weight
  • Mg = 0.5% by weight
  • Ag = 0.4% by weight
  • Mn = 0.5% by weight
  • Zr = 0.15% by weight
  • V = 0.10% by weight
  • Si = 0, 04% by weight
  • AI = rest

Als Ausgangsstoffe wurden für die Komponenten Aluminium, Kupfer, Magnesium und Silber die reinen Elemente eingeschmolzen. Die Reinheit des Aluminiums betrug 99,9 %. Die Komponenten Mangan, Zirkon und Vanadium wurden als Aluminium-Vorlegierungen mit jeweils 50 Gew-% des betreffenden Elements zugegeben. Die totale erschmolzene Masse betrug ca. 2 kg. Die Schmelze wurde auf eine Giesstemperatur von 740°C gebracht und in eine leicht konische, wassergekühlte Kupferkokille abgegossen. Der rohe Gussbarren hatte einen kleinsten Durchmesser von ca. 70 mm bei einer Höhe von ca. 160 mm. Er wurde nach dem Erkalten bei einer Temperatur von 485°C während 24h homogenisiert. Nach mechanischer Entfernung der Gusshaut wurden aus dem Barren zylindrische Pressbolzen von 36 mm Durchmesser und 36 mm Höhe herausgedreht. Diese wurden einzeln auf einer Strangpresse bei einer Temperatur von 420°C zu einem runden Stab von 9 mm Durchmesser verpresst. Das effektive Reduktionsverhältnis betrug 13:1. Von dieser Stange wurden Abschnitte von 50 mm Länge abgetrennt und einzeln weiterbehandelt. Zunächst wurden die so erhal tenen Probekörper einer Lösungsglühung bei einer Temperatur von 530°C während einer Zeit von 3h unterworfen und danach in kaltem Wasser abgeschreckt. Daraufhin wurden die Probekörper während 7h bei einer Temperatur von 195°C ausgehärtet (Warmauslagerung).The pure elements were melted down as raw materials for the components aluminum, copper, magnesium and silver. The purity of the aluminum was 99.9%. The components manganese, zirconium and vanadium were added as aluminum master alloys, each with 50% by weight of the element in question. The total melted mass was approx. 2 kg. The melt was brought to a casting temperature of 740 ° C. and poured into a slightly conical, water-cooled copper mold. The raw cast ingot had a smallest diameter of approx. 70 mm and a height of approx. 160 mm. After cooling, it was homogenized at a temperature of 485 ° C. for 24 hours. After mechanical removal of the cast skin, cylindrical pressing bolts 36 mm in diameter and 36 mm high were screwed out of the ingot. These were pressed individually on an extrusion press at a temperature of 420 ° C. to form a round rod with a diameter of 9 mm. The effective reduction ratio was 13: 1. Sections of 50 mm in length were cut off from this bar and further processed individually. First, the test specimens thus obtained were subjected to solution heat treatment at a temperature of 530 ° C. for a period of 3 hours and then quenched in cold water. The test specimens were then cured for 7 hours at a temperature of 195 ° C. (hot aging).

Die Prüfung der Festigkeitseigenschaften erfolgte sowohl bei Raum- wie bei erhöhter Temperatur nach einer jeweils vorangegangenen Haltezeit von 0,5h bzw. 1000h auf der betreffenden Prüftemperatur. Die Resultate für die 0,5h-Haltezeit sind in den Diagrammen entsprechend Figuren 2, 3 und 4 dargestellt. Daraus ergeben sich folgende Werte: Brinellhärte HB: Flaches Maximum von 165 Einheiten im Bereich von ca. 4 bis 7h Aushärtezeit. Aushärtetemperatur 195°C. Kurve 4.The strength properties were tested both at room and at elevated temperatures after a previous holding time of 0.5 h or 1000 h at the relevant test temperature. The results for the 0.5 hour hold time are shown in the diagrams corresponding to FIGS. 2, 3 and 4. This results in the following values: Brinell hardness HB: flat maximum of 165 units in the range from approx. 4 to 7h curing time. Curing temperature 195 ° C. Curve 4.

Figure imgb0001
Figure imgb0001

Ausführungsbeispiel 2:Example 2:

Analog zu Beispiel 1 wurde eine Legierung gemäss nachfolgender Zusammensetzung erschmolzen und zu Stangenabschnitten weiterverarbeitet: Cu = 5,3 Gew-%

  • Mg = 0,6 Gew-%
  • Ag = 0,3 Gew-%
  • Mn = 0,5 Gew-%
  • Zr = 0,25 Gew-%
  • V = 0,15 Gew-%
  • Si = 0,08 Gew-%
  • AI = Rest
Analogously to Example 1, an alloy according to the following composition was melted and processed into rod sections: Cu = 5.3% by weight
  • Mg = 0.6% by weight
  • Ag = 0.3% by weight
  • Mn = 0.5% by weight
  • Zr = 0.25% by weight
  • V = 0, 15% by weight
  • Si = 0.08% by weight
  • AI = rest

Die Probekörper der Legierung wurden bei einer Temperatur von 533°C lösungsgeglüht und in kochendem Wasser abgeschreckt. Die Warmaushärtung erfolgte bei 175°C während einer Zeitdauer von 50h.The alloy specimens were solution annealed at a temperature of 533 ° C and quenched in boiling water. The thermosetting was carried out at 175 ° C for a period of 50 hours.

Die Festigkeitswerte lagen dürchschnittlich ca. 5 % unter denjenigen von Beispiel 1.

Figure imgb0002
The strength values were on average approx. 5% below those of Example 1.
Figure imgb0002

Ausführungsbeispiel 3:Example 3:

Analog zu Beispiel 1 wurde eine Legierung der nachfolgenden Zusammensetzung erschmolzen und zu Stangenabschnitten weiterbearbeitet:

  • Cu = 6,7 Gew-%
  • Mg = 0,4 Gew-%
  • Ag = 0,8 Gew-%
  • Mn = 0,8 Gew-%
  • Zr = 0,15 Gew-%
  • V = 0,05 Gew-%
  • Si = 0,06 Gew-%
  • AI = Rest
Analogously to Example 1, an alloy of the following composition was melted and further processed into rod sections:
  • Cu = 6.7% by weight
  • Mg = 0.4% by weight
  • Ag = 0.8% by weight
  • Mn = 0.8% by weight
  • Zr = 0.15% by weight
  • V = 0, 0 5% by weight
  • Si = 0, 06% by weight
  • AI = rest

Die Probekörper der Legierung wurden bei einer Temperatur von 525°C lösungsgeglüht und in kaltem Wasser abgeschreckt. Die Warmaushärtung erfolgte bei einer Tempera tur von 205°C während einer Dauer von 2h.The specimens of the alloy were solution annealed at a temperature of 525 ° C and quenched in cold water. The heat curing took place at a temperature of 205 ° C for a period of 2 hours.

Die Festigkeitswerte waren mit denjenigen von Beispiel 1 vergleichbar.

Figure imgb0003
The strength values were comparable to those of Example 1.
Figure imgb0003

Ausführunasbeispiel 4.Example 4.

Analog zu Ausführungsbeispel 1 wurde eine diesem Beispiel entsprechende Aluminiumlegierung erschmolzen. De Schmelze wurde auf eine Temperatur von 700°C gebracht und in einer Vorrichtung mit Hilfe eines Gasstrahls zu feinem Pulver zerstäubt. Das Gas war Stickstoff, der unter einem Druck von 60 bar stand. Vom erzeugten feinkörnigen Pulver wurden nur die Fraktionen mit einem Partikeldurchmesser unter 50 µm weiter verwendet.Analogous to embodiment 1, an aluminum alloy corresponding to this example was melted. The melt was brought to a temperature of 700 ° C. and atomized to fine powder in a device using a gas jet. The gas was nitrogen, which was under a pressure of 60 bar. Of the fine-grained powder produced, only the fractions with a particle diameter below 50 µm were used further.

Das Pulver wurde in Aluminiumdosen eingefüllt und während 5 h bei 450°C entgast. Dann wurden die gefüllten Dosen heissgepresst und die auf diese Weise hergestellten Pressbolzen in einer Strangpresse bei 420°C zu Stangen von 9 mm Durchmesser weiterverarbeitet. Das Material hatte 100 % Dichte. Abschnitte der Stangen wurden hierauf einer Lösungsglühung bei einer Temperatur von 530°C während 3 h unterworfen und dann in kaltem Wasser abgeschreckt. Die Probekörper wurden während 7 h bei 195°C warm ausgelagert. Das Maximum der Festigkeit wurde hier bereits nach ca. 5 h erreicht. Die mechanischen Eigenschaften der auf pulvermetallurgischem Weg hergestellten Probekörper lagen im Durchschnitt noch leicht über den schmelzmetallurgisch hergestellten.The powder was poured into aluminum cans and degassed at 450 ° C. for 5 hours. Then the filled cans were hot-pressed and the press bolts produced in this way were further processed in an extrusion press at 420 ° C. into bars with a diameter of 9 mm. The material was 100% density. Sections of the bars were then solution annealed at a temperature of 530 ° C for 3 hours and then quenched in cold water. The test specimens were aged at 195 ° C for 7 hours. The maximum strength was reached after about 5 hours. The mechanical properties of the test specimens produced by powder metallurgy were on average still slightly higher than those produced by melt metallurgy.

Bei Raumtemperatur wurden folgende Werte erreicht:

  • Streckgrenze (0,2 %-Grenze): 520 MPa
  • Bruchfestigkeit: 620 MPa
  • Dehnung: 8,5 %
  • Zu der legierungstechnischen Seite ist folgendes zu bemerken:
The following values were achieved at room temperature:
  • Yield strength (0.2% limit): 520 MPa
  • Breaking strength: 620 MPa
  • Elongation: 8.5%
  • The following should be noted on the alloying side:

Ganz allgemein sollten die bei der industriellen Fabrikation der Legierungen in Kauf zu nehmenden zusätzlichen Verunreinigungen so niedrig wie möglich bleiben und den Wert von total 0,25 Gew-% für alle Elemente zusammen genommen nicht überschreiten. Der Siliziumgehalt ist möglichst niedrig zu halten, um die Bildung von niedrigschmelzenden Eutektika in den Korngrenzen zu vermeiden. Ausserdem sollen intermetallische Verbindungen mit dem Magnesium, welche einen Verlust an letzterem Metall für seine günstige Wirkung zusammen mit Silber bedeuten würden, ausgeschaltet werden (siehe Fig. 1). Deshalb sollte der Siliziumgehalt unterhalb 0,10 Gew-% bleiben. Die Uebergangsmetalle Mangan, Zirkon und Vanadium dienen der Kornverfeinerung und der Bildung von intermetallischen Phasen, welche in feinverteilter Form eine Dispersionshärtung bewirken und vor allem zur Steigerung der Warmi festigkeit beitragen. Weitere ähnlich wirkende Zusätze von Eisen, Nickel und Chrom zu den beanspruchten Legierungszusammensetzungen sind denkbar. Diese Elemente haben jedoch den Nachteil, dass sie mit Kupfer zusätzliche intermetallische Verbindungen eingehen, wodurch der für die Ausscheidungshärtung und die Festigkeit der Matrix verfügbare Gehalt an diesem letzteren Element herabgesetzt wird. Jedenfalls ist bei der Verwendung von Eisen und/oder Nickel, welche allenfalls in Gehalten von 0,1 bis max. 1,5 Gew-% zugesetzt werden können, Vorsicht geboten.In general, the additional impurities to be accepted in the industrial manufacture of the alloys should remain as low as possible and should not exceed a total of 0.25% by weight for all elements taken together. The silicon content should be kept as low as possible to avoid the formation of low-melting eutectics in the grain boundaries. In addition, intermetallic compounds with the magnesium, which would mean a loss of the latter metal for its beneficial effect together with silver, should be switched off (see FIG. 1). The silicon content should therefore remain below 0.10% by weight. The transition metals manganese, zircon and vanadium serve to refine the grain and form intermetallic phases, which, in finely divided form, cause dispersion hardening and, above all, contribute to increasing the heat resistance. Other similarly acting additions of iron, nickel and chromium to the claimed alloy compositions are conceivable. However, these elements have the disadvantage that they form additional intermetallic compounds with copper, which reduces the content of this latter element available for precipitation hardening and the strength of the matrix. In any case, when using iron and / or nickel, which is at most in the range of 0.1 to max. 1.5% by weight can be added, caution is advised.

Die Erfindung ist nicht auf die Ausführungsbeispiele beschränkt. Grundsätzlich können die Zusammensetzungen in folgenden Grenzen gewählt werden:

  • Cu = 5,0 bis 7,0 Gew-%
  • Mg = 0,3 bis 0,8 Gew-%
  • Ag = 0,2 bis 1,0 Gew-%
  • Mn = 0,3 bis 1,0 Gew-%
  • Zr = 0,1 bis 0,25 Gew-%
  • V = 0,05 bis 0,15 Gew-%
  • Si < 0,10 Gew-%
  • AI = Rest plus max. 0,25 Gew.-% Verunreinigungen Vorzugsweise besitzen die Aluminiumlegierungen
  • die nachfolgenden Zusammensetzungen:
  • Cu = 5,5 bis 6,5 Gew-%
  • Mg = 0,4 bis 0,6 Gew-%
  • Ag = 0,2 bis 0,8 Gew-%
  • Mn = 0,3 bis 0,8 Gew-%
  • Zr = 0,1 bis 0,2 Gew-%
  • V = 0,05 bis 0,15 Gew-%
  • Si < 0,05 Gew-%
  • AI = Rest plus max. 0,25 Gew.-% Verunreinigungen
The invention is not restricted to the exemplary embodiments. In principle, the compositions can be selected within the following limits:
  • Cu = 5.0 to 7.0% by weight
  • Mg = 0.3 to 0.8% by weight
  • Ag = 0.2 to 1.0% by weight
  • Mn = 0.3 to 1.0% by weight
  • Zr = 0.1 to 0.25% by weight
  • V = 0.05 to 0.15% by weight
  • Si <0.10% by weight
  • AI = rest plus max. 0.25% by weight of impurities The aluminum alloys preferably have
  • the following compositions:
  • Cu = 5.5 to 6.5% by weight
  • Mg = 0.4 to 0.6% by weight
  • Ag = 0.2 to 0.8% by weight
  • Mn = 0.3 to 0.8% by weight
  • Zr = 0.1 to 0.2% by weight
  • V = 0.05 to 0.15% by weight
  • Si <0.05% by weight
  • AI = rest plus max. 0.25% by weight of impurities

Die Lösungsglühung wird vorzugsweise im Temperaturbereich von 528 bis 533°C vorgenommen, wobei die obere Temperaturgrenze durch die Forderung der Vermeidung ört licher Anschmelzungen durch Auftreten niedrigschmelzender Phasen gegeben ist. In teilweiser Abweichung zu den in den Beispielen gemachten Angaben kann die Warmaushärtung in verschiedener Weise vorgenommen werden, indem der Temperatur/Zeit-Zusammenhang ausgenutzt wird. Vorzugsweise geschieht dies gemäss nachfolgendem Schema:

Figure imgb0004
Solution annealing is preferably carried out in the temperature range from 528 to 533 ° C., the upper temperature limit being given by the requirement to avoid local melting by the occurrence of low-melting phases. In partial deviation from the information given in the examples, the heat curing can be carried out in various ways by using the temperature / time relationship. This is preferably done according to the following scheme:
Figure imgb0004

Durch die erfindungsgemässen Knetlegierungen wurden leichte Werkstoffe geschaffen, welche insbesondere im Temperaturbereich von Raumtemperatur bis 250°C gute Festigkeitseigenschaften aufweisen und sich nach herkömmlichen schmelzmetallurgischen Methoden einfach herstellen lassen.The wrought alloys according to the invention have created light materials which have good strength properties, in particular in the temperature range from room temperature to 250 ° C., and which can be easily produced by conventional melt metallurgical methods.

Claims (4)

1. A wrought AI/Cu/Mg-type aluminium alloy of high strength in the temperature range between 0 and 250°C, characterized in that it has the following composition:
Cu = 5.0 to 7.0% by weight
Mg = 0.3 to 0.8% by weight
Ag = 0.2 to 1.0% by weight
Mn = 0.3 to 1.0% by weight
Zr = 0.1 to 0.25 % by weight
V = 0.05 to 0.15% by weight
Si < 0.10% by weight
AI = remainder, plus max. 0.25% of impurities
2. A wrought aluminium alloy according to Claim 1, characterized in that it has the following composition:
Cu = 5.5 to 6.5% by weight
Mg = 0.4 to 0.6% by weight
Ag = 0.2 to 0.8% by weight
Mn = 0.3 to 0.8% by weight
Zr = 0.1 to 0.2% by weight
V = 0.05 to 0.15% by weight
Si < 0.05% by weight
AI = remainder, plus max. 0.25% of impurities
3. A wrought aluminium alloy according to Claim 1, characterized in that it has the following composition:
Cu = 6.0% by weight
Mg = 0.5% by weight
Ag = 0.4% by weight
Mn = 0.5% by weight
Zr = 0.15% by weight
V = 0.10% by weight
Si < 0.05% by weight
AI = remainder, plus max. 0.25% of impurities
4. A wrought aluminium alloy according to Claim 1, characterized in that, in the state after solution annealing, quenching in cold water and artificial aging for precipitation hardening, it has at room temperature a 0.2% yield strength of at least 510 MPa and an ultimate tensile strength of at least 575 MPa and, at a temperature of 200°C after a holding time of 0.5 hour, a 0.2% yield strength of at least 390 MPa and an ultimate tensile strength of at least 405 MPa.
EP86114458A 1985-10-31 1986-10-18 Wrought aluminium alloy of the type al-cu-mg having a high strength in the temperature range between 0 and 250o c Expired EP0224016B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH4696/85A CH668269A5 (en) 1985-10-31 1985-10-31 AL/CU/MG TYPE ALUMINUM ALLOY WITH HIGH STRENGTH IN THE TEMPERATURE RANGE BETWEEN 0 AND 250 C.
CH4696/85 1985-10-31

Publications (2)

Publication Number Publication Date
EP0224016A1 EP0224016A1 (en) 1987-06-03
EP0224016B1 true EP0224016B1 (en) 1989-09-06

Family

ID=4280915

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86114458A Expired EP0224016B1 (en) 1985-10-31 1986-10-18 Wrought aluminium alloy of the type al-cu-mg having a high strength in the temperature range between 0 and 250o c

Country Status (5)

Country Link
US (1) US4772342A (en)
EP (1) EP0224016B1 (en)
JP (1) JPS62112748A (en)
CH (1) CH668269A5 (en)
DE (1) DE3665487D1 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5122339A (en) * 1987-08-10 1992-06-16 Martin Marietta Corporation Aluminum-lithium welding alloys
US5032359A (en) * 1987-08-10 1991-07-16 Martin Marietta Corporation Ultra high strength weldable aluminum-lithium alloys
US5455003A (en) * 1988-08-18 1995-10-03 Martin Marietta Corporation Al-Cu-Li alloys with improved cryogenic fracture toughness
US5462712A (en) * 1988-08-18 1995-10-31 Martin Marietta Corporation High strength Al-Cu-Li-Zn-Mg alloys
US5512241A (en) * 1988-08-18 1996-04-30 Martin Marietta Corporation Al-Cu-Li weld filler alloy, process for the preparation thereof and process for welding therewith
US5259897A (en) * 1988-08-18 1993-11-09 Martin Marietta Corporation Ultrahigh strength Al-Cu-Li-Mg alloys
US5085830A (en) * 1989-03-24 1992-02-04 Comalco Aluminum Limited Process for making aluminum-lithium alloys of high toughness
US5211910A (en) * 1990-01-26 1993-05-18 Martin Marietta Corporation Ultra high strength aluminum-base alloys
US5376192A (en) * 1992-08-28 1994-12-27 Reynolds Metals Company High strength, high toughness aluminum-copper-magnesium-type aluminum alloy
US5800927A (en) * 1995-03-22 1998-09-01 Aluminum Company Of America Vanadium-free, lithium-free, aluminum alloy suitable for sheet and plate aerospace products
US5630889A (en) * 1995-03-22 1997-05-20 Aluminum Company Of America Vanadium-free aluminum alloy suitable for extruded aerospace products
US5652063A (en) * 1995-03-22 1997-07-29 Aluminum Company Of America Sheet or plate product made from a substantially vanadium-free aluminum alloy
FR2737224B1 (en) 1995-07-28 1997-10-17 Aerospatiale ELEMENT OF STRUCTURE OF AIRCRAFT, AND PARTICULARLY OF SUPERSONIC AIRCRAFT, IN ALUMINUM ALLOY HAVING A LONG SERVICE LIFE, A GOOD TOLERANCE TO DAMAGES AND A GOOD RESISTANCE TO CORROSION UNDER STRESS
DE59803924D1 (en) * 1998-09-25 2002-05-29 Alcan Tech & Man Ag Heat-resistant aluminum alloy of the type AlCuMg
US6368427B1 (en) 1999-09-10 2002-04-09 Geoffrey K. Sigworth Method for grain refinement of high strength aluminum casting alloys
US6645321B2 (en) 1999-09-10 2003-11-11 Geoffrey K. Sigworth Method for grain refinement of high strength aluminum casting alloys
US6902699B2 (en) * 2002-10-02 2005-06-07 The Boeing Company Method for preparing cryomilled aluminum alloys and components extruded and forged therefrom
US7435306B2 (en) * 2003-01-22 2008-10-14 The Boeing Company Method for preparing rivets from cryomilled aluminum alloys and rivets produced thereby
WO2004106566A2 (en) * 2003-05-28 2004-12-09 Pechiney Rolled Products Al-cu-mg-ag-mn alloy for structural applications requiring high strength and high ductility
US8043445B2 (en) 2003-06-06 2011-10-25 Aleris Aluminum Koblenz Gmbh High-damage tolerant alloy product in particular for aerospace applications
DE60309711T2 (en) * 2003-09-26 2007-09-13 Kabushiki Kaisha Kobe Seiko Sho, Kobe Aluminum alloy forging material with excellent high temperature fatigue strength
US7922841B2 (en) * 2005-03-03 2011-04-12 The Boeing Company Method for preparing high-temperature nanophase aluminum-alloy sheets and aluminum-alloy sheets prepared thereby
CN104674090A (en) 2007-12-04 2015-06-03 美铝公司 Improved aluminum-copper-lithium alloys
RU2524288C2 (en) 2009-01-22 2014-07-27 Алкоа Инк. Perfected aluminium-copper alloys containing vanadium
US9347558B2 (en) 2010-08-25 2016-05-24 Spirit Aerosystems, Inc. Wrought and cast aluminum alloy with improved resistance to mechanical property degradation
US10266933B2 (en) 2012-08-27 2019-04-23 Spirit Aerosystems, Inc. Aluminum-copper alloys with improved strength
CN103725998A (en) * 2013-12-20 2014-04-16 合肥工业大学 Method for enhancing strength of Al-Cu-Mg alloy
CN109825749A (en) * 2019-04-10 2019-05-31 上海裕纪金属制品有限公司 One kind can punching press aluminium alloy extrusions heat-and corrosion-resistant heat treatment method and aluminium alloy extrusions
CN111926226B (en) * 2020-08-12 2021-12-14 烟台南山学院 High-strength plastic aluminum alloy and preparation method thereof
US20220170138A1 (en) * 2020-12-02 2022-06-02 GM Global Technology Operations LLC Aluminum alloy for casting and additive manufacturing of engine components for high temperature applications

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3288601A (en) * 1966-03-14 1966-11-29 Merton C Flemings High-strength aluminum casting alloy containing copper-magnesium-silconsilver
US3475166A (en) * 1969-01-15 1969-10-28 Electronic Specialty Co Aluminum base alloy
GB1320271A (en) * 1971-01-29 1973-06-13 Atomic Energy Authority Uk Aluminium alloys
JPS4838282A (en) * 1971-09-18 1973-06-05
JPS5128562A (en) * 1974-09-05 1976-03-10 Mitsubishi Heavy Ind Ltd ATSUENKYO ATSUKASOCHI
US3925067A (en) * 1974-11-04 1975-12-09 Alusuisse High strength aluminum base casting alloys possessing improved machinability
JPS59123735A (en) * 1982-12-30 1984-07-17 Sumitomo Light Metal Ind Ltd Structural aluminum alloy with low radiation characteristic and improved electric resistance

Also Published As

Publication number Publication date
CH668269A5 (en) 1988-12-15
JPS62112748A (en) 1987-05-23
DE3665487D1 (en) 1989-10-12
US4772342A (en) 1988-09-20
EP0224016A1 (en) 1987-06-03

Similar Documents

Publication Publication Date Title
EP0224016B1 (en) Wrought aluminium alloy of the type al-cu-mg having a high strength in the temperature range between 0 and 250o c
DE69326838T3 (en) TOUGH ALUMINUM ALLOY WITH COPPER AND MAGNESIUM
DE69117066T2 (en) IMPROVED AL-LI ALLOY SYSTEM
DE60123065T2 (en) TITANIUM ALLOY AND HEAT TREATMENT METHOD FOR LARGE DIMENSIONAL, SEMI-FINISHED MATERIALS FROM THIS ALLOY
DE3883087T2 (en) Aluminum composite alloys.
DE68907331T2 (en) Process for the production of 7000 series aluminum alloys by spray deposition and non-continuously reinforced composite materials, the matrix of which consists of these alloys with high mechanical strength and good ductility.
EP0918095B1 (en) Process of manufacturing a structural element made of a die-cast aluminium alloy
DE2264997A1 (en) PRECIPITABLE NICKEL, IRON ALLOY
DE3445767A1 (en) Method of forging nickel-base superalloys and a nickel-base superalloy article having improved forgeability
DE4436481C2 (en) Process for producing an aluminum alloy forging
WO2017182102A1 (en) Die casting alloy
DE4103934A1 (en) SUITABLE ALUMINUM ALLOY FOR PISTON
EP0554808B1 (en) Method to produce metal parts
WO2004003244A1 (en) Al/cu/mg/ag alloy with si, semi-finished product made from such an alloy and method for production of such a semi-finished product
EP2236637A2 (en) Pressure casting mould made of a hypereutectic aluminium silicon cast alloy and method for producing same
DE3788387T2 (en) Dispersion-reinforced aluminum alloys.
WO2017174185A1 (en) Aluminum alloy, in particular for a casting method, and method for producing a component from such an aluminum alloy
DE69215156T2 (en) Hypereutectic aluminum-silicon alloys
EP1645647B1 (en) Cold age hardenable Al-alloy and process of the manufacture of a cast part
WO2003008655A2 (en) Moulded piece made from an intermetallic gamma tial material
EP0828008B1 (en) Aluminium alloy with good machinability
DE1483228B2 (en) ALUMINUM ALLOY WITH HIGH PERFORMANCE
EP0219629A1 (en) Heat-resisting aluminium alloy and process for its manufacture
DE69120299T2 (en) OVEREUTECTIC ALUMINUM-SILICONE POWDER AND THEIR PRODUCTION
EP0918096A1 (en) Structural element made of a die-cast aluminium alloy

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB LI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BBC BROWN BOVERI AG

17P Request for examination filed

Effective date: 19871005

17Q First examination report despatched

Effective date: 19881012

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI

REF Corresponds to:

Ref document number: 3665487

Country of ref document: DE

Date of ref document: 19891012

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990913

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19990915

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990920

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990927

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001031

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20001018

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010703

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST